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Abstract. When several frequency tables need to be produced from multiple data sources, there is a risk of numerically incon-
sistent results. This means that different estimates are produced for the same cells or marginal totals in multiple tables. As incon-
sistencies of this kind are often not tolerated, there is a clear need for compilation methods for achieving numerically consistent
output. Statistics Netherlands developed a Repeated Weighing (RW) method for this purpose. The scope of applicability of this
method is however limited by several known estimation problems. This paper presents two new Divide-and-Conquer (D&C)
methods, based on quadratic programming (QP) that avoid many of the problems experienced with RW.
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1. Introduction

Statistical outputs are often interconnected. Differ-
ent tables may share common cells or marginal to-
tals. In such cases numerically consistency is often re-
quired, i.e. that the same values are published for com-
mon outputs. However, due to different data sources
and compilation methods, numerically consistency is
often not automatically achieved. Hence, there is a
clear need for methods for achieving numerically con-
sistent output.

An important example of a multiple table statistical
output in the Netherlands is the Dutch Population and
Housing Census. For the census, dozens of detailed
contingency tables need to be produced with many
overlapping variables. Numerically consistent results
are required by the European Census acts and a num-
ber of implementing regulations [1]. In a traditional

1This paper is based on work carried out as part of the Eu-
rostat project “Improvement of the use of administrative sources”
(ESS.VIP ADMIN WP6 Pilot studies and applications). The action
has received EU funding under the grant agreement 07112.2015.002-
2015.353. The paper reflects only the author’s view and the Euro-
pean Commission is not responsible for any use that may be made
of the information it contains.

census, based on a complete enumeration of the pop-
ulation, consistency is automatically present. Statistics
Netherlands belongs to a minority of countries that
conducts a virtual census. In a virtual census estimates
are produced from already available data that are not
primary collected for the census. The Dutch virtual
census is for a large part based on integral information
from administrative sources. For a few variables not
covered by integral data sources, supplemental sam-
ple survey information is used. Because of incomplete
data, census compilation relies on estimation. Due to
the different data sources that are used numerically in-
consistent results would be inevitable if standard esti-
mation techniques were applied [2,3].

To prevent inconsistency, Statistics Netherlands de-
veloped a method called “Repeated Weighting” (RW),
see e.g. [4–7], a method that was applied to the 2001
and 2011 Censuses. In RW the problem of consistently
estimating a number of contingency tables with over-
lapping variables is simplified by splitting the prob-
lem into dependent sub problems. In each of these sub
problems a single table is estimated. Thus, a sequential
estimation process is obtained.

The implementation of RW is however not without
its problems (see [6,8] and Subsection 2.4 below). In
particular, there are problems that are directly related
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to the sequential approach. Most importantly, RW does
not always succeed in estimating a consistent table set,
even when it is clear that such a table set exists. Af-
ter a certain number of tables have been estimated, it
may become impossible to estimate a new one consis-
tently with all previously estimated ones. This prob-
lem seriously limits future application possibilities of
repeated weighting. For the Dutch 2011 Census sev-
eral ad-hoc solutions were applied, designed after long
trial-and-error. For any future application, it is how-
ever not guaranteed that numerically consistent esti-
mates can be produced. Therefore, there is a clear need
for extending methodology.

This paper presents two new ‘Divide-and-Conquer
algorithms’ based on Quadratic Programming (QP).
The algorithms break down the problem of consistent
estimation of a set of contingency tables into sub prob-
lems that can be independently estimated, rather than
the dependent parts that are obtained in RW. Thus,
the estimation problems, as experienced with RW, are
avoided.

In Section 2, we describe the RW method. Section
3 presents an alternative quadratic programming (QP)
formulation for this problem. Section 4 gives a simul-
taneous weighting approach, which is the basis for the
two new Divide-and-Conquer methods that are intro-
duced in Section 5. Results of a practical application
are given in Section 6 and finally Section 7 concludes
this paper with a discussion.

2. Repeated weighting

In this section we explain the RW method. Subsec-
tion 2.1 describes prerequisites. The main properties of
the method are given in Subsection 2.2. A more techni-
cal description follows in Subsection 2.3 and Subsec-
tion 2.4 presents known complications of the method.

