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Abstract. Agriculture is the backbone of human life, it enables for food security, health and economy. Yet, many countries
in Africa suffer from poor accessibility to agriculture data which is crucial for policy makers and farmers. Half of Namibia’s
population depend on agricultural activities, for as their main income source, much of which is undertaken on smallholdings.
Therefore, compiling statistics around agricultural outputs is of primary concern to many national statistics agencies Unfortunately,
challenges to account for agriculture crop production statistics include low frequency of data collection, lengthy data processing
periods, and the lack of timely output which can be linked to policies and decision making. This paper explores the use of satellite
imagery and data science techniques in a statistics agency to complement the agriculture census. The paper assessed Google Earth
Engine for image processing and extracted a range of indices (NDVI, SAVI, MSAVI and GLCM and Tasseled Cap Index based) in
order to identify smallholder farmers’ plots and estimate the field area in a rural village in Namibia. Although groundtruth data
was not available at the time of this issue, the findings showed a promising starting point for a scaled project.
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1. Introduction

Agriculture and food security systems face many
challenges and environmental issues as a result of cli-
mate change. National statistics offices (NSOs) are
under pressure more than ever to produce real time,
high quality and relevant statistics. With the launch of
the Sustainable Development Goals (SDGs), Namibia
along with other nations, has joined the quest to end
hunger and poverty by 2030, this is a big commitment,
especially for developing countries that have less and
limited capacity to monitor progress toward these tar-
gets and analyse the underlying causes of observed
trends [1]. Namibia’s first Sustainable Development
Goals (SDGs) Baseline Report launched in 2019 [2]
revealed that Goal 2, indicators linked to proportion
of agricultural area under productive and sustainable

agriculture, was not reported as there were no sources
of data identified. The people most affected by this goal
are smallholder farmers, who depend on agricultural
crop production for nutrition and as the main household
income. Smallholder farmers make up 50 percent of the
rural population in the northern regions of the coun-
try [3]. Agricultural and rural statistics are compounded
by the low frequency of data collection, lengthy data
processing time and the lack of timely output to link to
policies and decision making. NSOs are under pressure
to collect data at reduced cost and resourcing whilst
still ensuring timely and high quality of statistics are
produced. In the data revolution era, some statistics
offices have adopted the use of big data and satellite
imagery, however this is a case mostly found in the de-
veloped nations. Traditionally, these technologies have
required specialist capabilities and sophisticated stor-
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age to handle their data and undertake analyses. But, in
recent years there has been a growth in platforms that
open up their potential to data scientists and analysts.
One such platform is the Google Earth Engine (GEE),
which provides access to petabytes of global imagery
on Google’s Cloud architecture, using conventional re-
mote sensing and data science approaches. NSOs can
tap into these opportunities too. This paper explores the
use of satellite images to detect agriculture plots and
estimate the crop land use area in order to highlight
and recommend changes required for the existing data
collection systems.

2. Problem statement

Namibia is considered to be the driest country in the
south of Sub Saharan Africa, the productive agricul-
tural land lying mostly between two deserts, the Namib
Desert in the West and the semi-arid Kalahari Desert in
the South East.

The total land area reported to be viable for agricul-
tural activities is estimated around 388 200 km2 [3],
which is mostly in the northern region of the coun-
try, although up-to-date statistics and estimates on crop
area and yields remain a challenge for the smallholder
farmers and policy makers.

As a recommendation from the international devel-
opment organisations such as the FAO, World Bank, a
country should carry out a national agriculture census
every ten years, which should be complemented by an-
nual surveys on few selected topics. However, Namibia
has conducted only three Censuses in the past 30 years
since Independence. As a result, agricultural and rural
statistics in Namibia are weak and hampered by huge
data gaps and most key indicators are imputed from
outdated sources [4].

