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Forecasting the number of intensive care beds
occupied by COVID-19 patients through the
use of Recurrent Neural Networks, mobility
habits and epidemic spread data
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Abstract. Since 2019, the diffusion of COVID-19 all over the world has caused more than five millions deaths and the biggest
economic disaster of last decades. A better prediction of the Intensive Care beds (ICUs) burden due to COVID-19 may optimize
the public spending and beds occupancy, in the future. This can enable Public Institutions to apply control policies and a better
regularization of regional mobility. In this work, we address the challenge of producing fully automated covid spread forecasting
via Deep Learning algorithms. We developed our system by means of LSTM and Bidirectional LSTM models and new model
regularization achievements such as “Inference Dropout”. Results highlight “state-of-art” accuracy in terms of ICUs prediction.
We definitely believe that this breakthrough can become a valuable tool for policy makers in order to face with the problem of

COVID-19 effects in the near future.
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1. Introduction

SARS-CoV-2 is a new type of Coronavirus first iden-
tified in Wuhan on December 31, 2019 and which
can cause humans to develop an infectious respiratory
disease known as COVID-19 [1]. The ever-increasing
spread of the virus has had disastrous consequences:
to date, the death toll exceeds six millions [2] and it
started the biggest economic crisis since the Great De-
pression [3]. A health and financial emergency of this
magnitude has meant that hitherto little exploited tools
were used on a large scale in an attempt to stem it. For
example 5G cloud partnerships support hospitals that,
burdened by a lack of radiologist technicians, use X-
Ray and CT (computed tomography) synchronization
systems for accurate detection of CT and other images
in screening for suspected COVID cases [4,5]. In this
perspective of “intelligent” prevention are also included
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control systems based on Deep Learning methodolo-
gies, namely a class of automatic learning algorithms
capable of emulating the functioning and structure of
a human brain. This type of procedure is mainly used
for the classification of chest radiographic images. A
Convolutional Neural Network (CNN), for example,
made it possible to divide a dataset of radiographs into
three macro categories (patient with viral pneumonia,
patient with COVID-19 and healthy patient) with a test
accuracy level equal to 99.4% [6]. It is therefore clear
that the use of this type of resources is not only useful
but necessary for a better management of the pandemic
and its consequences.

According to a study conducted by the University
of Minnesota and the University of Washington, each
increase of one percentage point in the number of oc-
cupied intensive care beds (ICUs), corresponding to
about 17 beds, leads to 2.84 additional deaths, linked
to SARS-CoV-2, during the following week (p = 0.01,
95% CI [6, 5]) [7]. The existence of such a direct re-
lationship between the mortality of the virus and the
degree of use of the hospital system has meant that
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the containment policies implemented by the individual
states focused on flattening the curve. For the purposes
of a correct assessment of the measures to be adopted,
however, it is necessary to have suitable and as precise
models as possible for forecasting infections.
Furthermore, according to what emerged in a study
conducted by the department of Engineering of the
University of Campania “Luigi Vanvitelli”, mobility
habits represent one of the variables that better explain
the number of COVID-19 infections [8]. The work we
have done fits precisely into this context, aiming at
the construction of a smart prevention framework for
COVID and its consequences. This framework was built
in two variants, each of which lays its foundations on
a different artificial neural network. These two ANNS,
called Long Short Term Memory (LSTM) and Bidi-
rectional Long Short Term Memory (Bi-LSTM), have
been constructed and proposed differently than what is
usually done in the literature, allowing us to combine
the punctual estimates obtained as output with interval
estimates, thus adding a measure of variability of the
forecasts made. The variable that we want to predict
in the framework consists in the number of beds oc-
cupied in intensive care, with a time horizon of one
week. We have seen how this data is indicative of the
effectiveness of the prevention measures implemented
by a State and therefore knowing in advance the trend
could be extremely useful, ultimately allowing to an-
ticipate any containment policies adopted, thus reduc-
ing the impact on the hospital system. The data on the
basis of which the forecasts are made are descriptive
of the trend of the epidemiological situation in the ref-
erence area and of the mobility habits of its citizens,
the latter issued by Google. The proposed framework
was trained and tested on the Italian region of Lazio.
This is not the first time that recurrent neural networks
have been used to make predictions about the evolution
of SARS-CoV-2. A study conducted by the Pakistan
Institute of Einginereeing and Applied Sciences, for ex-
ample, using both deep and machine learning method-
ologies, was able to predict the number of infections,
recovered patients and daily deaths with Mean Absolute
Error and the Root Mean Squared Error, namely the two
most commonly used error measures when evaluating a
model, respectively equal to 0.0070 and 0.0077 [9]. The
peculiarity of the study proposed in our article how-
ever is inherent not only in the in the adopted archi-
tectures but also in the approach and type of datasets
used, which are not only epidemiological but also so-
cial and demographic in nature. The rest of this paper
is structured as follows: the adopted methodology will

