
CORRECTED P
ROOF

Semantic Web -1 (2024) 1–45 1
DOI 10.3233/SW-243571
IOS Press

smart-KG: Partition-Based Linked Data
Fragments for querying knowledge graphs
Amr Azzam a,*, Axel Polleres a,b, Javier D. Fernández c and Maribel Acosta d,e

a Department of Informations Systems and Operations, Vienna University of Economics and Business, Austria
E-mails: aazzam@wu.ac.at, axel.polleres@wu.ac.at
b Complexity Science Hub Vienna, Austria
c Data Science Acceleration (DSX), F. Hoffmann-La Roche, Basel,Switzerland
E-mail: javier_d.fernandez@roche.com
d Department of Computer Science, Technical University of Munich, Germany
E-mail: maribel.acosta@tum.de
e Faculty of Computer Science, Ruhr University Bochum, Germany

Editor: Cogan Shimizu, Wright State University, USA
Solicited reviews: Vojtěch Svátek, Prague University of Economics and Business, Czech Republic; Stasinos Konstantopoulos, Institute of
Informatics and Telecommunications, Greece; Antrea Christou, Wright State University, USA; Two anonymous reviewers

Abstract. RDF and SPARQL provide a uniform way to publish and query billions of triples in open knowledge graphs (KGs) on
the Web. Yet, provisioning of a fast, reliable, and responsive live querying solution for open KGs is still hardly possible through
SPARQL endpoints alone: while such endpoints provide a remarkable performance for single queries, they typically can not
cope with highly concurrent query workloads by multiple clients. To mitigate this, the Linked Data Fragments (LDF) framework
sparked the design of different alternative low-cost interfaces such as Triple Pattern Fragments (TPF), that partially offload the
query processing workload to the client side. On the downside, such interfaces still come with the expense of unnecessarily
high network load due to the necessary transfer of intermediate results to the client, leading to query performance degradation
compared with endpoints. To address this problem, in the present work, we investigate alternative interfaces, refining and ex-
tending the original TPF idea, which also aims at reducing server-resource consumption, by shipping query-relevant partitions of
KGs from the server to the client. To this end, first, we align formal definitions and notations of the original LDF framework to
uniformly present existing LDF implements and such “partition-based” LDF approaches. These novel LDF interfaces retrieve,
instead of the exact triples matching a particular query pattern, a subset of pre-materialized, compressed, partitions of the orig-
inal graph, containing all answers to a query pattern, to be further evaluated on the client side. As a concrete representative of
partition-based LDF, we present smart-KG+, extending and refining our prior work (In WWW ’20: The Web Conference 2020
(2020) 984–994 ACM / IW3C2) in several respects. Our proposed approach is a step forward towards a better-balanced share of
the query processing load between clients and servers by shipping graph partitions driven by the structure of RDF graphs to group
entities described with the same sets of properties and classes, resulting in significant data transfer reduction. Our experiments
demonstrate that the smart-KG+ significantly outperforms existing Web SPARQL interfaces on both pre-existing benchmarks
for highly concurrent query execution as well as an accustomed query workload inspired by query logs of existing SPARQL
endpoints.

Keywords: Knowledge graph, SPARQL, Linked Data Fragments, graph partitioning, availability

*Corresponding author. E-mail: aazzam@wu.ac.at.

1570-0844 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:aazzam@wu.ac.at
mailto:axel.polleres@wu.ac.at
mailto:javier_d.fernandez@roche.com
mailto:maribel.acosta@tum.de
mailto:aazzam@wu.ac.at
https://creativecommons.org/licenses/by/4.0/

CORRECTED P
ROOF

2 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

1. Introduction

Knowledge Graphs (KGs) have emerged as a promising foundation of data management to enable the construc-
tion of scalable data models that represent a collection of interlinked, diverse, and heterogeneous facts about entities
and the relations between these diverse entities [17]. While the adoption of KGs has tangible benefits for commer-
cial applications including Google, Microsoft, and Facebook, to name a few industry-led efforts, these mainly aim
at building mostly centralized large-scale knowledge repositories empowering their providers’ services. In addi-
tion to these efforts, several research fields have recognized the potential of KGs for scalable, decentralized data
integration through the provision and inter-linking of diverse knowledge bases on the Web. Indeed, driven by the
Linked Data principles, the amount of open KGs published on the Web has seen continuous growth over the past
decade, constructing thousands of interconnected KGs connected as Linked Data, many of which comprise billions
of edges [17]. Examples of such openly available interlinked KGs include DBpedia [13], Freebase1 [16], Yago [75],
and Wikidata [79]. These KGs are based on the semi-structured RDF data model and SPARQL query language to
allow users to perform queries on the published KG following the Linked Data principles. These open KGs are
queryable via Web interfaces such as public SPARQL endpoints or downloadable data dumps.

With the continuous growth of open KGs on the Web in both sizes and numbers, providing reliable queryable ac-
cess to RDF graphs [30] encounters a serious challenge. Data publishers typically provide server-side access through
public SPARQL endpoints; yet, whereas RDF triple stores offer impressive performance with single queries, they
are resource-hungry (e.g., expensive to host) and hard to maintain in case of serving complex queries on large KGs
to concurrent clients [11,69]. This imposes the main threat to the progression of open KGs, since availability under
high-demanding queries and limited server resources cannot be guaranteed [64]. For instance, SPARQLES [77], an
online service for tracking the availability of 557 SPARQL endpoints, shows that only 29.56% of these endpoints
were available (e.g. uptime last 7 days) as of Dec. 2020, and getting down to as few as 14.34% by August 2023.2

To alleviate SPARQL endpoints limitations, Linked Data Fragments (LDF) has introduced a foundational frame-
work to explore a spectrum of potential Web querying interfaces over KGs which distribute the query processing
load between servers and clients [38]. Current LDF proposals enable data providers to publish large KGs based on
a low-cost solution for evaluating low-expressive queries and that enhances servers availability. Examples of these
interfaces are Triple Pattern Fragments (TPF) [78] and Bindings-Restricted TPF (brTPF) [37]. Yet, the evaluation
of full SPARQL queries over these interfaces sometimes suffers from drastic performance degradation, due to local
joins of query fragments on the client combined with a potential transfer of large unnecessary intermediate results,
leading additionally to high network traffic between clients and servers.