Earth observation data and tools can be used to fill
data gaps in NSOs. Remote sensing and data science
have gained a prominent reputation in recent years as
regards to producing statistics and monitoring measures
for countries, especially the developed world. This pa-
per explores the use of satellite imagery and data sci-
ence to complement traditional data collection meth-
ods. Due to the challenges in obtaining ground truth
data, this paper aims to demonstrate a practical pipeline
in effort to extract statistics for agriculture. The paper
aims to answer the following questions;

1. The type of information that can be obtained from
satellite imagery at different resolutions

2. What type of techniques or methods can be devel-
oped to extract this information?

3. Can the area of smallholder plots be calculated
accurately from the satellite imagery?

4. What ground truth data, and its sample size, is
required to build a model?

3. Remote sensing and Earth observation data

Remote sensing is the techniques of science and tech-
nology that observe and record earthly objects from
pace with instrument-based techniques like sensors.
Satellite imagery captures information through passive
or active sensors, which receive reflected or radiated
electromagnetic (EM) waves from objects. The amount
and characteristics of the electromagnetic radiation and
reflectance depends on the type and condition of the
Earth object. The human eye can see only a portion of
the spectrum of visible light; red, green and blue. Other
wavelengths such as long-range infrared and short are
not visible to the human eye but can be usefully detected
by satellite sensors.

In relation to vegetation, we can discriminate be-
tween vegetation types and their state of health by
studying infrared (IR) and visible red light. During pho-
tosynthesis, the plant absorbs visible red and reflects
near-infrared (NIR). Because this relationship between
these two bands changes between healthy and diseased
or dying (sensing) plants, when less visible light is ab-
sorbed by chlorophyll, they are used extensively for
vegetation monitoring. For example, the Normalised
Difference Vegetation Index (NDVI) is calculated as
the ratio between measured canopy reflectance in the
red and near-infrared bands and ranges always between
−1 and 1 [6].

NDVI is widely used in remote sensing to monitor
global vegetation cover and biomass. Other uses include
drought monitoring, crop classification, and measur-
ing of production. NDVI has been used successfully in
analysing the vegetation, but is known to be sensitive
to atmospheric, soil color, cloud shadow and the effect
of leaf canopy [6]. To address some of these concerns,
the Soil Adjustment Vegetation Index (SAVI) was de-
veloped to improve the soil background from the NDVI
by minimizing the soil reflectance. This was achieved
by incorporating soil conditioning correction factor;
L [7]. The L factor has various ranges (0.25, 0.3, 0.4,
0.5), which are suitable for different soil types and the
value 0.4 has been viewed as appropriate for the crop
period [8]. Later, the Modified Soil Adjustment Vegeta-
tion Index (MSAVI) was created to reduce the influence
of bare soil on SAVI [7]. Both MSAVI and SAVI value
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range between 1 and 0. Another index considered in
this study was the Tasseled Cap Index based on a linear
combination of bands.

4. Remote sensing tools and platforms

4.1. Google Earth Engine (GEE)

Use of parallel computing and big data has merged
intensively over the last decades due to the overflow
in the availability of data [9,10]. GEE is a platform
that allows access to work with large amounts of data
and is developed to allow large computing of planetary
datasets using parallel processing. GEE is designed
on top of a distributed system that shares resources
and computing, which means the user does not need to
have local capacity such as, additional infrastructure to
handle large amounts of information on their computer.
This is an advantage for users because they do not need
local sophisticated computer ecosystems to perform
tasks on Google Earth Engine. The engine itself is built
on top of a collection of technologies that are found
within the Google data center environment [9]. Cloud
computing also makes it easier for users to share code
and integrate their findings online from all over the
world. This is beneficial as statistics offices can share
resources and compare findings easily in the region or
internationally.

In the case of developing countries in Africa particu-
larly, there are huge constraints on the advanced com-
puter infrastructures and storage space. Many countries
cannot afford to have complex systems setup to support
huge processing of the images [10]. The environment
offers a new era of cheaper, quicker intervention tools
to monitor across areas of global concerns such as veg-
etation, deforestation, water and land use [11]. Besides,
GEE is a free platform, for non-commercial use, and
considered easy to use with many consolidated libraries
to make use of [12]. GEE has been used extensively
in the areas of climate change, agriculture and weather
conditions. However, in the area of crop mapping and
yield estimate, a literature review indicates that few of
these studies made use of GEE and very few are actually
done in Africa [13].

