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Abstract. This paper evaluates the benefits of combining household surveys with satellite and other geospatial data to generate
small area estimates of non-monetary poverty. Using data from Tanzania and Sri Lanka and applying a household-level empirical
best (EB) predictor mixed model, we find that combining survey data with geospatial data significantly improves both the precision
and accuracy of our non-monetary poverty estimates. While the EB predictor model moderately underestimates standard errors
of those point estimates, coverage rates are similar to standard survey-based standard errors that assume independent outcomes
across clusters.

Keywords: Poverty, small area estimation, satellite imagery, remote-sensing data, geospatial data

1. Introduction

A proliferation of geospatial data obtained from
satellites and mobile devices – as well as research
demonstrating that satellite and mobile phone records
are strongly correlated with household welfare – has
sparked great interest in statistical methods that com-
bine this geospatial data with survey data [1–5]. A key
motivation for complementing survey data with com-
prehensive geospatial data is the potential for small area
estimation, which can produce more precise and granu-
lar estimates of socioeconomic indicators. Geospatial
data are well-suited for this application because, like
a census, they are geographically comprehensive and
not subject to selection bias. Established methods for
small area estimation typically use either “unit-level”
or “area level models”, depending on the availability
of household-level auxiliary data. Unit-level models
in practice typically utilize household survey data and
contemporaneous household census data, by first esti-
mating a prediction model of household welfare in the
survey data and then using the estimated model parame-
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ters to simulate welfare in the census [6–8]. Simulations
of household welfare are then aggregated to the target
area level. Because this method relies on census data,
however, strong assumptions are typically required to
use survey data to update estimates in the absence of a
census.1 Census data are typically dated and collected
once per decade at best, which presents a significant
hurdle to deriving timely small area poverty estimates.

To overcome these challenges, we link census data
with geospatial and remote-sensing auxiliary data at the
village level.2 Village in this case refers to the lowest
geographic level at which spatial auxiliary data can
be merged with household surveys containing data on
welfare and poverty. Meanwhile, small area refers to the
target level for the poverty estimates. Finally, regions
are the lowest level for which the household budget
survey is representative. In recent household surveys,
GPS coordinates of households, enumeration areas, or
villages are often available, which allows analysts to

1There is an extensive literature on updating small area estimates
with new survey data using Structure-Preserving Estimation and vari-
ants, which assume that a subset of the coefficients remain constant
over time [9–11].

2A similar approach has been adopted in [12], which uses cluster-
level characteristics derived from the census to generate small area
estimates of poverty.
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link survey data with other auxiliary sources of remote-
sensing or geospatial data and improve the precision of
poverty estimates.

The exact locations of survey respondents are
guarded very closely by statistical agencies to preserve
anonymity. However, village IDs or the location of enu-
meration areas can be obtained in some cases, enabling
the survey to be linked to auxiliary data at the EA
or village level. Linking surveys with geographically
aggregated auxiliary data, whether derived from cen-
sus or geospatial sources, is less efficient than using
household-level data from a census. On the other hand,
it also offers the key benefit of being able to include
the auxiliary data directly in the prediction model. This
is typically not feasible when using census data at the
household level, because of the confidentiality concerns
associated with linking survey data with census data
for individual households. Therefore, unit-level models
using census auxiliary data typically use variables com-
mon to the census and survey and assume that these pre-
diction variables are drawn from the same underlying
distribution, which in turn becomes problematic when
there is a large time gap or are differences in questions
between the census and the survey.

Using geospatial auxiliary data in particular offers
further advantages, in that spatial auxiliary data are col-
lected continuously, eliminating any concerns about a
time gap between survey and auxiliary data, and are
highly predictive of village level poverty. Both the qual-
ity and availability of geospatial data are improving
rapidly. Finally, geospatial data is geographically com-
prehensive and representative, as opposed to mobile
phone data which often represents only a portion of the
population and is more difficult to obtain.

While there are many studies seeking to predict wel-
fare, poverty or other development outcomes with a
combination of survey data and geospatial data [1,2,4,
13–15], only a few have evaluated and quantified the
gain in the precision of small area estimates achieved by
supplementing survey data with geospatial data.3 This
study uses data from Sri Lanka and mainland Tanzania
to assess the feasibility of combining traditional house-
hold survey with satellite and remote-sensing data to
improve the precision and accuracy of small area esti-
mates of non-monetary poverty.4 These two countries
were selected due to the availability of census data with
geo-referencing information that can be matched with

3 [3,5,13] are notable exceptions.
4Tanzania throughout the paper refers to mainland Tanzania; Zanz-

ibar is excluded from the analysis.

spatial features at the village level, which in this con-
text refers to GN Divisions in Sri Lanka and villages
in Tanzania.5 The proposed welfare prediction model
uses survey data to estimate household welfare as a
function of village characteristics, and therefore differs
from standard small area estimation models that pre-
dict welfare using a mix of household and small area
characteristics. The resulting estimates provide a large
efficiency gain compared with estimates solely based
on the household survey, which we refer to as direct
survey estimates.

We mainly consider Empirical Best Predictor (EBP)
models, which have a long history in small area esti-
mation and can accommodate village-level auxiliary
data to produce estimates of poverty rates and their
mean squared error for small areas. When auxiliary data
is aggregated at a geographic level such as a village,
EBP models have an important advantage over alter-
native methods, such as the ELL method [6] and the
“M-quantile” method [16] because it conditions on and
therefore effectively combines household level survey
data with village-level auxiliary data. Empirical evi-
dence that EBP is far more efficient than ELL in this
context is discussed below, in section 5.6 When using
household- level auxiliary data, ELL can outperform
EBP in terms of relative bias and relative root mean
squared error in certain situations [17].

We compare the estimates generated by a house-
hold EBP model with direct estimates obtained solely
from the survey, as well as the well-known Fay-Herriot
area-level model [18]. The latter sacrifices precision
by discarding the variation in the geospatial indica-
tors across villages within small areas. Once the small
area estimates are obtained from the household EBP
and Fay-Herriot models, we compare them to non-
monetary poverty rates calculated directly from the full
census. The availability of census data provides a credi-
ble benchmark to establish the feasibility of the method
and assess how different methods and their variants per-
form, in terms of the accuracy of both the small area
point estimates and their confidence intervals. We com-

5Villages are larger than the enumeration areas both in Sri Lanka
and Tanzania. The boundary shapefiles for clusters or enumeration
areas were not available for both countries.

6The M-quantile method is not considered here because, like ELL,
the predictions are purely synthetic and not conditioned on the sample,
and therefore like ELL is less efficient than EBP when the model
solely uses geographically aggregated predictors. Furthermore, unlike
EBP and ELL, the M-quantile method has not yet to our knowledge
been applied by a national statistics office to generate small area
estimates.
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pare the predictions from different methods in terms of
their precision, their accuracy, and their coverage rate.
The coverage rate is defined as the share of small areas
for which the estimated 95 percent confidence intervals
for the small area non-monetary poverty rate contains
the census non-monetary poverty rate.

The main result is that incorporating remote sens-
ing data in an EBP framework substantially improves
the accuracy and precision of small area estimates of
non-monetary poverty relative to direct survey esti-
mates. While the main efficiency improvements occur
by incorporating information from non-sampled vil-
lages, there are also minor efficiency improvements
from combining sample data with synthetic predictions
in sampled villages. This comes at no cost to coverage
rates in Sri Lanka and a moderate cost in Tanzania,
compared with standard direct survey estimates. The
corresponding efficiency improvement is comparable
to approximately tripling the size of the survey in Sri
Lanka and quintupling it in Tanzania.

