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Abstract. The use of machine learning algorithms at national statistical institutes has increased significantly over the past few
years. Applications range from new imputation schemes to new statistical output based entirely on machine learning. The results
are promising, but recent studies have shown that the use of machine learning in official statistics always introduces a bias, known
as misclassification bias. Misclassification bias does not occur in traditional applications of machine learning and therefore it has
received little attention in the academic literature. In earlier work, we have collected existing methods that are able to correct
misclassification bias. We have compared their statistical properties, including bias, variance and mean squared error. In this paper,
we present a new generic method to correct misclassification bias for time series and we derive its statistical properties. Moreover,
we show numerically that it has a lower mean squared error than the existing alternatives in a wide variety of settings. We believe
that our new method may improve machine learning applications in official statistics and we aspire that our work will stimulate
further methodological research in this area.
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1. Introduction

National statistical institutes (NSIs) currently apply
many different types of machine learning algorithms.
Classification algorithms are one of the most popular
types of algorithms because publishing aggregate statis-
tics of (sub)groups in a population is one of the main
tasks of national statistical institutes. Classical exam-
ples of classification algorithms are logistic regression
and linear discriminant analysis, but also new inno-
vative algorithms have been introduced over the last
decades, like additive models, decision trees and deep
learning [1]. Classification algorithms are optimized
to minimize the summed loss of individual units, such
that each unit has a high probability to be classified
correctly. However, classifying units individually can
lead to biased results when generalizing these individ-
ual units to aggregate statistics, like a proportion of the
population [2,3]. The cause of the biased results are
imbalanced errors.

Before we show how generalizing units to aggregate
statistics can lead to bias, we first emphasize the differ-

ence between a classifier and a quantifier. A classifier is
a model that labels each unit to a class and a quantifier
is a model that counts the number of units labelled to
a class. Quantifiers can use classifiers in their model
by counting the number of labels that the classifier has
assigned to each class. Classifiers and quantifiers are
imperfect because classification algorithms can misla-
bel some units. Each unit has a classification proba-
bility of being labelled correctly by the classification
algorithm. A well-performing classifier has high clas-
sification probabilities for each labelled unit. A well-
performing quantifier is not particularly defined by the
number of mislabeled units, but by how the number of
mislabeled units are distributed among the classes. In
almost all cases, the number of mislabeled units among
the classes don’t cancel each other out and as a conse-
quence, bias will occur. The bias that occurs from im-
balanced classification errors is called misclassification
bias.

Misclassification bias cannot simply be solved by
improving the accuracy of the classification algorithm.
Moreover, a more accurate classifier can increase mis-
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classification bias. For example, classifier A with 10
false positives and 10 false negatives is a worse classi-
fier than classifier B with 9 false positives and 5 false
negatives. However, when aggregating the results of
both classifiers to a quantification, classifier A turns
out to have less misclassification bias than classifier B
and is, therefore, a better quantifier. Classifier A has
less misclassification bias than classifier B because the
number of mislabeled units in classifier A are equally
distributed among both classes, while the number of
mislabeled units in classifier B are unequally distributed
among the classes. Therefore, improving a classifier is
not the solution to reduce misclassification bias [2,3].

We illustrate misclassification bias more extensively
using an image-labelling example. The example shows
us why using a standard approach for aggregating clas-
sifications from machine learning classifiers leads to
problems. Suppose that a local government wants to es-
timate the number of houses in a certain area with solar
panels on their rooftops. There is no register whether
a house has a solar panel installation or not. It is an
expensive and time-consuming task to manually label
each rooftop, so the government decides to use satel-
lite images combined with a classification algorithm to
quickly label each house whether it has solar panels or
not. Our target population consists of 10,000 houses,
whereof 1,000 houses with solar panels and 9,000 with-
out solar panels. Thus, the true proportion of houses
with solar panels is 10%. The target variable is the pro-
portion of houses with solar panels installation. Assume
that the classifier can predict the rooftop images fairly
accurate: 98% of the houses with solar panels are classi-
fied correctly (sensitivity) and 92% of the houses with-
out solar panels are classified correctly (specificity).
The machine learning algorithm classifies then 98% of
the houses with solar panels and 8% of the houses with-
out solar panels as houses with solar panels. This aggre-
gates to 1,000× 0.98 + 9,000× 0.08 = 1,700 houses
classified as a house with solar panels installation by
the machine learning classifier. Thus, we estimate the
proportion of houses with solar panels as 17% instead
of the true value of 10%. The difference between the
true proportion and the estimated proportion of houses
with solar panels is called misclassification bias, and as
the example demonstrates it can occur even when the
classifier can predict every individual label with high
accuracy.

In the literature, several corrections methods exist to
reduce misclassification bias of the proportion of units
labelled to the class of interest, i.e. the base rate. We
compared statistical properties of the five most-used

Table 1
Confusion matrices of the target population and test set. Grey values
are unknown in practice

(a) Target population

Estimate
True Class 0 Class 1 Total
Class 0 N00 N01 N0+

Class 1 N10 N11 N1+

Total N+0 N+1 N

(b) Test set

Estimate
True Class 0 Class 1 Total
Class 0 n00 n01 n0+

Class 1 n10 n11 n1+

Total n+0 n+1 n

correction methods in a previous paper [4]. The correc-
tion methods contain information from the target popu-
lation and a test set, see Table 1. The target population
consists of N units that are labelled by a classification
algorithm where we want to estimate the base rate from.
The true labels are unknown in the target population,
only the estimated labels are available. Therefore, the
confusion matrix of the target population cannot be
constructed in practice; only the column totals (white
cells) in Table 1a are known. We construct a test set to
get more information on the accuracy of the classifier.
The test set consists of n� N randomly sampled units
from the target population that are both labelled by a
classification algorithm and a human classifier. There-
fore, we can construct a confusion matrix from the test
set, see Table 1b, which contains information about
the classification probabilities and the true base rate.
In contrast to the target population, all the cells in the
test set are known. The correction methods used in [4]
exclusively contain information from the test set and the
target population whereof closed-form equations of the
mean square error (MSE) for each correction method
could be computed. [4] concluded that the so-called
calibration estimator works the best in general (more
information in the next section).

