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Abstract. Studies have shown that fertility rate in Africa is still among the highest in the world. However, there are few spatial
investigations into the variation of fertility rate and its determinant in Africa. This study aimed to examine the spatial distribution
of fertility rate as well as highlight its significant determinants. Ordinary Least Squares (OLS) regression was carried out on
dataset for 53 African countries on Total Fertility Rate (TFR) and eleven determinant factors to obtain a best model, which was
then used for Geographically Weighted Regression (GWR). The study showed that TFR was significantly influenced by adolescent
fertility rates, contraceptive prevalence rates and gross domestic product per capita. GWR model diagnostics of Akaike Information
Criterion and adjusted R-squared showed that GWR fitted TFR in Africa better than OLS model. Also, countries around Middle to
Western Africa comprising Burundi, Democratic Republic of the Congo, Central African Republic, Chad, Nigeria, Niger, Benin,
Burkina Faso and Mali, were regions with high TFRs that impacted Africa’s positive TFR spatial autocorrelation. More intense
works could therefore be carried out in these countries to manage the identified significant factors affecting TFR to address the
negative consequences of high TFR in Africa.
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1. Introduction

There are several studies on fertility rate and its deter-
minants in Africa [1–3], yet many works are currently
being undertaken to understand the population dynam-
ics of the African continent and the various issues as-
sociated with its population such as fertility rate. Most
of such studies on fertility reported on the factors as-
sociated with the perception and behaviour of families
in Africa and their desire for particular family size [4].
The focus has also shifted to fertility transition as many
nations of Africa with large population growth hitherto
are beginning to see a downward movement in fertility
rate as was observed in Asia and Latin America [1,5].
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Additionally, fertility transitions in Sub-Saharan
Africa have also been studied [3,5]. Sneeringer [3],
studied cohort fertility trends in 30 sub-Saharan African
countries in order to discern fertility patterns over past
five decades. The study was a construction of a panel us-
ing the fertility histories of survey respondents in order
to understand how women born at different periods in
time may alter their fertility patterns. It concluded that
many countries showed increases in fertility rates in the
1960s and 1970s, and then a decline by later cohorts.
The overall pattern is that countries that have initiated
declines do not later see sustained increases in fertility.
While countries vary in fertility levels and trends, 26 of
the 30 countries studied showed at least a 10% decline
in fertility for at least one age group cohorts. These
findings suggest that most countries exhibit sustained
or progressively larger fertility declines in age groups
between 20 and 34 [3]. Hence, women later in middle
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reproductive age group (25 years and over) have larger
fertility decline than those in younger age groups.

Westoff et al. [4] also studied fertility trends indi-
cators in Sub-Saharan Africa in which the changes
in country characteristics and their relationships with
changes in fertility indicators were examined. The
Change in the Total Fertility Rate (TFR), they noted
were affected by changes in age at first marriage of
women, desired number of children, and use of con-
traception, which they also noted were in turn affected
by trends in health and socio-economic factors such
as infant mortality rate, rural-urban residence, years
of schooling, exposure to mass media (television and
radio) and economic status [4]. The study concluded
that reductions in the desired number of children and
increases in the use of modern contraception were the
most important, while increase in age at first marriage
had a minor role. These determinants were found to
be influenced by the increasing access to education,
urbanization, and mass media exposure [4].

This study is premised on the availability of geo-
graphic and demographic data which gives the oppor-
tunity of analyses that combines both types of data.
These analyses are referred to as spatial demography.
Matthews and Parker [6] have defined this concept of
spatial demography as the spatial analysis of demo-
graphic processes and outcomes. A comprehensive re-
view of the advanced spatial analytic methods and the
insights that can be gained by applying a spatial per-
spective to demographic processes and outcomes is
given [6].

Methodically, the use of linear regression allows the
model parameters to be considered identical across var-
ious areas or regions under study, but the idea of unifor-
mity across areas or regions is usually unrealistic [7].
If the parameters vary significantly across regions, a
global estimator such as the ordinary least square esti-
mator will not show the geographical dimensions of the
response variable [8]. In case of demographic data, the
linear regression is insufficient in telling the entire story
of the variable of interest in terms of its distribution
across regions. Local linear regression with the spa-
tial component referred to as Geographically Weighted
Regression (GWR) has been obtained for geographic
data [7].

This study seeks to apply GWR to fertility dynam-
ics across space in Africa as scarcely any study has
looked at fertility dynamics holistically across Africa
geographically. The study focuses on TFR as the de-
pendent variable and some of its quantifiable determi-
nants viz-a-viz life expectancy at birth, gross domestic

product per capita, infant mortality rate, contraceptive
prevalence rate, unmet need for family planning, ado-
lescent fertility rate and female labour participation and
how they interact and change across space in Africa.
The analysis begins with univariate data description,
the bivariate analysis showing relationships between
the dependent and independent variables. Linear regres-
sion (OLS) model was fitted to the dataset and used to
compare the GWR model for the dataset. Lastly, the
GWR is used to explain the relative contribution and the
statistical significant factors that contribute to TFR ex-
amining how spatially consistent relationships between
the TFR and each determinant variable are across the
Africa.