2.1. Prerequisites

Although RW can be applied to contingency and
continuous data, this paper deals with contingency ta-
bles only.

I assume that multiple prescribed tables need to be
produced with overlapping variables. If there were no
overlapping variables, it would not be any challenge to
produce numerically consistent estimates.

Further, it is assumed that the target populations are
the same for each table. This means for example that

all tables necessarily have to add up to the same grand-
total.

All data sources relate to the same target population.
There is no under- or overcoverage: the target popula-
tion of the data sources coincides with the target popu-
lation of the tables to be produced.

Further, for each target table a predetermined data
set has to be available from which that table is com-
piled.

Two types of data sets will be distinguished: data
sets that cover the entire target population and data sets
that cover a subset of that population. As the first type
is often obtained from (administrative) registers and
the latter type from statistical sample surveys, these
data sets will be called registers and sample surveys
from now on.

It is assumed that all register-based data sets are al-
ready consistent at the beginning of RW. That means
that all common units in different data sets have the
same values for common variables. Subsection 2.2 ex-
plains why this assumption is important. In practise,
this assumption often means that a so-called micro in-
tegration process has to be applied prior to repeated
weighting [9].

For sample survey data sets it is required that
weights are available for each unit that are meant to
be used to draw inferences for a population. To ob-
tain weights for sample surveys, one usually starts with
the sample weight, i.e. the inverse of the probability
of selecting a unit in the sample. Often, these sample
weights are adjusted to take selectivity or non-response
into account. Resulting weights will be called starting
weights, as these are weights that are available at the
beginning of repeated weighting.

2.2. Non-technical description

The compilation method of a single table depends
on the type of the underlying data set.

Tables that are derived from a register are simply
produced by counting from that register. This means
that for each cell in the table, it is counted how much
the corresponding categories occur (e.g. 28 year old
males). There is no estimation involved, because reg-
isters are supposed to cover the entire target popula-
tion. The fact that register-based data are not adjusted
explains why registers need to be already consistent at
the beginning.

Below we focus on tables that are derived from a
sample survey. These tables have to be consistently
estimated. This basically means two things: common
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Table 1
Marginal total 1

Citizenship Education Count
Oceania Low 1
Oceania High 9

Table 2
Marginal total 2

Industry Education Count
Mining Low 49
Mining High 2

marginal totals in different tables have to be identically
estimated and all marginal totals for which known reg-
ister values exist have to be estimated consistently with
those register values.

In the RW-approach consistent estimation of a table
set is simplified by estimating tables in sequence. The
main idea is that each table is estimated consistently
with all previously estimated tables. When estimating
a new table, it is determined first which marginal to-
tals the table has in common with all registers and pre-
viously estimated tables. Then, the table is estimated,
such that:

1) Marginal totals that have already been estimated
before are kept fixed to their previously estimated
values;

2) Marginal totals that are known from a register are
fixed to their known value.

To illustrate this idea, we consider an example in
which two tables are estimated:

Table 1: age × sex × educational attainment;
Table 2: age × geographic area × educational at-
tainment.

A register is available that contains age, sex and geo-
graphic area. Educational attainment is available from
a sample survey. Because educational attainment ap-
pears in Tables 1 and 2, both tables need to be esti-
mated from that sample survey. To achieve consistency,
Table 1 has to be estimated, such that its marginal to-
tals age × sex aligns with the known population totals
from the register. For Table 2 it needs to be imposed
that the marginal total age × geographic area complies
with the known population totals from the register and
that the marginal total age × educational attainment is
estimated the same as in Table 1.

Each table is estimated by means of the generalised
regression estimator (GREG) [10], an estimator that
belongs to the class of calibration estimators [11].
Thus, repeated weighting comes down to a repeated
application of the GREG-estimator.

2.3. Technical description

In this subsection, repeated weighting is described
in a more formal way. Below we will explain how a
single table is estimated from a sample survey.

Aim of the repeated weighting estimator (RW-
estimator) is to estimate the P cells of a frequency
table Y1, . . . ,YP . We will use vector notation to ex-
press the elements of a table. The estimates are made
from a sample survey, of which initial, strictly positive
weights wi are available for all n records. Each record
in the microdata contributes to exactly one of the cells
of a table. A dichotomous variable yip will be used,
which is one if record i contributes to cell p and zero
otherwise.

