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Abstract. This paper attempts to fit the best survival model distribution for the Malaysian COVID-19 new infections experience
of Wave I/II and Wave III using the well-known Survival Data Analysis (SDA) procedures. The purpose of fitting such models is
to reduce the complexity and frequency of the COVID-19 new infections data into a single measure of scale and shape parameters
to enable monitoring of weekly trends, undertake short term forecasts and estimate duration when the virality will be contained.
The analysis showed a Weibull distribution is the best statistical fit for Malaysia’s new infections COVID-19 data. The estimates
of scale and shape parameters for Wave I/II was 0.05901 and 2.48956 and for Wave III was 0.06463 and 2.5693, respectively.
Much higher hazard force in Wave III is due to weaker control in the implementation of cordon sanitaire measures imposed in
containing the virality spread. Based on the survival function the short-term forecasts showed that the number of new infections
projected to decline from 23,282 cases in 28th week to 22,017 cases in 31st week. Similarly, based on the cumulative hazard
function the duration estimated for containing the virality completely projected to stretch over another 19.6 weeks under the
prevailing conditions.
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short-term forecasts, COVID-19

1. Introduction

This paper attempts to establish a methodological
procedure for identifying the best statistical fit for the
Malaysian COVID-19 new infection data using the
well-known Survival Data Analysis (SDA) procedure.
In the current practice the frequency distribution data
that provides timely daily COVID-19 counts on new
infections, deaths and recovery are still relevant. Com-
plementing the current data practice, the proposed SDA
procedure is aimed at reducing the daily frequency
counts of COVID-19 new infections data into weekly
estimates of shape and scale parameters of the best-fit
survival distribution. Upoun establishing the distribu-
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tion additional analysis like differentiating the experi-
ences of COVID-19 by waves of infections and short-
term forecasting on new infections as well as when it
is projected to disappear can be carried out. No doubt
daily frequency counts on COVID-19 new infections
provide timelier estimate, but daily numbers are too
many for SDA estimation procedures especially life-
table construction which works at best if number of
rows are limited to 30 that weekly numbers catered. The
fitted distribution, in turn is used to undertake short-
term forecasts on new COVID-19 infections using the
survival function of the best fit statistical model. The
modelling exercise is also used to project the time du-
ration that will take in containing the virality com-
pletely under the prevailing conditions. However, the
nature of COVID-19 global pandemic is as such subject
to changing conditions due to either new variants or
mutations that are more aggressive and posing greater
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Fig. 1. New COVID-19 infection data in Wave I/II in Malaysia.

life-threatening menace to mankind especially when
the borders are open allowing free flow of people and
goods. In such circumstances the short-term projections
on new COVID infection numbers and when completely
it will get mitigated warrants a review of the estimation
procedure.

The Malaysian COVID-19 pandemic experiences of
Wave I, Wave II and Wave III are used for illustrating
the proposed SDA methodological procedure. At this
stage Malaysia have been experiencing third wave of
COVID-19 pandemic [1]. Despite various shades of
cordon sanitaire mitigatory strategies similar to that of
Wave I/II that government has put in place beginning
18th March 2020, Wave III has registered the number
of new cases of COVID-19 infections 29 times more
than the earlier two waves combined; that is 9002 newly
infected cases were reported under Wave I/II in com-
parison to 262,596 cases in Wave III. The Figs 1 and 2
illustrate the trend and order of magnitude of Malaysian
COVID-19 new cases experience by pandemic waves.
On 11th March 2020, the WHO has announced COVID-
19 as a global pandemic when the newly infected cases
globally reached 118,000 involving 110 countries and
thereafter all countries including Malaysia have begun
to compile and publish COVID-19 data daily pertaining
to new infections, deaths and recovery.

Currently, the public policy makers, development
practitioners, media and academia as well as interna-
tional organizations are using frequency counts in their
policy formulation, planning and advocacy activities.
As widely known from past experiences that epidemic
or pandemic data are subjected to high fluctuations,
skew and kurtosis. Malaysian COVID-19 virus expe-
riences regarding new infections or deaths or recovery
after medical treatment are not exception to such erratic
phenomena. Compiling data in frequency format and

producing summary statistics pertaining to measures of
location and dispersion are notably the first statistical
activity being undertaken in any data analysis and more
so, easier to compile and understand [2,3] especially
the public, media, public policy makers and politicians.
Nonetheless, the data presented in frequency counts
may exhibit inherent great variations that may not pro-
vide meaningful comparisons especially between pan-
demic waves or geographies or over time [3,4]. Thus,
towards complementing the usage of frequency distribu-
tion, this paper explores SDA methodology of convert-
ing the COVID-19 new infections frequency counts into
scale and shape parameters of best fit survival model
distribution. The scale and shape parameters of a sta-
tistical distribution are free from unit of measurement
and magnitude. The scale measure depicts the extent of
virality over time along the horizontal axis and shape
parameter determines the rate at which the hazard is
increasing and such pure numbers even people with less
akin to statistical subject matters able to comprehend
the status of virality over time. Indeed, the fitted dis-
tribution can be used in producing weekly estimates
that become additional information for gauging and
monitoring as well as undertake short-term forecasts
regarding the virus spirality that will be of interest to
mainstream users such as public policy makers, medical
professionals and planners, development practitioners
in the health sectors, academia and media.

The Figs 1 and 2 shows the number of COVID-19
new infection cases during Wave I/II and Wave III in
Malaysia. The analytical investigation is apportioned
into two waves of epidemic because the prevailing con-
ditions for the COVID-19 virality and cordon sanitaire
measures imposed by the government for containing the
virality as well as attitude and behavioural aspect of the
population differed greatly between the Wave I/II and
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Fig. 2. New COVID-19 infection data in Wave III in Malaysia (on-going).

Wave III. Pertinently, the total number of new COVID-
19 infections over the span of 28 weeks differed greatly,
that is 9002 in Wave I/II and 262,596 in Wave III at end
of 28th week. Besides that during the Wave I/II period
the number of countries affected by COVID-19 virus
globally was much lesser than during Wave III which
partly experienced increase in the number of cases due
to importation of virus from neighbouring countries and
by returning Malaysians from overseas [5]. In the same
vein, the Movement Control Order (MCO) or cordon
sanitaire that were imposed during the Wave I/II period
registered with stricter enforcement by the Government
authorities in comparison to Wave III, which registered
a much more relaxed conditions allowed for economy
recovery. The relaxed rules and regulations registered
increase in the movement of people for work, free flow
of goods, services and workers between localities near
and far and resumption of functioning of educational
institutions and religious gatherings as well as various
shades of social mobility. Indeed, the relaxed condi-
tions paved the way for prolific increase in the virality
numbers in Wave III. Reckoning the vast differences in
the two waves of epidemic, the analysis prompted to
gauge the level of COVID-19 new infections by waves.