However, the result from that paper does not general-
ize to time series. In other words, the results could not
be applied for populations where the base rate changes
over time. The target populations that are interesting for
national statistical institutes, where we produce statis-
tics on a monthly, quarterly or annual basis, change
from period to period. The solar panel case is a good
quantification example for time series: households can
place solar panels on their roofs or displace them during
a certain period. Moreover, the proportion of houses
with solar panels is an interesting statistic concerning
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the government’s aims of renewable energy. The drift
that occurs when the target population changes over
time, is called concept drift [5]. In this paper, we assume
a special case of concept drift called prior probability
shift. Prior probability shift assumes that the base rate
of a target population changes over time, but that the
classification probabilities of units conditioned on their
true label remain constant over time [6].

The most effective, but most costly and time-
consuming solution to deal with prior probability shift,
is to construct a new test set for each period. A more
cost-efficient solution is to construct a test set and use
the same test from period to period. As a consequence,
we then cannot assume that a test set is a simple ran-
dom sample of the target population when the base rate
changes over time. Therefore, new expressions for bias
and variance are needed to evaluate the MSE of the
five correction methods. These expressions were pre-
viously computed by [7]. They concluded that none of
those estimators performs consistently well under prior
probability shift.

The main contribution of this paper is a new generic
method to correct for misclassification bias when deal-
ing with prior probability shift. We will refer to the re-
sulting estimator as the mixed estimator because it com-
bines the strengths of two existing estimators. We will
derive (approximate) closed-form expressions for the
bias and variance of the mixed estimator. Moreover, we
will numerically compare the mixed estimator’s MSE
with the classical methods.

The remainder of the paper is organized as follows:
in Section 2, we introduce the problem and assump-
tions and we recap the properties of the original correc-
tion methods. Section 3 introduces the mixed estimator.
Moreover, we will compare the mixed estimator with
the original correction methods. Section 4 contains a
discussion and conclusion of this paper.

2. Model under prior probability shift

In this section, we introduce the quantifier under prior
probability shift. We use the same mathematical ap-
proach as in [4] and therefore use the same parameters
and assumptions. Before we dive into the mathematical
expressions, we briefly discuss the terminology used
in the later sections. The target population has N units
which belong to one of two classes, either class 0 or
class 1. Our parameter of interest is the proportion of
units that belong to class 1 in the target population,
denoted as α. Similarly to [8], we assume that the un-

derlying classifier has a probability of p00 to correctly
classify an object of class 0 and a probability of p11
to correctly classify an object of class 1. These clas-
sification probabilities are unknown in practice, so we
randomly sample a test set of size n from the target
population. In the test set, both the true labels and the
estimated labels are known. Then, we can make an es-
timate for p00 (p̂00 = n00

n0+
) and for p11 (p̂11 = n11

n1+
)

with the test set. We assume that a binary classification
algorithm has been trained that correctly classifies a
data point that belongs to class i ∈ {0, 1} with proba-
bility pii > 0.5, independently across all data points.
In addition, we assume that a test set of size n � N
is available and that it can be considered a simple ran-
dom sample from the population. Finally, we assume
that the classify-and-count estimator α̂∗ is distributed
independently of p̂00 and p̂11, which is reasonable (at
least as an approximation) when n� N .

In this paper, we allow that the base rate can change
over time. In other words, we allow for a nonzero prior
probability shift. Therefore, we introduce the following
notation. First, we need to distinguish a target popula-
tion U at time 0 from a target population U ′ at time t.
We can then define α′ as the base rate of the target pop-
ulation U ′. Moreover, the classification probabilities of
the target population are equal for U and U ′, so the new
base rate α′ is the only new parameter in this paper.
Therefore, α denotes the base rate of target population
U , whereof the test set is constructed.

Before we describe the differences between [4]
and [7], we briefly introduce the correction methods.
First, the baseline estimator (α̂a) computes the propor-
tion of units in the test set that belong to class 1. Sec-
ond, the classify-and-count estimator (α̂?) computes the
proportion of units that are classified by the machine
learning algorithm to class 1 in the target population.
This is the naive estimator where we simply count the
number of units that belong to class 1 according to the
algorithm. Third, the subtracted-bias (α̂b) estimator first
estimates the bias of the classify-and-count estimator
by estimating classification probabilities in the test set.
Then, we compute the subtracted-bias estimator by sub-
tracting this estimated bias from the classify-and-count
estimator. Fourth, the misclassification estimator (α̂p)
multiplies the inverted row-normalised test set by the
classify-and-count estimator. Last, the calibration es-
timator (α̂c) multiplies the column-normalised test set
by the classify-and-count estimator. An overview of
the equations can be found in Table 2, as well as how
these estimators perform in terms of bias and variance.
The baseline, misclassification and calibration estimator
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are all (asymptotically) unbiased where the calibration
estimator performs the best in general [7]. computed
closed-form expressions of the bias and variance under
prior probability shift. First, prior probability shift does
not affect the mean square error of the classify-and-
count estimator and subtracted-bias estimator majorly.
The classify-and-count estimator does not use any in-
formation from the test set, so a different base rate does
not affect this estimator. The subtracted-bias estima-
tor only uses the test set to estimate the classification
probabilities and therefore the estimator is not affected
largely by the shift. Obviously, the baseline estimator
cannot be used when the target population follows a
different distribution than the test set. The misclassifi-
cation estimator remains asymptotically unbiased, but
the calibration estimator is unfortunately biased under
prior probability shift. This is in contrast to the situation
under a fixed base rate, where the calibration estimator
is unbiased. Therefore, the misclassification estimator
remains the only estimator that is (asymptotically) unbi-
ased, see Table 3. According to [4] and [7], the misclas-
sification estimator has a high variance when the clas-
sification probabilities are low. On the other hand, the
variance of the misclassification estimator only changes
slightly under prior probability shift. All in all, none of
these correction methods have a consistently low MSE.
In the next section, we will introduce a new estimator
that performs better than the five original correction
methods.