In order to address the limitations of low-expressive LDF interfaces, in our work, we explore an alternative
approach that rather will ship a set of KG partitions that can be locally queried on the client-side to retrieve the
exact answer of the query. We call this approach Partition-Based Linked Data Fragments: partition-based LDF
generalizes LDF interfaces, which returns compressed and queryable partitions that can be used to answer several
triple patterns in a single request. In this context, serving KG partitions drastically reduces the need for unnecessary
data transfers and a high number of requests in shared server- and client-side query processing. Hence, in this work,
we first align formal definitions to uniformly present a variety of different existing LDF interfaces, and then we
present a formalization of existing KG partitioning techniques (e.g., horizontal, vertical, etc.) to as partition-based
LDF under the umbrella of the framework.

As a concrete implementation of a partition-based LDF, we initially proposed smart-KG [15], which is based
on family partitioning. Family partitioning is inspired by Characteristic Sets [29,62], which captures the entities
(subjects) represented with the same set of predicates and groups them into star-shape KG partitions on the server-
side. Family partitioning in its original form is optimized to serve star queries with unbound objects, that is, without
restrictions on the object values. Our initial results in [15], which we herein significantly extend, show that shipping
compressed and queryable family partitions, increases the server availability while achieving competitive query
performance. As we will show in the present paper, there is still room for reducing the shipped KG partitions by

1In fact, freebase, after being one of the first openly available KGs, has been discontinued and commercially been acquired and subsumed in
Google’s KG, cf. https://developers.google.com/freebase, last accessed August 2023.

2https://sparqles.ai.wu.ac.at/availability, last accessed August 2023.

https://developers.google.com/freebase
https://sparqles.ai.wu.ac.at/availability

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 3

further developing the partitioning mechanism. For instance, in practice, many star-shaped sub-queries include at
least some bound objects for the rdf:type predicate. To verify this claim, we have analyzed the real-world LSQ query
log [67], and found that 88% of the queries contain star-shaped patterns with at least a type predicate with a bound
object value (i.e. to a class).

Motivated by these findings, in this paper, we propose, formalize, and extend smart-KG towards smart-KG+,
where we additionally introduce a graph partitioning technique named typed family-partitioning that benefits from
this phenomenon by horizontally partitioning the families based on the classes of the entities. In addition, we propose
a new smart-KG+ server-side partition-aware query planner, not present in smart-KG, to create an optimized
query plan where the subqueries within a query are ordered based on the pre-computed cardinality estimations (i.e.
characteristic sets): while minimally increasing server-side overhead for query planning, compared with the original
smart-KG, based on the received query plan from the server, we can show increased effectiveness of the approach;
we perform joins on the client-side locally based on implementing an asynchronous pipeline of iterators executing
first the most selective iterator in order to produce the join results in an incremental fashion.

Finally, we evaluate smart-KG+ and existing approaches using synthetic and real-world KGs ranging from
10 million up to 1 Billion triples. Overall, our results show that smart-KG+ is on average 10 times faster, uses
5 times less network traffic, sends 20 times fewer requests, and requires 5 times less server CPU usage in an
extensive comparison with not only the original, preliminary version of smart-KG, but also with other state-of-
the-art approaches that fall within our generalised notion of (single-partition as well as partition-based) LDF.

Contributions. In summary, the novel contributions of this work are as follows:

C1 We extend the LDF specification and align formal definitions to uniformly present different LDF interfaces,
including our introduced partition-based LDF approaches.

C2 We analyze existing partitioning techniques for RDF graphs and discuss their applicability to serve as parti-
tioning mechanisms for partition-based LDF interfaces.

C3 We present a concrete implementation of partition-based LDF, smart-KG+, that ships compressed,
queryable KG partitions to distribute the processing of SPARQL queries between clients and servers. Our
approach employs a new RDF graph partitioning technique named (typed) family-partitioning which extends
family partitioning technique introduced in [15] to consider both predicates and classes specified in a query.

C4 We prove smart-KG+’s correctness, in terms of soundness and completeness.
C5 Finally, we conduct an extensive empirical evaluation of concurrent query processing using smart-KG+

and state-of-the-art LDF approaches on synthetic and real-world KGs.

Paper Organization. The remainder of this paper is structured as follows. The background of this work is in
Section 2. In Section 3, we introduce possible concrete implementations of LDF APIs based on partition shipping.
We present a design overview of the proposed approach smart-KG+ in Section 4. In Section 4.2, we detail the KG
partition creation process. Section 4.3 elaborates the query processing of smart-KG+ and the dynamicity between
clients and the server. An empirical evaluation and results are discussed in Section 5. We conclude in Section 6,
where we also highlight future work directions.

2. Background

In this section, we first present basic notions on the RDF data model and the SPARQL query language. Then, we
provide definitions alignment with the well-known Linked Data Fragment framework.

2.1. RDF and SPARQL

The Resource Description Framework (RDF) [74] is a graph-based data model to represent information about
web resources (e.g. documents, people, sensors, etc.) and their relationships in the form of triples (subject, predicate,
object) ∈ (U ∪ B) × U × (U ∪ B ∪ L), where U , B, L are infinite, mutually disjoint sets of IRIs, blank nodes, and
literals, respectively [32].

CORRECTED P
ROOF

4 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Let t be a single RDF triple belonging to the RDF knowledge graph G. We use subj(t), pred(t), and obj(t)
to denote the components of t , which represent RDF terms including URIs/IRIs, blank nodes, and literals. The
RDF knowledge graph G is a finite set of such triples, where subj(G), pred(G), and obj(G) represent the subjects,
predicates, and objects contained within G.

RDF graphs can be queried using the SPARQL [34] query language, which relies on graph pattern matching. The
atomic expression of SPARQL is a triple pattern tp from (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V) where elements from
a set V of variables are permitted, which are disjoint with the previously mentioned RDF terms U , B and L.

Note that, in the context of our introduced work, without loss of generality – and similar to [78] – (i) we do not
consider explicitly blank nodes in query patterns, which are just synonyms for (non-distinguished) variables in query
patterns, and also (ii) assume blank nodes in the graphs G just as constants like IRIs, leaving out the intricacies of
blank node matching in the definition of the SPARQL specification [34].

A Basic Graph Pattern (BGP) consists of a conjunction of triple patterns also represented as a set {tp1, . . . , tpn}.
We denote (left-linear join order) query execution plans using sequences (. . .), i.e., for instance, (tp1, . . . , tpn)

denotes a left-linear query execution plan (. . . (tp1 �� tp2) �� . . .) �� tpn) where �� denotes a join operator.
Apart from BGPs, we will also consider in some discussions in this paper FILTER patterns, i.e., if P is a BGP and

φ is a FILTER condition, then P FILTER φ is called a filtered graph pattern (FGP). For the sake of this paper, we
restrict ourselves to simple filter conditions of the form φ = (term θ const), where term is a subject, predicate, or
object of triples, and θ is a comparison operator such as <,>,=,�, and �. In the general case, FILTER conditions
could possibly contain multiple terms connected by the logical connectors such as ¬, ∨, and ∧, etc. For any (BGP
or FGP) query pattern Q over an RDF graph G, we denote by var(Q) its variables. Additionally, subj(Q), pred(Q),
and obj(Q) denote the subjects, predicates, and objects extracted from the query, respectively.