2. Working definition of Wave I/II and Wave III

For the Wave I, the WHO for the first time recorded
the Malaysian COVID-19 experiences on 25th January

2020, by reporting only 7 cases of new infections, with
no deaths reported at that point of time. During the
Wave I period that stretched until 26th of February
2020, there were 11 days of no cases continuously.
Thus, with reappearance of new infection cases, 27th
of February 2020 marked the beginning of Wave II and
stretched until 5th August 2020 when the number of
new COVID-19 cases tapered to only one case, tech-
nically indicating the end of Wave II. In other words,
Wave III marked its beginning on 6th August 2020.
Like ocean waves, pandemics waves also statistically
and probabilistically random and irregular, character-
ized by wave height in terms of frequency counts and
wave period in terms of duration, thus exhibits statis-
tical variability [6]. In simple terms, in infectious dis-
ease parlance, waves of infection describe the curve of
an outbreak, reflecting a rise and fall in the number of
cases. Premising upon this depiction a working defini-
tion is considered in determining the duration for Wave
I Wave II (25th January to 5th August, 2020) and Wave
III (6th August. 2020 onwards) in Malaysia.

3. Literature review on Survival Data Analytics
(SDA) modelling approach

The study has explored a modelling approach in de-
veloping a weekly monitoring system on monitoring
the COVID-19 pandemic trend in Malaysia that can be
used for analysing and differentiating the new infection
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experiences and undertake short term forecasts on new
infections and when the COVID-19 poised to subside.
For studying epidemiological data three types of models
namely mathematical, statistical or survival data anal-
ysis are usually considered. Each model approach has
its own distinct features and characteristics as well as
merits and demerits. Among these model approaches,
survival data analysis deemed to provide added merits
and advantages over the other two. For instance, for
analysing small pox disease, [7] Bernouli proposed for
the first time a mathematical model using deterministic
approach and usage of differential equations [8,9]. But
mathematical modelling demands a sound understand-
ing, appropriate representation and interpretation of
mathematical based results of the physical problem [9].
But the weakness in this mathematical approach was
the application of the differential equation procedure
does not take account of physical units of measurements
and random variations associated with unknown fac-
tors [9]. Towards overcoming these challenges the cel-
lular automata (CA) mathematical modelling procedure
came into practice as it can transform time and space
discretely and model the evolution of complex physical
systems by incorporating characteristics of the medical
conditions, covariates or spatial variables and lags in a
lattice structure that the model entails [10]. Nonethe-
less, sound interpretation of outcomes of mathemati-
cal modelling approach still remains much of a chal-
lenge for its applicability to COVID-19 type of data,
which by and large lack of covariate types of data other
than confining to new infections, deaths and recovery
numbers [8,11].

Subsequently, the typical statistical modelling, spatial
modelling, space-time approaches and survival mod-
elling that can handle random variations gained stronger
footage in modelling exercises. For instance, in Au-
toregressive Modelling Average (ARMA) framework
time lag is estimated using autoregressive process (AR)
that treats the observations as a weighted sum of their
values at previous time points and the moving aver-
age (MA) provides a method that accounts for and cor-
rects for the errors in the previous prediction through
a weighted linear sum of previous errors [12]. How-
ever, the ARMA models lack statistical efficiency in
dealing with issues related to seasonal variations (lo-
calized trends), cyclical variations (trends over a longer
time period) and irregular fluctuations due to unknown
factors and consequently extrapolating future predic-
tions pose modelling difficulties [12,13]. Similarly, the
spatial modelling premises upon homogeneous Pois-
son process, aims at locating clustering or regularity

in recorded events over space and time, estimating and
mapping relative risk of the event incidence or iden-
tifying clustering around a particular point [14]. Such
method is widely applied in spatial epidemiology as
the procedures have the ability to model autocorrela-
tion between measurements taken at different spatial
lags [15] or applicable to Generalized Linear Model
(GLM) framework [16] or dynamic model methodol-
ogy that models consider non-parametrically non-linear
temporal trends [17] in gauging spatial variations. But
the spatiotemporal point process statistical modelling
tends to average the temporal aspect over time across
individuals.

Recognizing the challenges and shortfalls in mathe-
matical and statistical modelling approaches, this paper
opted to analyse the COVID-19 new infections data us-
ing survival data analysis (SDA). Indeed, the SDA is an
aged old procedure that can be traced back to early work
on mortality in the seventeenth century when Graunt
published the first Weekly Bill of Mortality in Lon-
don and Healey published the first lifetable [18]. Since
then, the lifetable method has been used frequently by
actuaries, statisticians, and biomedical researchers in
governmental and private agencies in determining life-
expectancy at a given age and survival or mortality or
relapsed rates in clinical trials and determining insur-
ance premium rates et cetera. In non-medical fields the
survival analysis was used in assessing the reliability
of military equipment during World War II and sub-
sequently the methodology was used in analysing the
reliability of industrial products and devices. In the past
four decades, survival analysis has become one of the
most frequently used methods for analysing data per-
taining to survival times in disciplines ranging from
medicine, epidemiology, and environmental health, to
criminology, marketing, and astronomy.

In comparison to mathematical and statistical mod-
elling, the survival data analyses offer many distinct
merits. First, the purpose of applying SDA procedures
to new infections data is to study the time taken for a
new infection to happen remising upon probabilistic
notion of survival time and hazard functions [19,50].
Second, the survival time analysis is applicable to situ-
ations where the exact survival time may be longer than
the duration of the study time (or observation time) [18]
because the procedures enable censoring of data either
right or left when data are truncated. Applications of
survival data analysis in public health or in engineer-
ing field or in social science have registered a wide
spectrum of usage like estimation of survival distri-
butions, testing hypotheses of equality of two or sur-
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vival distributions using Gehan’s Generalized Wilcoxon
test [20,21] and the log-rank test [22] and identifica-
tion of risk or prognostic factors and relating its rela-
tionship to the length of disease-free time, survival, or
remission [18,23–25].