2. Materials and methods

2.1. Data source and limitation

The challenge of data has been a major concern high-
lighted in almost all studies about Africa due to the cost
in time and money to conduct censuses and surveys.
Many international donors sponsor censuses and sur-
veys in Africa which are carried out in many countries
and done in different time periods in different countries.
So it is quite difficult to get dataset for all countries in
the same period of time from the same survey (such
a survey would be very huge and too expensive). The
dataset used in this study on TFR and the other factors
such as infant mortality rate (IMR), adolescent fertility
rate (AFR), life expectancy at birth, GDP per capita and
female labour participation were from the World Bank
Open Data [9] for the period of 2017. Data on Con-
traceptive prevalence rate, demand for family planning
and unmet need for family planning were obtained from
United Nations, Department of Economic and Social
Affairs, Population Division [10].

Disputed territories of Western Sahara and Soma-
liland are not included in the analysis as data on these
places were not available. The observations of each vari-
able reported in the data represent specific geographical
locations where the information on each variable had
been taken. The dataset does not contain observations
for the geographical divisions in each country. These
observations are taken to representative the centroids of
the countries. In this case, the underlying assumption is
that the distribution of the variable within each coun-
try is sufficiently homogeneous to approximate it to a
single observation.

The several sources of data used, means different
samples and experimental conditions as opposed to data
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set from a single source which would have been col-
lected under the same samples and experimental con-
ditions, may account for some margin of error. Albeit,
the situation may be a blessing in disguise, when the
assumption of randomization for statistical analyses is
considered, the data set are of the same period but dif-
ferent samples and experimental conditions, so it can
be said that sampling fluctuation will be reduced.

The metadata for each of the variables are given thus:
– Total fertility rate (TFR): number of births per

woman. This represents the number of children
that would be born to a woman if she were to
live to the end of her childbearing years and bear
children in accordance with the prevailing age-
specific fertility rates (ASFR) of the specified year.

– Adolescent fertility rate (AFR): number of births
per 1000 women aged 15–19 years.

– Infant mortality rate (IMR): the number of in-
fants dying before reaching their firth birthday, per
1,000 live births in a given year.

– Contraceptive prevalence rate (CPR): percentage
of women aged 15–49 years currently using a con-
traceptive per 1000 women in the same age group

– Use of Family planning: percentage of women
currently using a modern method of contraception
among all women of reproductive age group (15–
49 years).

– Unmet need for family planning: percentage of
women who affirm that they want to stop or de-
lay childbearing but are not using any method of
contraception to prevent pregnancy.

– Life expectancy at birth: the number of years a new
born infant would live if the prevailing patterns of
mortality at the time of its birth were to stay the
same throughout.

– Gross domestic product (GDP) per capita (US$):
the sum of gross value added by all resident pro-
ducers in the economy plus any product taxes and
minus any subsidies not included in the value of
the product.

– Female labour participation: percentage of female
labour force (15–64 years). It defines the extent to
which women are active in the labour force.

2.2. Spatial autocorrelation

Autocorrelation is the association of a variable with
itself when observations on the variables are obtained
in different time periods or in space. Spatial autocorre-
lation has been defined as the positive or negative corre-
lation of a variable with itself due to the spatial location

of the observations [11]. Analysis of spatial autocorre-
lation enables quantified analysis of the spatial structure
of the studied variable whose value is related to its other
values from neighbouring regions. The presence of spa-
tial autocorrelation either means that similar values of
the variables are geographically clustered together or
values far away are more similar to values in nearby
locations. Spatial autocorrelation indices such as the
Moran index and the Geary index make it possible to
assess spatial structure of variables.

This study employs the Moran index which takes
into account the variances and covariances with the
difference between each observation and the average
of all observations. In the literature, Moran’s index is
often preferred to that of Geary due to greater general
stability [11,12].

Given observations, i = 1, . . . , n, on a variable, the
Moran index is given as [11]

Iw =
n∑

i

∑
j wij

∑
i

∑
j wij(yi − ȳ)(yj − ȳ)∑

i(yi − ȳ)2
,

(1)
i 6= j

where wij are normalized weights. Iw > 0 implies pos-
itive autocorrelation, Iw < 0 implies negative autocor-
relation and Iw = 0 means no autocorrelation.

Spatial autocorrelation value is obtained using the
Moran’s test which tests the null hypothesis of absence
of spatial autocorrelation for a variable, in which case
the values of the variable are randomly assigned to the
spatial units in order to calculate the test statistic. The
Moran’s index from the test is a single measure which
represents the entire data.

2.3. Geographically weighted regression

In order to seek the factors that relate with TFR and
examine the spatial consistency in the relationship be-
tween the factors and TFR across Africa, GWR is em-
ployed on the dataset. GWR is a regression analysis
technique that employs the traditional regression frame-
work to geographical data by allowing the estimation
of parameters at each location instead of parameters at
a single summary for the entire space. In other words,
GWR runs a regression for each location, instead of a
sole regression for the entire study area.

The coefficients of GWR are not fixed but depend on
coordinates of observations, that is, the coefficients of
the explanatory parameters form continuous surfaces
that are assessed at certain points in space [8]

yi = β0 +

p∑
k=1

βkxik + εi, (2)



S90 A.H. Ekong and O.M. Olayiwola / A GWR approach to fertility dynamics in Africa

where the parameters β0 and βk are dependent on the
coordinates of the location. In this model, the coeffi-
cients vary and are considered identical across the study
area. However, the hypothesis of spatial uniformity of
the effect of explanatory variables on the dependent
variable is often unrealistic [7]. If the parameters vary
significantly in space, a global estimator will hide the
geographical richness of the phenomenon. Spatial het-
erogeneity corresponds to this spatial variability in the
model’s parameters or its functional form [8]. Local
linear regressions can be used examine spatial hetero-
geneity and this is where the need for GWR comes into
play.