be described in Section 2, with focus on the adopted
architecture and datasets, while obtained results and
conclusions will be reported respectively in Sections 3
and 4.

2. Methods
2.1. Time series forecasting

The concept underlying the paper and the framework
that we want to build consists, as mentioned, in the
formulation of a Time Series Forecasting problem. The
choice of an approach to proceed in this sense is not
unique but varies from case to case in line with what
is reported in the famous “No Free Lunch Theorem
(NFL)” [10]. In fact, if applied to Machine Learning,
NFL implies that no algorithm can be considered the
best a priori in a predictive modeling approach. To pro-
vide an overview of the paths usually followed in these
situations, we divide the most used algorithms in the
literature into two classes, namely Deep Learning and
Machine Learning algorithms.

2.1.1. Machine learning

When we talk about Machine Learning (ML) we re-
fer to a class of algorithms which are designed to learn
from the data provided and consequently perform tasks
on the basis of what they have learned [11]. These are
characterized by the possibility of improving their per-
formance over time through the experience acquired and
are widely used in various fields, including Time Series
Forecasting. The simplest model to accomplish this pur-
pose is the Autorgressive Integrated Moving Average
(ARIMA) which uses as input a linear combination of
the values assumed by the output variable in p previous
time instants and a linear combination of ¢ white noises,
which are random variables designed to describe the
intrinsic random nature of the phenomenon. To manage
any non-stationarity of the variable to be predicted, an
Integration operator is introduced into the model, which
substitutes to the starting data the difference between
them and the values immediately preceding it. This op-
eration is repeated a d number of times until the refer-
ence time series is made stationary. The three values
mentioned so far, that is p, d and ¢, identify the order of
the model and must be estimated with a view to trade-
off between goodness of fit and number of parameters.
ARIMA is therefore a very simple univariate approach,
not making the predictions depend on other information
than the past values of the variable itself and a ran-
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dom component. Precisely for this simplicity it is often
used as a starting benchmark to evaluate the accuracy
of more complex models. A multivariate generalization
of ARIMA is represented by the Vector Autoregression
(VAR). Similarly to what we have seen so far, the out-
put for each variable considered with this approach is
given by a linear combination of the previous values
plus a stochastic error term, to which this time a linear
combination of the past values of all other variables is
added [12]. ARIMA and VAR represent two very simi-
lar models that require some preliminary assumptions,
including the stationarity of the selected time series, the
expected value of the stochastic disturbances €; to be
null and their non-correlation. Furthermore, with ref-
erence to VAR, it is also necessary to carry out some
preliminary statistical tests such as the Granger Causal-
ity Test to confirm that the variables actually influence
each other. Another methodology frequently adopted
in the literature is represented by Multiple Linear Re-
gression, a model that estimates a Y response variable
on the basis of other p variables X, called regressors,
and a term of stochastic error. The difference between
this approach and those mentioned above derives from
the nature of the X;, which can be both quantitative and
qualitative, and from the relationship that is assumed
a priori between dependent and independent variables,
which, as the name suggests, must be linear with re-
spect to the coefficients. The latter play a fundamental
role in the formulation of the model, quantifying the
impact that each regressor has on the output. Also in
this case some preliminary assumptions about white
noise are made, similar to those seen previously, plus
others fundamental assumptions regarding the regres-
sors. In fact, the explanatory variables must be such as
not to be highly linearly related, a condition that would
prejudice the validity of the estimates obtained with this
model [13].