The solutions of a query pattern Q over a KG G are denoted as �Q�G = �, where each ω ∈ � denotes a
substitution from the variables in Q matching triples in G. The solutions are given as sets � of bindings, i.e.,
mappings of the form, ω : var(Q) → R to the set R of RDF terms appearing in G, such that G |= ω(Q), i.e.,
ω(Q) forms a (sub)graph entailed by G. If there are no result mappings, then �Q�G = ∅, whereas a solution to a
variable-free pattern is indicated by a single solution, i.e., �Q�G = {ω∅}, with ω∅ = {} being the empty mapping.

For BGPs and FGPs, �·�G can be defined as follows, cf. [63]. Let P be a BGP and φ be a FILTER condition, then:

�P �G = {ω|dom(ω) = vars(P) and ω(P) ∈ G}
�P FILTER φ�G = {ω ∈ �P �G|ω(φ) =
}

where by ω(φ) we refer to the truth evaluation of a simple FILTER condition φ (as defined above) with variables
substituted according to ω.

Two mappings ω1, ω2 are compatible [63], denoted as ω1‖ω2, if for any v ∈ dom(ω1)∩dom(ω2), ω1(v) = ω2(v).
Since the main focus of this paper is on BGPs, we omit further details about the other patterns which in essence

can be constructed on top of the base retrieval functionality of BGPs (cf. [63]). Note that FGPs and also other
patterns e.g. UNION, OPTIONAL, etc. are mostly expected to be executed on the client-side in the approaches we
discuss further. In future work, we look into the direction of distributing the execution of other patterns between
server and client to further increase the efficiency of our approach.

2.2. RDF HDT compression

For efficient storage and querying of RDF graphs, we will herein particularly rely on HDT [25], a well-known
compressed format for RDF graphs that permits efficient triple pattern retrieval over the compressed data. HDT has
three main components: (i) a dictionary maps RDF terms to IDs, such that (ii) the triples component encodes the
resulting ID-graph (i.e. a graph of ID-triples after replacing RDF terms by their corresponding dictionary IDs) as a
set of adjacency lists, one per different subject in the graph. In addition, (iii) the header provides descriptive meta-
data (publishing information, basic statistics, etc.) about the RDF graph.That is, an HDT file of a graph G consists
of a header H , a dictionary D and triples T , i.e., HDT(G) = (H,D, T), stored in compressed, queryable encod-
ings: Both the HDT dictionary and triples are self-indexed to support efficient retrieval operations. The dictionary

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 5

implements prefix-based Front-Coding compression [58], which allows for high compression ratios and efficient
string-to-id and id-to-string operations. Triples are indexed by subject (in SPO order) using bitmaps [25].

RDF graphs compressed with HDT can be queried loaded in memory or mapped from disk without prior decom-
pression. HDT exhibits competitive performance for scan queries as well as triple pattern execution when the subject
is provided. In addition, HDT compressed graphs are typically enriched with a companion HDT index file [59]. This
additional file includes two inverted indexes on the ID-triples (in OPS and PSO order) to achieve high performance
for resolving all SPARQL triple patterns.

In fact, HDT has been used as an efficient backend for many implementations of Linked Data Fragments query
interfaces, which we will discuss next.

2.3. Linked Data Fragments (LDF)

In this section, we characterize existing Web KGs querying interfaces following the foundations set by the Linked
Data Fragments framework (LDF) [78]. LDF has been designed to abstractly model Web KG querying interfaces
with a higher or lesser degree of expressivity and balance for distributing the query processing load between clients
and servers. In essence, LDF characterizes interfaces that enable live querying to fragments of a KG G based on a
limited range of query patterns (e.g, single triple patterns or star patterns) that a client is allowed to request from
the server. Generally, the aim of different LDF interfaces is to mitigate the expensive server-side computation load
and to enable efficient reusable caching for these limited patterns, while shifting the processing of more complex
patterns to the client. Several LDF interfaces also support additional controls. For instance, a control parameter to
transfer intermediate bindings together with query patterns, or a control to specify the page size to determine the
“chunk size” of results batched in each server response.

In the following, we slightly adapt the original specification of the LDF framework [38,78] to align formal defi-
nitions and notations to uniformly describe the current KG APIs, while we leave out herein details in LDF such as
metadata sent along with query results and hypermedia controls:

Definition 2.1 (LDF API, adapted from [14,78]). An LDF API of a KG G accessible at an endpoint IRI u3 is a
tuple f = 〈s,�〉 with

– a selector function σ(G,Q,�) that defines how a fragment � ⊆ G, or alternatively a set of fragments4

�∗ ⊆ 2G is constructed upon calls to the API. The selector function σ has as parameters an RDF graph G, a
SPARQL pattern Q, and a set of bindings �,5

– a paging mechanism �(n, l, o) parameterized by n, l, o ∈ N0 denoting maximum page size, limit, and offset.

For BGP queries Q, we define two specific variants of selector functions, s(·) and s∗(·), which differ essentially
in terms of returning either a single graph containing all triples relevant to any solution or one subgraph per solution
ω ∈ �Q�G:

Definition 2.2 (Standard Selector Function). s(G,Q,�) = {t ∈ ω(Q)|ω ∈ �Q�G : G |= ω(Q) ∧ (� �= ∅ =⇒
∃ω′ ∈ � : ω′‖ω)}
Definition 2.3 (Overloaded Standard Selector Function). s∗(G,Q,�) = {ω(Q)|ω ∈ �Q�G : G |= ω(Q) ∧ (� �=
∅ =⇒ ∃ω′ ∈ � : ω′‖ω)}

Note that, whenever the set of bindings � is not considered (i.e. only empty binding sets � = ∅ are expected)
in a particular selector function, we will conveniently also just write short σ(G,Q) (or s(G,Q), s∗(G,Q), resp.)
instead of σ(G,Q,�) (or s(G,Q,�), s∗(G,Q,�), resp.) in the following.6 As we will see, all existing LDF

3Via this base IRI the API can be accessed and queried as well as additional controls can be submitted.
4We note that this is a generalization from the original LDF proposal, which – technically – could be realized, for instance, by returning RDF

datasets in the sense of SPARQL (consisting of a default graph and optionally a set of (named) graphs), or resp. a set of quads instead of triples.
5We note that this strict definition of allowed parameters for σ is not made in [78], but we will rather use those here to describe the considered

APIs uniformly.
6Observe that, in the spirit of brTPF, in Definitions 2.2 + 2.3, the existence of a “compatible” binding in � is only checked for non-empty �.