In estimating the coefficients, using fixed-coefficient
model and including only observations close to point i,
“the more points included in the sample, the lower the
variance but higher the bias. The solution is therefore to
reduce the importance of the most remote observations
by giving each observation a decreasing weight with the
distance to the point of interest.” [8]. Given the model

Y = (β ⊗X)1 + ε, (3)

at any given point, if weights are given to observations
with weighted least squares, then β̂ will minimise the
sum ∑

wj(i)(yj − β0 − β1xj1 − · · · − βpxjp)2 (4)

and

β̂ = (X ′WX)−1X ′WY

where Ŷ = SY and S is hat-matrix defined as

S =

 (x′1X
′XW )−1X ′W

...
(x′nX

′WX)−1X ′W


x′i = (1, xi1, xi2, · · · , xip) is column i of explanatory
variable of the matrix X of variables and W contains
weights of each observation corresponding to its dis-
tance to the point i and it is assumed that observations
close to point i have more influence over the parameter
estimates at i than remote observations.

The weight of observations decreases with the dis-
tance of the observation to the point i and this decrease
in the weight is determined by a kernel function with
parameters shape, kernel and bandwidth given as Gaus-
sian Kernel, adaptive kernel and adjusted Akaike Crite-
rion respectively, where

Gaussian Kernel, w(dij) = exp
(
− 1

2

(
dij

h

)2)
and

adjusted Akaike Criterion,

AICc(h) = 2n ln σ̂ + n ln 2π

Fig. 1. Nearest neighbours spatial relationship of observations of total
fertility rate across Africa.

+ n

[
n+ tr(S)

n− 2− tr(S)

]
where dij are the distances between the observations
and h is the bandwidth. The AIC criterion favours a
compromise between the predictive power of the model
and its complexity [8]. This process has been fully
described in [13] and is implemented with the Com-
prehensive R Archive of Network (CRAN) package
‘spgwr’ by [14] and is used in this study because of its
ease and flexibility.

2.3.1. Defining neighbourhoods
The definition of neighbourhood consists in selecting

the k closest points as neighbours, which leaves no point
without a neighbour and this best offers a reflection of
reality of including islanded countries of Madagascar,
Mauritius, Comoros, Cape Verde and Sao Tome and
Principe (non-contiguous areas), which are part of the
landmass called Africa. The choice can also be made to
keep only the points located at a certain distance. The
choice of k here is 1, one nearest neighbour.

The nbdists function of the ‘spgwr’ package in
CRAN is used to calculate the vector of distances be-
tween neighbours. It makes it possible to determine the
maximum distance dmax below which all points have
at least one neighbour. The dnearneigh function allows
us to then keep as neighbours only the points between
distances 0 and dmax.

The observations are centroids which are specific
locations representative of each country of Africa. In
this case, the underlying assumption is that the distri-
bution of the variable within each country is at least
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Fig. 2. Spatial distribution of variables across Africa including non-contiguous areas (a) shows the 2017 data on total fertility rate (b) shows
the 2017 data on adolescent fertility rate (c) shows the 2017 data on infant mortality rate (d) shows the 2017 data on percentage contraceptive
prevalence rate by women of reproductive age.

homogeneous enough to be estimated by a single obser-
vation. Figure 1 shows the neighbourhood distribution
across space showing the links of neighbours of the
observations taken for Africa as defined by the nearest
neighbours distance spatial relationship.

2.4. Spatial distribution of variables

Figures 2 and 3 show the spatial distribution of the
2017 observations of the eight variables including TFR
across Africa. These observations are a single value for
each of the 53 countries for the analysis on the eight
different variables, and represent the average values for
all the divisions of a country. It can be seen that as at
2017, the West African sub-region had the highest TFR
in Africa, with Middle Africa following. Southern and
Northern Africa have the lowest fertility rates in the
continent. This pattern can also be seen in the distri-
bution of AFR as the highest rates are within West-
ern, Middle and Eastern Africa, while Northern and
Southern Africa have the lowest adolescent births.

IMR, CPR, and unmet need for family planning
show the same spatial distribution pattern across Africa.
Northern and Southern Africa have the lowest infant
mortality rates and unmet need for family planning
compared to other sub-regions.

The gross domestic product per capita for countries
in Western, Middle and Eastern Africa is on the aver-
age less than US$2,000, with exception of the Island of
Mauritius that recorded over US$10,000 in gross do-
mestic product per capita. Southern and Northern Africa
recorded gross domestic product per capita in 2017
between US$4,000 and US$8,000, except for Libya,
which has been in unrest and political crises since 2011.
Life expectancy at birth is much higher in Northern
Africa than other regions, Fig. 2f. Figure 2h shows that
the percentage of female labour force participation in
2017 was almost evening out across Western Middle,
Eastern and Southern Africa, with exceptions of coun-
tries like Guinea, Burundi, Rwanda, Mozambique and
Zimbabwe where the percentage of women in labour
force is between 50% and 60%.
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Fig. 3. Spatial distribution of variables across africa including non-contiguous areas (e) shows the 2017 data on gross domestic product per capita
(US Dollars) (f) shows the 2017 data on life expectancy in years (g) shows the 2017 data on percentage of women of reproductive age with unmet
need for family planning (h) shows the 2017 data on percentage of female labour force participation.