2.1.2. Deep learning

We have seen how a generic Machine Learning ap-
proach first requires a series of assumptions that are not
necessarily consistent with what has been empirically
observed. For example, remaining in our specific case,
many of the variables that will be selected as inputs
for the models are highly linearly related and not sta-
tionary, thus requiring further corrections to the data
to make an approach of this type valid. To overcome
this problem, it is possible to resort to a sub-branch of
Machine Learning, namely Deep Learning, and specifi-
cally to the use of a series of algorithms called Artificial
Neural Networks (ANNs). ANNs are models built with

the intention of representing, albeit in a much more
simplistic way, the functioning of the human brain. A
generic Neural Network is made up of many subunits,
called neurons or nodes, interconnected with each other.
The neurons are divided into several layers, where the
first receives an input from the outside, transforms it
through appropriate functions called activation func-
tions, and transmits it to the subsequent level, which
repeat this same procedure until the final result of the
model is produced. The connection between one node
and another is quantified by a value called weight, that
is, the value by which the output of each subunit is
multiplied. A connection with null weight, for exam-
ple, implies that whatever the result produced by the
first node is, this will not be taken into consideration
by the second one for its output. The weights there-
fore represent a crucial factor for the learning process
of the network as they are the values that are progres-
sively modified in order to maximize the goodness of
fit of the model. Generally an ANN has hundreds if
not thousands of neurons, a value which necessarily
implies a much higher number of weights and therefore
of parameters to be estimated. Precisely because of this
complexity, neural networks are in general algorithms
that require a significantly broader starting dataset and
involve much more dilated computational times. On
the other hand, however, they are able to manage this
amount of data very well and, unlike Machine Learning
approaches, they do not need specific assumptions to be
used successfully. The biggest flaw of neural networks,
however, is their interpretability. ANNs are basically
“Black Boxes” algorithms, which means that you get
a certain output without actually being able to justify
why this result can be considered valid or not [14].

2.2. Neural Networks architectures

The issue with traditional neural networks, usually
called Feed Forward Networks (FFN), used for Time
Series Forecasting problems consists in their inabil-
ity to grasp the temporal aspect of the input dataset.
A Feed Forward Network applied for example to the
smartphone keyboard corrector would base its forecasts
relating to the words to enter exclusively on the last one
typed, in fact not having enough information to make it
accurate. A possible solution to overcome this problem
and use an FFN in a Time Series Forecasting task is to
specify as input to the model all past values on which
we want to make the forecast depend (in the case of
the above example all the previous words which we
believe is appropriate to provide). In this case, how-
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ever, the interpretation that the Neural Network gives
to the input variables is similar to interpretation of a
Regression model, where they are independent from
each other. The ANNS capable of carrying out this task
are called Recurrent Neural Networks (RNN): their out-
put is based both on what has just been typed, and on
the entire sentence written in the text box. In this case,
however, the past information is not always used in the
same way, but rather through a dynamic feedback sys-
tem which is optimized during the Training phase and
which decides which past information to exploit and
which not in the formulation of the outputs [15]. To
make forecasts over the following week we selected two
types of RNNs, namely the Long Short Term Memory
(LSTM) and its Bidirectional variant (Bi-LSTM).

2.2.1. LSTM

LSTMs are probably the most widely used Recur-
rent Neural Network in the literature. The key concept
that allows it to incorporate the temporal component
resides in the Cell State, a representation of past in-
formation developed by breaking down the input ma-
trix into sub-vectors. These sub-vectors, which in our
case we can imagine as the single days that make up
a week of input data, are taken one at a time by the
model through a variant of the classical neurons of the
ANNS called Memory Cells. For example, when the
second day is taken, the output of the second Mem-
ory Cell will be influenced by both the variables just
viewed and the Cell State representative of the previous
information, aggregated together through appropriate
mathematical functions. Each Memory Cell will pass
to the next one, therefore both a traditional output and
the Cell State suitably modified in the light of what has
been viewed. This flow of information is regulated by
three mechanisms called gates. The first gate quantifies
how much of the previous information must be stored
in the Cell State, the second how much of the new in-
formation must be passed on while the third how the
Cell State must be updated in the light of these two
information [16].