4.2. Remote sensing in agriculture

Images can be classified through unsupervised and
supervised machine learning algorithms. In unsuper-
vised learning, a user is not required to have training

data beforehand. While in supervised learning, the user
is expected to already have “known” homogenous train-
ing imagery of the different earth surface cover type
of area of interest. In some cases, research combines
supervised and unsupervised learning approaches to
aim for better results [14]. Unsupervised learning is
commonly used to first identify the largest segments
of spectral classes and later, these used in a supervised
learning approach for final results. Other methods of
image classification are pixel-based classification. Each
pixel will be assigned to one spectral class of spectral
bands, used in the classification. These spectral classes
will be linked to the surface attribute, such as crop land
roads or water. Object-based classification, partition
image pixel values into spectrally similar regions that
can correspond or be assigned to the surface attributes,
such as crop field, flood plain.

5. Methodology

In this paper, we are exploring the use of Google
Earth Engine (GEE) and all image processing was done
in GEE. Supervised and unsupervised was adopted in
the study. The satellite imagery used in this assessment
was Sentinel-2 imagery produced by European Com-
mission and European Space Agency. Agriculture is
one of the applications highly supported by this satellite
mission which has high resolution for visible bands, at
10-meter pixels, and good temporal resolution.

After establishing the challenge of acquiring the
groundtruth data, two separate methods were tested to
detect the agricultural plots. The first was to identify
the type of information required to distinguish the agri-
cultural plots from other features using unsupervised
classification. The second, used training and testing
polygons that were digitised and applied to train super-
vised classifiers. Finally, imagery for farming areas was
classified and the area of pixels assumed to represent
fields/plots, as verified on a base map, was calculated by
segmenting contiguous regions of pixels into polygons.

In order to identify an agricultural field from a non-
agricultural field and calculate the plot area of the small
farmer holders, we created a pipeline with three main
steps for the pixel-by-pixel and unsupervised classifi-
cation approach, which are; detecting the agricultural
area, identifying and validation the plots and calculating
the plot pixels area from imagery Fig. 1.

5.1. Ground truth data and region of interest (ROI)

For the ground truth data, the initial idea was to use
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Fig. 1. Main steps in the pipeline.

the agriculture Census 2013/14 dataset which included
field coordinates points, polygons and other key vari-
ables to complement the findings from satellite imagery.
During the data exploration process, it was discovered
that the data was not fit to use and could not be used
for validation as initially planned. Instead, a random
primary sample unit (PSU) from the national sample
frame, in the Ondobe constituency, Ohangwena Re-
gion was used for demonstration. From the agricul-
ture Census 2013/14 data set, we extracted households’
data for this PSU and aggregated the total agriculture
households and their area of planting. At least 73 per-
cent of households practice crop farming in that area.

Figure 2 shows the administrative boundaries and the
region where the area of study is situated.

Millet is the primary staple crop in this area, while
Sorghum is harvested in small amounts. The growing
season lasts five to six months, January to May accord-
ing to the historical data. The harvest season lasts from
May to July. The paper follows the seasonal crop cal-
endar to produce composite images. For the processing
a median image was calculated from images gathered
over the period of January 2016 to December 2016. This
was so in order to extract images that are taken close
to the Census 2013/14 data collection period since sen-
tinel 2 imagery are only available from July 2015 Fig. 3
exhibit the sentinel 2 image of the region of interest
(ROI).

5.2. Image processing

Besides the region of interest, other aspects that we
had to consider were the time of year, resolution, cov-
erage, cloud cover and bands. Sentinel 2 captures im-
ages of 10 m resolution in the visible spectrum approx-
imately every two weeks. Cloud cover and ground cov-
erage can challenge the suitability of images for pro-
cessing. Fortunately, sufficient cloud-free images were
found during pre-analysis of the data.