CORRECTED P
ROOF

6 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Table 1

Aligned formal definitions and notations with LDF original specifications to uniformly present different existing LDF APIs

LDF interface Definition

Data dump The selector function is s(·)
The only admissible form of Q and � are Q = {(?s, ?p, ?o)} and � = ∅
The only admissible parameter for �(n, l, o) is �(∞, 1, 0) = {�0} = {�}

TPF The selector function is s(·)
The only admissible form of Q are triple patterns and � = ∅
�(n, l, o) allows results to be “batched” into chunks of n triples,i.e., in TPF the publisher can set n as a parameter,
whereas limit l = 1 as it is possible to only retrieve one page at a time, and offset o is the page number requested by the
client

brTPF The selector function is s(·)
The only admissible form of Q are triple patterns

� can be any set of bindings

�(n, l, o) as defined in TPF

SPF The selector function is s∗(G,Q, �), i.e., s∗(·) is used to return results per pattern solution

The only admissible form of Q are star-shaped BGPs

� can be any set of bindings

�(n, l, o): as solutions are returned per pattern solution, n is fixed to the star pattern of size k but SPF also allows
paginating over solutions, i.e., retrieving results in chunks of l solutions.

SPARQL endpoints A variant of s∗(·) by returning subgraphs of the form ω(Q). In practice, SPARQL endpoints return solution mappings,
yet, it is possible to devise a correspondence between these and s∗(·)
Any pattern Q is admissible

� = ∅, unless VALUES patterns are considered. In this case, � is encoded in the VALUES clause of Q

�: the standard LIMIT and OFFSET operators for BPGs could be considered as LIMIT l and OFFSET o such that n is
fixed to the cardinality of the BGP Q, i.e. n = |Q|.

SAGE A variant of s∗(·) by returning subgraphs of the form ω(Q), analogous to SPARQL endpoints.

Any pattern Q is admissible

� = ∅, unless VALUES patterns are considered. In this case, � is encoded in the VALUES clause of Q

As for the interpretation of �, we distinguish two cases:

�(n, ∞, o): assuming that Q does not include the keywords LIMIT and OFFSET. o may be thought of as being used to
indicate that {�0, . . . , �o−1} has been received by the client. In practice, the SAGE client sends the last solution mapping
ω that has been produced in �o−1. Still, it is possible to devise a correspondence between ω and o.

�(n, l, o + o′): assuming that Q does include the keywords LIMIT l and OFFSET o′. o is defined as in the previous case;

n, in both cases, is again, as in SPARQL endpoints, fixed to n = |Q|, i.e., each page corresponds to a solution.

APIs considered in this paper and summarised in Table 1 can be expressed in terms of one of the two standard
selector functions s(·) and s∗(·), whereas we will extend and modify those – in terms of partition-based LDF – in
the following.

The general paging mechanism � we use in this paper enables the ability to retrieve the result in batches e.g.,
for the cases where � (or, resp., �∗) is overly large, or, resp. when only partial results are required or to enable
incremental results. Hence, we assume that �(n, l, o) simply defines a mechanism to divide � into a set of partitions
(or pages) �∗ = {�0, . . . , �k−1}, where for each page �i it is guaranteed that |�i | < n (i.e. �i does not contain
more than n triples), and l and o, resp. would allow to request the pages from �o to �o+l−1. We assume l to default
to l = 1, o to default to o = 0, and finally n = ∞ signifying that whole graph � (or, resp., �∗) should be
returned. “Pagination”, i.e., retrieving �∗ in chunks of l pages could then be achieved in terms of iteratively calling
the LDF API with �(n, l, o) with increasing o, starting from o = 0 in steps of o := o + l. As such l, o could
be viewed analogous to the SPARQL LIMIT and OFFSET modifiers but applied to pages instead of individual
solution mapping; we note here, that we define � and likewise �∗ in a more general way than the original LDF

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 7

paper [78],7 allowing parameters to both specify a maximum page size n, and the number of pages l retrieved per
request as separate parameters, starting from a page index offset o, in order to allow flexible interpretations of the
LDF “metaphor”, fitting various interfaces and partitionings. We also note that in the following – as opposed to and
generalizing [78] – we do not necessarily consider �i and �j disjoint for i �= j .

2.3.1. Characterization of existing KG interfaces as Linked Data Fragments (LDF)
In the following, we will describe existing LDF interfaces from the literature, summarizing their respective char-

acterizations in terms of the pre-described definitions in Table 1.
Data Dump. This approach is a client-side solution where data publishers enable clients to access a data dump of

an entire KG, at best, in an RDF serialization. To perform a SPARQL query, clients request an entire KG from the
server and deploy an RDF triple store to locally process their queries. A use case where data dumps can be a very
valuable solution is when the clients have powerful processing resources while demanding resource-hungry query
workload tasks. However, in general, the data dumps solution puts the processing cost on the clients, plus incurs
potentially high network traffic on both client and server sides in the case of frequently evolving KGs.

Triple Pattern Fragments (TPF). The TPF [78] interface enables reliable querying over KGs by limiting the
server functionality to only answer single triple patterns and delegating the processing of more complex patterns –
and particularly joins – to the client-side engines [4,39,76]. TPF clients receive paginated intermediate results of
each triple pattern in the query and incrementally combine the intermediate results to compute the complete results
on the client. The experimental evaluations [78] show that TPF, powered by an HDT backend, increases the server
availability compared to a traditional query shipping approach (i.e. SPARQL endpoints). However, this comes at
the cost of a significant increase in network traffic including the number of HTTP requests and the shipped data. In
particular, non-selective queries (i.e. queries with high cardinality triple patterns) can suffer from poor performance
as a consequence of the potentially high number of useless shipped intermediate results (i.e. transferred data that
does not contribute to the final query answer).

Binding-Restricted Triple Pattern Fragments (brTPF). The brTPF [37] interface is an extension of TPF that
strives to reduce the network traffic by additionally permitting arbitrary � �= ∅. The attached solution mappings �

from the previously evaluated triple patterns potentially reduce the number of requests to the server, plus provide a
higher query performance than TPF. However, brTPF still potentially encounters serious delays with increasing the
number of concurrent clients or with queries that require shipping a large number of intermediate results.