2.2.2. Bidirectional RNNs

Bidirectional Recurrent Neural Networks are a more
sophisticated variant of their unidirectional counterpart.
They adopt an additional layer, in our case an LSTM
layer, scrolling the input sequence backwards, thus also
exploiting future information to generate better pre-
dictions [17]. In fact, during the Training phase each
output timestep is produced considering both layers of
the Bi-LSTM, where the first one receives the value in

t — 1 as input while the second the one in ¢ + 1. The
implementation of a model of this kind therefore allows
us to build more sound relationships between inputs and
outputs, since we investigate both what a past situation
led to and what has brought a future one.

2.2.3. Dropout

A common problem that characterizes Artificial Neu-
ral Networks is overfitting, that is an over-adaptation
of the model to the data. This often occurs when the
number of observations available is much lower than
the degree of parametrization. A method of regular-
ization commonly implemented to overcome this criti-
cality is the Dropout. By applying this procedure to a
generic ANN, in each training iteration certain nodes
are randomly selected to be temporarily removed from
the model along with all other connections that exist be-
tween this and other neurons, thus obtaining a thinned
network. By operating this way, the entire training pro-
cess of the Network results to be noisier than the base
architecture and each node receives a slightly different
task at each iteration, improving the overall ability of
the model to generalize [18].

2.3. Punctual forecasts and interval estimates

The implementation of the Dropout is usually lim-
ited to the training phase, as during testing the thinned
Networks obtained are combined with each other. In
the work presented below, however, this procedure was
also maintained in the latter. Operating this way we can
iterate the testing phase an arbitrary number of times,
obtaining in each case a different prediction deriving
from a specific thinned Network due to the presence of
Dropout. By thus collecting the individual predictions
produced, we are able to construct their distribution
and, consequently, obtain their sample statistics. We
then calculate the punctual forecasts for each week of
interest by averaging each timestep predicted during the
iterations of the testing phase. Furthermore, this proce-
dure allowed us to accompany these predictions with in-
terval estimates of the predictions at a fixed confidence
level a (equal to 0.95 in our case) thanks to the dou-
ble stochastic nature of forecasts. Standard LSTMs and
Bidirectional LSTM are not capable of doing so, only
providing punctual forecast of the target time series.
The implementation of such a small change in the basic
architecture allowed us to simulate an arbitrary num-
ber of models, all attempting to generate predictions
over the same time period. The value of the dropout
therefore assumes a crucial role, representing a param-
eter of similarity between the models that compose this
ensemble.
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2.4. Dataset description

The objective of the paper is, as mentioned, the con-
struction of a framework that is able to predict, based
on seven days of data, the evolution of the number
of beds occupied in intensive care over the following
week. It is therefore necessary to identify which vari-
ables these data supplied as input to the model must be
composed of. We need to identify information sets that
can be considered as descriptive as possible of the phe-
nomenon under analysis by skimming variables that,
despite adding useful information for the purposes of a
better forecast, had a marginal contribution such as to
be inconvenient in view of a tradeoff between goodness
of fit and added complexity. The two macro-categories
of data that we have decided to take into consideration
refer to the trend of the epidemiological situation and to
the mobility habits of citizens of the areas under anal-
ysis, both considered significant for specific reasons
that will be clarified later. Both datasets have a daily
sampling rate. From a purely theoretical point of view
it is reasonable to assume that information relating to
the progress of the vaccination campaign can also be
considered representative of the number of hospital-
izations in intensive care [19]. Despite this premise,
however, the small size of the dataset representative
of this phenomenon has led us to completely discard
this option. Consistent with what has been explained
previously, in fact, Artificial Neural Networks include
a class of very sophisticated and complex algorithms
which need a much broader training set than the more
classical statistical models, such as ARIMA and Linear
Regression. In all of Italy, however, the first doses of
the anti covid vaccine were administered starting from
December 27th 2020, while the descriptive data of the
epidemiological situation are available starting from
February 2020. Deciding to include the first Dataset
would imply combining the two, giving up about half
of the information in our possession and therefore not
reaching the critical mass necessary to formulate coher-
ent forecasts.