EBP is an appealing framework in this context
because it has become a popular and widely ac-
cepted method, and is straightforward to apply in well-
documented software. However, it does in this context
moderately underestimate mean squared error, for two
reasons. First, the EBP estimator fails to account for
uncertainty in estimated variance parameters from the
model. Second, when conditioning on the sample, the
EBP estimator incorrectly assumes that sample obser-
vations are independent within small areas. Estimated
coverage rates remain respectable, however, at 75 per-
cent in Tanzania and 84 percent in Sri Lanka when the
small area estimates are calibrated to ensure that their
regional estimates match with those derived from the
household survey.7 This is comparable to the 76 percent
coverage rate in both countries when using standard
direct estimates. In Tanzania, the estimates from the
unit level model are roughly as accurate and moder-
ately more efficient than those from the area-level Fay-
Herriot model. In Sri Lanka, where the poverty rate is
low and the Fay-Herriot model is less predictive, the
estimates from the unit-level model are substantially

7Regions are defined as districts in Sri Lanka and regions in Tan-
zania. Our proposed approach of employing EBP with village-level
characteristics to predict welfare does not necessarily yield regional
estimates that are consistent with the direct survey estimates although
it is important to align these two given that the household survey itself
is representative at the regional level. To reconcile this discrepancy,
we perform a benchmarking procedure [19,20]. Below we also report
results without benchmarking.

more accurate and efficient than the small area level
Fay-Herriot estimates.

These results hold under a variety of robustness
checks that explore alternative implementation options,
including the omission of sample weights and a dif-
ferent transformation method in EBP, the application
of a different model selection algorithm as well as the
absence of benchmarking to survey estimates at higher
levels and the use of a noisier welfare measure. As a
robustness check, we also test how EBP performs vis-
à-vis the other most commonly used unit-level model
ELL and show that EBP estimates are much more effi-
cient than ELL estimates. When using the noisier wel-
fare measure, the gain in efficiency is not as large in Sri
Lanka, on the order of doubling the size of the sample,
but the predictions remain accurate and coverage rates
remain high.

This study makes three main contributions. First, it
applies a commonly-used framework for small area esti-
mation to combine household survey data on well-being
with geographically comprehensive geospatial indica-
tors at a national level. To our knowledge, it is the first
paper that applies the EBP framework to geospatial data
outside of the 12 Iowa countries studied in [13]. Second,
it evaluates the extent to which incorporating geospatial
variables at the subarea level improves the precision
of small area poverty estimates, compared with direct
survey estimates. Finally, it assesses which of two com-
monly used SAE models – unit-level models [6,8,21],
and the Fay-Herriot area-level model [18] – are best
suited for combining survey and sub-area geospatial
data to produce efficient and accurate estimates of both
area-level poverty rates and the uncertainty associated
with them. The results taken together demonstrate that
augmenting survey data with publicly available geospa-
tial data enhance the accuracy and precision of small
area estimates, and that unit-level models are preferred
to area-level models when geospatial data is available
at the sub-area level.

The remainder of the paper is organized as follows.
Section 2 describes the data. Section 3 describes the
methodology and estimators that are evaluated. Sec-
tion 4 assesses results in terms of efficiency, accuracy,
and coverage. Section 5 considers a variety of robust-
ness checks of the main method. Section 6 concludes.

2. Description of the data

2.1. Constructing measures of non-monetary welfare
and poverty in the census

The first step of the analysis is to construct mea-
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sures of non-monetary poverty based on the Sri Lankan
and Tanzanian censuses, which were each conducted in
2012. Non-monetary poverty, unlike monetary poverty,
is directly observed in the census population and can
therefore provide a benchmark for evaluation. For each
country, we identified a set of household assets (e.g.,
ownership of TVs, computers, housing materials) and
demographic proxies (e.g., gender of household heads,
household size, literacy, sector of work) for welfare.
We then carried out a principal component analysis,
weighted according to household size, to estimate a
loading factor for each proxy welfare indicator.8 The
principal component analysis is based on the correla-
tion matrix, weighted by household size, and the first
principal component was retained. Each household’s
non-monetary welfare measure was obtained by sum-
ming the product of each loading factor and the house-
hold’s value of the associated variable. We then set a
poverty threshold at the 4th percentile of non-monetary
welfare in Sri Lanka and the 20th percentile in Tan-
zania, to reflect prevailing national monetary poverty
rates.9 Households were classified as non-monetarily
poor if their non-monetary welfare, defined as the score
of the first principal component, fell under the poverty
thresholds mentioned above.

2.2. Constructing synthetic household surveys

The previous section discussed the measure of non-
monetary welfare and poverty, defined as the share
of the population for which the non-monetary welfare
measure is below the respective poverty line for Sri
Lanka and Tanzania. With these in hand, we turn to
drawing a synthetic household survey from each coun-
try’s census. The synthetic survey, along with the auxil-
iary geospatial data, are key inputs into the small area
estimation procedures. To draw the synthetic survey,
we utilized the actual two-stage sample conducted by
the National Statistics Offices for two household budget
surveys: The 2018 Tanzania Household Budget Survey,
and the 2016 Sri Lanka Household income and Expen-
diture Survey. These surveys were merged with the cen-
sus at the village level, which is the GN Division in Sri
Lanka and the village in Tanzania10 After retaining the

8See the full details on a set of variables used in the principal
component analysis in Appendix A.

9These poverty rates are obtained from the 2018 Tanzania House-
hold Budget Survey, and the 2016 Sri Lanka Household income and
Expenditure Survey.

10For each country, a one to one merge was carried out at the
village level to identify which of the census villages appeared in the
survey.

GN Divisions and EAs present in the household survey,
we randomly selected census households in each match-
ing EA to match the number of households in each EA
for each survey. Finally, we merged the sample weights
from the household budget surveys for each village.
Essentially, this procedure drew synthetic surveys that
mimicked as much as possible the sample drawn by the
NSO for the household surveys.

2.3. Remote sensing data

The auxiliary data for the small area estimation exer-
cise were drawn from a large candidate pool of satellite-
derived information. Most of these geospatial data are
derived from publicly available layers and imagery,
including, but not limited to, night-time lights from
the Visible Infrared Imaging Remote Sensor (VIIRS);
precipitation data from the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS)
and [22]; elevation and slope taken from [23] and the
Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) satellite; global forest cover
change from [24] estimates of built-up area from the
Global Human Settlement Layer (GHSL), population
estimates (WorldPop); climactic region11 from [25];
and lastly, crop yield estimates for Maize, Sorghum,
and Rice [26].12

The Sri Lanka indicators were also supplemented by
a variety of spatial “contextual” features derived from
a cloud-free mosaic of 2017–2018 Sentinel-2 imagery,
which is collected every 5 days by Sentinel 2 sensors
on board two satellites, Sentinel 2A and 2B.13 These
contextual features have been shown to be strongly
correlated with poverty, population density and build-
ing and road characteristics [4,33,34]. These contex-
tual features were calculated by comparing pixels with
their neighbors and then reporting this value back to
the individual pixel (in this case 10m). The number of
neighboring pixels considered in the comparison is the

11This indicator divides land into five main climate groups (trop-
ical, dry, temperate, continental, and polar), with each group being
divided based on seasonal precipitation and temperature patterns,
based on a raster version of the map available at 0.5◦ resolution.

