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Abstract. Prescriptive Performance Analysis (PPA) has shown to be more useful than traditional descriptive and diagnostic
analyses for making sense of Big Data (BD) frameworks’ performance. In practice, when processing large (RDF) graphs on
top of relational BD systems, several design decisions emerge and cannot be decided automatically, e.g., the choice of the
schema, the partitioning technique, and the storage formats. PPA, and in particular ranking functions, helps enable actionable
insights on performance data, leading practitioners to an easier choice of the best way to deploy BD frameworks, especially for
graph processing. However, the amount of experimental work required to implement PPA is still huge. In this paper, we present
PAPAYA,1 a library for implementing PPA that allows (1) preparing RDF graphs data for a processing pipeline over relational
BD systems, (2) enables automatic ranking of the performance in a user-defined solution space of experimental dimensions;
(3) allows user-defined flexible extensions in terms of systems to test and ranking methods. We showcase PAPAYA on a set of
experiments based on the SparkSQL framework. PAPAYA simplifies the performance analytics of BD systems for processing
large (RDF) graphs. We provide PAPAYA as a public open-source library under an MIT license that will be a catalyst for
designing new research prescriptive analytical techniques for BD applications.
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1. Introduction

The increasing adoption of Knowledge Graphs (KGs) in industry and academia requires scalable systems for
taming linked data at large volumes and velocity [15,29,30]. In absence of a scalable native graph system for query-
ing large (RDF) graphs [25], most approaches fall back to using relational Big Data (BD) frameworks (e.g., Apache
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Spark or Impala) for handling large graph query workloads [27,28]. Despite its flexibility, the relational model re-
quires several additional design decisions when used for processing graphs, which cannot be decided automatically,
e.g., the choice of the schema, the partitioning techniques, and the storage formats.

In [21,24], we highlight the severity of the problem by showing the lack of performance replicability of BD sys-
tems for querying large (RDF) graphs. In particular, we showed that changing even just one experimental parameter,
e.g., partitioning technique or storage encoding, invalidates existing optimizations in the relational representation
of RDF data. We observe that issues do not lay in how the investigations were conducted but rather in the maturity
of the analysis, which is limited to descriptive or at most diagnostic observations of the system behaviour. Such
discussions leave much work for practitioners to transform performance observations into actionable insights [19].

Later in [19], we have introduced the concept of Bench-Ranking as a means for enabling Prescriptive Performance
Analysis (PPA) for processing larger RDF graphs. The PPA is an alternative to descriptive/diagnostic analyses that
aims to answer the question What should we do? [14]. In practice, Bench-Ranking enables informed decision-
making without neglecting the effectiveness of the performance analyses [19]. In particular, we showed how it could
prescribe the best-performing combination of schema, partitioning technique, and storage format for querying large
(RDF) graphs on top of SparkSQL framework [18,19].

Our direct experience with big RDF graphs processing confirms what a well-known truth in data engineering
and science project, i.e., most time-consuming phases is the data preparation [26], which accounts for 80% of
the work.2 In our work, we also show that the performance analytics can be extremely overwhelming, with the
maze of performance metrics rapidly increasing with the number of system knobs. Although the Bench-Ranking
methodology [19] simplifies performance analyses, a cohesive system that helps automate the intermediate steps
is currently missing. In particular, the existing bench-ranking implementation was designed to show the feasibility
of the approach as it does not follow any specific software engineering best practices. Thus, the adoption of our
Bench-Ranking methodology may face the following challenges:

C.1 Experiment Preparation requires huge data engineering efforts to build the full pipeline for processing
large graphs on top of BD systems, to put the data in the logical and physical representations that adapt
with relational distributed environments. Moreover, the current experimental preparation in Bench-Ranking
requires incorporating several systems, e.g., Apache Jena (i.e., for logical schema definitions), and Apache
SparkSQL (i.e., for physical partitioning and storage).

C.2 Portability and Usability: deciding new requirements in the Bench-Ranking framework’s current imple-
mentation (e.g., changes over the number of tasks (i.e., queries) or changes over the experimental dimen-
sions/configurations.) would lead to repeating vast parts of the work.

C.3 Flexibility and Extensibility: the current implementation of the Bench-Ranking framework does not fully
reflect the flexibility and extensibility of the framework in terms of experimental dimensions and ranking
criteria extensibility.

C.4 Complexity and Compoundnesss: practitioners may find Bench-Ranking criteria and evaluation metrics
quite complex to implement. Moreover, the current implementation does not provide an interactive interface
that eases interconnections of various modules of the framework (e.g., data and performance visualization).

To address these problems, we extend the work in [19] by designing and implementing an open-source library
called PAPAYA (Python-based Approach for Performance Advanced Yield Analytics). The main intention of this
tool was to reduce our efforts while preparing the pipeline of processing large RDF KGs on Big relational engines
(specifically the data preparation phase) and whilst applying the Bench-Ranking methodology for providing pre-
scriptive analyses on the performance results. Yet, we still believe we designed PAPAYA in a way that makes it
useful and handy for practitioners to process large KGs.

The PAPAYA library stems from the following objectives: (O.0) reducing the engineering work required for graph
processing preparations and data loading. (O.1) reproducing existing experiments (according to user needs and
convenience) for relational processing of SPARQL queries using SparkSQL. This will reduce massive efforts for
building analytical pipelines from scratch for relational BD systems subject to the experiments. Moreover, PAPAYA

2Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says https://shorturl.at/wAQ47.
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Fig. 1. PAPAYA dynamicity.

also aims at (O.2) automating the Bench-Ranking methods for enabling post-hoc prescriptive performance analyses
described in [19]. In practice, PAPAYA facilitates navigating the complex solution space via packaging the function-
ality of different ranking functions as well as Multi-Optimization (MO) techniques into interactive programmatic
library interfaces. Last but not least, (O.3) checking the replicability of the relational BD systems’ performance for
querying large (RDF) graphs within a complex experimental solution space.

The focus of this paper is to show the internals and functionality of PAPAYA as a means for providing PPA for BD
relational systems that query large (RDF) graphs. For completeness, we aim to describe PAPAYA prescriptions with
the WatDiv benchmark [5] experiments.3 In [19], we applied Bench-Ranking to the SP2B benchmark [12]. However,
the best-performing configurations depend on the dataset and the query workload [19]. Thanks to PAPAYA, we
can easily perform the PPA for any RDF benchmark, pointing out the performance results, and specifying the
experimental configurations (see Fig. 1).