3. Mixed estimator

In this section, we introduce a new estimator: the
mixed estimator. The mixed estimator is a combina-
tion between the misclassification estimator [9] and the
calibration estimator [10]. In [4,7], we found that the
calibration estimator is unbiased under a fixed base rate,
but becomes biased under prior probability shift. The
misclassification estimator has a higher variance, but
the MSE remains fairly stable under prior probability
shift. These two properties can be combined: as an ini-
tial starting point, we take the calibration estimator α̂c
at time 0, but we add the difference between the mis-
classification estimator at time t (α̂′p) and time 0 (α̂p).
Therefore, the expression for the mixed estimator is:

α̂′m = α̂c + [α̂′p − α̂p]

=
n10
n+0

(1− α̂∗) + n11
n+1

α̂∗+
(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1
. (1)

To the best of our knowledge, this is the first paper
where the mixed estimator is introduced. Therefore, the

closed-form expressions for bias and variance that we
have derived are new as well.

Lemma 1. The variance of the estimator p̂11 for p11
estimated on the test set is given by

V (p̂11) =
p11(1− p11)

nα

[
1 +

1− α
nα

]
+O

(
1

n3

)
.

(2)

Similarly, the variance of p̂00 is given by

V (p̂00) =
p00(1− p00)
n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
. (3)

Moreover, p̂11 and p̂00 are uncorrelated: C(p̂11, p̂00)
= 0.

Theorem 1. The mixed estimator α̂′m is a biased, but
consistent, estimator for α′ 6= α:

B[α̂′m] =
(α′ − α)(V (p̂00) + V (p̂11))

(p00 + p11 − 1)2

+O

(
1

n2

)
. (4)

The variance of α̂′m is equal to:

V (α̂′m)

=
αp11
n
×
(
1− αp11

(1− α)(1− p00) + αp11

)
+
(1− α)p00

n
×
(
1− (1− α)p00

(1− α)p00 + α(1− p11)

)
+(α′ − α)2 × V (p̂00) + V (p̂11)

(p00 + p11 − 1)2
+ (α′ − α)

×
[
αp00(1−p00)(1−p11)+(1−α)p00p11(1−p11)

n(p00−α(p00+p11−1))(p00+p11−1)

−αp00(1−p00)p11+(1−α)(1−p00)p11(1−p11)
n((1−α)(1−p00)+αp11)(p00+p11−1)

]
+O

(
1

n2

)
. (5)

Proof: See Appendix.

From Theorem 1, we see that the mixed estimator
has a bias of O

(
1
n

)
. Therefore, the mixed estimator is

slightly biased but consistent. The variance function is
complex, but we can see that the variance will be larger
when the difference between α′ and α increases. To
obtain a better overview of this mixed estimator, we will
perform three simulation studies. Each simulation study
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Table 2
Overview of the estimators without prior probability shift from [4]

Estimator Equation Bias Variance

Baseline α̂a =
n1+

n
No Large

Classify-and-count α̂? =
N+1

N
Large Very low

Subtracted-bias α̂b = p̂11α̂
? + (1− p̂00)(1− α̂?) Medium Low

Misclassification α̂p =
α̂? + p̂00 − 1

p̂00 + p̂11 − 1
Very low Large

Calibration α̂c =
n10

n+0
(1− α̂?) +

n11

n+1
α̂? No Medium

Table 3
Overview of the estimators under prior probability shift from [7]

Estimator Equation Bias Variance

Baseline α̂′
a =

n1+

n
Large Large

Classify-and-count (α̂?)′ =
N ′

+1

N
Large Very low

Subtracted-bias α̂′
b = p̂11(α̂

?)′ + (1− p̂00)(1− (α̂?)′) Medium Low

Misclassification α̂′
p =

(α̂?)′ + p̂00 − 1

p̂00 + p̂11 − 1
Very low Large

Calibration α̂′
c =

n10

n+0
(1− (α̂?)′) +

n11

n+1
(α̂?)′ Medium Medium

consists of B = 10,000 estimates for each correction
method. First, we create fixed target populations given
α, α′, p00, p11 and N : a population U at time 0 and a
population U ′ at time t. Then, we sample B = 10,000
test sets of size n from population U and apply the
estimators and equations from Table 3 on each test set.

In the first simulation study, we consider a class-
balanced dataset (α = 0.5), with a small test set of size
n = 1,000, a large population dataset of N = 3× 105

and a rather poor classifier having classification proba-
bilities p00 = 0.6 and p11 = 0.7. From Fig. 1, we can
see that the mixed estimator is in general a stable esti-
mator with a low amount of bias and much less variance
than the misclassification estimator. However, the vari-
ance of the mixed estimator tends to increase when the
difference between α′ and α gets larger, which is in line
with the observations in the previous paragraph. The
mixed estimator performs much better than the mis-
classification estimator and the calibration estimator: it
has almost no bias and has much less variance than the
misclassification estimator.

A situation where the mixed estimator does not work
as well as expected, can be found in Fig. 2. We spec-
ify the following parameters: p00 = 0.94, p11 = 0.97,
α = 0.98, n = 1,000, N = 3× 105 and B = 10,000.
The misclassification estimator tends to have more ex-
treme outliers when the difference between α′ and α
increases. This affects the mixed estimator in terms of

variance. Furthermore, the mixed estimator can predict
values outside the [0, 1]-interval. We cannot encounter
these values in practice and it is, therefore, a problem
that we obtain these estimates. It seems that this prob-
lem occurs less often for the mixed estimator than for
the misclassification estimator so the mixed estimator
performs still better than the misclassification estimator
and the calibration estimator individually. Finally, we
can observe that the variance of the mixed estimator
is always lower than the variance of the misclassifica-
tion estimator. Despite the outliers, it is still the best
estimator out of the three.