Since the COVID-19 global pandemic came into
effect since late 2019, many research endeavours
have been undertaken in studying the impact of the
COVID-19 virus on human survival using various as-
pects of survival analysis. To name a few, Salinas
et al. [26] and Kyeong [27] investigated impact of
COVID-19 on Mexican and South Korean population
by expounding Kaplan-Mier curves and Cox propor-
tional model, respectively. Specifically, they examined
variables such as age, sex, comorbidities, pregnancy,
immune-suppression, smoking, time elapsed between
the onset of symptoms and hospitalization, and death,
as well as the time elapsed from admission to health
care unit to death, development of pneumonia, hospi-
talization, ICU admissions, intubation, and the type of
health service. The case studies concluded that fatal-
ity rate was high among males, older age, and those
with chronic diseases. Altonen et al. [28] and Eghbal et
al. [29] undertook similar studies but focused on USA
and Kurdistan population, respectively and concluded
that elders with chronic diseases like diabetes need to
be under active surveillance and screened frequently.

Atlam et al. [30] deployed machine learning tech-
niques and artificial intelligence for computing infec-
tion based on Cox regression modelling aimed at help-
ing hospitals to choose patients who have better chances
of survival and predict the most important symptoms
(features) affecting survival probability. Interestingly,
Yue Zhao and Deepika Dilip [31] used Cox regression
procedure on exploring the relationship of the COVID-
19 deaths as per Johns Hopkins University publishing
and democracy indices as per Economic Intelligence
Unit records and concluded that in the public health
crisis setting, a democratic government may face more
constraints when taking draconian measures against dis-
ease control, simply due to its structure and likelihood
of opposition. Researchers like Martin Spousta [32]
and Bui et al. [33] used parametric models namely lin-
ear exponential and Weibull distribution respectively in
estimating the incubation period for COVID-19.

Succinctly put, the foregoing literature reviews have
indicated that SDA methodology has been registering
increasing number of research activities on COVID-
19 in many countries using non-parametric or semi-
parametric or parametric approaches. In the same vein
this exercise scopes its survival analysis to one spe-

cific aspect only, that is investigating the time duration
incurred in transmission of COVID-19 new infection
data from one person to another using either nonpara-
metric or semiparametric or graphical or parametric
or combination of approaches. Specifically, attempt is
being made in developing a weekly monitoring sys-
tem on COVID-19 new infections virality by waves by
referring to experiences in Malaysia.

4. Merits and demerits of presenting data
frequency distribution and basic statistics

Undoubtedly, the compilation of frequency counts
depicting COVID-19 pandemic new infections or
deaths, or recovery are easily compiled with the support
of various reporting sources nationwide in any country
including Malaysia. Being a pandemic phenomenon the
published daily totals including its cumulative counts
are not only concerns of mainstream policy makers,
development practitioners and academia but it is also
warranted the attention of less statistically orientated
ordinary citizens and media in the country. Presenting
the data in frequency format obviously become the first
option in any statistical activity as it provides a quick
glance at the entirety of data conveniently; can spot
maximum and minimum values in the data set; and can
observe whether they are concentrated in one area or
spread out across the entire scale [2–4,34]. The indus-
trious users may even monitor the trends whether in-
creasing or decreasing, or remaining at constant level
or detect exhibited seasonal and cyclic variations in an
attempt to study the emergence of subsequent waves
of reappearance of the disease and undertake future
projections as well [3,35]. The advanced users may
also convert the numerous frequency counts into single
measures of central tendency and dispersion for better
understanding of the pandemic phenomena [2–4,33].

Data presented in frequency counts are typically con-
stitute numerous observations. However, when pre-
sented in time series format the data bound to exhibit
high fluctuations in the patterns especially when the
series is long. In such data set difficulties may arise
in culling out the underlying patterns and trends par-
ticularly when the observations are subject to erratic
fluctuations that are typically encountered in pandemic
kind of data [34,35]. Besides that, any attempt to com-
pile the data into a grouped frequency format additional
concerns arise regarding the number of class intervals,
which are fairly arbitrary and determined depending on
the size of the timeseries data [2–4]. If the number of
class intervals are too few, it may lead to the loss of
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much information in the counts and at the same time, if
there are too many categories, one may not be able to
see the overall picture as one gets bogged down by the
excessive details.

Similarly, reducing the numerous COVID-19 daily
timeseries observations into representative and disper-
sion measures like mean or median or mode or stan-
dard deviation are likely to encounter several statistical
challenges especially whenever spikes or drastic drops
in numbers occur regarding the virality of the COVID-
19. Moreover, in the presence of extreme values that
usually occur in any pandemic data the statistical rep-
resentation of the data become questionable; skewness
may occur in one way or other direction over time due
to lack of symmetry; high degree of variation in kur-
tosis may result due to clustering of cases; mode may
become overly sensitive and it can easily be made to
“jump around” by varying the limits of the class inter-
vals size and the number [2–4,34]. On comparison, in
SDA methodology the measures of mean and variance
as well as coefficient of variation can be determined for
the best fit statistical distribution, besides determining
the scale and shape parameters that characterises the
nature of the distribution.

Succinctly put, frequency counts with erratic fluctu-
ations may not be statistically efficient for comparing
COVID-19 experiences between waves of infection.
Such frequency data also may not be suitable for pro-
ducing meaningful and valid results in undertaking any
projections or short-term forecasts. Alternatively, the
SDA procedures offer a methodology of reducing the
numerous time series-based frequency data into scale
and shape parameters of a best-fit survival distribution.
The scale and shape parameters are purely numeric
numbers and more so, free from order of magnitude
and unit of measurements [36] and more aptly, suitable
for comparing COVID-19 experiences between waves
of infections, despite they differ one from another in
terms of intensity of infections or number of deaths or
recoveries or duration of epidemic or covariates and
prognostics factors influencing the pandemic. But the
SDA methodology also offers a statistical procedure for
gauging, monitoring, assessing and producing short-
term forecasts on COVID-19 new infections by using
survival and hazard functions. Historically, the SDA
methodology saw its introduction in clinical environ-
ment [37–40] and subsequently used in reliability life
testing experiments in engineering and manufacturing
plants [37,41] and as mentioned earlier, today its appli-
cation is seen in many areas including studying COVID-
19 phenomena. As such, in this exercise attempt is

being made to measure the virality of new infections
of COVID-19 phenomena by waves of new infections
experienced in Malaysia in the context of public pol-
icy and advocacy activity relevance who are concerned
about the trends, patterns, features and characteristics
of new virus infections as well as future projections

5. Research objectives

The main objective of this paper is to establish a
methodological procedure of gauging, monitoring as-
sessing and evaluating the COVID-19 new infections
virality experiences in Malaysia using SDA procedures.
Specifically, the SDA methodology is applied in pro-
ducing and monitoring the weekly estimates of shape
and scale parameters for the best fit statistical distri-
bution for the new COVID-19 infections. The weekly
results are produced by waves of new infections and
assessed in differentiating the trends, features and char-
acteristics inherent to the waves. Having established
the weekly estimates the methodology also enables de-
termining short-term forecasts regarding either prolif-
eration or mitigation in new infections and also deter-
mining the duration when the COVID-19 viral chain
expected to disappear completely.