Outline. Section 2 discusses the related work. Section 3 presents the necessary preliminaries to understand the
paper’s content. Section 3.2 briefly introduces the Bench-Ranking framework concepts [19]. Section 4 presents
the PAPAYA requirements alongside its framework architecture. Section 5 shows how to use PAPAYA in practice,
providing examples from existing experiments [19,21], while Section 6 concludes the paper and presents PAPAYA’s
roadmap.

2. Related work

Several tools and recommendation frameworks exist to reduce the effort required to design and execute repro-
ducible experiments, share their results, and build pipelines for various applications [16]. For instance, the RSPLab
provides a test-drive for stream reasoning engines that can be deployed on the cloud. It enables the design of ex-
periments via a programmatic interface that allows deploying the environment, running experiments, measuring the
performance, and visualizing the results. In their work outlined in [3], the authors tackled the problem of quantify-
ing the continuous behavior of a query engine and presented two novel experimental metrics (dief@t and dief@k)
that capture the performance efficiency during an elapsed period rather than a constant time. These metrics evaluate
the query engine performance based on the query processing logs at various times (t) and various results (k). On
another side, gMark [7] presents a flexible, domain-agnostic, extensible graph dataset generator driven by schemas.
Additionally, it furnishes query workloads tailored to anticipated selectivity. Similarly, authors in [6] provide a data
loader that facilitates generating RDF graphs in different logical relational schemas and physical partitioning op-
tions. However, this tool stops the work of data generation and data loading. This tool leaves the work of deciding
the best experimental solutions for the data/knowledge engineers.

The mentioned efforts aim at providing the environment that enables the practitioners to develop their experi-
mental pipelines. Nonetheless, none of these efforts provide prescriptive performance analyses in the context of BD

3Due to space limits, we diagnose the WatDiv prescriptions results and evaluation metrics in Section 5 on the library GitHub page, mentioned
below.
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problems. Conversely, PAPAYA aims to cover this timely research gap in an easy and extensible approach, facili-
tating the building of an experimental solution space for processing large RDF KGs, hence automating PPA where
possible.

3. Background

This section presents the necessary background to understand the paper’s content. We assume that the reader is
familiar with the RDF data model and the SPARQL query language.

3.1. RDF relational processing experimental dimensions

Several design decisions emerge when utilizing relational BD systems for querying large (RDF) graphs, such as
the relational schema, partitioning techniques, and storage formats. These experimental dimensions directly impact
the performance of BD systems while querying large graphs. Intuitively, these dimensions entail different choice
options (we call them dimensions’ parameters).

First, the relational schema, it is easy to show that we have different options on how to represent graphs as
relational tables, and the choice hugely impacts the performance [1,28]. We identify the most used ones in the
literature of RDF processing [1,2,27,28]: Single Statement Table (ST) schema that stores RDF triples in a ternary-
column relation (subject, predicate, object), and often requires many self-joins; Vertically Partitioned Tables (VP)
proposed by Abadi et.al. [1] to mitigate issues of self-joins in ST schema proposing to use binary relations (subject,
object) for each unique predicate in the RDF dataset; the Property Tables (PT) schema that prescribes clustering
multiple RDF properties as n-ary columns table for the same subject to group entities that are similar in structure.
Lastly, two more RDF relational schema advancements also emerge in the literature. The Wide Property Table
(WPT) schema encodes the entire dataset into a single denormalized table. WPT is initially proposed for Sempala
system by Scätzle et.al. [27], who also proposed another schema optimization that extended the version of the VP
schema (ExtVP) [28] that pre-computes semi-join VP tables to reduce data shuffling.

BD platforms are designed to scale horizontally; thus, data partitioning is another crucial dimension for querying
large graphs. However, choosing the right partitioning technique for RDF data is non-trivial. To this extent, we fol-
lowed the indication of Akhter et.al. [4]. In particular, we selected the three techniques that can be applied directly to
RDF graphs while being mapped to a relational schema. Namely, (i) Horizontal Partitioning (HP) randomly divides
data evenly on the number of machines in the cluster, i.e., n equally sized chunks, where n is the number of ma-
chines in the cluster. (ii) Subject-Based Partitioning (SBP) (or (iii) Predicate-Based Partitioning (PBP)) distributes
triples to the various partitions according to the hash value computed for the subjects (predicates). As a result, all
the triples with the same subject (predicate) reside on the same partition. Notably, both SBP and PBP may suffer
from data skewness which impacts parallelism.

Serializing RDF data also offers many options such as RDF/XML, Turtle, JSON-LD, to name a few. On the same
note, BD platforms offer many options for reading/writing to various file formats and storage backends. Therefore,
we need to consider the variety of storage formats [13]. We specifically focus on the various Hadoop Distributed
File System (HDFS) file formats that are suitable for distributed scalable setups. In particular, HDFS supports the
following row-oriented formats (e.g., CSV and Avro) and columnar formats (e.g., ORC and Parquet).

3.2. Bench-ranking in a nutshell

This section summarizes the concept of Bench-Ranking as a means for Prescriptive Performance Analysis. Bench-
Ranking is based on three fundamental notions, i.e., Configuration, Ranking Function, and Ranking Set, defined
below.

Definition 1. A configuration c is a combination of experimental dimensions. The configuration space C is the
Cartesian product of the possible configurations.
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Fig. 2. The configuration space C [19].

Table 1

Configuration rankings by query execution time, e.g., (a.i.1) configuration is at 41th rank in Q1 [19]

Query

Conf. Q1 Q2 ... Q20 Q1 Q2 ... Q20

a.i.1 63.8 50.9 ... 13.5 41th 41th ... 40th

a.i.2 133.3 147.5 ... 46.8 44th 48th ... 46th

... ... ... ... ... ... ... ... ...

b.iii.4 24.8 25.2 ... 7.5 11th 26th ... 32th

... ... ... ... ... ... ... ... ...

e.ii.4 205.2 162.3 ... 26.6 60th 60th ... 42th

In [19], we consider a three-dimensional configuration space, i.e., including relational schemas, partitioning
techniques and storage formats. Figure 2 shows the experimental space and highlights the example of the (a.ii.3)
configuration, which is akin to the Single Triples (ST) schema, Subject-based Partitioning (SBP) technique, and
stored in the HDFS (ORC) storage file format. This naming convention guides configurations reading in the rest of
the paper results (figures and tables).