In the first two simulation studies, the misclassifica-
tion estimator did not work properly, and we showed
values of α′ that are close to α. It is also interesting to
see what happens when the misclassification estimator
has a low MSE for α and what happens when α′ differs
substantially from α. We perform a simulation study
with α = 0.75, p00 = 0.85, p11 = 0.90, n = 1,000,
N = 3×105 andB = 10,000, shown in Fig. 3. We ob-
serve that the distribution of the mixed estimator is sim-
ilar to the distribution of the misclassification estimator.
The reason behind this is that the misclassification esti-
mator performs similarly to the calibration estimator at
time 0. However, the figures and the numbers show that
the mixed estimator still performs consistently better
than the misclassification estimator.
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Fig. 1. Simulation study to observe the change in prediction error under concept drift using boxplots. The calibration, misclassification and
mixed estimator are compared given an initial base rate α = 0.5 (grey) and different values of α′ (black). The test set is sampled from the target
population with the initial base rate. The x-axis shows the different base rates and the y-axis shows the distribution of the difference from the new
base rate α′. All the parameters: p00 = 0.6, p11 = 0.7, n = 1,000 and N = 3× 105, B = 10,000.

Fig. 2. Simulation study to observe the change in prediction error under concept drift using boxplots. The calibration, misclassification and mixed
estimator are compared given an initial base rate α = 0.98 (grey) and different values of α′ (black). The test set is sampled from the target
population with the initial base rate. The x-axis shows the different base rates and the y-axis shows the distribution of the difference from the new
base rate α′. All the parameters: p00 = 0.94, p11 = 0.97, n = 1,000N = 3× 105 and B = 10,000.

Fig. 3. Simulation study to observe the change in prediction error under concept drift using boxplots. The calibration, misclassification and mixed
estimator are compared given an initial base rate α = 0.75 (grey) and different values of α′ (black). The test set is sampled from the target
population with the initial base rate. The x-axis shows the different base rates and the y-axis shows the distribution of the difference from the new
base rate α′. All the parameters: p00 = 0.85, p11 = 0.90, n = 1,000, N = 3× 105 and B = 10,000.
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4. Conclusion and discussion

We conclude that our mixed estimator outperforms
the estimators currently available in the academic liter-
ature. The mixed estimator has less bias than the cali-
bration estimator and less variance than the calibration
estimator. The mixed estimator performs much better
than the calibration estimator and the misclassification
estimator when the variance of the misclassification
estimator is large but consistent over time. Our results
show that the mixed estimator outperforms both the
calibration estimator and the misclassification estimator
in any dataset and for any classification algorithm used.

Even though that the new mixed estimator performs
better than the original correction methods, we still be-
lieve that the correction methods might be improved
further. We could construct a new estimator by combin-
ing biased, but invariant correction methods. New re-
search directions lay in combining the correction meth-
ods in such a way that both bias and variance of the new
estimator will be consistently low.

The estimator could be extended for correction meth-
ods that can predict more than two classes. The down-
side is that the number of parameters increases quadrat-
ically and the quality measure should be adapted for
multiple classes. A possible solution is to further elabo-
rate the simulation studies, instead of computing closed-
form mathematical expressions. A final extension that
we recommend is allowing the classification probabili-
ties to differ between the units within a group, see [8].

With this paper, we hope that we raised awareness
that aggregating outcomes of machine learning algo-
rithms can be very inaccurate, even if the algorithms
have a high prediction accuracy. Furthermore, this paper

is an addition to the scientific literature on the theory
of misclassification bias. Finally, we proposed a new
generic method that can be used by NSIs to improve
machine learning applications within official statistics.
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Appendix

This appendix contains the proofs of the theorems presented in the paper entitled: A new generic method to improve
machine learning applications in official statistics. Recall that we have assumed a population of size N in which a
fraction α := N1+/N belongs to the class of interest, referred to as the class labelled as 1. We assume that a binary
classification algorithm has been trained that correctly classifies a data point that belongs to class i ∈ {0, 1} with
probability pii > 0.5, independently across all data points. In addition, we assume that a test set of size n� N is
available and that it can be considered a simple random sample from the population. The classification probabilities
p00 and p11 are estimated on that test set by row-normalizing the confusion matrix of the test set. Finally, we assume
that the classify-and-count estimator α̂∗ is distributed independently of p̂00 and p̂11, which is reasonable (at least as
an approximation) when n� N .

It may be noted that the estimated probabilities p̂11 and p̂00 cannot be computed if n1+ = 0 or n0+ = 0. Similarly,
the calibration probabilities c11 and c00 cannot be estimated if n+1 = 0 or n+0 = 0. We assume here that these events
occur with negligible probability. This will be true when n is sufficiently large so that nα� 1 and n(1− α)� 1.

Preliminaries

Many of the proofs presented in this appendix rely on the following two mathematical results. First, we will use
univariate and bivariate Taylor series to approximate the expectation of non-linear functions of random variables. That
is, to estimate E[f(X)] and E[g(X,Y )] for sufficiently differentiable functions f and g, we will insert the Taylor
series for f and g at x0 = E[X] and y0 = E[Y ] up to terms of order 2 and utilize the linearity of the expectation.
Second, we will use the following conditional variance decomposition for the variance of a random variable X:

V (X) = E[V (X|Y )] + V (E[X|Y ]). (6)

The conditional variance decomposition follows from the tower property of conditional expectations [11]. Before
we prove the theorems presented in the paper, we begin by proving Lemma 1.

Proof of Lemma 1 We approximate the variance of p̂00 using the conditional variance decomposition and a
second-order Taylor series, as follows:

V (p̂00) = V

(
n00
n0+

)
= En0+

[
V

(
n00
n0+

∣∣∣∣n0+)]+ Vn0+

[
E

(
n00
n0+

∣∣∣∣n0+)]
= En0+

[
1

n20+
V (n00|n0+)

]
+ Vn0+

[
1

n0+
E(n00|n0+)

]
= En0+

[
n0+p00(1− p00)

n20+

]
+ Vn0+

[
n0+p00
n0+

]
= En0+

[
1

n0+

]
p00(1− p00)

=

[
1

E[n0+]
+

1

2

2

E[n0+]3
× V [n0+]

]
p00(1− p00) +O

(
1

n3

)
=
p00(1− p00)
E[n0+]

[
1 +

V [n0+]

E[n0+]2

]
+O

(
1

n3

)
=
p00(1− p00)
n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
.