A simple population estimator is given by

t̂wy =

n∑
i=1

wiyi,

where yi is a P -vector, containing the elements yip for
p = 1, . . . , P . The estimator t̂wy is obtained by aggre-
gation of starting weights of the data set used for esti-
mation.

The so-called initial table estimate t̂wy is indepen-
dent of all other tables and registers and is not neces-
sarily consistent with other tables. To realize consis-
tency, a population estimate needs to be calibrated on
all marginal totals that the table has in common with
all registers and with all previously estimated tables.
These marginal totals are denoted by the J-vector r.

There is a relationship between the cells of a ta-
ble and its marginal totals: a marginal total is a col-
lapsed table that is obtained by summing along one or
more dimensions. Each cell contributes to a specific
marginal total or it does not. The relation between the
P cells and the J marginal totals is expressed in an
(J × P ) – aggregation matrix L. An element ljp is 1
if cell p of the target table contributes to marginal total
j and zero otherwise.

A table estimate t̂y is consistent if it satisfies

Lt̂y = r (1)

Usually, initial estimates t̂wy do not satisfy Eq. (1),
otherwise no adjustment would be necessary.

Therefore, our aim is to find a table estimate t̂∗y that
is in some sense close to t̂wy and that satisfies all con-
sistency constraints. The well-established technique of
least-square adjustment can be applied to find such an
adjusted estimate. In this approach, a consistent table
estimate t̂∗y is obtained as a solution of the following
minimization problem
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min
t̂∗y

(
t̂∗y − t̂wy

)′
W−1 (t̂∗y − t̂wy

)
, (2)

such that:

Lt̂∗y = r.

where W is a symmetric, non-singular weight matrix.
Despite that several alternative methods can be

applied as well, e.g. [11,12], the Generalised Least
Squares (GLS) problem in Eq. (2) has a long and solid
tradition in official statistics.

A closed-form expression for the solution of the
problem in Eq. (2) can be obtained by the Lagrange
Multiplier method (see e.g. [13]). This expression is
given by

t̂opt
y = t̂wy +WL′ (LWL′)

−1 (
r −Lt̂wy

)
(3)

The GREG-estimator is obtained as special case of
Eq. (3) in which W is set to T̂ , where T̂ = Diag

(
t̂wy
)
,

a diagonal matrix with the entries of t̂wy along its di-
agonal [11]. Thus, we obtain the following expression
for the RW-estimator.

t̂RW
y = t̂wy + T̂L′

(
LT̂L′

)−1 (
r −Lt̂wy

)
(4)

In writing Eq. (4), it is assumed that the inverse of
square matrix LT̂L′ is properly defined. In practise,
this is however not always true. When the constraint set
in Eq. (1) contains any redundancies, i.e. constraints
that are implied by other constraints, LT̂L′ will be
singular. In that case, it may still be possible to apply
Eq. (4) by using a generalised inverse e.g. [14].

As an alternative to minimizing adjustment at cell
level, the RW solution can also be obtained by minimal
adjustment of underlying weights. In [11] it is shown
that a set of adjusted weights w∗ip can be derived, such
that the RW estimate t̂RW

y can be obtained by weighting
the underlying micro data. That is, such that:(

t̂RW
y

)
p
=

n∑
i=1

w∗ipyip. (5)

For data sets that underlie estimates for multiple ta-
bles, adjusted weights are usually different for each ta-
ble.

From the expression for the RW-estimator in Eq. (4),
it follows that initial cell estimates of zero remain zero,
since the relevant rows in T̂L′

(
LT̂L′

)−1
contain ze-

ros only. However, in presence of zero-valued initial
estimates, the so-called empty cell problem may occur.
This happens if there is a constraint imposing a sum of
variables that each has a zero initial estimate to align

with a nonzero value in r. Because zero values cannot
be adjusted, achieving consistency is impossible. The
RW estimator in Eq. (4) is undefined because LT̂L′

includes an all zeroes row. Consequently, the originally
proposed RW-method cannot be applied if the empty
cell problem occurs.