We took a year’s (January 2016 to December 2016)
images, equivalent to one crop calendar, and calculated
a composite image based on the median pixel value at
location during this period, meaning it had the least
cloud cover. The time of day images were captured
was not considered a major criterion although this is
important where groundtruth data is collected. From
the images it was clear to distinguish the cleared area
used for agriculture, what are called plots or “epya” in
a native language of oshiwambo, from the surrounding
area by the lack of vegetation over most time of the
year. Figure 4 shows two images of a typical small-
holder field, using a sentinel 2 true-color composite and
the Google’s high-resolution base map imagery. The
latter uses commercial imagery that is not available for
processing in GEE, only visualisation.

Since the paper is focused on small scale farming,
the process to identify the small plots becomes a chal-
lenge, due to uneven land structures and non-fenced
fields making it difficult to clearly distinguish contrast-
ing land use and field boundaries [15]. In Namibia,
small scaled farms are not demarcated by any physical
distinguishable boundaries. The borders are often made
by walking paths or by trees and shrubs. This makes
ground truth data crucial in verifying the accuracy of
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Fig. 2. A map of namibia regions and area under study (inserted image).

a classification model. However, these fields are easily
noted by their lack of vegetation and different texture
as compared to the nearby land.

5.2.1. Detecting agricultural fields from
non-agricultural fields using unsupervised
classifications

As established earlier, during image processing veg-
etation indices proved to be valuable in distinguishing
a farmer’s plot. The indices derived from the Sentinel 2
images are the NDIV, MSAVI and tasseled cap green-
ness. These indices were derived for the dry season
starting from June 2016 until December 2016 and for
the rainy/growing season from January until May when
the harvest season starts.

In addition, texture analysis was performed as the
next step. This was done because there is a clear differ-
ence in the ‘texture’ of plots’ pixels and their surround-
ing areas, particularly with the NDVI and MSAVI val-

ues. The texture analysis was performed on a greyscale
(single band) image derived from the RGB bands. To
produce the greyscale value, the image RGB bands
are changed to HSV (Hue, Saturation, Value) and the
Value band (brightness) is extracted and used to cal-
culate the Gray-Level Co-occurrence Matrix (GLCM)
which is used to measure texture in a range of different
ways [16].

Texture metrics such as entropy, homogeneity and
contrast had promising contributions to the segmenta-
tion of the pixels during clustering. There is need to test
further on different metrics with high resolution im-
ages less than 10 m and when the ground truth become
available.

After extracting texture metrics and vegetation in-
dexes, these bands were all added into one image, cre-
ating a 25-band image. Principal Components Analysis
(PCA) was used to reduce the bands into few compo-
nents based on the variability of pixel’s values across
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Fig. 3. Sentinel Red, Green, Blue (RGB) image at 200 meter per pixel, of a rural village and visible fields, from March 2016.

Fig. 4. Two images, left showing a sentinel 2 true-color composite and right, the Google’s high-resolution base map imagery of plot and
surroundings.

bands, refer to Fig. 5. The image output from this pro-
cess was used as an input for the image segmentation by
clustering (unsupervised classification) to identify the
plots. We compiled a one-year time series of monthly
NDVI found at each plot identified and exported these
results for further modelling to identify similar plots
and compare the results. The monthly NDVI time series
profiles calculated for each of the segmented features
were clustered to identify plots with similar growing
profiles.

5.2.2. Area calculation
Once the NDVI profiles were clustered, the cluster

with the NDVI profiles that showed most similarities
to a typical crop phenological calendar were identified
and analysed further including manually validating the
accuracy against Google satellite base map imagery.

The area under these plots for the clusters identified
was calculated and matched with the statistics recorded
from the Census agriculture 2013/14. We manually as-
sessed the validity of these patches obtained during the
unsupervised classification; however, we cannot accu-
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Fig. 5. Results of PCA component, showing the prominent features from the pixels reduced, there is some clearly visible degree of dissimilarly
between the field pixels and surrounding neighbours.

rately pronounce them as crop field without ground
truth, refer to Fig. 6.