Currently, frequency-based daily records are used in
monitoring and evaluating the COVID-19 phenomena
by time or by geography or by waves of infections.
As highlighted in the literature review that frequency
counts that are highly subjected to presence of extreme
values lack inherent statistical inefficiencies for making
meaningful evaluations or benchmarking or projections.
The SDA procedures that have innate capability of re-
ducing voluminous data that are of diverse characteris-
tics into scale and shape parameters of best fit statistical
distribution offer better validity options for evaluation
or benchmarking or projections.

This research focuses on Wave I, wave II and Wave
II that Malaysia have undergone since the beginning
of COVID-19 as a global pandemic. Each wave seem-
ingly has their own distinct features and characteristics
in terms of intensity of infections or cordon sanitaire
strategies and attitude, behaviour and adherence of peo-
ple to rules and regulations imposed by authorities. As
highlighted earlier the intensity of new infections in
Wave III (that is, 262,596 cases) was 25 times more
than the combined numbers recorded in Wave I/II (that
is, 9002 cases). The rate at which the numbers prolifer-
ated between the waves is indeed startling, and warrant-
ing a differentiation study pertaining to trends, features
and characteristics as well as impact of COVID-19 by
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Wave I/II and Wave III as highlighted earlier. Reiterat-
ing again the trend analysis enable short-term projec-
tions on new COVID-19 infections and also predicting
when the virality will cease if the current conditions
persist. The methodology is dynamic and flexible in
the sense projections are subject to review from time to
time if there are drastic changes in the virality condi-
tions. Indeed, not only the current data but also a more
precise projections on the virality will be of great in-
terest to the mainstream policy makers, medical and
public health planners and development practitioners as
well as media and academy for their policy, planning,
advocacy and communication routines.

Towards this aim the methodological objectives con-
sidered the four well-known survival distribution mod-
els namely Exponential, Linear Exponential, Weibull
and Gompertz distributions [37–40]. Being a new global
phenomenon, the nature of virality of COVID-19 is not
known precisely yet. As mentioned earlier, researchers
like Martin Spousta [32] and Bui [33] made prior as-
sumptions pertaining to Exponential and Weibull dis-
tribution on analysing COVID-19 incubation period,
respectively. But, in this exercise attempt is being made
to explore combination of graphical, non-parametric
lifetable technique, Gehan-Siddiqui semi-parametric
procedures and parametric Maximum Likelihood Esti-
mation (MLE) procedure in order to arrive at the more
appropriate distribution that describes COVID-19 new
infection phenomena in Malaysia.

Specifically, the non-parametric life table technique
was used to compute the hazard, cumulative hazard and
survival function values pertaining to COVID-19 new
infections data that have survival time characteristics
that SDA procedures are premise upon. The hazard, cu-
mulative hazard and survival functions of lifetable are
in turn used to establish the best fit survival distribution
by considering both graphical and regression estimation
procedures. Specifically, the hazard and cumulative haz-
ard plots of Exponential, Linear Exponential, Weibull
and Gompertz distributions are considered in the graph-
ical procedure and hazard function values are used in
the regression estimation procedure. The graphical or
semi-parametric procedures deemed to provide only
a preliminary indication on estimated values of scale
and shape parameters. Refined measures of scale and
shape parameters are determined using parametric MLE
procedure, which usually statistically considered pro-
viding more consistent, efficient and predictable than
semi-parametric estimation procedures [42].

The foregoing study objectives depict statistical ob-
jectives of determining best fit survival model and its

shape and scale parameters. Statistically speaking, the
study objective is also include elucidating the meaning
of the parameters, that is, scale parameters relate the
extent of virality in terms of age or duration, and shape
parameters determine rate of hazard of virality growth
characterizing the COVID-19 new infections. Interpre-
tatively, these parameters provide surrogate measures
for gauging the efficacy of various shades of cordon
sanitaire measures that government has put in place.
Pertinently, when the rate of hazard is high the inci-
dence of infections is high and vice versa. Thus, ef-
fective implementation on the part of authorities and
committed and responsible behaviour of people on the
other hand are crucial in determining the success rate
in containing the COVID-19 chain especially new in-
fections which ultimately can reduce the number of
COVID-19 deaths. Unfortunately, the success rate of
mitigating the virality of new infections in Wave III was
not satisfactory in comparison to Wave I/II.

6. Data source, scope and coverage

For the construction of life-table the study requires
data pertaining to number of new COVID-19 infections
and deaths by date of reporting. As mentioned, earlier
the requisite data are sourced from WHO website and
confirmed with Ministry of Health (MoH) records in
Malaysia, which is being official statistics. The quality
of data is considered valid and reliable as Malaysia has
long established public health surveillance system na-
tionwide and more so, the COVID-19 dedicated hospi-
tals are supported with contemporary information com-
munication technology [43].

During the Wave I, Wave II and Wave III a number
of zero cases were intermittently reported, meaning no
hazard (h(t) = 0) value for the day and this pose an
invalidity issue for the SDA computational procedure.
Towards overcoming the intermittent zero incidences,
the study opted to consider week as a unit of analy-
sis, instead of days. Since the duration of analysis for
Wave I is too short, the study combined the first two
waves with nomenclature as Wave I/II. The Wave I/II
constituted 194 days, which is too many for the con-
struction of a life table. In terms of week the number
of intervals reduced to 28, which is well within the rec-
ommended limits of 30 units of intervals for a lifetable
construction [38,39].