Definition 2. A ranking set R is an ordered set of elements ordered by a rank score. The rank index ri is called the
index of a ranked element i within the ranking set R, i.e., R[ri]= i. We denote with Rk the leftmost (k top-ranked)
subset of R, and we denote with Rx the ranking set calculated according to the Rank score Rx .

Definition 3. A ranking set is defined by a ranking function fR : C → R that associates a rank score to every
element in C.

A valid example of a ranking score can be the time required for query executions by each of the selected config-
urations (see Table 1). The ranking function abstracts this notion (Definition 3). In [19], we consider a generalized
version of the ranking function presented in [4], which calculates the rank scores for the configurations as follows:

R =
d∑

r=1

Odim(r) ∗ (d − r)

|Q| ∗ (d − 1)
, 0 < R � 1 (1)

In Equation (1), R is the rank score of the ranked dimension (i.e., relational schema, partitioning technique,
storage format, or any other experimental dimensions). Such that, d represents the total number of parameters
(options) under that dimension (for instance five in case of schemas, see Fig. 2), Odim(r) denotes the number of
occurrences of the dimension being placed at the rank r (1st, 2nd ,..). Moreover, |Q| represents the total number of
queries. Rank scores define the Single-Dimensional (SD) ranking criteria that help to provide a high-level view of
the system performance across a set of tasks (e.g., queries in a workload) [19]. Table 2 shows a simple example of
applying the above formula for computing the rank scores of the relational schema dimension. The ExtVP schema
was placed in the “first” rank (six) times (i.e., performed the best in six queries), the “second” (six) times, the
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Table 2

Example of rank scores [19]

“third” (eight) times, the “fourth” (zero) times, and the last “fifth” also (zero) times. Thus, its overall ranking is
0.73. In contrast, the VP performed the worst with a rank score of 0.26. Intuitively, this means that the ExtVP
schema in this example is the best (i.e., it has the highest rank score), and the VP schema is the worst-performing
one.

Despite its generalization, Equation (1) is insufficient for ranking the configurations in a configuration set de-
fined C when it counts multiple dimensions [19]. The presence of trade-offs [19,22] reduces the accuracy of these
SD ranking functions. Thus, we introduced Multi-Dimensional ranking [19] by approaching Bench-Ranking as a
Multi-objective Optimization problem. In particular, we adopt the Pareto frontier optimization techniques,4 imple-
mented using Non-dominated Sorting Genetic Algorithm (NSGA-II) [10], to optimize the experimental dimensions
altogether and find the best-performing configuration in C.

Finally, our Bench-Ranking frameworks include two evaluation metrics to assess the effectiveness of the proposed
ranking criteria. In particular, we consider a ranking criterion is good if it does not suggest low-performing config-
urations and if it minimizes the number of contradictions within an experimental setting. When it comes to PPA,
practitioners are not interested in a configuration that is the fastest at answering any specific query in a workload as
long as it is never the slowest at any of the queries. To this extent, we identified two evaluation metrics [19], i.e.,

(i) Conformance, which measures the adherence of the top-ranked configurations w.r.t actual query results (see
Table 1);

(ii) Coherence which measures the level of (dis)agreement between two ranking sets that use the same ranking
criterion across different experiments (e.g., different dataset sizes).

We calculate the conformance according to Equation (2) by positioning an element in a ranking set w.r.t the
initial rank score. For instance, let’s consider a ranking criterion Rx with the top-3 ranked configurations (k = 3)
are Rk=3

x ={d.ii.3, b.ii.2,e.ii.4}, that overlap only with the bottom-3 ranked configurations (h = 3) in one query
Qx , as shown in Table 1. That is, Qh=3

x ={e.iii.1, e.iii.3, e.iii.4}, i.e., e.iii.4 is in the 60th position out of 60
ranks/positions (i.e., the last rank). Thus, the Conformance of (R3

x) = 1 − 1/(20 ∗ 3), when k = 3, h = 3, and
Q = 20.

A
(
Rk

) = 1 −
|Q|∑
i=0

k∑
j=0

Ā(i, j)

|Q| ∗ k
, Ā(i, j) =

{
1 Rk[j ] ∈ Qiih
0 otherwise

(2)

For coherence, we employ Kendall’s index5 according to Equation (3), which counts the number of pairwise
(dis)agreements between two ranking sets, Kendall’s distance between two ranking sets R1 and R2, where P is the
set of unique pairs of distinct elements. The larger the distance, the more dissimilar the ranking sets are.

K̄i,j (R1,R2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 R1[r1
i ] = R2[r2

i ] = i ∧ R1[r1
j ]

= R2[r2
j ] = j∧

r1
i − r1

j = r2
i − r2

j

1 otherwise

K(R1,R2) =
∑

{i,j}∈P

K̄i,j (R1,R2)

|P | (3)

4Pareto frontier aims at finding a set of optimal solutions if no objective can be improved without sacrificing at least one other objective.
5Kendall is a standard measure to compare the outcomes of ranking functions.



M. Ragab et al. / PAPAYA: Performance analysis of large RDF graphs processing made easy 7

Fig. 3. Papaya architecture and workflow.

We assume that ranking sets have the same number of elements. For instance, the K index between
R1 =(a.ii.3,a.i.3,b.ii.2) and R2 =(a.ii.3,a.i.3,c.iii.2) for 100M and 500M is 0.33, i.e., one disagreement out of
three comparisons.

4. PAPAYA

In this section, we present the requirement analysis for PAPAYA library and describe its architecture (Fig. 3).
We elicit PAPAYA’s requirements based on the implementation challenges we discussed in the introduction and on
the existing research efforts on benchmarking BD systems for processing and querying large RDF graphs [9,19,22,
27,28]. Before delving into the requirements, it is also important to list the assumptions under which PAPAYA is
designed. We derive the following assumptions from our work on the Bench-Ranking framework [19].