Some of the observations from the region of interest
that could be found useful for the main study and for
other NSOs considering earth observation datasets;

1. Fields are distinctive patches of open, less vege-
tation ground, especially in semi-arid areas

2. They are mostly misshaped and uneven with an
average size around 2 ha

3. In the case of Namibia, some fields are attached
to one another, hence it might be more practical
to aggregate the statistics at a constituency level,
for instance total area estimates.

5.2.3. Supervised classification method with manual
digitised polygons

The lack of ground truth data meant there was no
surveyed training data for this process. In an attempt to
test the classification models, digitised polygons were
manually created for the study area grouping features
into four land classes; plots, water (floodpans), and
trees and shrubs/bushes. A total of 75 plots, 20 trees,
10 waterpans and 21 shrubs were produced making
126 elements for training. To create testing data, the
area of interest was extended to promote diversity. A
separate test data from the area surrounding the ROI

was sampled against the classified dataset. These are
the steps taken to create training and testing data using
Google base map data.

– Digitised plots were created using the Google
Earth base map imagery. Features were identified
as plots based on the local knowledge of the area.

– All the visible plots in the study area were digi-
tised. A total of 126 features were digitised into
polygons for training.

Another set of features were digitised in the extended
image to create validation data for the classifiers. Ran-
dom forest and CART (Classification and regression)
were both tested against the training data that was sam-
pled from the image. To build the models, a median
composite of Sentinel 2 images was used with seven
bands plus the land cover class. A total number of 3030
pixels were sampled. The model was built from the
Sentinel-2-pixel values found in the training polygons
and then the accuracy tested using the pixels from a
different area. A total of 969 pixels were sampled from
the testing features manually digitalised.

Given ground truth data, there would be a need to
assess various sampling strategies such as the stratified
sampling to ensure true representative of the features
and to strengthen the model prediction accuracy. In this
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Fig. 6. Image of the manual mapped and numbered features from the unsupervised classification process.

study, sample region technique was used in creating the
training and testing data, where each band becomes an
additional property in the image.

6. Findings

Due to the lack of actual surveyed ground truth data,
it was not possible to fully validate the information and
whether the plots identified are a true reflection on the
ground at the time of writing this paper. However, based
on comparison to high resolution base map imagery the
results obtained from both unsupervised and supervised
classifications yield promising results and show poten-
tial pipeline improvement once the ground truth data
are available.

6.1. Detecting the agricultural small farmer

One of the challenges with detection of small farm
holdings in Africa, is the uneven land type and the
heterogeneous landscape found in these areas.

The preliminary results on Sentinel-2 true-color (red,
green, blue) images indicate that plots are evidently
distinguishable from the surrounding environment due
to the level of the vegetation at different seasons. In
summer there is a lack of vegetation as compared to
the landscape around, such as the shrubs and trees were
observed to have a consistent high vegetation.

Vegetation indices tested during the unsupervised
classification were the NDVI, MSAVI and the Tasseled
Cap Greenness. The indices were combined together
with red, green, blue and near-infra-red for dry season
and rainy season of the entire area of interest.

The RED and NIR extracted from the pixels inside
the polygon of a plot for both dry season and rainy sea-
son, extracted in March 2016 and September respec-
tively, show the correlation between these two bands
and how they change over time, Fig. 7 shows the corre-
lation between the NIR and Red bands for both rainy
and dry season for a plot pixels and non-plot pixels.

The Tasseled Cap Greenness was used instead of the
other two dimensions of the index, the wetness was
not considered here due to the dry savanna landscape
of Namibia. However, during the model training with
ground truth data, this dimension will be tested espe-
cially for the rainy season.