The variance of p̂11 is approximated in the exact same way.
Finally, to evaluate C(p̂11, p̂00) we use the analogue of Eq. (6) for covariances:
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C(p̂11, p̂00) = C

(
n11
n1+

,
n00
n0+

)
= En1+,n0+

[
C

(
n11
n1+

,
n00
n0+

∣∣∣∣n1+, n0+)]
+Cn1+,n0+

[
E

(
n11
n1+

∣∣∣∣n1+, n0+) , E ( n00n0+

∣∣∣∣n1+, n0+)]
= En1+,n0+

[
1

n1+n0+
C(n11, n00|n1+, n0+)

]
+Cn1+,n0+

[
1

n1+
E(n11|n1+),

1

n0+
E(n00|n0+)

]
.

The second term is zero as before. The first term also vanishes because, conditional on the row totals n1+ and n0+,
the counts n11 and n00 follow independent binomial distributions, so C(n11, n00|n1+, n0+) = 0.

Note: in the remainder of this appendix, we will not add explicit subscripts to expectations and variances when
their meaning is unambiguous.

Mixed estimator

In this section, we will prove the bias and the variance of the mixed estimator under concept drift. The mixed
estimator is dependent on the calibration estimator at time 0, the misclassification estimator on time 0 and the
misclassification estimator on time t.

Proof of Theorem 1 First, we will make a proof for the bias of the Mixed Estimator. The expression for the Mixed
Estimator is:

α̂′m = α̂c + (α̂′p − α̂p) = α̂c + [(α̂′)∗ − α̂∗]× 1

p̂00 + p̂11 − 1
. (7)

The bias is defined as the difference between the expected value of the estimator minus the true value of the target
variable:

B[α̂′m] = E[α̂′m]− α′ (8)

Using Eq. (7), we can write out the expected value of the mixed estimator.

E[α̂′m] = E

[
α̂c + [(α̂′)∗ − α̂∗]× 1

p̂00 + p̂11 − 1

]
= E[α̂c] + E

[
[(α̂′)∗ − α̂∗]× 1

p̂00 + p̂11 − 1

]
(9)

From [4], we already know that:

E[α̂c] = E[α̂c|α̂∗] = α. (10)

E
[
[(α̂′)∗ − α̂∗]× 1

p̂00+p̂11−1

]
can be computed by conditioning on the Classify-and-count estimators (α̂′)∗ and α̂∗.

E

[
[(α̂′)∗ − α̂∗]× 1

p̂00 + p̂11 − 1

]
= E

[
E

[
[(α̂′)∗ − α̂∗]× 1

p̂00 + p̂11 − 1

∣∣∣∣(α̂′)∗, α̂∗]]
= E

[
((α̂′)∗ − α̂∗)× E

[
1

p̂00 + p̂11 − 1

∣∣∣∣(α̂′)∗, α̂∗]]
= E

[
((α̂′)∗ − α̂∗)× E

[
1

p̂00 + p̂11 − 1

]]
(11)

From [4], we used Taylor Series to approximate the expected value of 1
p̂00+p̂11−1 .
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E

[
1

p̂00 + p̂11 − 1

]
=

1

p00 + p11 − 1
+
V (p̂00) + V p̂11)

(p00 + p11 − 1)3
+O(n−2) (12)

Now it only remains to calculate the expected values of the classify-and-count estimators.

E[(α̂′)∗ − α̂∗] = E[(α̂′)∗]− E[α̂∗] (13)

E[(α̂′)∗] = α′p11 + (1− α′)(1− p00) = α′(p00 + p11 − 1) + (1− p00) (14)

E[α̂∗] = αp11 + (1− α)(1− p00) = α(p00 + p11 − 1) + (1− p00) (15)

Combining these expressions, E[(α̂′)∗ − α̂∗] can be simplified towards the following expression.

E[(α̂′)∗ − α̂∗] = (α′ − α)(p00 + p11 − 1) (16)

Combining Eqs (12) and (16) gives the expression that should be in the big expectation of Eq. (11).

E

[
(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
= E

[
((α̂′)∗ − α̂∗)× E

[
1

p̂00 + p̂11 − 1

]]
= E[(α̂′)∗ − α̂∗]× E

[
1

p̂00 + p̂11 − 1

]
= (α′ − α)(p00 + p11 − 1)×

[
1

p00 + p11 − 1
+
V (p̂00) + V (p̂11)

(p00 + p11 − 1)3

]
+O(n−2)

= α′ − α+
(α′ − α)(V (p̂00) + V (p̂11))

(p00 + p11 − 1)2
+O(n−2) (17)

Finalizing the proof given Eqs (8), (10) and (17).

B[α̂′m] = E[α̂′m]− α′

= α+ α′ − α+
(α′ − α)(V (p̂00) + V (p̂11))

(p00 + p11 − 1)2
− α′ +O(n−2)

=
(α′ − α)(V (p̂00) + V (p̂11))

(p00 + p11 − 1)2
+O(n−2) (18)

Now it only remains to prove the variance of the mixed estimator. Recall that the mixed estimator can be written as

α̂′m = α̂c + [(α̂′)∗ − α̂∗]× 1

p̂00 + p̂11 − 1
. (19)

It clearly follows from Eq. (19) that the variance of this mixed estimator can be written as

V [α′m] = V [α̂c] + V

[
(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
+ 2C

[
α̂c,

(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
. (20)

From [4], we already know that the variance of the calibration estimator is equal to

V (α̂c) =

[
(1− α)(1− p00) + αp11

n
+

(1− α)p00 + α(1− p11)
n2

]
×
[

αp11
(1− α)(1− p00) + αp11

(
1− αp11

(1− α)(1− p00) + αp11

)]
+

[
(1− α)p00 + α(1− p11)

n
+

(1− α)(1− p00) + αp11
n2

]
×
[

(1− α)p00
(1− α)p00 + α(1− p11)

(
1− (1− α)p00

(1− α)p00 + α(1− p11)

)]
+O

(
max

[
1

n3
,

1

Nn

])
. (21)
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The second term in Eq. (20) makes use of previous assumptions in this paper. We can say that p̂00 and p̂11 are
independent of our Classify-and-count estimators α̂∗ and (α̂′)∗. Furthermore, a well-known result on variances states
that for two independent random variablesA andB, it holds that V (AB) = E[A]2V (B)+E[B]2V (A)+V (A)V (B).
Combining these statements gives

V

[
(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
= [E((α̂′)∗ − α̂∗)]2V

[
1

p̂00 + p̂11 − 1

]
+

[
E

(
1

p̂00 + p̂11 − 1

)]2
V [(α̂′)∗ − α̂∗]

+V [(α̂′)∗ − α̂∗]V
[

1

p̂00 + p̂11 − 1

]
. (22)

Assuming that N � n, we can make the statement that V [(α̂′)∗ − α̂∗] is of O
(

1
N

)
.