Besides reconciled table estimates, RW also pro-
vides means to estimate precision of these estimates.
Variances of table estimates can be estimated, see [6]
for mathematical expressions.

2.4. Problems with repeated weighting

Below we summarise complications of RW. Prob-
lems that are inherent to the sequential way of estima-
tion are described first, then other complications are
given.

2.4.1. Problem 1. Impossibility of consistent
estimation

A first problem of RW is that, after a number of ta-
bles have been estimated, it may become impossible
to estimate a new one. Earlier estimated tables impose
certain consistency constraints on a new table, which
reduces the degree of freedom for the estimation of
that new table. When a number of tables have already
been estimated it may become impossible to satisfy all
consistency constraints at the same time. The problem
is also known in literature [15], for the estimation of
multi-dimensional tables with known marginal totals.

Example
Suppose one wants to estimate the table country of

citizenship × industry of economic activity × edu-
cational attainment. Citizenship and industry are ob-
served in a register, educational attainment comes from
a survey. According to the register there are: 10 persons
from Oceania and 51 persons working in the mining
industry. The combination Oceania and mining indus-
try is observed for four persons. The marginal totals as
derived from previously estimated tables are shown in
Tables 1 and 2.

By combining both tables it can be seen that the
combination Oceania & mining industry can occur
three times at most; there cannot be more than two
highly educated people and one lowly educated person.
This contradicts results from the register that states that
there are four “mining” persons from Oceania. The
problem occurs because the known population counts
for the combination of citizenship and industry are not
taken into account in the previously estimated tables.
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2.4.2. Problem 2. Suboptimal solution
In the RW-approach the problem of estimating a set

of coherent tables is split into a number of sub prob-
lems, in each of which one table is estimated. Because
of the sequential approach, a suboptimal solution may
be obtained that deviates more from the data sources
than necessary.

2.4.3. Problem 3. Order dependency
The order of estimation of the different tables mat-

ters for the outcomes. Besides that ambiguous results
are not desirable as such, it can be expected that there is
a relationship between the quality of the RW-estimates
and the order of estimation, as tables that are estimated
at the beginning of the process do not have to satisfy
as many consistency constraints as tables that are esti-
mated later in the process.

In addition to the aforementioned problems, there
are also some other problems that are not directly
caused by sequential estimation.

A first problem is that although RW achieves con-
sistency between estimates for the same variable in
different tables, the method does not support consis-
tency rules between different variables (so-called ‘edit
rules’). An example of such a rule is that the number of
people who have never resided abroad cannot exceed
the number of people born in the country concerned.

A second complication is that RW may yield nega-
tive cell estimates. In many practical applications, such
as the Dutch Census, negative values are however not
allowed.

A third complication is the previously mentioned
empty cell problem. As mentioned in Subsection 2.3,
this problem occurs when estimates have to be made
without underlying data. It is caused by sampling ef-
fects, i.e. characteristics that are known to exist in
the population that are not covered by a sample sur-
vey used for estimation. The empty cell problem can
be tackled by the epsilon method: a technical solu-
tion [16] based on the pseudo-Bayes estimator [17]
for log-linear analysis. The epsilon method means that
zero-valued estimates in an initial table are replaced by
small, artificial, non-zero “ghost” values, which were
set to one for all empty cells in the 2011 Census tables.
In other words, it was assumed a priori that each empty
cell is populated by one fictitious person.

3. Repeated weighting as a QP problem

This section demonstrates that the consistent esti-
mation problem can alternatively be solved by avail-

able techniques from Operations Research (OR). The
repeated weighting estimator in Eq. (4) can be obtained
as a solution of the following quadratic programming
problem (QP).

min
t̂∗y

∑
i:(t̂wy )i>0

1(
t̂wy
)
i

((
t̂∗y
)
i
−
(
t̂wy
)
i

)2
, (6)

such that:

Lt̂∗y = r,(
t̂∗y
)
i
= 0 for i with

(
t̂wy
)
i
= 0.

The objective function minimizes squared differ-
ences between reconciled and initial estimates. The
constraints are the same as in RW. The last mentioned
type of constraint ensures that zero-valued estimates
are not adjusted.