7. Methodology

Towards obtaining the best-fit survival distribution
and estimation of refined values of scale (λ) and
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shape (γ) parameters, the methodology explores non-
parametric estimation procedure of life-table technique,
graphical plotting, semi-parametric estimation proce-
dure of regression technique and parametric Maximum
Likelihood Estimation (MLE) procedure, as follows:

7.1. Non-parametric estimation procedure of life-table
technique

7.1.1. Survivorship function
For life-table construction, essentially the SDA

methodology premises upon the definition of survival
time, denoted as T and accordingly the survival func-
tion S(t), is represented as

S(t) = Pr(T > t),

where Pr() stands for the probability and T is the out-
come of random variable of interest, notionally denot-
ing time until an event occurs [37–40,44]. In the context
of the COVID-19 new infection the survival function
defined as to time duration free from infection and sur-
vives longer than (t) that is, not occurring by the time
(t).

S(t) = P (an individual survives or free from

infection longer than (t))

Computationally, for non-censored observations S(t)
is defined as

S(t) =

number of persons surviving or
infection free longer than (t)

total number of persons exposed
in a study interval

Where S(t) is a nonincreasing function of time (t)
with S(t) = {1} for t = 0 and S(t) = {0} for t =∞.

7.1.2. Hazard and cumulative hazard function
The other important function that is typically de-

rived from lifetable is the hazard function h(t), which
is defined as conditional failure rate of survival time
T [37–40], as per definition below.

h(t) = lim∆t→0
{Pr{t 6 T < t+ ∆t|T > t}}

∆t
Typically the failure rate refers to death rate in mor-

tality table or end of life span in reliability experiment.
Analogously, in this research exercise it refers to “rate
of COVID new infection”.

h(t) =

an individual getting infected in the
time interval (t, t+ ∆t) given the

subject under study has survived or no
infection to (t)

∆t

For computation purposes as per actuarial practices,
the estimated hazard function h(tmi) for the ith interval
the above relation reduces accordingly as per below:

h(tmi) =
di

bi
(
ni −

(
di
2

)) =
2qi

bi(1 + pi))

i = 1, 2, 3 . . . s− 1, where

qi = di
ni

is the proportion of infection reported in the
interval.
pi = 1− qi is the proportion of cases not infected or

surviving during the ith interval.
Where, bi refers to the size of interval width; ni indi-

cates the number of persons exposed at the beginning of
an interval; di refers to the number infected persons dur-
ing the interval and tmi refers to the mid-point of time
interval. Notably, the values of di and ni are sourced
from WHO daily situation reports of COVID-19.

For computational purposes the cumulative hazard
function is derived from the following relationship [37–
40];

H(t) = − logS(t)

Thus, at t = 0, S(t) = 1, H(t) = 0 and at t = ∞,
S(t) = 0 and H(t) =∞.

Using the large sample approximations, variances of
the estimated hazard function h(tmi) in the ith inter-
val [39,40] is estimated from the following formulae:

V {h(tmi)} ∼=
h(tmi)

2]

niqi
∗
{

1− bih(tmi)

2

}2

Accordingly, for illustration purposes lifetable for
Wave I/II is shown in Appendix I. For the Wave I/II
the radix number (lx) is 9002 and for Wave III the
radix number is 262,596. In every subsequent interval
the number of people exposed (ni) or at risk of infec-
tion changes after discounting the death numbers (ad-
justed for mid-interval value) as per the relationship:
[ni − (1/2 ∗ li)]. Technically, at the beginning of the
first interval of Wave I/II or Wave III no one is infected
and at the end of 28th interval no one from the cohort
is spared from infection.

7.2. Theoretical framework of Survival Data Analysis
(SDA)

The graphical procedure, semi-parametric estimation
procedure of regression technique and parametric esti-
mation procedure of using Maximum Likelihood Esti-
mation are based on the parametric assumptions of haz-
ard and cumulative hazard functions of the four well-
known survival distributions namely exponential, linear
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Table 1
Hazard and cumulative hazard and survivorship functions framework

Survival distribution
Linear relationship

of h(t) or H(t)
Scale parameter (λ) Shape parameter (γ) Survivorship function S(t)

Exponential distribution h(t) = constant λ is a constant over time Horizontal line with slope b = 0 S(t) = e(−λt)

Linear exponential h(t) = λ+ γt a = λ increasing trend b = γ slope of the linear plot S(t) = exp
[
−
(
λt+ γt2

2

)]
distribution

Weibull distribution h(t) = λγγt(γ−1) λ =
[
ea

γ

](1/γ)
γ = b+ 1 S(t) = exp[−(λt)γ ]

Weibull distribution H(t) = (λt)γ λ = e
a
γ b = γ

Gompertz distribution h(t) = exp(λ+ γt) a = λ b = γ S(t) = exp
[
− eλ

γ
(eγt − 1)

]
exponential, Weibull and Gompertz [37–40] and the
underpinning formulae of SDA characteristic functions
are as per Table 1.

Among the models considered in the framework haz-
ard function of exponential or linear exponential dis-
tribution characterises either a constant hazard (λ = 0)
over time or linearly increasing constant hazard over
time (λ > 0) [41]. The Gompertz distribution has an
exponential hazard characteristic but applicable to event
that has multiplicative factor of initial conditions and
furthermore, causes of vulnerability is of extrinsic na-
ture and possibly influenced by many factors [45,46].
Similarly, the Weibull distribution is also of exponential
in nature but has additive property and causes of vulner-
ability conditions is of intrinsic with an inherent “drag
effect or wear out” phenomenon and more applicable
to single causes [45,46].

The other popular competing hazard models in-
clude log normal distribution, logistics distribution and
Gamma distribution but these standard distributions
have limitations in fitting some of the real data accu-
rately. For instance, the log normal distribution is char-
acteristically quite similar to Weibull distribution, but
it is more applicable to skewed distributions having
lower mean values and large variance, in comparison
Weibull is more flexible [47]. Similarly, the logistics
distribution resembles with normal distribution in shape
with mean, median and mode having the same value but
with heavier tails or kurtosis than exponential type dis-
tribution [48]. Both Gamma and Weibull distributions
are generalization of the exponential distribution family
which characterises the waiting time as a Poisson pro-
cess or the time wait until an event occurs. But the haz-
ard or instantaneous failure rate in Gamma distribution
is an increasing function of time (t), indicating aging
effect, which may not be so in the case of COVID-19
phenomena that poised to taper down over time [41].