12See Appendix B for a full list of satellite and geospatial indica-
tors used for the small area estimation of non-monetary poverty.

13The following contextual features include: Fourier Transform
(FT); Gabor Filter [27], Histogram of Oriented Gradients (HOG) [28];
Lacunarity (LAC) [29]; Line Support Regions (LSR) [30]; Normal-
ized Difference Vegetation Index (NDVI); PanTex [31]; and lastly,
Structural Feature Sets (SFS) [32]. Jordan Graesser’s Sp.Feas package
was used to calculate these features.
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scale, which varies by the feature being calculated.14

Since these contextual features are derived from Sen-
tinel 2, they are available at 10 m spatial resolution and
are theoretically available for free for the entire world.
Cloud free Sentinel 2 mosaics can be made in Google
Earth Engine and the code to calculate the contextual
features is written in Python (SpFeas package). There-
fore, all that is required to calculate the features is com-
puter processing time. While the majority of remote
sensing data used for Tanzania were largely derived
from publicly available imagery, it was supplemented
by proprietary data on building footprints produced by
Ecopia and Maxar based on very fine spatial resolution
imagery.15 While these data are more costly and diffi-
cult to create than the contextual features, with these
data we are able to capture the spatial patterns of build-
ings and roads, their density, and the general neighbor-
hood structure that is indicative of relative differences
in poverty over space [4,33]. The building footprint data
was proprietary when we first did this study and costly
to create. However, the costs are rapidly decreasing as
satellite imagery becomes cheaper, more ubiquitous and
computing power becomes less expensive and recently
Google released a similar data set covering the majority
of the African continent.16 Also, additional data sources
such as Open Street Map are rapidly increasing in spa-
tial coverage. Together, the open source nature of the
contextual features, and the increasing availability of
satellite derived data going forward, makes using these
types of data in studies such as this in the future very
feasible.

2.4. Geographic structure of Sri Lanka and Tanzanias

Before describing the methodology used in the study,
we briefly review the geographic structure of the two
countries. Villages are the lowest level for which shape-
files were obtained and are therefore the most disaggre-
gated level for which geospatial data could be linked
with the survey. Small areas are the target domains for
the small area estimates, which are at a higher level than
the villages, but below the level at which the survey is
considered to be representative. For Sri Lanka, there

14For most features, we use scales of 3, 5, 7, which correspond to
squares of 3 pixels by 3 pixels, 5 pixels by 5 pixels, and 7 pixels by 7
pixels.

15The team also calculated spatial features using the Sp.Feas pack-
age for Tanzania based on Sentinel 2 imagery, but these were found to
be highly colinear with the building footprint data and were therefore
discarded.

16Available at https://sites.research.google/open-buildings/.

are 13,978 villages17 (GN divisions), 331 areas (DS
divisions), and 25 regions (districts); while Tanzania
contains 14,981 villages, 159 areas (districts), and 25
regions.18

3. Methods

This section describes the three methods that are eval-
uated: Direct survey estimates, the Fay-Herriot area-
level model, and the household-level EBP model. It
also discusses important methodological considerations
involved when estimating the household-level model,
such as differences between software packages, trans-
forming the dependent variable, the model selection
procedure, and benchmarking. The final subsection con-
siders the criteria used to evaluate the performance of
different estimators.

3.1. Direct survey estimates

Direct estimates obtained from the survey serve both
as a benchmark against which to assess the increase in
precision from incorporating satellite data, and as an
input into the Fay-Herriot area-level models. The most
common method of obtaining variance estimates clus-
ters the residuals by enumeration area, which accounts
for positive correlation within clusters but assumes that
disturbances across clusters are independent [35,36]. As
an alternative, we also applied the Horvitz-Thompson
(H-T) approximation, which offers an alternative ap-
proach to estimate the variance of the small area poverty
rates [37]. The H-T approximation also underestimates
the variance, but in these contexts by less than clus-
tered standard errors, and therefore yield less biased
variance estimates. The H-T approximation underesti-
mates the variance by assuming that the joint inclusion
probabilities are the product of the marginal inclusion
probabilities, which holds only for Poisson sampling.19

3.2. Fay-Herriot area-level model

The Fay-Herriot model was introduced by Fay and
Herriot [18] to model incomes for small areas of fewer
than 1,000 persons in the United States, and is perhaps
the best-known and widely used small area-level esti-

17The average population size of villages in Sri Lanka was 1,130
with the average land size of approximately 2 km2.

18The average population size of villages in Tanzania was 2,178
with the average land size of approximately 20 km2.

19This approximation is necessary because the variance of the H-T
estimator depends on the joint inclusion probabilities of each pair of
sample households, which is not known.
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mator. It was derived as an application of the James-
Stein estimator [38] using data aggregated to the small
area level, and is also the Empirical Best Linear Unbi-
ased Predictor (EBLUP) of the small area level regres-
sion. It is an “empirical” best linear unbiased predic-
tor because the survey error variance is assumed to be
known. The small area estimates are a weighted average
of the synthetic regression prediction and the direct sur-
vey estimate, with the weights inversely related to the
estimated variance of the direct and synthetic estimates.
Many variants of the Fay-Herriot estimator have been
developed that employ transformations and account for
spatial and intertemporal correlation, among other re-
finements. We estimate a basic area-level Fay-Herriot
model, using the Horvitz-Thompson approximation to
calculate the variance of the direct survey estimate, as
recommended by [39].

The Fay-Herriot estimator, unfortunately, has sev-
eral limitations for the purposes of generating small
area estimates of poverty using spatial auxiliary data.
The main shortcoming is that the Fay-Herriot model
requires aggregating the auxiliary data to the small area
level, which discards variation in the auxiliary data
at the village level that would increase the precision
of the estimates. This is consistent with the strand of
the small area estimation literature that emphasizes
the importance of including cluster-level “auxiliary
data” from censuses to control area-specific bias, re-
duce uncertainty, and estimate uncertainty more ac-
curately [40,41]. Implementing a sub-area model that
adapts the Fay-Herriot model to address this issue, such
as the one proposed by [42] can incorporate auxiliary
data at the village level but is currently constrained
by the lack of available software. Another limitation
is that, because the Fay-Herriot model is based on di-
rect estimate of poverty rates, it discards information
on the variation in welfare within the poor and non-
poor portions of the welfare distribution. In addition,
when no transformation is applied, as is the case below,
the poverty rate is assumed to be a linear function of
the predictors, which can lead to predictions that are
negative or greater than one. The Fay-Herriot model
also faces challenges when no households are poor in
a significant number of small areas, as is the case in
Sri Lanka.20 For these small areas, either the prediction
from the auxiliary data must be ignored, the sample
must be ignored, or they must be dropped from the es-
timation. Finally, the Fay-Herriot model does not ac-

20The survey contains no poor households in 5 of the 159 small
areas in Tanzania and 111 of the 328 small areas in Sri Lanka.

count for uncertainty in the survey-based estimates of
variance, which tends to underestimate the variance of
the prediction.