V

[
(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
= [E((α̂′)∗ − α̂∗)]2V

[
1

p̂00 + p̂11 − 1

]
+O

(
1

N

)
(23)

The expected value of the differences between the classify-and-count estimators is already computed in Eq. (16)
and the variance term in Eq. (23) is already proven in [4]. This eases the derivation of the second term in Eq. (20).

V

[
(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
= (α′ − α)2 × V (p̂00) + V (p̂11)

(p00 + p11 − 1)2
+O

(
max

[
1

N
,
1

n2

])
(24)

Thus it remains to evaluate the covariance term in Eq. (20). By conditioning on the classify-and-count estimators
α̂∗ and (α̂′)∗, we obtain:

C

[
α̂c,

(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
= E

[
C

[
α̂c,

(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

∣∣∣∣(α̂′)∗, α̂∗]]
+C

[
E[α̂c|(α̂′)∗, α̂∗], E

[
(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

∣∣∣∣(α̂′)∗, α̂∗]] (25)

It can be proven that the second term of Eq. (25) is equal to zero. In Eq/ 10, we see that the expectation of the
calibration estimator, given classify-and-count estimators, is equal to α. This is a constant and the covariance with a
constant is equal to zero. Therefore, the covariance term can also be written as:

C

[
α̂c,

(α̂?)′ − α̂∗

p̂00 + p̂11 − 1

]
= E

[
C

[
α̂c,

(α̂?)′ − α̂∗

p̂00 + p̂11 − 1

∣∣∣∣(α̂?)′, α̂∗]] . (26)

We can derive an expression for the inner covariance, which is written as

C

[
α̂c,

(α̂?)′ − α̂∗

p̂00 + p̂11 − 1

∣∣∣∣(α̂?)′, α̂∗] = [(α̂?)′ − α̂∗]C
[
α̂c,

1

p̂00 + p̂11 − 1

∣∣∣∣α̂∗] . (27)

The terms in Eq. (27) can be written in terms of the test set (n00, n01, n10, n11). This eases the computation further
on. Note that the elements of this test set do not depend on the classify-and-count estimator α̂∗.

C

[
α̂c,

1

p̂00 + p̂11 − 1

∣∣∣∣α̂∗] = C

[
n10
n+0

(1− α̂∗) + n11
n+1

α̂∗,
1

n00

n0+
+ n11

n1+
− 1

∣∣∣∣α̂∗
]

= C

[
n10
n+0

(1− α̂∗) + n11
n+1

α̂∗,
n0+n1+

n00n11 − n01n10

∣∣∣∣α̂∗]
= (1− α̂∗)C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

]
+ α̂∗C

[
n11
n+1

,
n0+n1+

n00n11 − n01n10

]
(28)

We are able to evaluate both covariance terms with the same methods. We can condition on one of the row totals.
Note that the other row total is also fixed, because we work with binary classifiers (n1+ = n− n0+). Furthermore,
we are able to write as many variables as possible in terms of n0+ and n1+. This helps with the Taylor Series that we
apply to approximate the covariances.

C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

]
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= E

[
C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+]]+ C

[
E

[
n10
n+0

∣∣∣∣n1+] , E [ n0+n1+
n00n11 − n01n10

∣∣∣∣n1+]]
= E

[
C

[
n1+ − n11

n1+ + n00 − n11
,

n0+n1+
n0+n11 + n1+n00 − n0+n1+

∣∣∣∣n1+]]
+C

[
E

[
n1+ − n11

n1+ + n00 − n11

∣∣∣∣n1+] , E [ n0+n1+
n0+n11 + n1+n00 − n0+n1+

∣∣∣∣n1+]] (29)

While we condition on the row totals, the other variables in the covariance functions are n00 and n11. Say
n10
n+0

= f(n00, n11) and
n0+n1+

n00n11 − n01n10
= g(n00, n11),

with

f(x, y) =
n1+ − y

n1+ + x− y
(30)

g(x, y) =
n0+n1+

n1+x+ n0+y − n0+n1+
(31)

we are able to compute first-order Taylor series approximations for these terms to obtain an approximation for
C
[
n10

n+0
, n0+n1+

n00n11−n01n10

]
.

∂f

∂x
=

(n1+ + x− y) · 0− (n1+ − y) · 1
(n1+ + x− y)2

=
y − n1+

(n1+ + x− y)2
(32)

∂f

∂y
=

(n1+ + x− y) · −1− (n1+ − y) · −1
(n1+ + x− y)2

=
−x

(n1+ + x− y)2
(33)

∂g

∂x
=

−(n0+n1+)n1+
(n0+y + n1+x− n0+n1+)2

=
−n21+n0+

(n0+y + n1+x− n0+n1+)2
(34)

∂g

∂y
=

−(n0+n1+)n0+
(n0+y + n1+x− n0+n1+)2

=
−n20+n1+

(n0+y + n1+x− n0+n1+)2
(35)

The approximation can be made with substituting x = E[n00|n1+] and y = E[n11|n1+] and applying the
approximation rules for covariance. Given that n00 and n11 are independent from each other given the row totals, we
can cross out C(n00, n11).