2.4.1. Descriptive statistics of observations on the
variables

Table 1 shows the descriptive statistics for the var-
ious factors assumed to be associated with TFR. This
summary shows average values for each of the variables
based on the data obtained during the period 2017 for
Africa. From the results, the unweighted average TFR
in 2017 was about 4 children per woman, the average
life expectancy was 63 years and a median gross domes-
tic product per capita of US$1,232.79. The unweighted
average of 49.61% women in Africa were using modern
family planning method. CPR stood at 34.9% among
women in reproductive years (15–49 years), while un-
met need for family planning was at 22.7%.

Ninety-two births per 1000 women of ages 15–
19 years was observed, unweighted average infant mor-
tality was 45 per 1,000 live births and lastly female
labour force participation was about 43.22%.

Table 2 gives the mean values for each of the vari-
ables by sub-regions in Africa. It can be seen that Mid-
dle Africa had the highest average TFR of 4.9 during

the period, followed by Western Africa with 4.8. These
two sub-regions of Africa had the lowest CPR (Middle
25.5% and Western 22.1% respectively) and the highest
adolescent fertility rates (Middle 125.5 and Western
107.0 birth per 1000 women respectively). Northern
Africa had the lowest average TFR of 3.0, closely fol-
lowed by Southern Africa and these two sub-regions
had the highest median GDP per Capita in the period
(GDP per Capita 2017 for Northern and Southern Africa
given as US$3,025.60 and US$5,646.46 respectively).

Table 3 gives the correlation coefficients on the vari-
ables as the association between the variables are con-
sidered. The dependent variable, TFR is the outcome
variable in this study, while other variables serve as
predictor variables. Examining the lower triangle of the
matrix, the pair of predictors having significant correla-
tion coefficients between each other are modern family
planning methods and CPR (very strong positive corre-
lation with coefficient 0.94), CPR and unmet need for
family planning (very strong negative correlation with
coefficient −0.84) and modern family planning meth-
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Table 1
Summary statistics on data

Variables Mean SD Median Min Max SE
Total fertility rate (TFR) 4.28 1.14 4.39 1.44 7.00 0.16
Life expectancy at birth 63.22 5.99 63.04 52.24 76.50 0.82
GDP per capita 2212.92 2423.01 1312.37 228.00 10484.91 332.83
Infant mortality rate (IMR) 44.41 19.22 41.50 10.60 86.50 2.64
% Contraceptive prevalence rate 35.92 19.94 30.70 6.50 67.60 2.74
Unmet need for family planning 22.63 7.18 23.50 9.50 36.70 0.99
Use of modern family planning 50.00 19.98 44.70 16.20 85.80 2.74
Adolescent fertility rate 89.73 42.45 89.09 5.77 186.54 5.83
Female labour force participation 43.07 8.88 46.54 17.88 53.21 1.22

Table 2
Means of various Indicators by sub-region of Africa

Sub-region of
Africa

No of
countries

Total
fertility

rate

Life
expectancy

GDP
per

capita

Infant
mortality

rate

% Contraceptive
prevalence

rate

Unmet
need for
family

planning

Modern
family

planning
method

Adolescent
fertility

rate

Female
labour
force

Eastern Africa 17 4.29 63.91 762.50 39.74 40.49 22.68 54.44 82.09 46.15
Middle Africa 9 4.91 60.03 1568.20 53.97 25.52 26.73 34.07 125.49 44.37
Western Africa 16 4.77 60.97 828.02 56.38 22.10 25.68 39.27 106.96 45.47
Northern Africa 6 2.97 74.37 3025.60 26.27 53.73 14.83 65.25 28.75 23.84
Southern Africa 5 2.99 63.02 5646.46 26.54 61.88 14.70 79.62 69.40 45.69

Table 3
Correlation matrix of the variables

Total
fertility

rate

Life
expectancy

GDP
per

capita

Infant
mortality

rate

% Contraceptive
usage

Unmet
family

planning
need

Modern
family

planning
method

Adolescent
fertility

rate

Female
labour
force

Total fertility rate 1.00 −0.64 −0.50 0.52 −0.73 0.61 −0.62 0.74 0.30
Life expectancy at birth −0.64∗ 1.00 −0.33 −0.35 0.58∗ −0.46 0.47 −0.67∗ −0.49
GDP per capita −0.50∗ 0.33 1.00 −0.17 0.34 −0.37 0.32 −0.31 −0.09
Infant mortality rate (IMR) 0.52∗ −0.35 −0.17 1.00 −0.42 0.26 −0.35 0.52∗ 0.32
% Contraceptive prevalence rate −0.73∗ 0.58∗ 0.34 −0.42 1.00 −0.84∗ 0.93∗ −0.52∗ −0.20
Unmet need for family planning 0.61∗ −0.46 −0.37 0.26 −0.84∗ 1.00 −0.80∗ 0.39 0.23
Use of modern family planning −0.62∗ 0.47 0.32 −0.35 0.94∗ −0.80∗ 1.00 −0.43 −0.18
Adolescent fertility rate 0.74∗ −0.67∗ −0.31 0.52∗ −0.52∗ 0.39 −0.43 1.00 0.45
Female labour force participation 0.30 −0.49 −0.09 0.32 −0.20 0.23 −0.18 0.45 1.00

∗Significant correlation above 0.50 threshold value.

ods and unmet need for family planning (very strong
negative correlation with coefficient −0.80). The as-
sociation between these predictors agree with life ex-
pectation at birth [15]. These associations are expected
CPR is a subset of modern family planning.