Star Pattern Fragments (SPF). The SPF [5] interface proposes to generalize brTPF from evaluating single triple
patterns to evaluating star-shaped subqueries as well on the server. Similar to TPF, more complex queries involving
joins over stars or single triples are processed on the client. Still, evaluating star-shaped subqueries directly on
the server may drastically reduce the number of requests made during query processing while still maintaining a
relatively low server load since star patterns can be answered in a relatively efficient manner by the server [63]. For
processing joins efficiently, analogously to brTPF, bindings can be shipped along with each star-shaped subquery.
SPF, as an instance of LDF, differs from brTPF with respect to the restriction of the selector function and allowed
patterns as defined in Table 1. Experiments [5] show that SPF (compared to brTPF) can decrease the number of
requests made to the server and intermediate result sizes transferred to the client, maintaining a comparable low
network load.

SPARQL Endpoint. A SPARQL endpoint provides a purely server-side efficient solution for SPARQL queries.
However, as we show in Table 1, we can also understand any SPARQL endpoint as an LDF interface in our in-
troduced terminology. SPARQL endpoints minimize load on the client-side which only receives the final results
of the submitted query. To date, hundreds of public SPARQL endpoints have been published [11], serving arbi-
trary SPARQL queries from remote clients. In this client-server scenario, clients are limited to sending queries
and receiving results, whereas servers are in charge of the full query planning, execution, and shipping of results.
SPARQL endpoints provide outstanding performance under low query loads. However, with increasing the number
of concurrent clients and the complexity of the submitted queries, SPARQL endpoints potentially overload server

7We note our slightly deviating notation: our �∗ is denoted as � in [78], originally, whereas we use �(n, l, o) to refer to parameterising a
request to the selector function, requesting particular pages.

CORRECTED P
ROOF

8 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

resources and the submitted queries struggle from excessive delays that lead to the acknowledged scalability is-
sues (i.e. low availability and poor performance) on concurrent query workloads [78]. That is, SPARQL endpoints
are expensive to host and maintain from the data publishers’ perspective. Furthermore, several recent studies on
public SPARQL endpoints [11,64] show that far more than 50% of the SPARQL endpoints are not responding to
the requests. In practice, public SPARQL endpoints impose restrictions to ensure a balanced distribution of server
resources among clients: e.g., public SPARQL endpoints regulate the number of submitted queries from each IP
address. Such restrictions largely defeat the vision of developing live applications based on public endpoints [12].

SAGE. SaGe [61] can be considered a variant of general SPARQL endpoints that supports Web preemption in
order to guarantee a more fair distribution of server resources amongst concurrent clients. Under Web preemption,
the server suspends a running query Q after a predefined time quantum τ and returns partial results {�0, . . . , �o−1}
to the client. A SPARQL query Q is resumed based upon the client’s request; this process is repeated until all results
are produced. This ability enables SaGe engine to prevent long-running queries from exploiting the server resources,
especially under high concurrent load [61]. The experimental evaluation [61] demonstrates that SaGe improves the
average time required to receive the first result and the average workload completion time per client. In general,
SaGe has impressive performance for most of the query shapes. However, SaGe suffers from excessive delay in the
case of high concurrent clients with complex queries due to frequent query context switching.

2.3.2. Partition-based LDF
Unlike the previous LDF approaches, which – given a particular admissible query Q – would return a graph

or partition that exactly contains the query results, in this paper, we will focus on an alternative approach that
rather will ship an overestimate from a set of hosted partitions that potentially can be used to answer the query,
which we will call partition-based LDF approaches: partition-based LDF can be seen as a generalization of the
aforementioned, existing LDF interfaces, which – instead of the exact triples matching a particular admissible query
pattern Q, rather returns a subset of partitions from a pre-computed partitioning G = {G1, . . . ,Gn} of G, such that
G = G1 ∪ G2 ∪ · · · ∪ Gn, where ∀i �= jGi ∩ Gj = ∅. I.e,. G is a cover of G.

That is, the idea here is that a partition-based LDF server serves G such that upon an LDF API call with a query
pattern Q the selector function σ(G,Q) ⊆ G returns a subset of matching partitions that contain all query answers
for Q. That is, it is ensured that

�Q�G ≡ �Q�⋃
Gi∈σ(Q,G) Gi

(1)

hence, the client can therefore compute the complete result of the actual query Q from just calling and retrieving
σ(G,Q) from the server.

As we will see, different partitioning techniques lend themselves to this overall idea better or worse: the tricky
part is to find a partitioning G such that (1) σ(G,Q) can be easily computed from Q, and (2) σ(G,Q) provides
a “close estimate” minimizing the number of partitions to be shipped and where the union of these partitions does
contain all necessary, but not too many unnecessary triples for computing the actual query Q, and finally (3) all
possible partitions for any admissible queries Q in the range of σ(Q,G) can be efficiently served (and, ideally,
pre-computed) on and LDF server.

In this context, we note that shipping a full Data Dump could be considered as a “trivial” partitioning-shipping
technique, where

– G = {G}
– any query Q is admissible
– σ(G,Q) = {s(G, {?s, ?p, ?o})} = G

As such, non-trivial partition-based LDF methods could be considered as shipping only a “necessary subset of
partial dumps per query”. Further, for partition-based LDF interfaces, in general, we herein will assume

– � = ∅ is the only admissible binding set, i.e., we do not consider binding restrictions,
– �: only n = ∞ is admissible, i.e., no paging is supported since the union of all relevant partitions will be

typically needed to compute the query results.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 9

Table 2

An overview of the exiting graph partitioning mechanisms utilized in RDF engines

Partitioning mechanisms RDF systems

Vertical partitioning SW-Store [1], PRoST [21], SPARQLGX [28], Sempala [71], S2RDF [72], SparkRDF [20],
SANSA [54], CliqueSquare [22],PigSPARQL [70], Jena-HBase [51], and HadoopRDF [23]

Horizontal partitioning AllegroGraph,1 Blazegraph,2 Akhter et. al [6], SHARD [66], DiStRDF [80], and Partout [27]

Hash partitioning YARS2 [36], TriAD [31], AdPart [7], PigSPARQL [70], CliqueSquare [22], Koral [48],
CumulusRDF [35], SHAPE [52],and SHARD [66]

Workload-aware partitioning Partout [27], chameleon-db [10], WARP [46], and WORQ [56].

K-way partitioning Akhter et. al [6], EAGRE [81], H-RDF-3X [47], TriAD-SG [31]
1https://franz.com/agraph/allegrograph/.
2https://blazegraph.com/.

In the following section, we will review several existing RDF partitioning techniques to assess their applicability in
a Web querying environment fitting within this framework.

3. Concrete implementations of partition-based LDF

In this section, we analyze various partitioning techniques utilized in prior works (both centralized and distributed
RDF processing) and their applicability to efficient Web querying and as a basis for partition-based LDF, which we
have introduced – on an abstract level – above. In our analysis, we first analyze the advantages and limitations of
existing partitioning techniques [3,8,49]. A summary is presented in Table 2.