When the indices values of the MSAVI on both sea-
sons are examined, the values for the plot’s areas during
the dry season show more concentrated and high values
as compared to the rainy season. This could be con-
tributed to the fact that during the rainy season crops
are growing on those plots and hence have a high NDVI
compared to the MSAVI. As is true for the summer
season, where the values of the NDVI decrease as com-
pared to high MSAVI values. Figure 8 shows the differ-
ence in NDVI between summer (right image) and rainy
seasons (left image).
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Fig. 7. Correlation of NIR and RED for both rain and try season in a plot polygon for one annual crop calendar.

Fig. 8. NDVI level at different times of the year. More concentration during the crop growing season (left) in Feb 2016 and less during dry season
(right in August 2016.

The MSAVI ratio showed a high concentration during
the summer/dry season, which is a valid considering
that these fields are normally cleared after harvest to
prepare for the next growing season. The statistics are
significantly different between the pixels of the plot
polygon and that of a non-plot.

Combined with indices, the texture measures can
be used to further discriminate the area used for

cropping from other areas. Texture measures derived
from Sentinel-2 image, grey-level-co-occurrence ma-
trix (GLCM) such as contrast, homogeneity and en-
tropy proved to yield promising results in distinguish-
ing the area of the plot as compared to the surrounding
areas. However, this process is worth revisiting when
the ground truth data becomes available.

The images were segmented through clustering and
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Fig. 9. Cluster zero – the NDVI times series profiles with a centroid (green line).

a total of 140 elements were discriminated according
to neighbouring similarities. Upon investigation, it was
discovered that some features overlap, especially where
the fields have big trees and where the area is covered
more by bare soil with less vegetations. It would be
interesting to collect sample training data from various
land topographies of the country and examine how the
model will perform at similar time of the year.

Although the NDVI profiles for the year were clus-
tered according to the similarities in the neighbouring
pixels, there was a clear overlap of these features and
further investigation is being undertaken on which other
indices can be used to further segmentation.

6.2. Clustering NDVI time series profiles

Crop activities for Namibia can be summarised into
three main seasons, the planting and growing season,
the harvesting season, and the dry season. The growing
season for Namibia crop is January to May (FAO), with

the observed weather changes recently the rainy season
starts later in the year influencing the planting seasons
and with the absence of an updated crop calendar.

Clusters labelled zero, Fig. 9 and Cluster one, Fig. 10
both demonstrate similar patterns in the phenological
profiles of the feature included in these clusters.

Cluster two, Fig. 11 the NDVI profile on these pixels
are relatively high throughout the season which could
be contributed to the fact that these include trees that
are active and green throughout the season.

The Table 5 and Fig. 12 summarises the results ob-
tained after clustering the NDVI profiles. Each cluster,
the features were then labelled crop or non-crop after
manual validation.

6.3. Supervised classification method

In the absence of ground truth data to use for train-
ing the supervised model, different polygons were cre-
ated for features such as the plots, trees, floodpan and
shrubs/bushes.
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Fig. 10. Cluster one – the NDVI times series profiles with a centroid (green line).

Table 1
The result of the accuracy rate for random forest and CART model

Model Cart Random forest
Overall accuracy % 91 98.6

Results from two models were obtained by training
models against the training data inside the polygons
of features mapped, from high resolution base map
imagery, and then testing against independent pixels
outside the training set which the model had not been
exposed to.

The prediction given in Table 1 shows of the two
models the random forest was more successful in clas-
sifying the validation pixels against the classification
pixels. The random forest scored a 96% Kappa coeffi-
cient, demonstrating the level of accuracy in classify-
ing the pixels compared to values assigned by chance,
while the CART Kappa coefficient only reached 50%
accuracy level.