Despite these limitations, the Fay-Herriot model is
much simpler to apply and explain than a unit level
model. It generally provides credible estimates and is
a standard workhorse when using area level models
for small area estimation. We estimate a Fay-Herriot
model by aggregating all indicators to the small area
level, weighting by population. The Fay-Herriot models
are estimated using the Stata FHSAE command [43].
We utilize the “Chandra method”, which estimates
the prediction model using Feasible Generalized Least
Squares [44].

3.3. Household-level model

In contrast to area level models, unit level models
are specified at the level of the individual unit, which
in this case is the household.21 Although the auxiliary
data only varies at the village level, predicting welfare
at the household level fully utilizes the information in
the sample survey on the level and variability of house-
hold welfare. Unit-level models are more convenient to
estimate than sub-area models, because of the availabil-
ity of well-established software packages that utilize
empirical best methods with conditional random effects
specified at the level of the small area.

The EBP model can be written as follows:22

G(Yravi)=Xravβ1 +Xraβ2 + Irβ3 + ηra + εravi (1)

where Yravi is the non-monetary welfare for household
i, living in village v, small area a, and region r. In
each country, Yravi is the principal component score
constructed using the loading factors in Table 1 and
G(Yravi) is a transformed version of this welfare mea-
sure. Traditionally, ELL uses the log function to trans-
form welfare, but any monotonic transformation can
be used. As described in greater detail below, we use
an ordered quantile normal transformation for the pri-
mary set of results. Xravi is a set of satellite-derived
indicators that vary at the village level. Xra is a set of
satellite-derived indicators that vary at the small area
level. These predictors are important to include to re-
duce the variance of the small area random effect and
thereby mitigate bias in the estimated mean squared

21See [45] for a comprehensive review of EBLUP models, and [46]
for a comprehensive review of their application to small area estima-
tion.

22See [8,47].
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error [41]. Ir corresponds to a set of regional dummy
variables indicating regions for which the survey is con-
sidered to be representative. The Sri Lanka specifica-
tion also includes dummies for the rural and estate sec-
tors, while the Tanzania specification includes a rural
dummy.23 ηra is a conditional random effect specified at
the small area level, assumed to be distributed normally.
ηra is conditioned on the sample values of observed
welfare, denoted yravi. Lastly, εravi denotes a household
level idiosyncratic error term, also assumed to be dis-
tributed normally and assumed to be independent of ηra.
The conditional random effects regression is weighted
using population weights, equal to the product of the
household sample weights and household size.

A key feature of the EBP framework is that the ran-
dom small area effect ηra is conditioned on the sample
values of observed welfare ys. This, along with the as-
sumption that σ2η is normal, allows for the use of the
following model for generating simulated welfare:

G (Y ∗
ravi) =Xravβ1 +Xravβ2 + Irβ3 + η̃ra

(2)
+η∗ra + εravi

η̃ra = E[ηra|yravi] (3)

η∗ra =N(0, σ2η(1− γra)), (4)

Where ηra is the area random effect from Eq. (1) and

γra =
σ2η

σ2η + σ2ε/Nra
. (5)

is the shrinkage factor due to conditioning the random
effect on the sample mean for small area a. Nra is the
number of sample observations for small area a.

EBP estimation has proven to offer a large efficiency
improvement compared to other methods such as the
traditional ELL. This efficiency gain comes from the
fact that the EB method conditions on the sample and
thereby makes more efficient use of the information
given, while ELL does not. When the auxiliary data are
specified at an aggregate geographic level, such as a
village or small area in the EBP framework described
above, the use of predictors aggregated to the village
level increases the variance of the small area effect σ2η,
which also represents the covariance of unexplained
welfare across households within the same small area.
The increase in σ2η due to the use of regionally aggre-
gated predictors in turn increases the shrinkage factor

23Sri Lanka is unique in that the national statistics office designates
certain areas as the “Estate Sector”. The estate sector mainly consists
of tea plantations and is historically economically disadvantaged.

γra, leading to a greater increase in precision when us-
ing an EBP model versus the traditional ELL synthetic
estimator. Additional empirical evidence to support this
point is provided below in Section 5.

The assumption of normality is critical in the EBP
framework, as a distributional assumption is required
to condition the small area level random effect on the
average residual of the regression in that small area.
The normality assumption is consequently also nec-
essary for the Monte-Carlo simulations of the param-
eters, which are required because headcount poverty
is a non-linear function of welfare. Violations of the
normality assumption can therefore lead to biased esti-
mates. Below, we discuss a monotonic transformation
to the welfare measure that makes the assumptions that
the small area effect and the household error term are
distributed normally more palatable.

3.4. Normalizing transformation

Welfare typically follows a right-skewed distribution,
and it is therefore standard practice to transform the
welfare indicator before implementing small area esti-
mation models based on simulated welfare. The most
common transformation is to take the logarithm of wel-
fare, following [6].24 More recently, Box-Cox or Log-
shift transformations h ave become more popular [47].
However, our preferred estimates utilize a monotonic
transformation called the “ordered quantile normaliza-
tion” to transform welfare, which transforms the scaled
rank of the welfare variable to conform with a normal
distribution. Among several methods proposed in the
literature, the ordered quantile normalization most con-
sistently transforms an underlying variable to follow a
normal distribution [48]. While a normally distributed
outcome variable does not guarantee normality of the
residuals, in these cases it helps make the distribution
of residuals closer to normal, and leads to smaller dis-
crepancies between the official national poverty rate
estimated from the survey and the weighted mean of
the small area estimates.25

24See [47] which provides a thorough review on the issue of trans-
formations for small area estimation in details. A log-shift trans-
formation involves adding a constant to welfare prior to taking the

log, while the Box-cox transformation can be written as: y
λ−1
λ

for
λ 6= 0, and log y for λ = 0. The authors conclude on the basis of
the simulation results that log-shift transformations tend to perform
well. Stata has implemented two commands that can quickly estimate
the parameters for the log shift and Box-Cox transformations that
minimize the skewness of the welfare distribution.

25To calculate small area estimates of the poverty gap, poverty
severity, or inequality, it is critical to retransform the estimates back to
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3.5. Model selection using Lasso

Model selection in small area estimation remains an
unsettled issue and has traditionally been treated as both
art and science.26 In recent years, the least absolute
shrinkage and selection operator (LASSO) has become
an increasingly popular tool for selecting prediction
models. The post-lasso procedure, in particular, offers
the benefit of a convenient and data-driven approach
to model selection that, in its most popular variant,
maximizes out-of-sample predictive accuracy, while
roughly equalizing in and out of sample R2 to prevent
overfitting the model to the sample.27 We show in the
robustness checks below that the results are robust to the
implementation of stepwise regression, an alternative
model selection model.

3.6. Benchmarking

Calibrating the small area estimates to match the di-
rect sample estimates for regions can be desirable to
ensure that the population-weighted average of small
area poverty estimates, when aggregated to regions,
match official published statistics derived from the sur-
vey [19,20]. We therefore apply a simple ratio bench-
marking procedure by multiplying the estimated head-
count rate in each small area by a scaling factor unique
to each region,28 for both the Fay-Herriot and house-

the original welfare metric, as is done in the ELL method by exponen-
tiating log welfare in each simulation. However, this retransformation
is not necessary when estimating headcount poverty rates.