2.4.1. Epidemic spread data

In this paper we are going to use two different sets of
data: the first one is provided by the Protezione Civile,
the national body in Italy that deals with the prediction,
prevention and management of emergency events. The
dataset contains information relating to the progress
of the epidemic with reference to the Italian state and
with a regional level of detail. The Italian regions rep-
resent the first level of subdivision of the territory, both

from a territorial, juridical and administrative point of
view. This subdivision is sanctioned by the Constitu-
tion, which identifies a total of 20 regions. Over the last
two years this fragmentation of the territory took on par-
ticular importance: following the first general lockdown
in March 2020, the imposition of restrictive measures
was evaluated region by region and no longer with ref-
erence to the entire territory. This classification, which
is decreed on the basis of various parameters including
the percentage of occupied intensive care beds, includes
four different risk bands: we start from a White Zone
where the level of contagion is contained and there are
no particular restrictions to a Red Zone, where move-
ments are limited to those that are exclusively essential
and a curfew is imposed at night [20]. The formulation
of a model with this level of data granularity therefore
fits well with the current legislation in force in Italy. In
our analysis we focused exclusively the Lazio region,
the second most populous in the state. The data is re-
leased daily on the institution’s github repository and is
pubblicly accessible [21]. Within the original variables
only a subset was selected, reported together with those
of mobility in the Table 1 The selection process was
carried out through Trial and Error, excluding ex ante
the columns whose historicization has only begun later,
consistently with what was done previously with the
data relating to vaccines.

2.4.2. Mobility data

The second Dataset is published by Google itself and
utilizes aggregated anonymous data from Google Maps
to report percentage variations, with respect to the av-
erage value, in the crowding of certain places such as
workplaces or parks [22]. The repository containing this
information is updated usually once every week. The
idea of using data relating to citizens’ mobility habits
follows what emerged in the work carried out by Carteni
et al. (2020) entitled “How mobility habits influenced
the spread of the COVID-19 pandemic: Results from the
Italian case study” [8] where the influence of various
factors on the spread of covid in Italy was investigated,
with regional granularity of the data. The study was
conducted taking into consideration a set of variables
deemed significant to explain the phenomenon, includ-
ing in addition to mobility also the external temperature
of the air and atmospheric pollution. The time series
considered covered three distinct periods: before, dur-
ing and after the general lockdown of March 2020. To
individually evaluate the impact of each feature a mul-
tiple linear regression model was developed, with the
dependent variable given by the daily number of covid



390 E. Valente et al. / Forecasting the number of intensive care beds occupied by COVID-19 patients

Summary of selected variables

Epidemic spread data

Variable name Daily deaths

Number of currently occupied intensive care beds

Number of currently hospitalized patients

Unit of measure Individuals Individuals
Variation range 0/83 0/3408
Mobility habits variables
Variable name Parks Transit stations Workplaces
Unit of measure  Percentage variations Percentage variations Percentage variations
Variation range —87.25/54 —85.50/7.75 —74/1.50
Hyperparameters of architectures for both LSTM and Bi-LSTM
Neurons  Batchsize  Learning rate  Optimizer  Activation function  Dropout
Bi-LSTM 16 1 0.001 Adam Sigmoid 0.2

infections. The level of influence was then evaluated on
the basis of the standardized regression coefficients of
each variable. A first result obtained from this method-
ology confirms that mobility is the most impactful of
the features taken into consideration. Furthermore, by
analyzing the mandatory quarantine period required by
the state it emerged that the trend of the infections was
strictly influenced by trips carried out 21 days earlier.
This value was obtained through repeated iterations of
the previously mentioned regression model validation
process, each with a different deferral value for the pe-
riod. It is therefore clear how implementing information
of this type within the Deep Learning algorithm can im-
prove the quality of the forecasts made and thus make a
prevention system based on this type of approach more
reliable. Furthermore, in line with what has just been
said we have decided to move Google’s Mobility Data
forward by 21 days. This solution also allows us to have
a greater number of samples for the Test phase: given
the difference in the update speed of the two datasets,
we would have had to stop all available time series at
the last date in our possession of the shorter set of data.
Otherwise we would have had missing information,
thus impeding us to make forecasts. By differing the
two samples, however, Google’s (justified) slowness
in publishing the data does not constitute a slowdown,
having to take values from three weeks before. These
two datasets have then been combined to serve as an
input for different architectures of Recurrent Neural
Networks and the features selected for the analysis are
reported in Table 1. Another pre-processing procedure
adopted consists in the smoothing of mobility variables
through the use of moving averages, all of them with
a time window of four days. This because given the
high fluctuations of these five variables the output pro-
duced by the model also found to have a rather high
variability, even where not realistically possible [24].