A confusion matrix is a method of comparing the
ground truth data to the predicted value, identifying the

Table 2
Random forest confusion matrix

Features Plot Tree Water Shrubs Total
Plot 862 3 8 30 903
Tree 2 9 0 24 35
Water 5 0 14 0 19
Shrubs 4 0 0 8 12
Total 873 12 22 62 969

Table 3
CART confusion matrix

Features Plot Tree Water Shrubs Total
Plot 856 5 14 28 903
Tree 5 6 0 24 35
Water 5 0 13 1 19
Shrubs 5 0 0 7 12
Total 871 11 27 60 969

classification errors and their associated quantities.
The results summarised in the confusion matrix

shows both models, Tables 2 and 3 appear to predict
the plot pixels well from the classified image, both pre-
dicted at least 80% of the plots pixels the same as the
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classification. With the CART model, a 3% of the plot
pixels in the validation data were classified as shrubs or
bushes in the classified image. This among other factors,
could be contributed by the fact that some field pixels
are potentially overlapping with tree pixels because
most of the fields in the study have big trees. Figure 4
shows a true-color composite image of a plot and trees
clearly distinguishable from the features.

As part of improving the model, masking over promi-
nent features in the northern region of the country where
most small holders reside will improve the classifier’s
accuracy. Features such as floodpans, which build up
water during the rainy season, and trees can be masked
by defining an appropriate NDVI threshold. Although
there was no groundtruth data, results show that none of
the models classified the pixels labelled water as trees
or shrubs.

Once the groundtruth is available its other models
such as SVM and neural networks can be tested and
validated.

6.4. Calculating areas

Using the agriculture Census, we filtered the dataset
to the area of study and aggregated the area under crop
production; the estimated figures 53.7675 Ha (without
the weight). The total number of plots interviewed dur-
ing the census was 85 and households that indicated
practice of agriculture activities were 81 – this how-
ever included livestock, 50% of these practiced crop
farming.

To calculate the area, Sentinel 2 pixels with an NDVI
profile similar to crops were manually verified against
Google’s base map and the area calculated from inside
segmented polygons converted to hectares. The total
area of plots was a combination of correct plots pix-
els from cluster zero and one where the feature plots
were found. A total of 48 plots were identified from
the segmented area, however this means that some of
the true positive features were missed as seen in Ta-
ble 5. The difference in the total plots could also be
attributed to the fact that some of the identified plots
contain multiple census plots, however we would not be
able to determine the internal boundaries, Table 4 and
shows the difference area sizes between the census file
and Table 6 shows the calculated area from the satellite
imagery.

6.5. Validation

The final step in this paper was validation. Model
validation is crucial to assess the accuracy of the model

Table 4
Agriculture census 2014/15 datasets showing area plot estimate by
farmer and the actual plot measurements by interviewers

Data source Total area
Census farmer’s estimate 58.39 Ha
Area census measurement 53.7675 Ha

Table 5
Results of the NDVI profile from the clustering technique, clusters
are labelled plot and non-plot

Features
Cluster

zero
Cluster

one
Cluster

two
Plots 11 37 0
Not plots (trees, shrubs and 38 39 3

waterpans)

Table 6
Area calculated from the sentinel 2 imagery; segmented features
obtained during the clustering method

Cluster Total area of field patches pixels
Cluster one 67.05613
Cluster two 0
Cluster zero 26.42179

against ground truth data. The confusion matrix sum-
marizes the performance of a classification algorithm.
Tables 2 and 3 show the confusion matrix of the two-
modelling output.

For the unsupervised classification, the clusters that
exhibited similar NDVI trends to a crop were taken into
a further rigorous manual exercise where the Google
base map was used to validate the features in the clus-
ters.

The total areas of the features that were seen as plots
and had an NDVI profile corresponding to the pheno-
logical sequence of the crop seasons was compared to
data from the agricultural census. The data from the
census file was aggregated to the primary area unit re-
lated to the study area, and the estimated figures from
the farmers and the field measurements from the inter-
viewers obtained shown in Table 4. To validate the plot
areas, the total area of the clusters exhibiting the accept-
able NDVI profile were aggregated. Table 6 summarises
the area estimates based on the Sentinel 2 imagery.

Comparing the total areas between the Sentinel-2
data and the census dataset, even given the limited
amount of ground truth data, yields a good correlation.
The differences in values can be attributed to various
points. For the Sentinel-2 data, the issues of the scale
and time of image acquisition can influence a great deal,
Fig. 13.