The other interesting association between predictors
are those between CPR and life expectancy (positive
correlation with coefficient 0.58), IMR and AFR (pos-
itive correlation with coefficient 0.52), CPR and AFR
(negative correlation with coefficient −0.52) and life
expectancy and AFR (negative correlation with coeffi-
cient −0.67).

Looking at the second column of Table 3, the associ-
ation between the predictors and the outcome variable
shows that life expectancy at birth, GDP per capita, CPR

and modern family planning methods have a negative
correlation with TFR with coefficients −0.64, −0.50,
−0.73 and −0.63 respectively. From this result, these
predictors influence TFR in the opposite direction, for
instance, in places in Africa where percentage of contra-
ceptive usage is high the fertility rate is expected to be
low and places where the total fertility rate is high, the
gross domestic product per capita and life expectancy
are low. This have been shown to be so from previous
studies [1–3,5,15].

The predictors from Table 3 that influence TFR in
Africa in the positive direction are IMR, unmet need
for family planning and AFR with correlation coeffi-
cients of 0.52, 0.61 and 0.74 respectively. TFR tends to
increase with the values of IMR, unmet need for fam-
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Table 4
Variables correlation matrix

Moran I test under randomisation
Moran I statistic standard deviate = 3.847, p-value =
0.00005978
sample estimates:
Moran I statistic Expectation Variance

0.344874085 −0.019230769 0.008957732

ily planning and AFR. Interestingly from the results in
Table 3, the female labour force participation has no
significant association with TFR.

The relationship between these predictors and TFR
across Africa is herein studied at multi-level analysis
using spatial autocorrelation and GWR.

3. Results and discussion

3.1. Spatial autocorrelation of total fertility rate

Table 4 shows the output Moran autocorrelation in-
dex from Moran’s test as indicated by R.

The Moran I statistic value is 0.345, showing that
TFR is only weakly and positively autocorrelated across
Africa and the p-value is significant (0.00005978) for
the rejection of the null hypothesis of absence of auto-
correlation among the observations and hence the con-
clusion that similar values of TFR do spatially cluster.

With the presence of autocorrelation in TFR across
space in Africa, the spatial clustering across space can
be examined for patterns that are not obvious in the
global analysis given by OLS models. First a Moran
plot is created which looks at each of the values plotted
against their spatially lagged values. It explores the
relationship between the data and their neighbours as a
scatter plot.

From Fig. 4 it can be seen that the observations
have a particular spatial structure and the linear regres-
sion slope is non-null indicating a correlation between
TFR and its spatially lagged values. The regression line
shows a positive relationship (its slope is defined by
the value of the value of Moran’s I given in Table 4 as
0.345) and most of the observations are in the upper
right corner of the plot, indicating values of the TFR that
are higher than the mean value (high-high). The lower
left corner which has observations values lower than
the mean (low-low) has the second highest numbers of
observations after the upper right corner, followed by
the top left (low-high) and lastly by the bottom right
(high-low) corners in that order. The implication of this
structure is that most countries with higher TFRs have

Fig. 4. Moran’s diagram of observed total fertility rate versus spatially
lagged values of total fertility rate.

positive spatial autocorrelation and high index value.
Other countries are surrounded a mix of countries with
high and low TFRs. There are six observations that do
not follow the spatial structure as can be seen in the
Moran’s diagram.

A local Moran output in Fig. 5 explores the local spa-
tial autocorrelation and shows the intensity and signifi-
cance of local autocorrelation between TFR value in a
location and its value in the surrounding locations. Sig-
nificant groupings of similar TFR values (positive local
Moran statistic (Ii) values) can be seen around Western,
Northern, parts of Middle and Southern Africa. While
groupings of dissimilar values (negative local Moran
statistic (Ii) values) can be observed mostly in Eastern
Africa and Northern Africa and some countries around
the coastlines.

From the map it is possible to observe the variations
in autocorrelation across space. It can be interpreted
that there seems to be a geographic pattern to the au-
tocorrelation. In large sample observations, it may not
be possible to understand if groupings are of high or
low values. To obtain the local spatial autocorrelation
structure for a more clearer picture, a map of the p-
values may be used to observe variances in significance
across space as is given in Fig. 6, which labels the fea-
tures based on the type of relationships they share with
their neighbours, that is high-high, low-low, high-low
or low-high.

From Fig. 6, it is apparent that there is a statisti-
cally significant geographic pattern to the grouping of
TFR across Africa. High-high locations have positive
spatial autocorrelation and high index value, that is, a
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Fig. 5. Map of local moran index (iw) for spatial autocorrelation of total fertility rate at each location.

Fig. 6. Map of p-values of local moran index.

country with high TFR value is surrounded by coun-
tries with high values. Low-low locations have positive
space autocorrelation and low index value. High-low
locations have negative spatial autocorrelation and high
index value. Low-high locations have negative spatial
autocorrelation and low index value.

Since there is global spatial autocorrelation, the local
Moran statistic of spatial autocorrelation shows that the
areas with high-high local autocorrelation patterns are
the ones with strong influence on the overall total fertil-
ity rate in Africa. It can also be seen that the distribution
of local Moran’s I is centred on the global Moran’s I
(Fig. 7). These zones have a significantly similar spatial

Fig. 7. Density plot of local moran index for total fertility rate (2017
data) in Africa.

association structure with the global structure and from
Fig. 6, it can be seen that it is the region made up of
countries with high-high local autocorrelations. From
this it can be seen that the hypothesis of independence
of observations does not hold as a result of spatial au-
tocorrelation, hence analysis of the data with the usual
statistical techniques may not be sufficient, thus the
need of GWR technique that puts into consideration the
influence of space in the dynamics of the total fertility
rate is highlighted.