C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+] ≈ E[n11|n1+]− n1+
(n1+ + E[n00|n1+]− E[n11|n1+])2

×
−n21+n0+

(n0+E[n11|n1+] + n1+E[n00|n1+]− n0+n1+)2
V (n00|n1+)

+
−E[n00|n1+]

(n1+ + E[n00|n1+]− E[n11|n1+])2

×
−n20+n1+

(n0+E[n11|n1+] + n1+E[n00|n1+]− n0+n1+)2
V (n11|n1+) (36)

In order to use this approximation, we can use the following properties:

E(n00|n1+) = n0+p00

V (n00|n1+) = n0+p00(1− p00)

E(n11|n1+) = n1+p11

V (n11|n1+) = n1+p11(1− p11)

Substituting these elements gives
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C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+] ≈ (n1+p11)− n1+
(n1+ + n0+p00 − n1+p11)2

×
−n21+n0+

(n0+(n1+p11) + n1+(n0+p00)− n0+n1+)2
n0+p00(1− p00)

+
−n0+p00

(n1+ + n0+p00 − n1+p11)2

×
−n20+n1+

(n0+(n1+p11) + n1+(n0+p00)− n0+n1+)2
n1+p11(1− p11). (37)

This expression simplifies to

C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+] ≈ n1+p00(1− p00)(1− p11) + n0+p00p11(1− p11)
(n1+ + n0+p00 − n1+p11)2(p00 + p11 − 1)2

(38)

Now that the inner covariance of Eq. (29) is computed, we can move on and calculate the inner expectations of
Eq. (29). This can be done with a second-order Taylor series approximation.

∂2f

∂x2
= 2× n1+ − y

(n1+ + x− y)3
(39)

∂2f

∂y2
= 2× −x

(n1+ + x− y)3
(40)

∂2g

∂x2
= 2×

n31+n0+

(n0+y + n1+x− n0+n1+)3
(41)

∂2g

∂y2
= 2×

n30+n1+

(n0+y + n1+x− n0+n1+)3
(42)

Applying the Taylor rules for approximating an expected value and substituting x = E[n00|n1+] and y =
E[n11|n1+] into the equations gives:

E

[
n10
n+0

∣∣∣∣n1+] ≈ n1+ − E[n11|n1+]
n1+ + E[n00|n1+]− E[n11|n1+]

+
n1+ − E[n11|n1+]

(n1+ + E[n00|n1+]− E[n11|n1+])3
V [n00|n1+]

− E[n00|n1+]
(n1+ + E[n00|n1+]− E[n11|n1+])3

V [n11|n1+] (43)

=
n1+ − n1+p11

n1+ + n0+p00 − n1+p11

+
n1+ − n1+p11

(n1+ + n0+p00 − n1+p11)3
n0+p00(1− p00)

− n0+p00
(n1+ + n0+p00 − n1+p11)3

n1+p11(1− p11) (44)

=
n1+(1− p11)

n1+ + n0+p00 − n1+p11
+
n0+n1+p00(p11 − 1)(p00 + p11 − 1)

(n1+ + n0+p00 − n1+p11)3
(45)

E

[
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+] ≈ n0+n1+
n0+E[n11|n1+] + n1+E[n00|n1+]− n0+n1+

+
n31+n0+

(n0+E[n11|n1+] + n1+E[n00|n1+]− n0+n1+)3
V [n00|n1+]

+
n30+n1+

(n0+E[n11|n1+] + n1+E[n00|n1+]− n0+n1+)3
V [n11|n1+] (46)
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=
n0+n1+

n0+n1+p11 + n1+n0+p00 − n0+n1+

+
n31+n0+

(n0+n1+p11 + n1+n0+p00 − n0+n1+)3
n0+p00(1− p00)

+
n30+n1+

(n0+n1+p11 + n1+n0+p00 − n0+n1+)3
n1+p11(1− p11) (47)

=
1

p00 + p11 − 1
+
n1+p00(1− p00) + n0+p11(1− p11)

(n0+n1+)(p00 + p11 − 1)3
(48)

The next step is computing the outer expectation and the outer covariance of Eq. (29). The outer expectation can be
approximated with a zero-order Taylor series.

E

[
C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+]] ≈ nαp00(1− p00)(1− p11) + n(1− α)p00p11(1− p11)
(nα+ n(1− α)p00 − nαp11)2(p00 + p11 − 1)2

=
αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)
n(p00 − α(p00 + p11 − 1))2(p00 + p11 − 1)2

(49)

Furthermore, it can be proven that the outer covariance of the two expectations is of O
(

1
n2

)
and can therefore be

neglected in Eq. (29). In general, we can say that

C[f(X), g(X)] ≈ f ′(E[X])× g′(E[X])× V (X) (50)

Let f(x) and g(x) be the expectations of Eqs (45) and (48), with x = n1+. Taking the derivative with respect to x
gives:

f(x) =
x(1− p11)

x+ (n− x)p00 − xp11
+

(n− x)xp00(p11 − 1)(p00 + p11 − 1)

(x+ (n− x)p00 − xp11)3

f ′(x) =
np00(p11 − 1)

(np00 − x(p00 + p11 − 1))2

+
[p00(1− p11)(p00 + p11 − 1)][(2x− n) + 3(x2 − nx)(np00 − x(p00 + p11 − 1))2(p00 + p11 − 1)

(np00 − x(p00 + p11 − 1)6

(51)

g(x) =
1

p00 + p11 − 1
+
xp00(1− p00) + (n− x)p11(1− p11)

((n− x)x)(p00 + p11 − 1)3

g′(x) =
(nx− x2)(p00(1− p00)− p11(1− p11)) + (2x− n)[xp00(1− p00) + (n− x)p11(1− p11)])

(nx− x2)2(p00 + p11 − 1)3
(52)

If we substitute x = E[n1+] = nα in the derivatives, we obtain the following expressions:

f ′(E[n1+]) =
p00(p11 − 1)

n((1− α)p00 + α(1− p11))2
+ p00(1− p11)(p00 + p11 − 1)

×n(2α− 1) + 3n4(1− α)((1− α)p00 + α(1− p11))2(p00 + p11 − 1)

n6((1− α)p00 + α(1− p11))6
(53)

g′(E[n1+]) =
(α− α2)(p00(1− p00)− p11(1− p11) + (2α− 1)(αp00(1− p00) + (1− α)p11(1− p11))

n2(α− α2)(p00 + p11 − 1)3
(54)