7.3. Graphical procedure

As outlined in Table 1, the graphical plotting [38–40]
and are based on values of h(t) or H(t) that columns

of life-table provide [38,39,49]. Through appropriate
the linear relationship fitting of hazard h(t) or cumu-
lative hazard H(t) functions against time (t) or log of
time (ln(t)) the scale and shape parameters of assumed
survival distribution are determined as outlined in Ta-
ble 1, where a refers to intercept and b refers to slope
of the linear relationship Y = a+ bX . Ideally speak-
ing, if the probability plot or hazard plot is of a per-
fect straight line fit to the data and accordingly param-
eters of assumed distribution can be estimated easily
from the plot without going through the hassle of rig-
orous numerical calculations [38,39]. But, in practice,
the plots may not be a perfect straight line for various
reasons such as wrong prior assumptions about the na-
ture of the distribution, the presence of extreme values
and outliers, record transcriptions errors, or delayed re-
porting [38,39]. Nonetheless, the graphical methods are
used not only for visual inspection but also to get initial
indication on the nature of the statistical distribution.

7.4. Semi-parametric Gehan-Siddiqui regression
technique

In undertaking the regression procedure, Gehan and
Siddiqui considered linearity relationships of hazard
functions as outlined in Table 1 and three types of
weights as per below [38,40]. W = 1 – treatment of
equal weights

i. W = interval width (bi) * number of cases ex-
posed at the beginning of the interval (ni)

ii. W = reciprocal of variance of hazard values: 1
Vh(i)

Accordingly, the weighted least square estimates for
a and b are obtained by minimizing the weighted sum
of squares (WSS) of the differences between yi and
(â+ b̂xi) [38,40], that is:

WSS =

s∑
1

wi(yiâ− b̂xi)2

Where the weighted least squares estimate for a and
b are given by the formulae:
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b̂ =

{
s∑
i

wi(xi − x̂)(yi − ŷ)

}/
s∑
i

wi(xi − x̂)2;

â = ŷ − bx̂;

x̂ =

{
s∑
i

wixi

}/{
s∑
i

wi

}
and

ŷ =

{
s∑
i

wiyi

}/{
s∑
i

wi

}
For identifying the best befitting regression models

among the four competing survival models, computa-
tion of log-likelihood values based on survival function
estimates considered as provided in the columns of the
life-table [35–37], computed as per the formulae below

L =

s−1∏
i

[
1−

{
St(i+1)

St(i)

}](di)

[{
St(i+1)

St(i)

}](ni−di)

Thus, the logarithm of the likelihood is:

Log L =

s−1∑
i

di log

[
1−

[
St(i+1)

St(i)

]]

+

s−1∑
i

(ni − di) log

[
St(i+1)

St(i)

]
The model that gives the largest log-likelihood value

could be chosen as the best-fit specific model. The best
modelfitted will be duly considered for parametric esti-
mation procedure of Maximum Likelihood Estimation
procedure in the next step.

7.5. Maximum Likelihood Estimation (MLE)
procedure

The Weibull Distribution has the density function.

f(t) = λγtγ−1 exp(−λtγ)t > 0γ > 0 and λ > 0

where γ is the shape and λ is the scale parameters.
Ref. [49] transformed the above equation as follows:

f(t) =
γ

θ
tγ−1 exp

(
− t

γ

θ

)
where

t > 0γ > 0 and θ > 0 and θ =
1

λγ
[38, 41].

As for such distribution, the MLE of γ and θ for
grouped data determined by solving iteratively

W (γ) =

∑n
1 ft

γ ln(t)∑n
1 ft

γ − 1

γ
− 1

n

n∑
1

ln(t) and

λ =

n∑
1

ftγ

n

8. Study findings

The study findings can be summarised as follows:

i) Graphical analysis: The graphical investigation
revealed that none of the hazard or cumulative
hazard plots provided a perfect or almost near per-
fect linear fit. Nonetheless a best fit linear trend
(Y = a+ bX) results as showed leading indica-
tions for linear exponential and Weibull distribu-
tions only; none conformed to Gompertz distri-
bution at all as λ < 0 in all cases.

ii) Regression analysis: The regression procedure
also indicated that none of the data conformed
to Gompertz distribution as per negative values
of scale parameter (λ < 0) in all cases. Fur-
ther, examination revealed that data conformed
to Weibull distribution under the weight option
W = b ∗ n that gave rise to largest Log L value.
Accordingly, the scale and shape parameters for
Wave I/II were λ = 0.0194 and γ = 2.3625 and
for Wave III λ = 0.0095 and γ = 2.1902, respec-
tively. For values of scale and shape parameters
of Wave III were used as the initial estimates in
solving the weighted W (γ) MLE equation.

iii) Maximum Likelihood Estimation: The Table 2
provides the weekly estimates of scale and shape
parameters for gauging, assessing, monitoring,
and evaluating Wave I/II and wave III of new
COVID-19 experiences in Malaysia, respectively.

iv) Application of Estimated Shape Parameters
for Short Term Forecasts on New Cases of
COVID-19 Infections
The weekly trend of shape parameters of fitted
Weibull distribution for Wave I/II and Wave III
is shown in Fig. 1. The trend is indicating chang-
ing direction of the Weibull shape parameter over
time. In Weibull distribution the shape parameter
depicts the hazard rate behavior or probabilistic
chance of a person getting infected by COVID-
19 virus at a given time, provided that person is
infection free prior to that point. Interpretively,
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Table 2
MLE weekly estimates – Wave I/II and Wave III of Malaysia

Week (t) Wave I and II Wave III

Maximum Likelihood Estimation (MLE) Maximum Likelihood Estimation (MLE)