The study continues with the analysis of the dataset
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Table 5
Linear regression estimates

Coefficients Estimate Std. error t-value p-value
Intercept 4.35700 1.77300 2.457 0.01802∗

Life expectancy at birth −0.00877 −0.02213 −0.396 0.69399
GDP per capita −0.00010 0.00004 −2.571 0.01361∗

Infant mortality rate −0.00586 −0.00540 1.086 0.28333
% Contraceptive prevalence rate −0.03115 −0.01483 −2.101 0.04144∗

Unmet need for family planning −0.00903 −0.02230 0.405 0.68739
Use of modern family planning −0.01232 −0.01182 1.042 0.30311
Adolescent fertility rate 0.01087 0.00295 3.678 0.00064∗

Female labour force participation −0.00574 −0.01161 −0.494 0.62358
∗Statistically significant at 0.05.

Table 6
Linear regression estimates for best model

Coefficients Estimate Std. error t-value p-value
Intercept 4.07219 0.38184 10.665 2.95 × 10−14∗

GDP per capita −0.00010 0.00003 −2.832 0.00674∗

Infant mortality rate 0.00532 0.00504 1.056 0.29631
% Contraceptive prevalence rate (CPR) −0.02292 0.00497 −4.612 2.98 × 10−05∗

Adolescent fertility rate 0.01133 0.00245 4.635 2.76 × 10−05∗

∗Statistically significant at 0.05.

on total fertility rate with respect to its determinants
using the GWR, but first examines the results of or-
dinary least square (OLS) regression before looking
at the GWR results and compares it with that of OLS
regression, and lastly examines the GWR model fit.

3.2. Analysis with GWR

Firstly, an ordinary least square (OLS) regression
model was fitted for TFR given the predictors as dis-
played in Table 5. This shows that the variables in the
model explain 72.6 percent of the variations in TFR
(adjusted R-squared value 0.726). Of the factors con-
sidered in the regression only GDP per capita, CPR and
AFR were the significant in the model. But it is known
that unmet need for family planning and modern family
planning have strong correlations with CPR, so one can
be safe to say that this correlation was reflected in the
model by leaving these two factors out.

It is worthnoting that female labour force participa-
tion, life expectancy at birth and IMR were not signifi-
cant. To be sure of the result, several other models were
fitted with different combinations of all the predictors
to see how each fair comparing them with their adjusted
R-squared values and AIC values. AIC takes in account
the number of independent variables in each model and
the maximum likelihood of the models, but penalises
models with more parameters. According to AIC, the
best-fit model (models with lower AIC scores) explains
the greatest amount of variation using the fewest possi-

ble independent variables. Models with higher adjusted
R-squared values and lower AIC values are preferred
and selected among groups of models. The model given
in Table 6 was found to be the best having adjusted
R-squared value of 0.739 and AIC of 99.90. This means
that this model has the fewest number of independent
variables which account for 73.9% of the variations in
TFR.

3.3. GWR model coefficients

GWR was applied for the identified variables from
the OLS model in Table 6 to take into account the in-
fluence of location on TFR as it fits different model
at each point of the space. The output of interest here
included a summary of the regression coefficient es-
timates across the Africa and a number of attributes
which corresponded with each unique output area such
as local R-squared and residuals. With AIC of 90.4
and Quasi-global R-squared value of 0.777 based on
the GWR, these variables explained 77.7% variation in
TFR.

The output from the GWR model in Table 7 reveals
how the coefficients vary across the 53 countries. The
global coefficients are exactly the same as the coeffi-
cients in the earlier OLS model. In this particular model,
multiplying the coefficients by 10000 it can be seen that
GDP per capita range from a minimum value of −1.16
(1 unit change in GDP per capita results in a drop in av-
erage TFR by −1.16) to −0.882 (1 unit change in GDP
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Table 7
GWR model estimates

GWR coefficients Minimum 1st quartile Median 3rd quartile Maximum Global
Intercept 3.9219 3.9829 4.0323 4.0770 4.1222 4.0722
GDP per capita −0.000116 −0.000107 −0.000097 −0.0000919 −0.0000882 −0.0001
Infant mortality rate 0.0037352 0.0040681 0.0064198 0.0074871 0.0080967 0.0053
% CPR −0.023669 −0.022483 −0.021607 −0.020857 −0.020030 −0.0229
Adolescent fertility rate 0.010340 0.010765 0.011360 0.011545 0.012349 0.0113

Fig. 8. Map of variable coefficients and coefficient standard errors (a) the plot of coefficients of adolescent fertility rate across Africa (a(i)) the plot
coefficients standard errors for adolescent fertility rate across Africa (b) the plot of coefficients of percentage of contraceptive prevalence rate
across Africa (b(i)) the plot coefficients standard errors for percentage of contraceptive prevalence rate across Africa.

per capita results in a drop in TFR by −0.882). For
half of the countries in the dataset, as GDP per capita
rises by 1 point, TFR will decrease between −1.07 and
−0.919 points (the inter-quartile range between the 1st
Quartile and the 3rd Quartile). It is also observed that
negative relationship in coefficient of percentage con-
traceptive usage is also here with total fertility rate. The
coefficient for CPR ranges from a minimum of−236.69
to a maximum of −200.30 across Africa.

The coefficients for IMR and ADR are positive with
TFR. As IMR rises by 1 point for half of the countries
in the dataset, TFR will increase between 40.681 and
74.871. Similarly, a unit change in AFR results in an
increase in TFR between a minimum of 103.40 and a
maximum of 123.49.