26Practice can vary widely [47], for example, selects only 6 co-
variates present in Mexican census and survey data, based in part on
the Akaike Information Criterion (AIC) from a standard OLS model.
Most small area applications using ELL, however, use a considerably
larger set of variables [49], for example, note that many successful
applications include less than 20 household level variables. However,
they also advocate including cluster-level means, which can boost
the number of variables significantly past 20 or 30. Admittedly, the
number of variables is an imperfect measure of model parsimony due
to the potential inclusion of categorical variables.

27We use the variant of the Stata plugin estimator that allows for
heteroscedastic errors. The plugin method uses an iterative formula
to select the lambda shrinkage parameter in the lasso instead of a grid
search. The plug-in estimator tends to produce more parsimonious
models than cross-validation, suggesting the models are underfit.
See [50] and appendix A of [51] for technical details regarding the
implementation of the plugin lasso estimator.

28The scaling factor is defined as the ratio of the estimated poverty
rate obtained from the survey to the population-weighted mean
poverty rate of the small area estimates, for each region.

hold level model estimates.29 Below, we report results
without benchmarking as a robustness check to assess
whether and to what extent the procedure improves the
accuracy of the estimates.

3.7. Criteria for evaluating estimates

To evaluate the performance of the above-mentioned
different SAE methods, we examine seven summary
statistics, averaged across areas: non-monetary poverty
rates; Mean Squared Error (MSE); Coefficient of vari-
ation (CV);30 Relative Bias;31 correlation between es-
timated and census non-monetary poverty rates; Root
Mean Squared Error32 (RMSE); and lastly coverage
rate or the share of small areas for which the esti-
mated 95 percent confidence intervals for the small area
non-monetary poverty rate contains the census non-
monetary poverty rate.33

29This leaves open the question of how to adjust the mean squared
error estimates while benchmarking. Ideally, to obtain accurate esti-
mates of the mean squared error, benchmarking would be performed
by the small area estimation package within each bootstrap repli-
cation. Unfortunately, this option is not currently implemented in
available software packages. As a second-best solution, we scale the
mean squared error by the square of the same scaling factor that is
applied to the point estimates, which leaves the coefficient of variation
unchanged by the benchmarking process. Because the point estimates
are slightly underestimated in Tanzania and Sri Lanka, this procedure
increases the mean squared error and improves coverage rates.

30The CV for each small area is defined as the ratio of the square
root of the estimated mean squared error to the mean estimated
poverty rate, a definition sometimes referred to as CV (RMSE). We
report the average CV across areas.

31The average relative bias equals the average, across areas of the
ratio of the difference between the true and estimated poverty rates to
the true poverty rate,

ARB =
1

Nra

Na∑
a=1

Θ̂a −Θ∗
a

Θ∗
a

where Nra is the number of small areas, Θ̂a is the estimated poverty
rate for small area a, and Θ̂∗

a is the true poverty rate calculated from
the census.

32The Root Mean Square Error (RMSE) is equal to the square
root for the average squared difference between the estimates and the
actual census poverty rates.

RMSE =

√√√√ 1

Nra

(∑
a

(Θ̂a −Θ∗
a)2

)
The root mean squared error in this context is a function of the
predicted poverty rates and is therefore a measure of accuracy. In
contrast, the average mean squared error described above is a measure
of precision or uncertainty.

33See, for example, [41,52–54] among many others. The upper and
lower bounds of the confidence interval are determined by multiplying
the square root of the estimated mean squared error by 1.96 and
adding and subtracting it from the point estimate.
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4. Main results

4.1. Predictive power of geospatial variables

In both the area-level (Fay-Harriot) and unit-level
(EBP) models, geospatial variables perform reasonably
well in explaining variation in poverty or consumption.
The small area-level predictor variables were selected
using the lasso plugin method, to prevent overfitting the
model to the sample. The set of candidate variables in-
cluded all small area-level remote sensing indicators as
well as regional dummies. For the Fay Harriot models,
which is used as a reference point for comparison with
the direct estimates and the unit level model, the lasso
selected a small number of predictor variables, only
3 in Tanzania and 8 in Sri Lanka. Despite containing
only three variables, the Tanzania model explains half
of the variation in non-monetary poverty rates. Mean-
while, the eight Sri Lanka variables explain 6 percent of
the variation in headcount poverty across subdistricts.
Overall, the results suggest that the Fay-Herriot esti-
mates, despite using predictors that only vary across
small areas, can significantly improve on the efficiency
of the direct estimates, particularly in Tanzania where
the model fit is especially good.34

Turning to the results from the unit-level EBP mod-
els, the first striking result is the overall predictive
power of the models. Tabke 1 summarizes the results
from the model specifications employed for Sri Lanka
and Tanzania. The marginal R2 from the model is 0.30
in Tanzania and 0.27 in Sri Lanka, which is notable
given that the explanatory variable, non-monetary wel-
fare, is measured at the household level while all the
independent variables vary only at the village level.
At the village level, the satellite indicators explain a
large amount of the variation in average non-monetary
welfare. In village level regressions, predictor variables
explain 73 percent of the variation in average non-
monetary welfare in Tanzania and 59 percent in Sri
Lanka.35 The village level model R2 of 0.73 for Tanza-
nia is substantially higher than the estimates presented
in [2] which find that features derived from satellite data
explain 58 percent of the DHS asset index in Tanzania.
The stronger predictive power of the model for Tan-
zania may result from using a welfare measure based
on a smaller number of household welfare proxies, as

34See Appendix C for more details on the model results.
35These are village (sub-area) level regressions, and therefore the

reported R2s do not apply to either to the unit-level household model
nor the area-level model considered below.

well as the use of interpretable features derived from
imagery such as building footprints, rather than features
optimized to predict night-time lights.36

For Tanzania, the lasso model selected several build-
ing footprints and built-up area measures, as well as
measures of night-time lights that capture building and
population density. Building counts, night- time lights,
and built-up area are all positively associated with wel-
fare. Several climactic variables were also selected, re-
flecting the dependence of rural areas on favorable rain-
fall patterns. Higher variance in the NDVI vegetation
index, reflecting areas that contain a mix of built-up
area and green space, is also positively related to wel-
fare. The Sri Lanka model contains measures of built-
up area, rainfall, as well as texture features such as the
Fourier Transform and Line Support Region Mean at
the village level, and other features such as the standard
deviation of the Gabor filter and Histogram of Ordered
Gradients at the small area level. This is consistent with
previous research showing that these texture algorithms
or contextual features reflect spatial variability in build-
ing and road patterns, as well as poverty [56–58].

4.2. Evaluation results

The previous section demonstrated that remote sens-
ing indicators are predictive of both small area-level
poverty and household non-monetary welfare. This sec-
tion turns to evaluating the small area estimates gen-
erated by different methods. The distribution of both
the small area effect and the household error term is
close to normal, as seen in both Fig. 1 and the skewness
and kurtosis statistics reported in Table 1, reflecting the
success of the normalizing transformation.

Table 2 begins by presenting the (unweighted) mean
poverty rates and uncertainty of the small area esti-
mates, as measured by the mean squared error, mul-
tiplied by ten thousand, and the mean coefficient of
variation. The table presents the results for direct sur-
vey estimates for both the standard method and the
Horvitz-Thompson estimates, as well as the Fay-Herriot
area model and the unit-level model estimated with the
modified EMDI package. All are simple unweighted
averages across small areas.