Number of cases (f) Shape γ Scale λ Number of cases (f) Shape γ Scale λ
1 12 0.10816 4.79275E+13 101 0.014084875 1.1132E+103
2 7 0.29468 8563.00000 116 4.2376 1.46030
3 4 0.31689 871.40000 66 2.05070 1.73128
4 3 0.31796 261.90000 69 2.81723 0.81059
5 2 0.46028 18.90000 205 3.09021 0.55475
6 59 1.70089 0.74163 410 3.21747 0.42284
7 46 1.86436 0.52990 389 3.19565 0.34654
8 897 2.76354 0.31852 777 3.19328 0.29069
9 1001 2.94951 0.26062 2369 3.31818 0.24363
10 1085 3.01334 0.22356 3376 3.40629 0.20949
11 1112 3.02715 0.19639 5345 3.47571 0.18335
12 954 3.01171 0.17532 6415 3.51047 0.16314
13 421 2.97754 0.15841 5753 3.51004 0.14718
14 399 2.93737 0.14433 7657 3.50288 0.13390
15 465 2.89202 0.13244 7680 3.48777 0.12273
16 352 2.84965 0.12214 9117 3.47000 0.11315
17 240 2.81137 0.11313 8322 3.44877 0.10486
18 570 2.75577 0.10547 8137 3.42470 0.09763
19 618 2.70652 0.09860 11312 3.40000 0.09125
20 122 2.68137 0.09220 10771 3.37737 0.08556
21 160 2.65329 0.08651 11226 3.35514 0.08047
22 71 2.63074 0.08136 14230 3.33367 0.07589
23 43 2.61037 0.07669 18688 3.31554 0.07173
24 40 2.59027 0.07245 23838 3.30281 0.06793
25 54 2.56833 0.06862 25063 3.29373 0.06446
26 103 2.53957 0.06516 32194 3.28100 0.06452
27 124 2.50821 0.06199 25688 3.26874 0.06458
28 38 2.48956 0.05901 23282 3.25693 0.06463

Table 3
Short term forecasts on COVID-19 new infections in Wave III

Week Scale (λ) Shape (γ) t = 1
λ

(week)
S(t) = exp[−(λt)γ ] 1− S(t) N(ti+1) =

Nt
1−St

Actual
count

% change between
actual and forecast

24 23,838 –
25 0.065156 3.0729 15.3 0.0113565 0.9886435 23,567 25,065 −6.0%
26 0.062336 3.0545 16.0 0.0126461 0.9873539 23,269 32,194 −27.7%
27 0.059738 3.0361 16.7 0.014000 0.986000 22,943 25,688 −10.7%
28 0.057337 3.0147 17.4 0.0154172 0.9845828 22,590 23,282 −3.0%

Average deviation from 25th week to 28th week −11.8%
29 0.055112 2.9993 18.1 0.0168940 0.9831060 22,889 19,742 16%
30 0.053044 2.9809 18.9 0.0184316 0.9815684 22,469 18,825 19%
31 0.051118 2.9625 19.6 0.0200248 0.97997522 22,017 – –

Average deviation from 25th week to 30th week −2.1%

if shape value is less than 1, then the hazard rate
decreases with time; if its value is greater than 1,
then the failure rate increases with time. When
the value of shape parameter is equal to 1, the
hazard rate is constant, depicting exponential dis-
tribution. Thus, it can be seen in Table 3 as well
as in Fig. 1 that the shape value for Wave I/II
from week 1 to week 5 was less than 1, indicating
the rate of hazard force is lesser in comparison to
week 6 onwards where the shape value is greater

than one. Similarly, close scrutiny of shape values
for Wave III revealed that the rate of hazard value
was greater than 1 from week 2 onwards, indicat-
ing that the force of aggression for infection was
much higher in Wave III from onset than in Wave
I/II.
The other pertinent noteworthy feature in Ta-
ble 3 and Fig. 1 is that the trend or movement of
changes in the values of shape parameters. Specif-
ically, it can be observed that the trend of hazard
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Fig. 3. Weekly shape parameter values by Wave I/II and Wave III in Malaysia.

Fig. 4. Downward trend of shape value of COVID-19 in Wave III in Malaysia.

force was increasing until week 11 before it be-
gun to comedown thereafter in the case of Wave
I/II; that is increased from 0.10816 in first week
to 3.02715 in 11th week as depicted in Table 3
and as well shown graphically in Fig. 3. Similarly,
in Wave III the trend of hazard force was on the
rise until 12th week before it begun to register a
downward trend, that is the shape value increased
from 2.050 in third week to 3.51047 in twelfth
week (see Table 3). It is also duly acknowledged
in the analysis that Wave I/II COVID-19 new in-
fections phenomena were over, thus no further
analysis explored. In the case of Wave III, which
has been on-going at the point of analysis the
trend showed that it has been gradually declining
from 13th week onwards. Thus, for short-term
forecasting purposes the trend fitting was done
for the downward trend from Week 13 onwards
as reflected in Fig. 4. It can be seen that linear
trend provided the best fit of y = −0.0184x +

3.5329 with R2 value equal to 0.9859, which in
turn used for obtaining the estimated values for
next two consecutive weeks ( week 29 and 30),
that constituted 14 days as shown in Table 3.
Based on the assumption of survival function S(t)
of Weibull distributions the forecast numbers for
the next two consecutive weeks in Wave III is
obtained by using the following formulae:

N(ti+1) =
Nt
Ft

=
Nt

1− St
,

where S(t) = exp[−(λt)γ ], N(ti+1) is the esti-
mate for the period (t+ 1), Nt is the number of
COVID-19 new infections recorded in the week
(t).
The forecasts exercise was undertaken at week
28. In order to validate the accuracy of the re-
sults the exercise also estimated values of scale
and shape as well as the survivorship function
values for three prior weeks, that is week 25, 26
and 27 and accordingly the forecast numbers on
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Fig. 5. Visualization of trend for scale parameter values by week: Wave I/II and Wave III Malaysia.

new infections were determined. These numbers
in turn were compared against the actual counts
of new infection and accordingly the percentage
of over or under estimation were determined as
shown in Table 3; the deviation ranged from un-
derestimation of 3.0% for 28th week to 27.7%
for 26th week when there was a sudden surge in
the number of new infections occurred. The aver-
age of percentage of under estimation deviation
over the preceding four consecutive weeks was
11.8%; excluding week 26 the average was only
6.5%, which is generally an acceptable range in
projection exercise.
Based on the current prevailing conditions, the
forecast results on new COVID-19 infections for
the next two weeks are also shown in Table 3.
As it can be seen in the Table 3 that the number
of new infections for the week 29 was 22,889
cases, which compared against actual count of
19,742 cases, which is considered over estima-
tion by 16%. Similarly, for the week 30 the es-
timated number of cases was 22,469 and actual
was 18,825 cases, giving rise to 19% in over es-
timation. The implicit challenge in this method-
ology is that the forecast estimation is sensitive
to drastic changes in prevailing conditions of vi-
rality like being seen in week 26, 29 and 30. For
example, the actual counts on week 27 reported
as 25,668 which dropped to 23,282 cases in week
28, that is a drop of 9.4% and comparing against
week 29 that registered 19,742 cases resulted fur-
ther drop by 15%. Acknowledging the sensitiv-

ity of the methodology, in practice the short-term
forecasts warrant review from time to time espe-
cially when significant changes are observed in
the number of new infections cases.