The main advantage of the QP-approach is its com-
putational efficiency. Unlike the closed-form expres-
sion of the RW estimator Eq. (4), Operations Re-
search methods do not rely on matrix inversion. There-
fore, very efficient solution methods are available
(e.g. [18]). Operations Research methods are available
in efficient software implementations (‘solvers’), that
are able to deal with large problems. Examples of well-
known commercial solvers are Xpress, Gurobi and
Cplex [19–21]. In the Netherlands, mathematical op-
timization methods are applied for National Accounts
balancing [22]; an application that requires solving
a quadratic optimization problem of approximately
500,000 variables.

A second advantage of the QP-approach is that it
can still be used in case of redundant constraints. Con-
trary to the WLS-approach, there is no need to remove
redundant constraints, or to apply sophisticated tech-
niques like generalised inverses.

A third advantage is that QP can be more easily gen-
eralised than WLS to include additional requirements.
Inequality constraints can be included in the model to
take account of non-negativity requirements and edit
rules (see Subsection 2.4). The empty cell problem can
be dealt with by the following slight modification of
the objective function

min
t̂∗y

P∑
i=1

1(
t̂w∗y
)
i

((
t̂∗y
)
i
−
(
t̂wy
)
i

)2
, (7)

such that:

Lt̂∗y = r.

where t̂w∗y = pmax(t̂wy ,1) and pmax stands for pair-
wise maximum. The solution in Eq. (7) is less radi-
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cal than replacing each initial zero estimate with one,
the solution that was applied for the 2011 Dutch cen-
sus. The objective function in Eq. (6) is a weighted
sum of squared differences. The weights are changed
in Eq. (7), but the quadratic terms are the same as in
Eq. (6).

Disadvantages of the QP-approach are that the
method does not provide means to derive corrected
weights and to estimate variances of reconciled tables.
However, because of the equivalence of the QP and the
WLS formulation of the problem, it follows that, al-
though corrected weights are not obtained in a solution
of a QP-problem, these weights do exist from a theo-
retical point of view.

4. Simultaneous approach

In this section we argue that the three problems men-
tioned in Subsection 2.4 (“Impossibility of consistent
estimation”, “Suboptimal solution” and “Order depen-
dency”) that are inherent to the sequential way of es-
timation can be circumvented in an approach in which
all tables are estimated simultaneously. The QP-model
in Eq. (6) can be easily generalized for the consistent
estimation of a table set. That is, a consistent table set
can be obtained as a solution to the following problem

min
t̂SW

∑
i:t̂wi >0

1

t̂wi

(
t̂SW
i − t̂wi

)2
, (8)

such that:

Lt̂SW = r.(
t̂SW)

i
= 0, for i with

(
t̂wy
)
i
= 0.

In this formulation t̂SW =
(
t̂SW
1 , . . . , t̂SW

N

)′
is a vector

containing estimates for the cells of all N tables, simi-
larly t̂w =

(
t̂w1 , . . . , t̂

w
N

)′
, a vector of initial estimates.

The subscript SW stands for simultaneous weighting,
as opposed to RW, which stands for repeated weight-
ing.

The objective function minimises a weighted sum
of squared differences between initial and reconciled
cell estimates for all tables. The constraints impose
marginal totals of estimated tables to be consistent with
known population totals from registers and estimated
tables to be mutually consistent. The former means that
for each table all marginal totals with known register
totals are consistently estimated with those register to-
tals. The latter means that for each pair of two distinct
tables all common marginal totals have the same esti-

mated counts. These constraints impose a sum of cells
in one table to be equal to a sum of cells in another
table, where the value of that sum is not known in ad-
vance. For comparison, in RW, marginal totals of one
table need to have the same value as known marginal
totals from earlier estimated tables. Analogous to the
RW-model in Eq. (6), the SW-model in Eq. (8) can be
easily extended to take account of additional require-
ments, like non-negativity of estimated cell values, edit
rules and the empty cell problem.

It can be easily seen that Problems 1, 2 and 3 in Sub-
section 2.4 do not occur if all tables are estimated si-
multaneously. Furthermore, from a practical point it is
more attractive to solve one problem rather than sev-
eral problems.