The results for the mean poverty predictions in
Table 2 show that the Fay-Herriot estimates (prior

36 [55] finds that the use of specific features identified in im-
agery, trained directly to a model predicting per capita consump-
tion, rather than features derived from transfer learning increased
predictive power by 31 percent in Uganda. This is consistent with the
stronger performance seen in these models.
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Table 1
Details and diagnostics for unit level models

Sri Lanka Tanzania
Poverty rate 4.0% 20.0%
Number of variables selected for model 28 19
Number of households in sample 19,570 9,393
Number of households out of sample 4,190,436 8,901,279
Number of villages in survey 2487 786
Number of villages in census 13,985 14,981
Number of areas in survey 328 159
Number of areas in census 331 159
Unit-level model diagnostics

Marginal R2 0.266 0.299
Conditional R2 0.296 0.323
Skewness of small area effect 0.101 −0.26
Kurtosis of small area effect 3.385 3.60
Wilks-Shapiro P-value 0.558 0.316

Skewness of household error −0.05 −0.12
Kurtosis of household error 3.23 3.51
Variance of estimated small area effect 0.036 0.024
Variance of estimated household residual 0.723 0.682
Percentage of variance of error term due to small area effect 5.0% 3.5%

Notes: Table reports number of selected variables, number of observations, number of
villages and target small areas, conditional and marginal R2, indicators of normality for
small area random effect and household residuals, and the percentage of total variance in
the error term accounted for by the small area random effect.

Fig. 1. Quantile vs. Quantile plots of household error terms and small area random effects. Notes: Figures report normal quantile-quantile plots of
estimated household welfare residuals (error term) and small area random effects (random effect).

to benchmarking) underestimate poverty, by a slight
amount in Sri Lanka but by a more significant amount in
Tanzania. The difference in precision is more striking.
The Fay-Herriot estimators are significantly more pre-
cise than the Horvitz-Thompson direct estimates in both
countries. Relative to these more conservative direct
estimates, the Fay-Herriot procedure reduces the mean
square error by nearly half in both countries. However,
the household level model, compared with the Horvitz-
Thompson estimates, reduces the average mean squared
error of the small area estimates substantially more, by
70 percent in Sri Lanka and 85 percent in Tanzania.

Table 3 shows the evaluation results against the small
area poverty rates derived from the census. Average
relative bias is highest for the Fay-Herriot estimator in
both countries, and lowest for the direct estimates. Of
greater interest for evaluating accuracy, however, are
the results for rank correlation and root mean squared
error. In both countries, the small area estimates are
far more accurate than the direct estimates, with the
household model performing at least as well as the
area level model. In Sri Lanka, the household level
model is significantly more accurate than the area level
model (rank correlation of 92.6 vs 85.4). Meanwhile,
in Tanzania the household level model estimates have
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Table 2
Average Mean Squared Error (MSE) and coefficient of variation (CV) of target small area estimates of headcount non-monetary
poverty, by country and method

Mean and uncertainty Sri Lankan subdistricts Tanzanian districts
Mean poverty Mean MSE Mean CV Mean poverty Mean MSE Mean CV

Direct survey estimates
Horvitz-Thompson approximation 4.0 15.5 65.2 20.0 73.7 43.3

EA-Clustered variance estimates 4.0 10.9 58.6 20.0 59.2 38.1
Area level Fay-Herriot model 3.7 8.3 47.9 16.8 35.8 34.2
Household-level EB model 3.7 4.6 32.0 18.6 11.1 17.5

Notes: Mean poverty refers to the average of small area headcount rates prior to benchmarking (or being rescaled to match direct
survey estimates at the regional level). Mean MSE is the mean across small areas of the mean squared error, estimated using a
parametric bootstrap approach, multiplied by 10,000.

Table 3
Average Relative Bias, Rank correlation, Root Mean Squared Error, and Coverage rate of target small area estimates
of headcount non-monetary poverty, by country and method

Accuracy and coverage rate Sri Lankan subdistricts Tanzanian districts
ARB Rank Corr RMSE CR ARB Rank Corr RMSE CR

Direct survey estimates
H-T 0.257 71.6 0.049 82.2 0.043 77.9 0.088 85.5
EA-Clustering 0.257 71.6 0.049 76.1 0.043 77.9 0.088 76.1
Area level Fay-Herriot model 0.395 85.4 0.026 91.8 0.071 84.7 0.052 91.8
Household-level EB model 0.293 92.6 0.034 84.3 0.062 85.7 0.053 74.8

Notes: ARB refers to average relative bias, which is the average ratio of the difference between estimated and census
poverty rates to the census poverty rate. Rank Corr refers to the unweighted Spearman rank correlation across small
areas between estimated and census non-monetary poverty rates. RMSE refers to root mean squared error, which
is the square root of the average squared difference between estimated and census poverty rates. CR stands for
coverage rate, which is the share of small areas for which the estimated 95 percent confidence intervals for the small
area non-monetary poverty rate contains the census non-monetary poverty rate. Point estimates have been rescaled
to match direct survey estimates at the regional level and mean squared error adjusted accordingly. H-T refers to the
Horvitz-Thompson approximation, while EA clustering refers to the clustered Hubert/White sandwich estimator
clustered by enumeration area.

a slightly higher rank correlation than the area-level
model estimates (85.7 vs. 84.7), and a real mean squared
error that is negligibly worse (0.053 vs 0.052).

The last column of Table 3 shows the coverage rate,
which for the household model in Sri Lanka is 84.3%.
This is slightly higher than the Horvitz-Thompson esti-
mates (82.2%), moderately higher than the clustered di-
rect estimates (76.1%) but substantially lower than the
Fay-Herriot estimates (91.8%). For Tanzania, the cov-
erage rate for the household level model is 74.8%. This
is the lowest of the four estimators but only modestly
lower than that of the standard enumeration-area clus-
tered estimates (76.1%). The Horvitz-Thompson and
Fay-Herriot estimators achieve much higher coverage
rates of 85.5% and 91.8%, respectively.

Figures 2 and 3 give a detailed look at the point es-
timates and mean squared errors for the area poverty
estimates for each method. Sri Lanka is shown on
the left panel and Tanzania on the right, and in each
country the areas are ordered according to their non-
monetary poverty rate in the census. The results clearly
show that both Fay-Herriot and Household-level mod-

els greatly improve on the accuracy of the direct esti-
mates, especially in areas with higher poverty rates. In
Sri Lanka, many of the direct estimates are zero, even in
high-poverty areas. The comparison between household
models and Fay-Herriot models is less clear, but the
Fay-Herriot estimates appear to be more prone to over-
estimate poverty for low-poverty areas and underesti-
mate poverty for high-poverty areas.37 Figure 3 presents
the relative mean squared errors produced by the Fay-
Herriot and Household model, relative to the direct esti-
mates. It clearly demonstrates that the household model
estimates are substantially more precise than both the
Fay-Herriot estimates and the direct estimates for most
target areas in both countries.