Lastly, the dataset thus obtained was scaled between
0 and 1 given the different order of magnitude of the
variables. This procedure was then reversed once the
forecasts were obtained, so as to return to the initial
range of variation and ensure greater interpretability of
the proposed results.

2.5. Performance measures

To evaluate the performances of our models we have
adopted two different metrics: namely the Mean Ab-
solute Error (MAE) and the Root Mean Squared Error
(RMSE), which are calculated as follows:

n

1 .
MAE = EZM — 4il
=1

We’ve decided to opt for these two indices since the
Mean Absolute Error, being based on the Mean Error,
tends to underestimate large but infrequent deviations
from the actual value to be predicted. The Root Mean
Squared Error on the other hand is expressed as the
square root of the squared mean of the residuals, in fact
attributing greater weight to the presence of this type of
errors: the greater the difference between the two, the
greater the variability of the forecast error [25].

3. Results

The target of the study presented in this paper is
to build a forecasting model as accurate as possible,
so as to have a powerful tool for evaluating policies
aimed at flattening the contagion curve. The dataset has
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Fig. 1. Bi-LSTM predictions.
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Fig. 3. ARIMA predictions.
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Fig. 5. Ensemble LSTM predictions.

been divided into timesteps of seven days each, passing
from a two-dimensional array to a three-dimensional
one where the first dimension represents the number
of weeks that make up the training set, the second the
width of the timestep (that is seven days) while the third
the number of variables selected. The selection of the
hyperparameters was carried out through trial and error,
as well as the number of input days. A schematic of
the final configuration is shown the Table 2 [26-28]. In
addition, to ensure greater comparability with the stan-
dards in force in the literature, two traditional ensem-
ble models were also developed. These were built by
separately training 100 models, respectively of LSTM
and Bi-LSTM, whose predictions are then obtained by
calculating the average of each individual output week.
We can see how both the stochastic and the traditional
ensemble have rather similar configurations: both report
the same values as regards to Batch Size and Learning
Rate, respectively equal to 1 and 0.001, as well as the
type of Optimizer, Adam, and Activation Function, Sig-
moid. They differ slightly for the Dropout, 0.2 in the
first case and 0.25 in the second, while they report dif-
ferent values of neurons, namely 16 and 32. The models
thus constructed receive as input the various samples of
the training set, each consisting of a week of data re-
lating to the selected variables, and return as output the
estimated values of the number of intensive care beds
occupied over the following week. For further insights
on the topic of Recurrent Neural Networks and LSTMs
in particular I send back to Yong Yu et Al; A Review of
Recurrent Neural Networks: LSTM Cells and Network
Architectures. Neural Comput 2019; 31.

This said, we move on to analyze the performances
of the forecast models obtained. The dataset we have
adopted runs from March 13, 2020 to January 27, 2021,
for a total of 686 days. Among these, 525 days have
been used to train the models, 126 consitute the vali-
dation set while the remaining 35, that means 5 weeks,
have been used for the evaluation. The results obtained
from each model over these five evaluation periods have
been displayed in Figs 1 to 5. In addition to the val-
ues useful for comparing each forecasted week with
the one that actually took place, the values assumed by
the target variable in the previous seven days have also
been shown in the figure. These values represent the
period taken as input, together with the other variables,
by the Neural Networks. The final evaluation will be
conducted on the basis of the overall performances ob-
tained in over 1000 cycles of these predictions while all
error metrics refer to a generic cycle among them and
where each cycle represents the output of a stochas-
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Hyperparameters of architectures for both LSTM and Bi-LSTM ensemble models

Neurons  Batch size  Learning rate

Optimizer ~ Activation function ~ Dropout

Bi-LSTM 32 1 0.001

Adam Sigmoid 0.25

Error measures per architecture

25 4

1

15 4
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Fig. 6. Distribution of metrics for the two architectures of the stochastic ensembles.