Table 8
Model comparison

Model AIC
Adjusted
R-squared

Residual sum
of squares

OLS 99.903 0.739 16.297
GWR 90.387 0.777 15.095

Table 8 shows a comparison of the measures of model
fit for GWR and OLS models and one can assess the
benefits of moving from a global model (OLS) to a local
regression model (GWR) as is evident in the measures’
values.

The distribution across space of the coefficients and
their standard errors can be visualized as shown in the
plots of GWR coefficients in Figs 8 and 9 for all the
variables and are suggestive of spatial patterning.
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Fig. 9. Map of coefficients and coefficient standard errors (c) the plot of coefficients of infant mortality rate across Africa (c(i)) the plot coefficients
standard errors for infant mortality rate across Africa (d) the plot of coefficients of gross domestic product per capita across Africa (d(i)) the plot
coefficients standard errors for gross domestic product per capita across Africa.

Looking at Fig. 8a plot, the coefficients for adoles-
cent fertility rate can be seen to be highest in Northern
Africa and some part of Western Africa (Mali, Niger
and Nigeria), including Chad (Middle Africa) and Er-
itrea (Eastern Africa). The coefficients for adolescent
fertility rate are lower in the other parts of Africa. Yet
all across Africa, adolescent fertility rate has a positive
relationship with total fertility rate. The CPR in Fig. 9c,
the lowest coefficients are seen across Western Africa
(Cote d’Ivoire, Liberia, Guinea, Sierra Loene, Guniea-
Bissua, The Gambia, Senegal, Mali, Cabo Verde and
Mauritania), including Morocco (Northern Africa). The
highest CPR coefficients are seen in Middle and West-
ern, while Southern Africa has lower coefficient com-
pared to other regions.

From Fig. 9e plot, the coefficients for IMR is seen to
be highest around Eastern Africa including Democratic
Republic of the Congo (Middle Africa) and these values
reduces as the circumference expands towards other part
of Africa, with the least coefficients in parts of Western

(Liberia, Guinea, Sierra Leone, Guinea-Bissau, The
Gambia, Senegal, Mali, Cape Verde and Mauritania)
and Northern Africa (Morocco and Algeria). Yet all
across Africa, as IMR has a positive relationship with
TFR.

Taking the Fig. 9g plot, which is for the GDP per
capita coefficients, the spatial pattern is quite interest-
ing. As can be seen from the plot, the lowest nega-
tive coefficient for GDP per capita is around Southern
Africa and some parts of Eastern Africa and the values
increases north-wards with the negative-maximum val-
ues seen in Northern countries of Libya, Tunisia, Alge-
ria and Morocco, including Western countries of Benin,
Niger, Burkina Faso, Mali, Senegal and Mauritania,
plus Chad (Middle Africa).

3.4. Assessing GWR model fit

The residuals are examined to assess model fit and
residuals above or below zero indicate that the model
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Fig. 10. Map of GWR residuals.

Fig. 11. Histogram of GWR residuals.

under- or over-predicts total fertility rate. The Residuals
are mapped as shown in Fig. 10. It is expected that the
grouping of negative and positive residuals would be
randomly distributed. From Fig. 10, it can be seen that
the negative and positive residuals are distributed across
Africa.

A histogram of the residuals in Fig. 11 shows the
values are centered on zero and approximates a normal
distribution across Africa.

Taking as threshold interval for residual (−0.49,
0.49), the largest over-predictions occur at Cape Verde,
Guinea, Liberia, Sierra Leone (Western Africa), Mau-

Table 9
Countries with (over-predictions) below zero residual values

Name Residuals Prediction Prediction SE
Cape verde −1.0674 3.376 0.1582
Equatorial guinea −1.0142 5.613 0.2249
Sierra leone −0.8925 5.252 0.1764
Djibouti −0.7561 3.541 0.2107
Libya −0.6862 2.963 0.2000
Central africa republic −0.6411 5.437 0.2046
Mozambique −0.6069 5.529 0.1425
Guinea −0.5649 5.342 0.1504
Mauritius −0.5395 1.979 0.2970
Liberia −0.5069 4.894 0.2126
Madagascar −0.4989 4.628 0.1634

ritius, Mozambique, Djibouti (Eastern Africa), Equa-
torial Guinea, Central Africa Republic (Middle Africa)
and Libya (Northern Africa) while the lowest under-
prediction occur at Nigeria, Niger (Western Africa),
Somalia, Burundi, Rwanda, Ethiopia (Eastern Africa),
Democratic Republic of the Congo (Middle Africa) and
Algeria (Northern Africa). These are summarized in
Tables 9 and 10.

Figure 12 gives a pictorial overview of Tables 9
and 10 and it shows the map of Africa with the locations
where the GWR over predictions and under predictions
of TFR and also shows that they are random across
space.

A Moran’s I Spatial Autocorrelation is run on the
GWR residuals to confirm they are spatially random.
The Moran’s I test shows that the residuals are signif-
icantly random with a p-value of 0.276 and a Moran
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Fig. 12. Map showing locations of over-predictions and under-predictions of total fertility rate.