Finally, Table 4 compares the precision of the unit
level model with the direct survey estimates for regions,
which are districts in Sri Lanka and regions in Tanza-
nia. The regions are levels for which the household sur-

37As described above, the Fay-Herriot estimates use the predicted
poverty rate from the model in small areas where no sampled house-
holds are poor.
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Table 4
Precision of household level EB model compared with direct estimates for regions

Sri Lanka Tanzania
Mean MSE Mean CV Mean MSE Mean CV

Regional estimates from direct sample estimate (Horvitz-Thompson approximation) 1.4 16.8 11.4 15.8
Area estimates from Household EB model 4.6 32.0 11.1 17.5

Notes: Top row shows the unweighted mean squared error (MSE) times 10,000 and coefficient of variation (CV) for non-monetary poverty
estimates calculated from the national household budget survey across 25 Districts in Sri Lanka and 25 Regions in Tanzania. Bottom row shows
the unweighted MSE times 10,000 and mean CV for non-monetary poverty estimates that incorporating geospatial data across 331 subdistricts in
Sri Lanka and 159 Districts in Tanzania, benchmarked to survey estimates for 25 districts in Sri Lanka and 25 regions in Tanzania.

Fig. 2. Comparison of area poverty estimates by method for Sri Lanka (left) and Tanzania (right). Notes: Figures show predicted asset-based
poverty rates generated by household-level model, Fay-Herriot model, and Direct Survey estimates, in comparison with actual asset-based poverty
rates calculated from the census.

Fig. 3. Comparison of estimated Relative Mean Square Error by area and method for Sri Lanka (left) and Tanzania (right). Notes: Figures show
mean squared errors of predicted asset-based poverty rates generated by household-level model, Fay-Herriot model, and Direct Survey estimates.
Direct survey estimate MSEs top-coded at 0.015.

vey is considered reliable and direct survey estimates
of monetary poverty rates are published. In Sri Lanka,
where there are 331 target areas, the mean squared er-
rors for the subdistrict estimates are about sixty percent
larger than the direct survey estimates for districts. In

Tanzania, meanwhile, there are only 159 areas and the
same number as regions as Sri Lanka. In this case, the
average mean squared error of the small area district
estimates is slightly lower than the direct estimates for
regions, while the mean CV is modestly higher. This
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Table 5
Robustness check results for alternative methods for household level model

Mean poverty Mean MSE Mean CV RC ARB CR
Sri Lanka

Baseline EB Estimates 3.7 4.6 32.0 92.6 0.293 84.3
Robustness check 1: No simulation weights 3.7 4.8 31.9 92.6 0.294 82.8
Robustness check 2: Box-Cox transformation 3.5 4.7 31.2 92.8 0.296 81.9
Robustness check 3: Stepwise (p = 0.01) model selection 3.7 4.7 27.9 92.1 0.292 80.7
Robustness check 4: No Benchmarking 3.7 4.2 39.1 90.2 0.212 82.2
Robustness check 5: Use ELL instead of EBP 3.7 17.5* 62.4 90.6 0.321 99.1

Tanzania
Baseline EB Estimates 18.6 11.1 17.5 86.3 0.062 74.8
Robustness check 1: No simulation weights 18.3 11.8 17.8 85.5 0.060 73.0
Robustness check 2: Box-Cox transformation 15.8 13.1 18.7 85.8 0.051 76.1
Robustness check 3: Stepwise (p = 0.01) model selection 18.8 9.8 16.4 84.6 0.060 69.8
Robustness check 4: No Benchmarking 18.6 9.7 17.5 82.6 0.012 69.8
Robustness check 5: Use ELL instead of EBP 19.8 55.9* 38.0 84.6 0.043 95.6

Notes: Rows represent different variants of household-level model as listed in the table. Columns represent mean poverty rates,
average mean squared error times 10,000, mean coefficient of variation, Spearman rank correlation with actual census value (RC),
and coverage rate (CR). All means are unweighted across 331 subdistricts in Sri Lanka and 159 Districts in Tanzania. All results
except for mean poverty reflect benchmarking to survey estimates for 25 districts in Sri Lanka and 25 regions in Tanzania. Asterisks
(*) indicate mean estimated variance instead of mean squared error.

type of comparisons is useful to inform decisions by na-
tional statistics offices of whether small area estimates
are sufficiently precise to publish.

5. Robustness checks for the household-level
model

The previous section demonstrated that the house-
hold-level model produced estimates that are substan-
tially more efficient and as accurate as the area level
model, while both the household level model and Fay-
Herriot model both predicted poverty rates much more
accurately than the direct estimates. The household-
level model examined above was derived using a partic-
ular variant of the empirical best model, however, and
it is informative to examine how the performance of
the estimates varies based on different methodological
choices.

The first robustness check relates to weighting the
results of the household simulations by household size
when aggregating across households, which is consis-
tent with standard practice of calculating the poverty
rate across individuals rather than households. The sec-
ond robustness check considers using a Box-Cox trans-
formation rather than an Ordered Quantile Normaliza-
tion to transform the dependent variable in the model.
This gives an indication of how much the use of the Or-
dered Quantile Normalization improves the results and
ensures that the estimates remain reasonable when us-
ing a more traditional normalization method. The third
robustness check considers the predictions when us-

ing a stepwise procedure, set with a probability thresh-
old of 0.01, to select the model instead of the plugin
lasso method. The fourth robustness check shows re-
sults when we do not benchmark the estimates to the
survey estimates at the regional level. “The fifth robust-
ness check” compares results from EBP versus ELL.

Table 5 displays the results of these robustness
checks. For the purposes of brevity, we report the mean
poverty, MSE, rank correlation, and coverage rate.38

The estimator without simulation weights is slightly
less accurate than those with weights in Sri Lanka and
equally accurate in Tanzania, but is associated with a
mild decline in both efficiency and coverage in both
countries. The second robustness check uses a more
standard Box-Cox transformation of the welfare vari-
able instead of the ordered quantile normalization trans-
formation. This leads to downward bias in the estimates
in both countries, although the correlation and coverage
rate changes little when using the Box-Cox transforma-
tion.39 The models fit with stepwise regression, reported
on the third row, are overfit in these two cases. This
leads to less accurate predictions and lower coverage
rates than the Lasso-selected model, especially in Tan-
zania. The fourth robustness check reports the results
when the small area estimates are not benchmarked.
Not benchmarking reduces mean MSE in both cases,
although mean CV increases because estimated poverty
rates for some small areas are closer to zero. In terms of

38Results for all small areas are available upon request.
39The sensitivity of the results to the choice of transformation is

consistent with evidence from other studies, such as [47].
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Table 6
Robustness check for noisy welfare measure

Sri Lanka Tanzania
Mean

poverty
Mean
MSE

Mean
CV RC CR

Mean
poverty

Mean
MSE

Mean
CV RC CR

Direct estimates (H-T approximation) 4.0 15.9 65.3 58.0 74.6 20.0 82.3 45.4 80.1 83.0
Area level Fay-Herriot model 4.0 10.5 54.1 78.9 80.7 16.8 53.2 39.5 69.2 88.1
Household-level EB model 3.7 7.3 68.1 91.4 84.9 17.6 18.1 31.7 88.7 79.9

Table 7
Household-level diagnostics from the robustness check with noisy welfare measure

Household model diagnostics Sr Lanka Tanzania
Marginal R2 0.196 0.208
Conditional R2 0.304 0.329
Skewness of area effect 0.14 −0.04
Kurtosis of area effect 2.99 2.61
Wilks-Shapiro P-value 0.40 0.33
Skewness of household error −0.03 −0.06
Kurtosis of household error 3.12 3.08
Variance of estimated area effect 0.110 0.122
Variance of estimated household residual 0.702 0.671
Percentage of variance of error term due to area effect 15.7% 18.2%

accuracy, the non-benchmarked results remain highly
correlated with the census in Sri Lanka. In Tanzania,
the rank correlation falls from 86.3 to 82.6, and the cov-
erage rate falls to 70 percent, indicating that benchmark
moderately improved the accuracy of the estimates in
Tanzania. Finally, the last row reports the results when
an ELL method is used instead of the EBP method.40

As measured by rank correlation, the ELL estimates are
less accurate than EBP estimates in both countries.41

In addition, ELL estimates are far less efficient than
the EBP and FH estimates, because they do not con-
dition on the household-level survey data. The mean
variance estimates from ELL are approximately four to
five times as large as the estimated MSEs in the baseline
EBP estimates, with mean CVs that are only slightly
below those of the direct estimates reported in Table 2.
This leads to a coverage rate of about 99 percent in Sri
Lanka, although the ELL coverage rate in Tanzania of
about 96 percent is approximately correct.