It can be clearly seen that f ′(E[n1+]) = O
(
1
n

)
, g′(E[n1+]) = O

(
1
n2

)
and that V (n1+) = O(n). Therefore, the

whole covariance term is small enough to be negligible (O
(
1
n

)
·O
(

1
n2

)
·O(n) = O

(
1
n2

)
, see Eq. (50)) and that the

covariance term can be written as:

C

[
n10
n+0

,
n0+n1+

n00n11 − n01n10

]
≈ αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)

n(p00 − α(p00 + p11 − 1))2(p00 + p11 − 1)2
. (55)
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Similarly, C
[
n11

n+1
, n0+n1+

n00n11−n01n10

]
can be computed. First, C

[
n11

n+1
, n0+n1+

n00n11−n01n10

∣∣∣n+1

]
can be computed with a

first-order Taylor series approximation. Because we condition on the row-totals, we rewrite n11

n+1
as

n11
n+1

=
n11

n− n00 − n10
=

n11
n− n00 − (n1+ − n11)

=
n11

n0+ − n00 + n11

and make a function dependent on x = n00 and y = n11, which we can derive.

h(x, y) =
y

n0+ − x+ y

∂h

∂x
=

y

(n0+ − x+ y)2
(56)

∂h

∂y
=

n0+ − x
(n0+ − x+ y)2

(57)

Accordingly, we can borrow the expectations from the previous covariance term. Therefore we end up with the
following term:

C

[
n11
n+1

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+] ≈ n1+p11
(n0+(1− p00) + n1+p11)2

×
−n21+n0+

(n0+(n1+p11) + n1+(n0+p00)− n0+n1+)2
n0+p00(1− p00)

+
n0+(1− p00)

(n0+(1− p00) + n1+p11)2

×
−n20+n1+

(n0+(n1+p11) + n1+(n0+p00)− n0+n1+)2
n1+p11(1− p11). (58)

This simplifies to:

C

[
n11
n+1

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+] ≈ −n1+p00(1− p00)p11 + n0+(1− p00)p11(1− p11)
(n0+(1− p00) + n1+p11)2(p00 + p11 − 1)2

(59)

The next step is computing the expected value of this expression.

E

[
C

[
n11
n+1

,
n0+n1+

n00n11 − n01n10

∣∣∣∣n1+]] ≈ −nαp00(1− p00)p11 + n(1− α)(1− p00)p11(1− p11)
(n(1− α)(1− p00) + nαp11)2(p00 + p11 − 1)2

= −αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)
n((1− α)(1− p00) + αp11)2(p00 + p11 − 1)2

(60)

The covariance between the expectations is again of a negligible low order, so the covariance term can be written
as:

C

[
n11
n+1

,
n0+n1+

n00n11 − n01n10

]
≈ −αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)

n((1− α)(1− p00) + αp11)2(p00 + p11 − 1)2
(61)

Now that we have obtained the two conditional covariance in Eqs (55) and (61), we can substitute these terms in
Eq. (28).

C

[
α̂c,

1

p̂00 + p̂11 − 1

∣∣∣∣(α̂′)∗, α̂∗] ≈ (1− α̂∗)× αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)
n((1− α)p00 + α(1− p11))2(p00 + p11 − 1)2

−α̂∗ × αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)
n((1− α)(1− p00) + αp11)2(p00 + p11 − 1)2

(62)

Combining Eqs (26), (27) and (62), we can computeC[α̂c,
(α̂′)∗−α̂∗
p̂00+p̂11−1 ] by taking the expected value of the difference

between the Classify-and-count estimators multiplied by the expected value of Eq. (62). Note that the first part of
both denominators are equal to respectively the expected value of (1− α̂∗) and α̂∗ squared.
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C

[
α̂c,

(α̂′)∗ − α̂∗

p̂00 + p̂11 − 1

]
= E

[
[(α̂′)∗ − α̂∗]C

[
α̂c,

1

p̂00 + p̂11 − 1

∣∣∣∣α̂∗]]
≈ E

[
[(α̂′)∗ − α̂∗]

[
(1− α̂∗)αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)

n(p00 − α(p00 + p11 − 1))2(p00 + p11 − 1)2

−α̂∗ × αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)
n((1− α)(1− p00) + αp11)2(p00 + p11 − 1)2

]]
≈ E

[
[(α̂′)∗ − α̂∗]

[
αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)

n(p00 − α(p00 + p11 − 1))(p00 + p11 − 1)2

−αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)
n((1− α)(1− p00) + αp11)(p00 + p11 − 1)2

]]
= [(α′)− α](p00 + p11 − 1)

[
αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)

n(p00 − α(p00 + p11 − 1))(p00 + p11 − 1)2

−αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)
n((1− α)(1− p00) + αp11)(p00 + p11 − 1)2

]
= [(α′)− α]

[
αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)

n(p00 − α(p00 + p11 − 1))(p00 + p11 − 1)

−αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)
n((1− α)(1− p00) + αp11)(p00 + p11 − 1)

]
(63)

Combining all elements gives the total variance of the mixed estimator.

V (α̂′m) =
αp11
n
×
(
1− αp11

(1− α)(1− p00) + αp11

)
+
(1− α)p00

n
×
(
1− (1− α)p00

(1− α)p00 + α(1− p11)

)
+ (α′ − α)2 × V (p̂00) + V (p̂11)

(p00 + p11 − 1)2

+(α′ − α)×
[
αp00(1− p00)(1− p11) + (1− α)p00p11(1− p11)

n(p00 − α(p00 + p11 − 1))(p00 + p11 − 1)

−αp00(1− p00)p11 + (1− α)(1− p00)p11(1− p11)
n((1− α)(1− p00) + αp11)(p00 + p11 − 1)

]
+O

(
1

n2

)
. (64)

This concludes the proof of the bias and variance of the mixed estimator. Note that all terms ofO
(

1
n2

)
are excluded.