A SW-approach may however not always be compu-
tationally feasible. A large estimation problem needs to
be solved consisting of many variables and constraints.
The capability of solving such large problems may still
be limited by computer memory size, even for modern
computers. We therefore focus on ways of splitting the
problem up into a number of smaller sub problems that
can be preferably independently solved.

5. Divide-and-Conquer algorithms

In this section two so-called Divide-and-Conquer
(D&C) algorithms are presented for estimating a set
of coherent frequency tables. These algorithms recur-
sively break down a problem into sub problems that
can each be more easily solved than the original prob-
lem. The solution of the original problem is obtained
by combining the sub problem solutions.

5.1. Splitting by common variables

The main idea of our first algorithm is that an es-
timation problem, with one or more common register
variable(s) can be split into a number of independent
sub problems, based on the categories of these regis-
ter variable(s). For example, if sex were included in all
tables of a table set, a table set can be split into two
independent sets: one for men and one for women.

In practice, it is often not the case that a table set has
one or more common register variables in each table.
Common variables can however always be created by
adding variables to tables, provided that a data source
is available from which the resulting, extended tables
can be estimated. In our previous example, all tables
that do not include sex can be extended by adding this
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variable to the table. In this way, the level of detail in-
creases, meaning that more cells need to be estimated
as in the original problem, which may come along with
a loss of precision at the required level of publication.
However, at the same time, the possibility is created
of splitting a problem into independent sub problems.
Since all ‘added’ variables are used to split the prob-
lem, one can easily understand that the number of cells
in each of these sub problems cannot exceed the total
number of cells of the original problem.

For any practical application the question arises
which variable(s) should be chosen as “splitting” vari-
able(s). Preferably, this/these should be variable(s) that
appear in most tables, e.g. sex and age in the Dutch
2011 Census, as this choice leads to the smallest total
number of cells to be estimated.

The approach is especially useful for a table set with
many common variables, because in that case the num-
ber of added cells remains relatively limited.

The proposed algorithm has the advantage over Re-
peated Weighting that the sub problems that are created
can be solved independently. For this reason there are
no problems with “impossibility of estimation” (Prob-
lem 1 in Subsection 2.4) and “order-dependency of es-
timation” (Problem 3 in Subsection 2.4). Problem 2
“suboptimal solution” is not necessarily solved. This
depends on the need of adding additional variables to
create common variables. If a table set contains com-
mon register variables in each table and the estima-
tion problem is split using these common variables,
an optimal solution is obtained. However, if common
variables are created by adding variables to tables, ex-
tended tables are obtained, for which the optimal esti-
mates do not necessarily comply with the optimal esti-
mates for the original tables.

5.2. Aggregation and disaggregation

A second divide-and-conquer algorithm consists of
creating sub problems by aggregation of one or multi-
ple variable categories. In the first stage, categories are
aggregated (e.g. estimating ‘educational attainment’
according to two categories rather than the required
eight). In a second stage, table estimates that include
the aggregation variable(s) are further specified ac-
cording to the required definition of categories.

Since the disaggregation into required categories
can be carried out independently for each aggregated
category, a set of independent estimation problems is
obtained in the second stage.

For example, suppose that we need to estimate edu-
cational attainment, according to 8 categories: 1,. . .,8.

Two aggregated categories I and II are defined; I com-
prises the original categories 1,. . . ,4 and II the other
categories 5,. . .,8. In the first stage, all required tables
are estimated using aggregated categories for educa-
tional attainment. Then, in the second stage, tables are
re-estimated using original categories for educational
attainment. This can be done for the original categories
1,. . .,4 and 5,. . ., 8, separately. In this way, two inde-
pendent estimation problems are obtained. When esti-
mating tables in the second step, it needs to be ensured
that results are consistent with the more aggregated ta-
bles that are estimated in the first stage.

In the previous example one variable was aggre-
gated, educational attainment. It is however also possi-
ble to aggregate multiple variables. In that case a multi-
step method is obtained, in which in each stage after
Stage 1, one of the variables is disaggregated.