The final robustness check examines how the base-
line household level model fares when random noise
is added to the welfare aggregate. This better approxi-
mates a monetary welfare measure such as per capita
consumption or income, which contain a greater portion
of unexplained variance resulting from both transient

40The random effect is specified at the target area level, to remain
comparable with the EBP estimates.

41Another difference between ELL and EBP is that the former
estimates heteroscedasticity in the classical error term, which may
help more in Tanzania than in Sri Lanka in this case.

welfare shocks and measurement error. We add two
error term components to the existing measure of non-
monetary welfare. The first error component is an area
effect, drawn form a normal distribution with mean zero
and variance 0.5, and the second is a household spe-
cific error term with mean zero and variance 1. These
variance values were chosen arbitrarily, with the aim
of achieving a model R2 of approximately 0.2, which
is similar to the R2 when regressing monetary welfare
on similar geospatial indicators in Tanzania [59]. The
poverty line is set according to the new, noisier, welfare
measure, equal to the 4th percentile of the sample wel-
fare in Sri Lanka and the 20th percentile for Tanzania.

Table 6 displays the results when estimating area-
level poverty using direct estimates, the Fay-Herriot
model, and the household model with a noisier wel-
fare aggregate, and Table 7 presents the key household
model diagnostics from this robustness test. Overall,
the results, with a few exceptions, are similar to the
main results for the non-monetary welfare measure re-
ported in Tables 2 and 3. The household level model
produces the most precise estimates, as judged by the
average estimated mean squared error across small ar-
eas. The average CV rises greatly in Sri Lanka, due to
large positive outliers, when using the noisier measure.
These outliers are areas with very low predicted poverty
rates, yet high mean squared error, due to the greater
variability in the area effect in these simulations. This
illustrates that average CV should be interpreted with
caution in settings with low poverty rates and highly
variable area effects. Nonetheless, even with a nois-
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ier welfare aggregate, the reduction in mean squared
error Sri Lanka compared with the direct estimates is
approximately equivalent to doubling the size of the
sample. In Tanzania, where the poverty rate is much
higher, the household-level model leads to a 78 percent
reduction in the mean squared error, a factor compara-
ble to that reported in Table 3. The analogous reduction
in average CV is 30 percent, which is also comparable
to approximately doubling the sample size.

Turning to accuracy and coverage, exploiting village
variation using the household model substantially im-
proves accuracy, as measured by the rank correlation
with the true noisier welfare measure. The rank cor-
relation remains very high in Sri Lanka (0.91) and in
Tanzania (0.87 percent) when using the noisier welfare
measure. Finally, coverage rates for the household level
model decline only modestly in Tanzania and increase
significantly in Sri Lanka in comparison with the direct
estimates. In Sri Lanka, the coverage rate reported in
Table 6 for the noisy welfare measure is remarkably
similar to the one for non-monetary poverty reported in
Table 4 (84.9% vs. 83.7%). In Tanzania, the coverage
rate is higher for the noisy welfare measure (78.0% vs.
73.6%). Accuracy and coverage are particularly im-
portant measures to consider because, unlike estimated
precision, they are only observed when a “true” census
population is available. Overall, the results presented
in Table 6 indicate that the accuracy and coverage of
the household level model remain high, in comparison
with both the Fay-Herriot and direct estimates, when
additional noise is introduced into the welfare measure.

6. Conclusion

This paper examines the extent to which combining
a synthetic sample drawn from the census with geospa-
tial data at the subarea level in Sri Lanka and Tanzania
generates more precise and accurate estimates of non-
monetary poverty. The analysis examines non-monetary
poverty in order to evaluate the estimates against census
data, which sheds light on the relative performance of
different methodological approaches. The results are
encouraging, and demonstrate that augmenting survey
data with publicly available geospatial data substan-
tially increases the accuracy and precision of small area
estimates. The rank correlations between the small area
estimates and the actual census are roughly 93 and 86
percent in Sri Lanka and Tanzania, respectively, which
are significantly higher than the analogous correlations
for the direct survey. The household-level model, com-

pared with standard clustered survey estimates, reduces
the mean squared error by about two-thirds in Sri Lanka
and four-fifths in Tanzania, which is roughly equivalent
to tripling and quintupling the effective sample size.

The financial cost of this type of small area esti-
mation procedure is generally low and falling rapidly.
Much of the auxiliary data used for the small area es-
timation, such as estimates of built-up area, nighttime
lights, and vegetation, are freely available. There are
two notable exceptions. First, the calculation of spa-
tial features at a national scale requires constructing
a cloud-free mosaic of Sentinel imagery, considerable
computing power, and the expertise to implement soft-
ware to calculate contextual features. Second, the data
on Tanzanian building footprints are proprietary. How-
ever, data on building footprints are increasingly being
released in the public domain and it is not difficult to
envision information on building footprints becoming
freely available for the entire world in the coming years,
potentially through Open Street Map as it continues to
improve in accuracy and coverage. Finally, access to
subarea survey identifiers and shapefiles, or access to
EA geocoordinates, is necessary to link survey data to
geospatial indicators. This is not feasible in all con-
texts, but the growing popularity of geospatial analysis
and CAPI data collection is making geospatial survey
analysis more common. A conservative estimate is that
the time and expertise required to generate these types
of estimates costs $50,000 to $150,000. This is minor
compared to the value created by even doubling the
effective sample size of nationally representative house-
hold surveys that often cost at least a million dollars to
field.

The results could be improved by further research and
methodological development. One avenue for further
research is to explore the performance of a subarea-level
model, an extension of the Fay-Herriot model specified
at the subarea level with an area-level mixed effect [42].
Estimating such a model at the subarea level makes it
easier to properly account for sample design effects.
However, modeling poverty rates as a linear function of
predictors may generate less accurate estimates, espe-
cially when poverty rates are low. It would be useful to
better understand how the results of a properly specified
subarea model compare with a household-level model
using subarea predictors. Secondly, further research
could consider the issue of how to measure model per-
formance in the absence of concurrent census data. The
calculation of accuracy measures and coverage rates,
in particular, requires a benchmark measure of truth.
However, some model diagnostics presented in section
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4 above, such as the estimated variance and distribution
of the error terms, can be calculated from survey data.
Benchmarking scale factors may also convey informa-
tion about model bias at the regional level. However,
further research is needed to better understand how best
to assess the accuracy and reliability of small area esti-
mates based on geospatial data in the absence of census
data.
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