A.1 Posthoc Performance Analysis of One-Time Query Processing: Bench-Ranking framework [19], wrapped
in PAPAYA, only supports “One-Time” query processing of SPARQL queries mapped into SQL and runs on
top of big relational management systems (e.g., Spark-SQL). This excludes the performance analyses done
for continuous query processing [3].

A.2 Query workload includes only Conjunctive SPARQL SPJ queries: The query workload includes only
Conjunctive SPARQL Select-Project-Join (SPJ) queries for which there exists an SQL translation for a given
schema.

A.3 Query Engine is a black box: In PAPAYA, The query engine is treated as a black box, and thus the “pre-
processing” query optimization phase is not part of the analysis. The query optimization is delegated to the
Big data management systems’ optimizers (e.g., SparkSQL Catalyst).

4.1. Requirements

Given our assumptions, we can outline the requirements as follows:

R.1 Support for PPA: PAPAYA shall support the necessary abstractions required to support PPA. Moreover, by
default, it shall support existing Bench-Ranking techniques in [19]. (O.0)

R.2 Independence from the Key Performance Indicators (KPIs): PAPAYA must enable PPA independently
from the chosen KPI. In [19], we opted for query latency, yet one may need to analyze the performance in
terms of other metrics (e.g., memory consumption). (O.2)

R.3 Independence from Experimental Dimensions: PAPAYA must allow the definition of an arbitrary number
of dimensions, i.e., allow the definition of n-dimensional configuration space. (O.3)

R.4 Usability: PAPAYA prepares the experimental environment for processing large RDF datasets. Also, it sup-
ports decision-making, simplifying the performance data analytics. To this extent, data visualization tech-
niques and a simplified API are both of paramount importance. (O.0)

R.5 Flexibility and Extensibility: PAPAYA should be extensible both in terms of architecture and programming
abstractions to adapt to adding/removing configurations, dimensions, workload queries, ranking methods,
evaluation metrics, etc. It also should decouple data and processing abstractions to ease the integration of
new components, tools, and techniques. (O.1, O.3)
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Table 3

Summary of challenges and requirements mapping along with PAPAYA solutions

Challenges Requirements PAPAYA solutions

C.1: Experiments Preparation R4, R5 – Data Preparator that generates and loads graph data for distributed relational setups.

– User-defined YAML configurations files.

C.2: Portability and Usability R2, R3, R4, R5 – Data Preperator prepares graphs data ready for processing with any arbitrary
relational BD system.

– Internals & abstractions enable plugin-in new modules and programmable artifacts.

– Checking performance replicability whilst configuration changes.

C.3: Flexibility and Extensibility R1, R3, R5 – Allow adding/excluding experimental dimensions.

– Allow adding new ranking algorithms.

– Flexibility in shortening and enlarging the configuration space.

C.4: Compoundness and Complexity R1, R4 – Interactive Jupyter Notebooks.

– Variety of data and ranking visualizations

Fig. 4. PAPAYA internal abstractions.

4.2. Architecture, abstractions, and internals

This section presents the PAPAYA’s main components and shows how they fulfill the requirements. Table 3
summarizes the requirements for challenges mappings alongside the PAPAYA solutions. PAPAYA allows its users
to build an entire pipeline for querying big RDF datasets and analyzing the performance results. In particular, it
facilitates building the experimental setting considering the configuration space (described in Definition 1) specified
by users. This entails preparing and loading the graph data in a user-defined relational configuration space, then
performing experiments (executing a query workload on top of a relational BD framework), and finally analyzing
and providing prescriptions of the performance.

To achieve that, PAPAYA includes three core modules depicted in Fig. 3, i.e., the Data Preparator, the Executor,
and the Ranker. Moreover, PAPAYA relies on few core abstractions depicted in Fig. 4, i.e., Configuration, Experi-
ment, Result, and Rank. While detailing each module’s functionalities, we introduce PAPAYA workflow, which also
appears in Fig. 3, starting with the input is a configuration file that points to the input N-Triple file with the RDF
graph (Fig. 3 step (A)).

The first actor in the pipeline is the Data Preparator (DP), which prepares RDF graphs for relational processing.
It takes as input a configuration file that includes experimental options of interest. The configuration file is repre-
sented by the Configuration abstraction (see Fig. 4), which enables extensibility (R.5). Specifically, the DP allows
defining an arbitrary number of dimensions with as many options as specified (R.3). In particular, it considers the
dimensions specified in [19] (R.1), i.e., relational schemas, storage format, and partitioning technique. Therefore,
the DP automatically prepares (i.e., determines, generates, and loads) the RDF graph dataset with the specified
configurations that adapt with the relational processing paradigm to the storage destination (e.g., HDFS). More
specifically, DP currently includes four relational schemas commonly used for RDF processing, i.e., (a) ST, (b) VP,
(d) ExtVP, and (e) WPT.6 For partitioning, DP currently supports three partitioning techniques, i.e., (i) horizontal
partitioning (HP), (ii) subject-based partitioning (SBP), and predicate-based partitioning (PBP). Last but not least,

6Automating PT schema (“b” in Fig. 2) generation is not yet supported by the current PAPAYA DP.
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Fig. 5. RDF relational schema transformations in PAPAYA data preparator.

DP enables storing data using four HDFS file formats (i) CSV or (ii) Avro, which are row-oriented, and (iii) ORC or
(iv) Parquet, which are column-oriented storage formats [13].

The DP interface is generic, and the generated datasets are agnostic to the underlying relational system. The DP
prepares RDF graph data for processing with different relational BD systems, especially SQL-on-Hadoop systems,
e.g., SparkSQL, Hive, and Impala. Seeking scalability, the current DP implementation relies on SparkSQL, which
allows implementation of RDF relational schema generation using the SQL transformations. Notably, Apache Hive
or Apache Impala could be potential candidates for alternative implementation executors. However, SparkSQL also
supports different partitioning techniques and multiple storage formats, making it ideal for our experiments [19].

Figure 5 shows a sample of schema generation in PAPAYA DP component. First, the DP transforms the input
RDF graph (N-Triples file(s)) into an ST table schema (i.e., Fig. 5 Step (1)), and then other schemas are generated
using parameterized SQL queries.7 For instance, the VP and WPT schemas are generated using SQL queries given
the ST table as a parameter (i.e., Fig. 5 Step (2), and (3), respectively). While, the ExtVP schema generation relies
on VP tables to exist first (i.e., Step (4) in Fig. 5).