Because of these dependencies of the estimation
processes in different stages, it cannot be excluded that
the three problems of Section 2.5 occur. However, the
problems are likely to have a lower impact than in RW.
This is because of a lower degree of dependency: in
RW each estimated table may be dependent on all ear-
lier estimated tables, whereas in the proposed D&C ap-
proach, estimation of a certain sub problem only de-
pends on one previously solved problem.

6. Application to Dutch 2011 Census

In this section we present results of a practical ap-
plication of the proposed Divide-and-conquer (D&C)
methods to the Dutch 2011 Census tables. Our aim is
to test the feasibility of the methods, as well as to com-
pare results with the officially published results that are
largely based on RW. Subsection 6.1 describes back-
grounds of the Dutch Census. Subsection 6.2 explains
the setup of the tests and Subsection 6.3 discusses re-
sults.

6.1. Dutch 2011 Census

According to the European Census implementing
regulations, Statistics Netherlands was required to
compile sixty high-dimensional tables for the Dutch
2011 Census, for example, the frequency distribution
of the Dutch population by age, sex, marital status, oc-
cupation, country of birth and nationality. Since the
sixty tables contain many common variables ‘standard
weighting’ does not lead to consistent results.
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Several data sources are used for the Census, but af-
ter micro-integration, two combined data sources are
obtained: one based on a combination of registers and
the other one is a combination of sample surveys [23].
From now on, when we refer to a Census data source, a
combined data source is meant after micro-integration.
The ‘register’ data cover the full population (in 2011
over 16.6 million persons) and include all relevant
Census variables except ‘educational attainment’ and
‘occupation’. For the ‘sample survey’ data it is the
other way around, these data cover all relevant Cen-
sus variables, but it is available for a subset of 331,968
persons only.

For the 2011 Census 42 tables needed to be esti-
mated that include ‘educational attainment’ and/or ‘oc-
cupation’. The target population of these tables con-
sists of the registered Dutch population, with the ex-
ception of people younger than 15 years. Young chil-
dren are excluded because the two sample survey vari-
ables ‘educational attainment’ and ‘occupation’ are not
relevant for these people.

The total number of cells in the 42 tables amounts to
1,047,584, the number of cells within each table ranges
from 2,688 to 69,984.

6.2. Setup

Below we explain how the two D&C algorithms
were applied to the 2011 Dutch Census.

6.2.1. Setup 1 – Splitting by common variables
In this setup, the original table set is split into 48 in-

dependently estimated table sets, by using geographic
area (12 categories), sex (2 categories), and employ-
ment status (2 categories) as splitting variables. Each
of the 48 table sets contains a subset of the 42 Cen-
sus tables, determined by the categories of the splitting
variables.

The three splitting variables are however not present
in all 42 Census tables. In 13 tables geographic area is
missing and in one table sex is absent. Tables that do
not include the three splitting variables were extended
by incorporating missing variables. As a result, the to-
tal number of cells in the 42 tables was increased from
1,047,584 to 4,556,544.

6.2.2. Setup 2 – Aggregation and disaggregation
In this setup educational attainment (8 categories)

and occupation (12 categories) were selected for aggre-
gation of categories. Initially, both variables are aggre-
gated into two main categories, that each contain half

of the categories of the original variables. Thereafter,
results were obtained for the required categories for the
two aggregation variables.

Five optimization problems are defined in this pro-
cedure. In the first problem a table set is estimated
based on aggregated categories for educational attain-
ment and occupation. In each of the following stages
either one of the two aggregated categories for educa-
tional attainment or occupation is disaggregated into
required categories. Since less sub problems are de-
fined, it follows that average problem size is larger than
for Setup 1.

6.3. Results

In this subsection we compare results of the two
D&C methods with the RW-based method as applied to
the official 2011 Census. All practical tests were con-
ducted on a 2.8 GHZ computer with 3.00 GB of RAM.
Xpress was used as solver [19].

A simultaneous estimation of the required 42 Cen-
sus tables, as described in Section 4, turned out to be
infeasible, due to memory problems of the computer.

The two D&C approaches were however success-
fully applied; there were no problems from a techni-
cal perspective and the estimation problems as experi-
enced with RW were avoided.