Table 4
Value of metrics for the Bi-LSTM model
Period 1 Period2 Period3 Period4 Period 5

MAE 5.942 9.91 12.345 4.315 3.004
RMSE 9.146 15.261 13.726 5.171 3.864

Table 5
Value of metrics for the LSTM model
Period 1 Period 2 Period3 Period4 Period 5

MAE 7.697 8.805 9.076 6.369 4.058
RMSE  8.326 14.314 10.296 6.608 4.931

tic ensemble of 1000 Neural Networks. The boxplots
built by aggregating these 1000 cycles obtained on the
various predicted weeks have been displayed in Fig. 6.
Observing Tables 4 and 5, containing the metrics ob-
tained on the five evaluation periods, we note that both
stochastic ensembles report rather similar MAE and
RMSE values. With reference to periods 1 and 2 there is
a large difference between the two metrics, highlighting
the presence of infrequent forecast errors but of a sig-
nificant size. This is confirmed by Figs 1 and 2 depict-
ing the forecasts of the periods just mentioned: in the
first plot in fact both architectures correctly capture the
evolution of the number of occupied intensive care beds
for most of the week in question, except for the last two
days where there is a sudden increase in hospitalized
patients. The same is true for the second period, where
the increase is such that it goes out of the estimated
confidence interval. It is worth noting how in both cases

this happens in the last estimated days, in fact when
the latest available data is further away and therefore
where greater uncertainty in the output is expected. In
the remaning 3 evaluation periods both architectures
achieve a higher level of precision, correctly anticipat-
ing what the actual values and any changes in the trend
will be, without significant differences between MAE
and RMSE. Looking at the boxplot in Fig. 6 we no-
tice how both architectures settle on similar ranges of
Mean Absolute Error and Root Mean Squared Error.
The LSTM reports a median value of the MAE lower
than all the other metrics, which amounted to around
10, at the expense of a higher interquantile range, ap-
proximately between 5 and 20, for both measures of
error, in fact resulting less stable in forecasts than the
Bi-LSTM. However, both stochastic ensembles report
values of the distributions of an order of magnitude
lower than the target variable, thus confirming the good-
ness of the forecasts obtained. By comparing the results
of the stochastic ensemble with those obtained through
a traditional one we observe how the latter stands at
higher MAE and RMSE values than the former (Ta-
bles 7 and 8). What was previously said about periods 1
and 2 remains valid, where also in this case the sudden
increases are not anticipated correctly, while weeks 3, 4
and 5 are characterized by greater precision in forecast-
ing the trend, net of a greater deviation from the real
values compared to the previous ensemble. It is also
important to note that the confidence intervals them-
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Table 6
Value of metrics for the ARIMA model
Period 1 Period2 Period3 Period4 Period 5

MAE 10.123 5.433 6.487 13.466 3.286
RMSE  11.905 7.039 7.628 15.288 3.679

Table 7
Value of metrics for the Bi-LSTM ensemble model
Period 1 Period2 Period3 Period4 Period5

MAE 6.547 14.391 18.284 12.407 7.799
RMSE 8.381 19.058 19.283 12.645 8.402

Table 8
Value of metrics for the LSTM ensemble model
Period 1 Period2 Period3 Period4 Period 5

MAE 5.8 15.007 13.369 16.48 7.831
RMSE  7.825 18.946 14.352 16.572 8.332

Table 9
Value of metrics for the Bi-LSTM model with non-shifted data
Period 1 Period2 Period3 Period4 Period 5

MAE 15.482 33.996 23.941 5.097 8.69
RMSE  18.659 36.208 24.974 5.659 9.737

Table 10
Value of metrics for the LSTM model with non-shifted data
Period 1 Period2 Period3 Period4 Period5

MAE 21.67 36.227 35.01 4.914 4.118
RMSE 23453 38.332 35.522 5.462 5.084

selves in this case are much smaller in width, in fact not
providing useful information on the possible evolution
of the target variable (Figs 4 and 5). Worth noting is
that training a traditional ensemble is significantly more
expensive than training a stochastic one, as in the first
case it is necessary to repeat the training phase n times
(100 in the proposed work), where n represents the size
of the ensemble, while in the second case only once.
The same computational effort remains in the inference
phase, where the latter has to load each model obtained
separately. This saving is made possible thanks to the
permanence of the dropout during the training phase,
which allows to obtain conceptually the same result,
but with a much lower computational power required.
In order to more accurately evaluate the performance
of the models, an ARIMA of order (2,2,2) has been
developed to serve as a benchmark. Its parameters were
estimated according to AIC and BIC while its results
are shown in Table 6. We can observe in Table 6 how
in this case MAE and RMSE values are generally com-
parable, and in some cases better, than those obtained
with Artificial Neural Networks, except for some spikes
where these error measures increase significantly. By