The Executor is the following module in PAPAYA workflow, which is the system that is subject to experimen-
tation (see Fig. 3 step B). For instance, in [9,19,21,28] the considered system is Apache SparkSQL. The executor
offers an abstract API to be extended (R.5). In practice, it (i) starts the execution pipeline in the external system,
(ii) it collects the performance logs (R.2), and currently, it persists them on a file system, e.g., HDFS. The Ex-
ecutor expects a set of experiments to run defined in terms of (i) a set of queries, (ii) an RDF dataset (size), and
(iii) a configuration (defined in Definition 1). The Experiment abstraction is defined in Fig. 4. We decided to wrap
the running experiments in a SparkSQL-based executor (SparkExecutor). The experiment specifications (alongside
the configurations) are passed to this wrapper as parameters. It is worth mentioning that the Executor assumes
the query workload is available in the form of SQL queries (Assumption A.2) running in a “One-Time” style [3]
(Assumption A.1). In the current stage, PAPAYA does not support SPARQL query translation nor SQL query map-
pings, this work is left for the future roadmap of PAPAYA (see Section 6). It is also important to note that the current
version of PAPAYA delegates the query optimization to the executor’s optimizer (Assumption A.3).

The results logs are then loaded by the Ranker component into python Dataframes to make them available for
analysis (see Fig. 3 step (C)). The Ranker reduces the time required to calculate the rankings, obtain useful data
visualizations, and determine the best-performing configurations while checking the performance replicability. To
fulfill R.2, i.e., the Ranker component operates over a log-based structure whose schema shall be specified by the

7schema SQL-based transformations are kept in the DP module on PAPAYA’s GitHub repository due to space limits.
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user in the input configurations. Moreover, to simplify the usage and the extensibility (R.5), we decoupled the
performance analytics (e.g., ranking calculation) from its definitions and visualization. In particular, the Rank class
abstraction reflects on the ranking function (Definition 3) that takes as input data elements and returns a ranking set.
To fulfill R.4, a default data visualization for the rank shall be specified. However, this is left for the user to specify
due to the specificity of the visualization.

The Rank call allows defining additional ranking criteria (R.5). In addition, to fulfill R.1, PAPAYA already im-
plements SD as well as Multi-Dimensional (MD) criteria specified in [19].

PAPAYA allows its users to interact with the experimental environment (R.5) using Jupyter Notebook. To facilitate
the analysis, it integrates data visualization (R.4) that can aid decision-making. Thus, the Rank class includes a
specific method to implement, where to specify the default visualization.

Finally, to evaluate the raking criteria, we introduced in Section 3.2 the notions of coherence and conformance
(R.1). Ranking criteria evaluation metrics are employed to select which ranking criterion is “effective” (i.e., if it is
not suggesting low-performing configurations). In our experiments, we use such metrics by looking at all ranking
criteria and comparing them with the results across different scales, e.g., dataset sizes (100M , 250M , and 500M).
Notably, to minimize the dependencies, we implemented the ranking algorithms and evaluation metrics from scratch.

5. PAPAYA in practice

In this section, we explain how to use PAPAYA in practice, showcasing its functionalities with a focus on perfor-
mance data analysis, flexibility, and visualizations. In particular, we design our experiments in terms of (i) a set of
SPARQL queries that we manually translated into SQL accordingly with the different relational schemas, (ii) RDF
datasets of different sizes automatically prepared using our Spark-based DataPreparator, and (iii) a configuration
based on three dimensions as in [19], i.e., schema, partitioning techniques, and storage formats.

In Bench-Ranking experiments [19], we used the SP2B [12] benchmark datasets. In this paper, we aim to use a
different benchmark to check the robustness of PAPAYA Bench-Ranking criteria and their evaluation metrics. Thus,
we present the results of experiments opting for the WatDiv benchmark [5].8 WatDiv benchmark includes a data
generator and a query workload with various graph patterns, SPARQL query shapes, and selectivities that make
the analysis non-trivial. In our experiments, which are based on the average results of five runs,9 we measure the
performance of SparkSQL as a BD relational engine in terms of query latency. However, alternative KPIs, e.g.,
memory consumption, could be easily used in PAPAYA.

Listing 1 shows a full example of PAPAYA pipeline, starting by deciding the configurations (in terms of three
dimensions and their options, e.g., list of schemas, partitioning techniques, storage formats to prepare, load, and
benchmark) (Listing 1 lines 4–8). Then, an experiment is set up for running, defining the dataset size (e.g., “100M”
triples), a list of queries to execute or exclude from the workload, and the configurations (Listing 1 line 10). An
executor is defined for running the experiment along with the number of times experiments will be run (Listing 1
line 11). The results (runtime logs) are kept in log files in a specified path (e.g., HDFS or a local disk). The Bench-
Ranking phase starts when we have the results in logs (Listing 1 line 13).10 For instance, we call the SDRank (List-
ing 1 line 15) for calculating rank scores for the “schema” dimension, alongside specifying the number of queries
(“q”), and number of options under this dimension (“d” in Equation (1)). The MD-Ranking(i.e., Pareto fronts) is
applier in two ways. The first one is called ParetoQ (Listing 1 line 20), which applies the NSGA-II algorithm by
considering the ranking sets obtained while sorting each query results individually. Using the first method, the algo-
rithm aims at minimizing the query runtimes across all dimensions. The second one is called the ParetoAgg (Listing 1
line 21), which operates on the SD ranking criteria. By using the second method, the algorithm aims to maximize the
rank scores of the three SD-ranking criteria altogether, i.e., Rs , Rp, and Rf . The user can plot the SD rank scores
and the MD Pareto ranking criterion (Listing 1 line 23). In addition, the user can evaluate the effectiveness of the
ranking criterion using conformance and coherence metrics (Listing 1 line 26).