v) Application of Estimated Scale Parameters
for Short Term Projections on COVID-19 Re-
duction in New Infections
As acknowledged earlier that the Wave I/II
COVID-19 infection were over for Malaysia.
Nonetheless, the visual trend for scale parameter
values for Wave I/II and Wave III is shown in
Fig. 5. Further examination separately for each
wave, as depicted in Fig. 5 the analyses revealed
that the power curve function (y = aXb) pro-
vided the best fit for the scale trend and indeed,
with high degree of R-square value (R2); is a sta-
tistical measure that represents the proportion of
the variance for a dependent variable being ex-
plained by an independent variable or variables
in a regression model. Accordingly, the power
curve relationships for Wave I/II and Wave III are
y = 0.8377x−0.822 with R2 = 0.994 and y =
2.4594x−1.128 with R2 value equal to 0.9784, re-
spectively. Accordingly, the estimated values of
scale for next four consecutive points are shown
in Table 3 premising upon logarithmic transfor-
mation of cumulative hazard function H(t) as per
below:
H(t) = (λt)γ which reduces to ln(t) = ln( 1

λ ) +
1
γ ln[H(t)]. When ln[H(t)] = 0, the H(t) =
1, then the above equation reduces to: ln(t) =
ln( 1

λ ), that is t = 1
λ where t determines the dura-
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tion will take for COVID-19 new infections phe-
nomena to be over in Malaysia, as depicted in
Table 3. As reflected in the Weibull cumulative
hazard formulae that the scale parameter denotes
the value of age or duration of hazard; that is, it
stretches or contracts the failure or hazard dis-
tribution along the age or duration axis. Being
inversely proportional, the duration (t) will be
larger when the scale value (λ) becomes smaller
in Weibull distribution.

As it can be seen in Fig. 5 that the estimated value
of scale gradually decreased with progression of time,
indicating prolongation in the disappearance of the vi-
rality of the COVID-19 new infections. It can be seen
in Table 3 that the scale values for Wave I/II were very
high for the first five weeks and only from week 6 on-
wards the scale value that recorded 0.7413 thereafter
declined incrementally until it reached value of 0.05901
in 28th week. Similarly in Wave III the scale value reg-
istered a stable measure of 0.81059 at the 4th week and
thereafter slowly declined until it reached 0.06463 by
28th week. In both Wave I/II and Wave III the initial
scale values were high probably due to small number of
cases of new infections as the scale measure is inversely
proportional to number of cases as per MLE formula.
At the early stages of COVID-19 pandemic understand-
ably the government of Malaysia was attempting to im-
plement various shades of cordon measures in contain-
ing the virality spread and with concerted support of
masses the number of infections in Wave I/II begun to
come down continuously after reaching its maximum
of 1112 cases at 12th week. Whereas the scenario in
Wave III is different and the cases of new infection have
been continually on the rise and as such the number
reached 23,282 by the 28th week. The key difference
is that Wave I/II saw stricter implementation of cordon
sanitaire measures and in Wave III the rules and regu-
lations of cordon sanitaire measures have been much
relaxed in lieu of reviving the ailing economy growth
despite health menace to the population.

In Wave I/II only essential services of economy es-
pecially public utility services, working from home
and online education were allowed to function. While
in Wave III, some of the relaxed conditions include
opening up of all economic sectors, schools and reli-
gious institutions, worship centres, social gatherings
and greater social mobility et cetera, but with stricter
standard operating procedures (SOP) regarding main-
taining social distancing, wearing face mask, frequent
sanitization of hands, gauging body temperature and
recording Q-R code for technology tracing. Indeed, the

Government has been facing challenging times in bal-
ancing the economy growth and maintaining the health
of the population in such a global pandemic scenario.

9. Conclusion

Succinctly put, the foregoing survival data analy-
sis procedures regarding the COVID-19 new infec-
tions data have realized a number of statistical benefits.
First, the research exercise has established a method-
ology of analysing the COVID-19 new infection us-
ing SDA procedures that are founded upon the prob-
abilistic notion of survival time and hazard function.
Second, the SDA procedure deployed non-parametric,
semi-parametric and parametric as well as graphical
procedures in determining the appropriate statistical
distribution that deemed to provide best fit, instead of
pre-empting its assumptions. Accordingly, the analy-
sis showed the Weibull distribution provided the best
fit among the well-known distributions considered in
epidemiological kind of studies. Third, the methodol-
ogy reduced the voluminous time series daily frequency
counts of COVID-19 new infections data into weekly
class intervals data not exceeding 30 rows that deemed
appropriate for efficient application of life-table tech-
nique. Fourth, the life-table in turn enabled the esti-
mation of hazard and survival function values for the
new infections data, which through the semi-parametric
regression and MLE procedures enabled the estimation
of scale and shape parameters for the fitted Weibull
distribution for both Wave I/II and Wave III in the case
of Malaysian experience. Fifth, being free from unit of
measurement and order of magnitude [36], the scale
and shape parameters of Weibull distribution provided
meaningful comparisons of COVID-19 new infection
experiences between Wave I/II and Wave III. Specifi-
cally, the scale and shape parameters for Wave I/II was
0.05901 and 2.48956 and for Wave III was 0.06463
and 2.5693, respectively. Much higher hazard force as
reflected in larger shape values in Wave III is due to
weaker control in the implementation of cordon sani-
taire measures imposed by Government in containing
the virality, in comparison to Wave I/II. Sixth, by fit-
ting appropriate trends for the estimated weekly results
of scale and shape parameters the survival function of
Weibull distribution enabled the short-term forecasts
on new infections, which showed decline in the trend
incrementally from 23,282 cases in 28th week to 22,017
cases in 31st week and poised to decline further under
the current prevailing conditions unless abrupt changes
occur in the trend Seventh, the cumulative hazard func-
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tion of Weibull distribution provided a basis for esti-
mating the duration when the virality of new COVID
infections is likely to disappear completely and the re-
sults showed that it may stretch over another 19.6 weeks
as per estimation at 28th week Lastly, the foregoing
SDA methodology provides a complementary measure
in addition to frequency counts distribution and more
so, the methodology can be an exemplary model for
other countries to emulate.
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