3.1. Vertical partitioning (VP)

VP [2] creates a partition for each unique predicate in pred(G), i.e., in our terms,

G = {
Gp|p ∈ pred(G) ∧ Gp = {

ω
(
(?s, p, ?o)

)|ω ∈ �(?s, p, ?o)�G

}}
(2)

Next, admissible queries are any single triple pattern queries Q = {tp} where

σ(G,Q) = {
Gp ∈ G|{p} = pred(Q) ∩ pred(G) ∨ pred(Q) is a variable

}
(3)

That is, for any triple pattern query Q, either a single predicate partition corresponding to the query predicate, or
all predicate partitions would be returned.

Many RDF processing systems (cf. Table 2) report achieving a high query performance using vertical partitioning.
Yet, as a partitioning mechanism for partition-based LDFs interfaces, this approach only works well for triple pattern
queries with bounded predicates, whereas other triple patterns require shipping all predicate partitions. Along these
lines, assuming all predicates in Q are bound, a strict lower bound for the number of shipped partitions is |pred(Q)∩
pred(G)|, because only the partitions for predicates mentioned in the query that also occur in G are shipped.

A second drawback of using vertical partitioning in the context of partition-based LDF interfaces is that it only
supports single triple queries while any joins or more complex patterns would need probably to be fully evaluated
on the client side. Also, full vertical partition shipping has potential downsides compared with TPF or brTPF, which
solves any binding in triple patterns directly on the server side. For all these reasons, we will in our proposed
approach rather use (br)TPF directly for single triple queries.

3.2. Horizontal/range/sharding partitioning

In the context of distributed relational databases, horizontal partitioning involves splitting a relation horizontally
(i.e. row-wise) into sub-relations based on selections to enhance the load balancing. Analogously, RDF manage-
ment systems have adopted horizontal partitioning strategies to distribute the triples of an RDF graph into multiple

https://franz.com/agraph/allegrograph/
https://blazegraph.com/

CORRECTED P
ROOF

10 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

partitions based on certain selection criteria. In these strategies, the selection is typically used to generate horizontal
subsets of the RDF triples for very common predicates (such as e.g. rdf:type, which often does not lend itself
well to vertical partitioning techniques), where each subset consists of all the triples that satisfy a predetermined
selection condition on the objects or subjects. Herein, we exemplify horizontal partitioning based on object ranges;
that is, we assume partitions per n object ranges (e.g. from a histogram) can be split into a set of ordered val-
ues {v0, . . . , vn}. Given the RDF model, this is not an unreasonable assumption, indeed, both literals and likewise
URIs could be assumed to be ordered with respect to their string representations, and – even if many real-world
RDF graphs do not contain blank nodes – also blank nodes could, while not ordered in the RDF model itself, be
canonicalised [45] and ordered, respectively. Accordingly, we can define

G = {
Gi |1 � i � n ∧ Gi = {

ω
(
(?s, ?p, ?o)

)|ω ∈ �(?s, ?p, ?o)FILTER(vi−1 <?o∧?o � vi)�G

}}
(4)

Object-based horizontal partitioning could be used for partition shipping, where any BGP query Q is admissible
that consists of triples with the same object, i.e., obj(Q) = {o} (which of course includes single triple queries with
bounded object), but, again, for unbounded objects, the entire partitioning G would need to be shipped:

σ(G,Q) = {
Gi ∈ G|(vi−1 < o ∧ o � vi) ∨ o is a variable

}
(5)

Horizontal partitioning could be analogously defined for bound subjects, or be combined with vertical partitioning
(i.e. be used to further subdivide vertical partitions); in fact, vertical partitioning as defined above could be viewed
as a “special form” of horizontal partitioning on the predicate position, with “predicate ranges” corresponding to
the single predicates in pred(G).

Variations of horizontal partitioning have been used successfully by several RDF systems, especially in distributed
environments (cf. Table 2), where partitions are allocated to different nodes while minimizing the communication
cost among the nodes (by placing jointly queried data together) and balancing the node workload (by placing highly
requested partitions in different nodes). In general, horizontal partitioning supports efficient querying for queries that
require shipping a single partition based on the FILTER condition that defines the shipped partitions. As such, there
are similar (dis-)advantages as for vertical partitioning: for our example of horizontal partitioning on the object,
whenever the object is unbound, all partitions would need to be retrieved. Likewise, depending on the choice of
ranges (v1 to vn) to “split” the partitions and data distribution, the matching partitions could contain potentially
large amounts of irrelevant data or different horizontal partitions could contain a prohibitively large superset of the
answers of the query, e.g., by including further predicates which are not requested in the query. The latter could be
remedied by combining more sophisticated forms of vertical and horizontal partitioning. For example, family-based
partitioning techniques described in Section 3.6 and Section 3.7 can be seen in a sense as vertical partitioning and a
combination of vertical and horizontal partitioning, respectively.

3.3. Hash partitioning (HP)

Hash-based partitioning is a common partitioning strategy among RDF distributed systems. For instance,
position-based hashing is a lightweight partitioning strategy that applies a hash function to a particular position
(e.g. subject-based hashing) in triples, distributing the RDF triples according to their hash values into a fixed num-
ber of n bins. Thus, all the triples with the same value in this position (e.g. same subject) are allocated to one
partition. Hash partitioning is computationally inexpensive plus the hash operation can be efficiently computed in
parallel. However, as usual with hashing, hash collisions may cause skewed partition sizes. Hash-based partitioning
could be defined in a very similar manner as above, exemplified here for subject-based hashing with n partitions.
Assuming a suitable hash function h(·):

G = {
Gi |1 � i � n ∧ Gi = {

ω
(
(?s, ?p, ?o)

)|ω ∈ �(?s, ?p, ?o)FILTER
(
h(?s) = i

)
�G

}}
(6)

For position-based hashing (analogously to position-based horizontal partitioning explained above), any basic
graph patterns sharing the same value in the respective position, e.g. subjects, would be admissible patterns. For

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 11

such admissible queries σ(G,Q) could again be analogously defined based on the hash function h(·) of the resp.
position, that is e.g. based on h(subj(Q)), as above, with the same problems of retrieving all G whenever the subject
is unbound. Likewise, these definitions can easily be extended to object, predicate, or even triple-based hashing
(based on a “ternary” hash function h(s, p, o)).

Position-based hashing can be extended by specific hash functions, e.g. prefix-hashing [48], to ensure that subjects
(or other position terms) with the same prefix end up in the same partition, which can be exploited in range queries.
Another extension is k-hop hashing which could cater for certain path queries, by creating (potentially overlapping)
partitions that extend simple hash-based partitions with the k-hop neighborhoods of the hashed triples [52].