8Nonetheless, seeking conciseness, we keep SP2B results on the GitHub repository.
9Benchmarks’ query workload (in SQL) and experiments runtimes: https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking.
10It is worth noting that the performance analyses, e.g., Bench-Ranking, could start directly if the performance data (logs) are already present.

https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking
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Listing 1. Experiment design example in PAPAYA

Table 4

WatDiv best-performing (Top-3) configurations according to the SD and MD ranking criteria

Di WatDivmini WatDivfull

R3
f

R3
p R3

s ParetoQ ParetoAgg R3
ta R3

f
R3

p R3
s ParetoQ ParetoAgg R3

ta

100M a.ii.3 a.ii.3 c.i.4 c.ii.2 a.ii.3 a.ii.3 a.ii.3 c.ii.2 d.iii.4 d.iii.2 c.ii.2 c.ii.2

b.ii.2 a.ii.4 c.ii.2 c.i.2 c.ii.2 c.ii.2 a.i.3 b.iii.3 d.iii.1 d.iii.3 d.iii.3 d.iii.3

a.i.3 a.ii.2 c.i.3 b.ii.2 b.ii.2 b.ii.2 b.ii.2 c.ii.1 d.iii.3 d.iii.4 b.ii.2 b.ii.2

250M a.ii.3 a.ii.3 c.i.4 c.i.4 c.i.4 c.i.4 a.ii.3 a.ii.1 d.iii.4 d.iii.2 d.iii.3 d.iii.3

a.i.3 a.ii.4 c.i.3 c.ii.2 b.ii.2 b.ii.2 a.i.3 d.iii.3 d.iii.3 d.iii.3 c.i.4 c.i.4

c.i.4 a.ii.2 c.i.2 c.i.2 a.ii.3 a.ii.3 b.iii.2 a.ii.2 d.iii.2 c.i.4 a.iii.4 a.iii.4

500M a.ii.3 a.ii.3 c.ii.4 c.ii.3 b.ii.2 b.ii.2 a.ii.3 c.ii.2 d.iii.2 d.ii.2 d.ii.2 c.ii.3

a.i.3 a.ii.4 c.i.4 c.ii.4 c.ii.3 c.ii.3 a.i.3 a.iii.2 d.iii.4 c.ii.3 c.ii.3 d.ii.2

c.i.3 a.ii.2 c.i.3 c.i.3 c.ii.4 c.ii.4 c.iii.2 a.iii.4 d.iii.1 a.iii.4 a.iii.4 a.iii.4

Table 4 shows the top-3 ranked configuration according to the various ranking criteria, i.e., Single-Dimension and
Multi-Dimensional (Pareto) for the WatDiv datasets (i.e., 100M, 250M, 500M triples). In addition, Table 5 provides
the ranking evaluation metrics (calculated according to Equations (2) and (3)).

5.1. Rich visualizations

To fulfill R.4, PAPAYA decouples data analytics from visualizations. Meaning that the user can specify his/her
visualizations of interest with the performance data. Nevertheless, PAPAYA still provides several interactive and
extensible default visualizations that help practitioners rationalize the performance results and final prescriptions.
In addition, visualizations are simple and intuitive for understanding several Bench-Ranking definitions, equations,
and evaluation metrics. For instance, Fig. 6 (a-c) shows three samples of SD-ranking criteria plots. In particular,
they show how many times a specific dimension’s (e.g., the schema in Fig. 6 (a)) alternatives/options (ST, VP,
PT,..etc) achieve the highest or the lowest ranking scores. Figure 7 shows the SD ranking criteria w.r.t a simple
geometrical representation (detailed in the following sections) that depicts the triangle subsumed by each dimen-
sion’s ranking criterion (i.e., Rs, Rp, and Rf). The triangle sides present the trade-off ranking dimensions and show
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Table 5

Ranking coherence (Kendall distance, the lower the better) & conformance across WatDiv datasets (D1=100M, D2=250M, D3=500M)

WatDivMini WatDifull

Conformance Coherence Conformance Coherence

D1 D2 D3 D1–D2 D1–D3 D2–D3 D1 D2 D3 D1–D2 D1–D3 D2–D3

Rs 88.33% 91.67% 93.33% 0.09 0.12 0.06 96.00% 94.00% 93.00% 0.1 0.13 0.07

Rp 38.33% 13.33% 5.00% 0.14 0.14 0.14 73.00% 39.00% 36.00% 0.09 0.28 0.17

Rf 63.33% 46.67% 35.00% 0.16 0.39 0.3 64.00% 32.00% 43.00% 0.14 0.25 0.15

ParetoQ 95.00% 98.33% 95.00% 0.14 0.25 0.14 92.00% 98.00% 98.00% 0.1 0.15 0.07

ParetoAgg 88.33% 73.33% 93.33% 0.16 0.25 0.2 87.00% 71.00% 76.00% 0.17 0.24 0.15

Rta 88.33% 73.33% 93.33% 0.2 0.24 0.17 89.00% 84.00% 76.00% 0.15 0.22 0.13

Fig. 6. Examples on SD rank scores over different dimensions (100M), the higher the better.

Fig. 7. Dimensions trade-offs using single-dimensional ranking (Rs ,Rf , and Rp).

that the SD-ranking criteria may only optimize towards a single dimension at a time. The MD-ranking criteria, i.e.,
ParetoAgg

11 results are depicted using a 3D plot in Fig. 8 (a). Pareto fronts are depicted by the green shaded area
of the three experimental dimensions of the Bench-Ranking (for WatDiv 500M triples dataset12). Each point of this
figure represents a solution of rank scores (i.e., a configuration in our case).

PAPAYA visualizations allow explaining the conformance and coherence results using simple plots. For instance,
Fig. 9 (a) shows the coherence of the top-5 ranked configurations of the Rs criterion in the 100M dataset while
scaling to the larger datasets, i.e., 250M and 500M. PAPAYA explains the conformance of the Bench-Ranking cri-
teria by visualizing the conformance of the top-3 ranked configurations (or any arbitrary number of configurations)
with the actual query rankings (Table 1). The green color represents the level of conformance, and the red depicts a

11ParetoQ cannot be visualized, i.e., as it uses more than three dimensions, one for each query of the workload [19].
12Due to space limits, we keep other Pareto figures on the PAPAYA GitHub page.
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Fig. 8. Pareto fronts, and queries best-worst configuration examples.