The error rate is gained by calculating the correct
predicted outcome from the entire predictions (correct
and incorrect) and converting to a percentage. To obtain
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Fig. 13. The image of a plot/field after images segmentation during
the clustering classification technique.

the error rate, we simply subtract the correct classifi-
cation from 1. We can also determine how many of
the predicted fields are actually fields (true positives)
and where fields are missed or not classified as fields
(false negatives). In this process, we used the author’s
local knowledge and the NDVI one-year calendar data
to differentiate the crop from non-crop areas.

7. Critical evaluation and recommendation

In this paper, we examined the type of information
to extract from images, the type of satellite images and
resolutions to use as well as attempted to identify the
agricultural plots, calculate the area of identified plot
and compare them to the agriculture census 2013/14
dataset.

Based on the process outlined and followed in the
study, the following observation were noted and could
be relevant for other NSOs considering the use of Earth
observation data;

– From the pre-analysis conducted, it is clear that
collecting spatial data and geo referencing details
in the field is one of the key elements toward inte-
grating earth observation data into statistical pro-
duction.

– As experienced during the data exploratory anal-
ysis exercise, without reliable GPS coordinates
and sampled training data, it was not possible to
finalise the crop area estimates.

– Another aspect to take into consideration is to test
various statistical sampling techniques when defin-

ing the area of interest in order to ensure that vari-
ability is measured. Taking into consideration the
region size, agricultural households in that area
and planting seasons, soil data, harvest times are
some of the factors need to be carefully evaluated.

Other operational aspects noted from the study;
– Collaboration with academic institutions is very

important and key to integrating scientific princi-
ples and sound theoretical background.

– NSOs should consider joining other earth observa-
tion data platforms that already have ready to pro-
cess imagery. For instance, Digital Earth Africa,
which has analysis ready data and allows for ex-
pansion and developing of applications if needed.
These tools present fast and efficient ways to have
information for informed decision making and
country wellbeing.

– Since this is fairly new ground of studies, it is
important to invest in capacity building of earth
observation analysis skills and data science tech-
niques to maximise the use of geo-spatial data in
NSOs.

Recommended next step to meet the objective of
identifying the small plots and calculating the area

As seen, there is a need to obtain training data for
the modelling, the work done so far is observed suffi-
cient sufficient to plan for the pilot field data collection.
Due to the COVID19 pandemic, fieldwork planning is
delayed, however, these aspects are being considered;

– Defining a well organised and planned statistical
sampling plan – working with the sampling team
at NSA, various sampling techniques will be as-
sessed to account for variation in landscape (soil
texture) from different regions seasonal planting
and harvesting times. The difference in agricul-
ture household size from the census datasets will
also be instrumental in designing a more detailed
sampling size.

– To strengthen the impact of the project output,
there is a plan to partner with the Ministry of Agri-
culture and Land Reform, Statistics Department,
to provide crucial information on rural and small
farmer holders in the area of study. There is a
need to collect more information on farmer’s crop-
ping operational operations, the information will
be useful when sampling and during modelling.
This is well in alignment with the line ministry
project planned to collect and develop a farmer’s
profile database.

– Once the ground truth data is obtained, the whole
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pipeline will be re-deployed, and tighten to aim
for better accuracy prediction. The issues of the
satellite images including the cloud coverage, scal-
ability and time of collection need to be assessed
in relation to the sampling strategy.

This study aimed to demonstrate the potential use
of the satellite images with the aim to compliment the
traditional data collection such as census and surveys,
which are deemed costly and labour-intensive opera-
tions. This study, despite its limitation clearly highlight
the opportunity to use satellite imagery for agricultural
statistics, and with the right sampling strategy to collect
ground truth data, a model can be adopted for official
use. The next step will be to collaborate further with the
Ministry of Agriculture, Water and Land Reform and
developing partners, such as Food Agriculture Organ-
isation to scale the project and produce a product that
can be adopted at the national and regional level.
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