3.4. Workload-aware partitioning

Workload-aware partitioning makes use of query workloads in order to partition RDF graphs. Ideally, the query
workload includes representative queries extracted from a real-world or a synthetic/simulated query log.

Several RDF distributed systems rely on workload-aware partitioning such as Partout [27], chameleon-db [10],
WARP [46], and WORQ [56]. Bonifati et. al [19] has conducted an analytical study of end users’ queries harvested
from real-world query logs of SPARQL endpoints. According to the analysis of the graph structure of queries, tree-
like shapes such as single triple patterns, chains, stars, trees, and forests are the most observed shapes. We consider
the aforementioned observation especially star queries in family partitioning technique introduced in Section 3.6.

In our context, workload-aware partitioning could be seen as a form of “caching”, where subgraphs contain-
ing a superset of or exactly the results of particularly common sub-queries could be stored as separate partitions.
However, in order to make use of such caching, complex queries would need to be analyzed whether they contain
any of these “cached” subqueries or respectively subqueries subsumed by the cached queries. Since such a form
of partitioning is rather related to index-learning from query logs, a concrete formalization depends on formaliz-
ing/extractable common query patterns from such query logs. We see various options here and consider them as
somewhat complementary and orthogonal to our current work. For instance, the answers of repetitive queries can be
precomputed and stored within dedicated partitions, that can be shipped directly to clients. This approach serves to
mitigate the computational load imposed by recurrent queries [57]. Bonifati et al. [18] observed that robotic queries
are frequently duplicated and the server computation can be reduced by materializing partitions for such queries.
In the present paper, we restrict the scope to partitioning definable by the (characteristics of the) graph only. We
therefore leave a concrete formalization/implementation of partition-based LDF following this idea to future work.

3.5. K-way partitioning (KP)

Similarly, K-way partitioning is not directly amenable to our framework: K-way partitioning algorithms, such
as [50] strive to partition the graph into roughly equal-sized smaller graphs with the intention of minimizing the
number of edges linking vertices from different partitions and thus could be viewed rather as a “clustering” technique
for RDF graphs than partitioning based on/or specifically used for evaluating particular query patterns. As such, we
also leave it open for future work on how/whether such techniques could be used for computing a partitioning G
that allows deriving an easy-to-compute selector function σ .

3.6. Family-based partitioning of RDF graphs

After having discussed various existing partitioning techniques, primarily in the context of single triple queries,
we herein would like to focus on a novel partitioning technique, that we previously introduced [15]. The overall idea
of this partitioning technique is to serve partitions that cater for efficient evaluation of star-shaped (sub-)queries on
the client-side, somewhat orthogonal to the above-mentioned SPF LDF interface on the server-side.

The intuition here is that real-world RDF graphs commonly exhibit an inherent structure due to the recurring
occurrence of identical subject descriptions forming such common star-structures, i.e., many subjects of the same
type share the same combinations of predicates. The assumption here is that in real-world RDF graphs, subjects with
similar characteristics are described in the same fashion forming such common star-structures, i.e., many subjects
of the same type share the same combinations of predicates. For instance, predicates describing Films (e.g., director,

CORRECTED P
ROOF

12 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

starring, launchDate, language, etc.) are different than those describing Persons (e.g., birthday, nationality, etc.) in
DBpedia. In the literature, so-called characteristic sets [29,62] have been defined to capture these latent structures
that eventually construct a “soft schema” from the entities that are semantically similar in a graph.

The structures described by Neumann and Moerkotte [29,62] are effectively represented using the concept of
characteristic sets, commonly referred to as predicate families [26] (or simply families). We define the predicate
family of a subject s, F(s), as the set of predicates related to the subject s, that is:

F(s) = {
p|∃o ∈ obj(G) : (s, p, o) ∈ G

}
(7)

Analogously, we denote as F(G) or just F , to the set of all different predicate families occurring in G, as follows:

F(G) = {
F(x)|x ∈ subj(G)

}
(8)

Indeed, predicate families imply a partitioning

G = {
GFi

|Fi ∈ F(G)
}

(9)

usable for partition-based LDF as defined above, where each partition GFi
is defined by a corresponding respective

predicate familiy Fi ∈ F(G) as follows:

GFi
= {

(s, p, o) ∈ G|F(s) = Fi

}
(10)

We will refer to this partitioning as family-partitioning; slightly abusing notation we will simply write Gi for
GFi

in the following. Next, the admissible queries for family-partitioning are star-shaped query patterns, i.e., BGPs
composed of k triple patterns form Q = {(s, pi, oi)|1 � i � k, s ∈ V ∪ U,pi ∈ U, oi ∈ V ∪ U ∪ L} with a single
common subject s, where

σ(G,Q) = {
Gi ∈ G|pred(Q) ⊆ Fi

}
(11)

Obviously, for any star-shaped query, σ(G,Q) contains all relevant triples from G to compute the answers.
To illustrate the previous definitions consider the KG G shown in Fig. 1, and the predicate families shown in

Fig. 2. Following the definition of predicate family in Eq. (8), the subjects s1 and s2 belong to the same family
F1, as they have the same predicates. The subject s2 belongs to family F2. For the KG G, there are two families
denoted F(G), i.e., F1 and F2. Lastly, each of these families induces a partition over G. For example, GF2 contains
all the triples of subjects that belong to family F2, which in this case is triples t8 and t9. Lastly, the set of partitions
computed for G, denoted G are GF1 and GF2 .

In our concrete implementation in Section 4, we will also exploit the fact that predicate families or characteristic
sets as the basis for family partitioning have been used successfully for query execution and join evaluation: the
ability of characteristic sets to provide an inherent partitioning of an RDF graph has been utilized for (i) cardinality
estimation [29,62] for SPARQL join optimization, (ii) improving RDF graph compressibility [43], and (iii) building

Fig. 1. KG example.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 13

Fig. 2. Predicate families and typed families for the KG shown in Fig. 1.

an indexing scheme such as in AxonDB [60] which extends the notion of characteristic sets also to object nodes to
speed up SPARQL query performance of AxonDB.

3.7. Typed family-partitioning

While – as we will see – family-partitioning provides a solid basis for partition-based LDF, unfortunately, family
partition sizes can be significantly skewed for very popular classes (with a large number of instances), or, respec-
tively, very large partitions could be further subdivided by the different (sub-)classes occurring for subjects. For
instance, common attributes {rdf : type, : director, : starring} for subjects of the class Film, would also occur for
each of the subclasses of Film. Intuitively, one can further subdivide each family partition “horizontally”, by the dif-
ferent rdf:types per subject. Further, we note that, based on observations of query logs for common public SPARQL
query services, a large number of user queries include rdf:type predicates with a bound object: to back up this claim,
we analyzed the real-world DBpedia LSQ [67] query log and found out that the percentage of queries with at least
one star query with a rdf:type predicate with a bound object is 88% (excluding single triple queries).