Fig. 9. Heatmap shows the coherence of the Rs criterion (Top-5 configurations) scaling from 100M to larger dataset scales. The stacked plot
shows the conformance of the top-3 ranked configurations.

configuration that is performing worse than the h worst rankings. Thus, this may explain why Rp and Rf criteria
have low conformance results in Table 4, while the other criteria have relatively higher conformance values.

Practitioners can also use PAPAYA visualizations for fine-grained ranking details. For instance, showing the
best and worst configurations for each query (as shown in Fig. 8 (b) for example of three queries of the WatDiv
workload). Such detailed visualizations could help the user rationalize the final prescriptions of PAPAYA.

5.2. PAPAYA flexibility & extensibility

Adding/Removing Configurations/Queries.
To show an example of the extensibility of PAPAYA, we implement the Bench-Ranking criteria over a subset

of the configurations and subset of the WatDiv benchmark tasks (i.e., queries); we call it WatDivmini. In particular,
we run PAPAYA Bench-Ranking with WatDiv excluding two schemas (i.e., schema advancements: ExtVP, and
WPT), one partitioning technique (i.e., Predicate-based), and one storage format (i.e., Avro). Then, we include all
the configurations back to test the extensibility with the WatDiv experiments (see the left part of Table 4). The
configurations’ exclusion and inclusion are specified easily from the YAML configuration file (as shown in Listing 2
lines 7–12), i.e., PAPAYA considers only the specified configurations and ranks accordingly.

The right side of Table 4 shows the top-ranked three configurations according to the specified configurations.
Intuitively, results differ according to the available ranked configuration space. For instance, with the inclusion
of the ExtVP schema (i.e., ‘d’), it dominates instead of the PT schema (i.e., ‘c’) in WatDivmini for ranking by
schema (Rs) criterion. In WatDivmini, excluding the Predicate partitioning (‘iii’), the subject-based partitioning
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Listing 2. YAML configuration file for various experiments in PAPAYA

Table 6

Schemas global ranking across various configurations

(‘ii’) completely dominates (one exception) in the Rp criterion across the different dataset sizes. Including it back,
the predicate-based partitioning (‘iii’) significantly competes with the subject-based partitioning technique in most
of the ranking criteria, i.e., Rp, Rs , ParetoAgg/Q, and Rta .

With such flexibility, PAPAYA also provides several dynamic views on the ranking criteria. For example, Table 6
shows the SD ranking of the schema dimension by changing the configuration space. Particularly, it shows how the
global ranking of each relational schema (or any other specified dimension) could change by including/excluding
configurations of the other dimensions. The table shows that the order of the global schema ranks changes by
including all configurations (“Full Conf. Space”) than including/excluding the predicate partitioning or CSV format,
i.e., “PBP/!PBP”, “CSV/!CSV”, respectively. For instance, the PT schema global ranking is interestingly oscillating
with those changes in the available configurations.

Adding/Removing Full Experimental Dimension. PAPAYA’flexibility extends to the experimental dimensions,
i.e., it is possible to add/remove dimensions easily. For instance, we can fully exclude the partitioning dimension
in case experiments are executed on a single machine (see Listing 2 lines 13–18). In [23], we run experiments on
SparkSQL with different relational schemas and storage backends yet without data partitioning. Table 7 shows the
best-performing (top-3) configurations in WatDiv experiments when excluding the partitioning dimension. Table 8
shows the conformance and coherence metrics’ results for the various ranking criteria.13

Adding Ranking Criterion. PAPAYA abstractions enable users to plug in a new ranking criterion besides the
already existing ones (i.e., the abstract Rank class, Section 4). Let’s assume we seek usage of a simple ranking
criterion that leverages a geometric interpretation of the SD rankings of the three experimental dimensions based on
the triangle area subsumed by each ranking criterion (Rs , Rp, and Rf ).

In Fig. 10, the triangle sides represent the SD-ranking dimensions’ rank scores. Thus, this criterion aims to max-
imize this triangle’s area (i.e., the blue triangle). The closer to the ideal (outer red triangle), the better it scores.
In other words, the bigger the area of this triangle covers, the better the performance of the three ranking dimen-
sions altogether. The red triangle represents the case with the maximum/ideal rank score, i.e., R = 1 for the three

13Notably, the Rp and Rta criteria cannot be calculated when excluding the partitioning dimension.



M. Ragab et al. / PAPAYA: Performance analysis of large RDF graphs processing made easy 15

Table 7

Best-performing configurations, excluding the partitioning dimension

Di Rs Rf ParetoQ ParetoAgg

100M d.i.1 a.i.3 c.i.2 c.i.2

c.i.2 b.i.2 d.i.2 b.i.2

d.i.2 e.i.4 d.i.4 d.i.1

250M c.i.1 a.i.3 d.i.2 d.i.2

d.i.2 e.i.4 c.i.4 c.i.1

c.i.3 d.i.2 c.i.2 e.i.4

500M d.i.2 a.i.3 d.i.2 d.i.2

c.i.3 d.i.2 c.i.3 a.i.3

c.i.1 e.i.4 c.i.4 c.i.3

Table 8

Criteria evaluation (conform.ance, and coher.ence), excluding partitioning

Metric D Rs Rf ParetoQ ParetoAgg

Conform. 100M 97.50% 67.50% 95.00% 92.50%

250M 97.50% 30.00% 100.00% 97.50%

500M 100.00% 52.50% 100.00% 52.50%

Cohere. 100M–250M 0.11 0.17 0.11 0.19

100M–500M 0.28 0.16 0.30 0.18

250M–500M 0.17 0.08 0.15 0.09

Fig. 10. Triangle area criterion.

dimensions (as, 0 < R <= 1). Equation (1) defines the blue triangle area; we call it ranking by triangle area (Rta).

TriangleArea(Rta) = 1

2
sin(120) ∗ (Rf ∗ Rp + Rs ∗ Rp + Rf ∗ Rs) (4)

The formula (Cf. Equation (4)) computes the actual triangle area. Simply, it sums up the triangle area of the three
triangles A, B, and C by two of its sides which are the rank scores of each dimension, i.e., Rs , Rp, or Rf (dashed
triangle sides), and the angle between both of them (i.e 120 in this case). For example, the actual area of the blue
triangle is Rta = 1

2 sin(120)(0.75∗0.771+0.73∗0.77+0.75∗0.73) = 0.73. In addition to the SD and MD ranking
criteria classes, Listing 3 shows how to extend PAPAYA with a new Ranker class, i.e., RtaCriterion.