visualizing the periods where these increases have been
reported, we note how these are characterized by a
change in trend for the target time series. On the other
hand where MAE and RMSE are low, we note how
these are composed by a linear evolution of occupied
intensive care beds. This phenomenon is mainly due to
the inputs that the Machine Learning model receives.
In fact, being based exlusively on the values assumed
by the variable in previous timesteps, the output results
in a continuation of what was observed before. This
implies that when this phenomenon actually happens,
the Autoregressive Integrated Moving Average presents
excellent metrics, being by construction particularly
effective in predicting linear time series. We can see a
representation of what just stated in periods 2 and 5, in
Fig. 3. In the first case we note how the model, which
reports lower MAE and RMSE values compared to both
stochastic ensemble architectures, continues the trend
it observed in input, projecting it into the forecasting
period. This, despite the output of the Neural Networks
being more precise in the first 4 days of the week, is
ultimately confirmed as more effective in describing
the actual growth found in all 7 days of the evaluation
period. This is different in the second case, where de-
spite a linear trend, the Bi-LSTM is still more effective,
albeit slightly, in terms of error metrics. When it comes
to non linear trends however, the ARIMA model utterly
fails at the task,not having the piece of information re-
quired to anticipate these variations. This is striking in
period 4, where a change in trend coinciding with the
end of the input data causes the model to completely
mistake the evolution of the number of beds occupied
in intensive care. This change is instead precisely cap-
tured by both Bi-LSTM and LSTM, which report lower
Mean Absolute Error and Root Mean Squared Error
values and predictions more consistent with real data.
The forecasts obtained through ARIMA are therefore
not consistent and, in a framework where the objective
is to effectively predict the evolution of this type of
data, they are almost useless, being unable to forecast
trend variations. This result also confirms the validity
of the adoption of mobility data, which are confirmed
to be extremely useful in order to predict the degree of
hospital use.

4. Conclusions
In this paper, the objective was to lay the foundations

for the construction of a system based on Deep Learning
methodologies to foster predict COVID spread through
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targeted and preventive measures. Knowing in advance
what the likely evolution of the degree of hospital use
will be in specfific regions will allow individual juris-
dictions to implement containment policies based on
this additional information. Assuming with a sufficient
degree of certainty a growing trend for occupied ICUs
can lead to the application of restrictions on regional
mobility which are more severe the more steep the ex-
pected increase is. These restrictions would take place
a week earlier than what has been done so far, effec-
tively allowing a contraction of their possible duration.
The possibility of being able to complement the precise
forecasts with an interval estimate also makes the ap-
plication of tools of this kind much more concrete as it
is possible to associate a risk measure to each forecast,
as is done for example in the financial and insurance
fields [29]. The architecture that best demonstrated that
it was able to fulfill this task turned out to be the Bi-
LSTM, which surpassed the LSTM in terms of stabil-
ity of forecasts, despite a similar level of accuracy. A
necessary clarification concerns the 21-day shift imple-
mented in the data relating to mobility. Tables 9 and 10
show the values of the forecasts obtained using non-
shifted data, confirming how this element is crucial to
obtain estimates as precise as possible. In fact, without
the 21-day shift of the data relating to mobility, the er-
ror metrics assume significantly higher values than the
other models, thus not allowing to formulate solid fore-
casts starting from which to base the implementation
of contagion containment policies. A further evolution
of what has been presented in this work consists in the
forecast of additional variables, such as the total num-
ber of hospitalized patients. This variable, combined
with the one predicted so far, is the basis of the Italian
criterion for classifying the regions according to the
level of risk. The implementation of interval estimates
makes it possible to calculate the probability that the
reference territory (in our case Lazio) changes the level
of risk within the following week, thus passing from
one Zone to another, calculating the probability that
these variables override the thresholds established at
national level. With the passage of time the database in
our possession to elaborate models of this kind will be-
come more and more extensive, allowing a framework
such as the one proposed in the paper to improve its
performances over time, guaranteeing more and more
accurate forecasts and allowing the management of the
pandemic to be increasingly more effective.
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