Table 10
Countries with (under-predictions) above zero residual values

Name Residuals Prediction Prediction SE
Rwanda 0.5497 3.538 0.1784
Algeria 0.6024 2.443 0.1834
Democratic republic 0.6815 5.335 0.1423
of the congo
Nigeria 0.6845 4.772 0.1549
Niger 0.8172 6.183 0.2107
Ethiopia 0.9838 3.366 0.1956
Somalia 1.2166 4.951 0.1338
Burundi 1.3821 4.119 0.1434

Table 11
Variables correlation matrix

Moran I test under randomisation
Moran I statistic standard deviate = 0.592, p-value = 0.2769
sample estimates:
Moran I statistic Expectation Variance

0.036825519 −0.019230769 0.008966225

I statistic value of 0.036 autocorrelation as shown in
Table 11. As can be seen in Fig. 12, the clustering of
high and/or low residuals is not statistically significant
as reported by the spatial autocorrelation value and in-
dicates that the GWR model is reasonable for the spatial
distribution of TFR across Africa.

The Moran’s diagram in Fig. 13 shows a random dis-
tribution of the points on the plot of the GWR residuals

Fig. 13. Moran’s diagram for plot of GWR residuals against spatially
lagged GWR residual values.

against their spatially lagged values, which supports the
Moran’s I test that there is no spatial autocorrelation of
the residuals. The points are almost evenly distributed
in each quadrant of the diagram and the regression line
close to zero (horizontal to the x-axis) and the slope of
the regression line is close to zero (0.036).

Figure 14 shows the map of the local R-squared
values with the minimum and the maximum local R-
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Fig. 14. Map of local R-squared values across Africa.

squared values being 0.743 and 0.776 respectively at
Democratic Republic of the Congo and Tunisia respec-
tively. The minimum local R-squared value of 0.744 is
above the R-squared value from the OLS regression;
hence in this case, the geographical location in the eval-
uation in GWR improves the model’s ability to explain
variability in TFR across Africa.

The map of the Local R-squared values also shows
the locations where GWR predicts the best with highest
values. GWR predicts well across Africa and shows that
the predictor variables sufficiently explain the variabil-
ity in TFR across Africa. They inherently capture many
other difficult-to-track factors like religion and cultural
practices.

4. Conclusion

Examining Total Fertility Rate (TFR) in Africa and
the influence of its determinants in a spatial analysis
framework is important to show how it varies across
space and the resulting effect that may otherwise not be
obvious without the consideration of geographical loca-
tion in the analysis of datasets from the same. A couple
of quantifiable determinants were taken as predictors to
see their influence on TFR and how this influence varies
across Africa. Spatial autocorrelation and geographical

weighted regression analyses were applied on dataset
for the period of 2017 that comprised observations from
53 African countries.

There was a statistically significant geographic pat-
tern to the grouping based on a positive autocorrelation
of TFR. Most countries with high TFR values were
surrounded by countries with high values and a couple
countries with low TFR values were around locations
with low values. Fewer countries with high or low val-
ues were around those with high or low values. The
positive global autocorrelation was majorly impacted
by countries with high total fertility rates that were sur-
rounded by others with high values too as reported by
the local autocorrelation Moran statistic. These were
countries bordering one another in Middle Africa up to
Western Africa, which included Burundi, Democratic
Republic of the Congo, Central African Republic, Chad,
Nigeria, Niger, Benin, Burkina Faso and Mali.

The best OLS regression model showed that the sta-
tistically significant factors influencing total fertility
rate were gross domestic product per capita, percent-
age of contraceptive usage and adolescent fertility rate.
The latter two factors had significant correlations with
unmet need for family planning and modern family
planning methods. The GWR model was fit for total
fertility rate with the identified significant factors from
OLS model and GWR was better than linear regres-
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sion as reported by the AIC, adjusted R-squared value
and residual sum of squares values from both models.
The AIC, adjusted R-squared value and residual sum of
squares from GWR were 90.387, 0.777 and 15.095 re-
spectively and those of OLS regression model with val-
ues 99.903, 0.739 and 16.297 respectively. The largest
over-predictions of TFR from GWR model occurred
at Cape Verde, Guinea, Liberia, Sierra Leone (West-
ern Africa), Mauritius, Mozambique, Djibouti (East-
ern Africa), Equatorial Guinea, Central Africa Repub-
lic (Middle Africa) and Libya (Northern Africa) while
the lowest under-predictions occurred at Nigeria, Niger
(Western Africa), Somalia, Burundi, Rwanda, Ethiopia
(Eastern Africa), Democratic Republic of the Congo
(Middle Africa) and Algeria (Northern Africa). The
minimum local R-squared value of 0.744 from GWR
was above the adjusted R-squared value from the OLS
regression (0.739); hence geographical location as an
influence on TFR across Africa which was included in
the evaluation with GWR improved the model’s ability
to explain variability in TFR across Africa.

Hence GWR predicted well across Africa and
showed that the predictor variables sufficiently explain
the variability in TFR across locations in Africa. The
significant variables of GDP per capita, CPR and AFR
inherently captured any other difficult-to-track factors
that would influence TFR across Africa like religion
and cultural practices.

The goal of Africa having to control its population for
economic, infrastructural and developmental planning
and policy making is realizable if focus on controlling
fertility rate can be placed in countries around Middle
Africa up to Western Africa, that have been identified in
this study to be those that significantly affect the overall
TFR in Africa. The governments of these countries can
also be advised on programmes to help educate their
populations on the effect of large households in the
present economic realities and the effects of climate
change on the continent. More intense works should be
carried out in these countries to see how the underlying
factors that affect CPR and AFR can be properly man-
aged so that fertility rate in Africa can be reduced and
hence help deal with the challenges of overpopulation
in Africa.
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