Thus, we arrive at our main conclusion that the D&C
approaches have broader applicability than RW.

We now continue with a comparison of the recon-
ciliation adjustments. The criterion used to compare
degree of reconciliation adjustment is based on the
QP objective function in Eq. (7), a sum of weighted
squared differences between initial and reconciled es-
timates, given by

P∑
i=1

1(
t̂w∗y
)
i

((
t̂∗y
)
i
−
(
t̂wy
)
i

)2
, (9)

where t̂wy is a vector with initial estimates, t̂∗y is a vector
with reconciled estimates, t̂w∗y = pmax (t̂wy , 1).

Table 3 compares total adjustment, as defined ac-
cording to Eq. (9), based on all cells in all 42 estimated
tables.

The two newly developed D&C methods lead to
smaller total adjustment than RW.

The result that “Aggregation and Disaggregation”
method gives rise to a better solution than “Splitting
by common variables” can be explained by the lower
amount of sub-problems that are defined in the chosen
setups.
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Table 3
Total adjustment; three methods

Method Total adjustment (*106)
All cells Cells with initial estimate

larger than zero
Dutch 2011 Census 109.64 12.68
Splitting by common variables 88.35 12.37
Aggregation and disaggregation 69.56 12.47

Fig. 1. Boxplots of adjustments to all cells of 42 Census tables. The right panel zooms in on the lower part of the left panel.

However, if we only compare cells with larger than
zero initial estimates, differences between three meth-
ods become very small. This shows that the way how
original estimates of zero are processed is more impor-
tant than the way how the estimation problem is broken
down into sub problems.

The boxplots in Figs 1 and 2 compare adjustment
at the level of individual cells. It can be seen that the
amount of relatively small corrections is larger for the
two D&C methods than for the RW-based method used
for officially published Census tables. Differences in
results are however smaller again, if zero initial esti-
mates are not taken into account.

7. Discussion

When several frequency tables need to be produced
from multiple data sources, the problem may arise that

results are numerically inconsistent. That is, that dif-
ferent results are obtained for the same marginal to-
tals in different tables. To solve this problem, Statistics
Netherlands developed a Repeated Weighting (RW)
method. This method was applied to the 2001 and 2011
Dutch censuses. However, the scope of applicability
of this method is limited by several known estimation
problems. In particular, the sequential way of estima-
tion causes problems. As a result of these problems, es-
timation of the 2011 Census was troublesome. A suit-
able order of estimation was found after long trial and
error.

This paper presented two alternative Divide and
Conquer (D&C) methods that break down the estima-
tion problem as much as possible into independently
estimated parts, rather than the dependent parts that are
distinguished in RW. One of the two newly developed
methods partitions a given table set according to com-
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Fig. 2. Boxplots of adjustments to all cells with nonzero initial estimates. The right panel zooms in on the lower part of the left panel.

mon categories of variables that are contained in each
table. The other method is based on aggregation and
disaggregation of categories.

As a result of independent estimation, many of the
estimation problems of RW can be prevented. This
greatly enhances the practicability of the method. An-
other advantage is that the reduced order-dependency
of results leads to less ambiguity. A final advantage
is that the new approaches can be more easily ex-
tended to incorporate additional requirements, like
non-negativity of estimates and solutions for the empty
cell problem.

An application to 2011 Census tables showed that
estimation problems were actually avoided. Reconcili-
ation adjustments were observed to be smaller than in
RW. Hence, it can be argued that a better solution can
be obtained that deviates less from the data sources.
The smaller adjustments can be mainly attributed to
the solution applied to the empty cell problem; a solu-
tion that could not be implemented in the original RW
approach.

Hence, the key message of this paper is when esti-
mating a consistent set of tables, there can be smarter
ways of breaking down the problem than estimating
single tables in sequence.

For problems in which a simultaneous estimation of
all tables is computationally feasible, such an approach
is to be preferred. Most importantly, because a full si-
multaneous approach avoids the estimation problems
that are experienced with RW. Moreover, an optimal
solution is obtained with minimal adjustment from the
data sources. Finally, from a practical point of view
solving one (or few) optimization problem(s) is much
easier than solving many problems.
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