It is worth mentioning that the idea behind Rta is intuitively similar to ParetoAgg because both aim to maximize
the rank scores of the three dimensions altogether. However, unlike ParetoAgg that is multi-dimensional, Rta cannot
extend to dimensions above three. For simplicity, we used Rta as an exemplar to showcase that PAPAYA abstractions
enable extending new ranking algorithms/criteria. Table 4 shows the top-5 best-performing configurations ranked
by Rta . Results show that ParetoAgg results perfectly conform with Rta top-ranked configurations (especially in the
top-3 ranked configurations). Table 5 also shows that Rta criterion scores high conformance ratios across WatDiv
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Listing 3. Plugin the triangle-area as new ranking criterion

Fig. 11. Schema replicability across changing partitioning or storage formats.

benchmark datasets. It also scores high coherence (few disagreements) through the scalability of WatDiv datasets.
In both WatDiv experiments (i.e., with mini and full dimensions inclusion), the Rta conformance and coherence
values are very close to the ParetoAgg criterion.

5.3. Checking performance replicability

PAPAYA also activates the functionality of checking the BD system’s performance replicability when introducing
different experimental dimensions. In particular, it enables checking the system’s performance with one specific
dimension while changing the parameters of the other dimensions. For example, Figs 11 (a) and (b) respectively
show the impact of the partitioning and storage on the performance of the schema dimension. The Figures show
how the performance of the system with a configuration can significantly change with changing other dimensions.

PAPAYA can also check the performance replicability by comparing two configurations as discussed in [21]. For
instance, PAPAYA can compare the schema optimizations (i.e., WPT, and ExtVP) w.r.t their baseline ones (i.e., PT,
and VP) while introducing different partitioning techniques and various HDFS storage formats that are different
from the baseline configurations [27,28].

Table 9 shows the effect of introducing partitioning techniques (right of the table) and different file formats (left of
the table) different from the baseline configurations (i.e., Vanilla HDFS partitioning and Parquet as storage format).
The trade-offs effect is evident in the replicability results. Indeed, WPT outperforms PT schema only with 54.16%
in the queries using the baseline Vanilla HDFS partitioning technique across all storage formats and only about 39%
for the baseline Parquet format across all partitioning techniques. Conversely, we observe significant degradation
of WPT schema optimization, moving to other configurations with both partitioning and storage dimensions. For
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Table 9

The replicability of schema advancements (i.e., WPT, ExtVP) VS. baselines (i.e., PT, VP), WatDiv 500M dataset

Table 10

Summary of objectives, challenges, and requirements

Objectives Challenges Requirements

O.0 C.1, C.2 R.2–R.5

O.1 C.2, C.3 R.1–R.5

O.2 C.2, C.3, C.4 R.1–R.5

O.3 C.2, C.3, C.4 R.1–R.5

instance, WPT outperforms PT only with about 8% and 7% using other different partitioning techniques, i.e., Hori-
zontal and Subject, respectively. The same occurs with changing the storage formats different from baseline Parquet.
Similarly, ExtVP versus VP schema performance results confirm our observations. PAPAYA enables showing those
trade-offs of considering alternative storage file formats and partitioning techniques alongside the experiments’
query evaluation.

Table 10 provides a concise overview of the objectives, delineating the challenges encountered during their pur-
suit, and outlines the set of requirements necessary for accomplishing these objectives.

6. Conclusion and roadmap

This paper presents PAPAYA, an extensible library that reduces the efforts needed to analyze the performance
of BD systems used for processing large (RDF) graphs. PAPAYA implements the performance analytics methods
adopted in [23,27,28] including an novel approach for prescriptive performance analytics we presented in [19].

Inspired by Gartner’s analysis methodology [11], Fig. 12 reflects the amount of human intervention required to
make a decision with the descriptive and diagnostic analyses of the performance results. Descriptive and diagnostic
analytics are limited, and cannot guide practitioners directly to the best-performing configurations in a complex
solution space. This is shown in this paper with the lack of performance replicability (shown Section 5.3). Indeed,
the performance of the BD system is affected by changing the configurations, e.g., oscillating schema performance
with changing partitioning, and storage options (Fig. 11). On the other side, PAPAYA aims to reduce the amount of
work required to interpret performance data. It adopts the Bench-ranking methodology with which practitioners can
easily decide the best-performing configurations given an experimental solution space with an arbitrary number of
dimensions. Although descriptive discussions are limited, PAPAYA still provides several descriptive analytics and
visualizations on the performance to explain the final decisions given by PAPAYA. PAPAYA also aims to reduce
the engineering work required for building an analytical pipeline for processing large RDF graphs. In particular,
PAPAYA prepares, generates, and loads data ready for big relational RDF graph analytics.

PAPAYA is developed considering the ease of use and the flexibility aspects allowing extending the library with
an additional arbitrary number of experimental dimensions to the solution space. Moreover, PAPAYA provides
abstractions on the level of ranking criteria, meaning that the user can use his/her ranking functions for ranking the
solution space. Seeking availability, we provide PAPAYA as an open-source library under MIT license and published
at a persistent URI. PAPAYA’s GitHub repository includes tutorials and documentation on how to use the library.

As a maintenance plan, PAPAYA’s roadmap includes:

1. Covering the phase of query evaluation into PAPAYA pipeline. In particular, we plan to provide native support
of SPARQL by incorporating native triple stores for query evaluation.
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Fig. 12. Performance analysis methodology, and how PAPAYA reduces human intervention in BD analytics.

2. Incorporating SPARQL into SQL translation for a given schema, i.e., query translation is a schema-dependent
task. This can be approached using advancements of R2RML mapping tools (e.g., OnTop) [8].

3. Wrapping other SQL-on-Hadoop executors to PAPAYA; thus, the performance of the engines could also be
compared as well as enabling benchmarking of other KG data models (e.g., property graphs [17]) in PAPAYA.

4. Using orchestration tools (such as Apache Airflow) to monitor the PAPAYA pipelines.
5. Integrating PAPAYA with tools like gmark [7], which generates graphs and workloads, and ESPRESSO [20],

which enables search and query functionalities over personal online datastores as well as personal KGs.
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