Based on these observations, we propose an extension of family-based partitioning, called typed family-
partitioning. Assuming (without loss of generality) that the set of class URIs and predicate URIs are disjoint,8

we can extend the concept of (predicate) families to typed families as follows:

F typed(s) = F(s) ∪ {
c|(s, rdf : type, c) ∈ G

}
(12)

Analogously, we extend the other notions from above, i.e., the set of typed families for a graph G:

F typed(G) = {
F typed(x)|x ∈ subj(G)

}
(13)

and again the notion of typed partitions G
typed
Fi

corresponding to a famlily Fi ∈ F typed(G) implies a partioning of G
as follows:

G = {
G

typed
Fi

|Fi ∈ F typed(G)
}

(14)

8Of course this does not generally hold in RDF, but we make this assumption merely to simplify notation.

CORRECTED P
ROOF

14 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

where G
typed
Fi

can be defined for each typed family Fi ∈ F typed(G) as

G
typed
Fi

= {
(s, p, o) ∈ G|F typed(s) = Fi

}
(15)

Again, we simply write Gi for G
typed
Fi

, and finally, analogously can define

σ(G,Q) = {
Gi ∈ G|pred(Q) ∪ types(Q) ⊆ Fi

}
(16)

for again star-shaped admissible queries Q, where by types(Q) we denote all (non-variable) objects of rdf:type triple
patterns in Q.

To illustrate the previous definitions consider the KG G shown in Fig. 1, and the typed families shown in Fig. 2
Following the definition of typed-family in Eq. (12), the subject s1 belongs to family F

typed
1 , the subject s2 belongs

to family F
typed
2 , and the subject s3 belongs to family F

typed
3 . Note that in predicate families, the subjects s1 and s2

were in the same family; this is no longer the case, as their set of classes is different. For the KG G, there are three
typed families denoted F typed(G), i.e., F

typed
1 , F

typed
2 and F

typed
3 . Lastly, each of these families induces a partition

over G. For example, F
typed
2 contains all the triples of the subject s2, which in this case is triples t8 and t9. Lastly,

the set of partitions computed for G, denoted G are G
typed
F1

, G
typed
F2

, and G
typed
F3

.

4. Our approach: Smart-KG+

4.1. Design and overview

smart-KG+ (cf. Fig. 3), which extends the original approach presented in [15], combines shipping HDT com-
pressed family partitions with the shipping of intermediate results from evaluating a given sub-(query) over the
existing LDF interfaces. As such, smart-KG+ relies on both shipping intermediate results from executing single-
triple patterns using a brTPF LDF interface on the server, as well as using a (typed) family-partition-based LDF
interface for star-shaped subqueries (which will be evaluated on the client side, based on the shipped partition). The
rest of SPARQL complex patterns other than triple or star-patterns will be evaluated on the client side.

Initially, the smart-KG+ server constructs the family-based partitions (cf. Section 4.2 see the practical partition
generator) for a given knowledge graph. The generated KG partitions are materialized as HDT files in the storage
module together with family catalog that summarizes metadata information about the KG partitions including struc-
tural and statistical metadata. In addition, smart-KG+ API offers access to the KG based on two operators: one to
execute a single triple pattern and the other to ship the requested partition to smart-KG+ client.

Upon receiving a BGP Q from smart-KG+ clients, the smart-KG+ server decomposes the input query into a
set of o star-shaped subqueries where the server query planner devises an annotated query plan
 that decides for

Fig. 3. Overall architecture for the smart-KG+ client and server.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 15

each pattern whether to be executed using brTPF or partition shipping. The client then evaluates the annotated query
plan received from the server based on the specified subquery ordering.

As a side note, getting back to our original formalization of LDF and the fact that we do not consider “paging”
(�) in relation to partition-based LDF: note that it would not make sense to decompose family-based partitions into
chunks since chunking up the HDT-compressed partitions would require decompression.

4.2. smart-KG+ partition generator

In this section, we detail how the smart-KG+ server, upon loading an RDF KG, processes it into partitions
G1, . . . ,Gm per family, as described in Eq. (15) and stores those partitions as HDT compact files format. In practice,
however, real-world RDF graphs such as DBpedia and Yago can potentially generate a relatively large number of
partitions due to the high semi-structured nature of these RDF graphs. Thus, we introduce the concept of predicate-
restricted families, where we control some particular predicates during the process of generating families.

Predicate-restricted families. Let us consider a restricted set of predicates, P ′
G ⊆ pred(G). The predicate-

restricted family of a subject s w.r.t. P ′
G, denoted F ′(s), is defined as F ′(s) = P ′

G ∩ F(s).
Analogously, we denote as F ′(G) = {F ′

1, F
′
2, . . . , F

′
m′ }, or just F ′, the set of different predicate-restricted families

for G, where m′ = |F ′(G)|. These families correspond to a set G′ = {G′
1,G

′
2, . . . ,G

′
m′ } of partitions of a subgraph

of G based on the P ′
G-restricted families, with

G′
i = {

(s, p, o) ∈ G|F ′(s) = F ′
i

}
(17)

The prior definitions carry over to predicate-restricted typed-family partitions and typed-partitions, i.e., F ′ typed

and G
′ typed
Fi

can be defined analogously, where we additionally restrict the classes by a set C′
G. Note that, however G′

is no longer a full cover of G, but the graph G′ = ∪G′
i only contains the “projection” of G to P ′

G, with the intention
that predicates other than P ′

G (or, resp. classes other than C′
G) are delegated to brTPF.

Serving predicate-restricted families allows a smart-KG+ publisher to select P ′
G (and C′

G) depending on (i) the
cardinality of the predicates (i.e. the number of occurrences in the graph), and (ii) the importance of predicates (and
combinations) in actual query workloads. We will describe a concrete method to pick P ′

G (and C′
G) based on the

cardinality of predicates and classes in Section 4.2.2.

4.2.1. Family grouping
Relying on restricted families enables the publisher to control the number of generated families and re-

duce the generation of infrequently queried families to some degree, however, the number and the size of
partitions are still driven by entities’ distribution in the graph. In practice, many RDF graphs are skewed
in the sense that there exist “dominant” families with large corresponding partitions, as opposed to sev-
eral small, very similar families of much smaller sizes. This phenomenon arises due to the semi-structured
nature of RDF, where entities of the same type could potentially have different attributes representing di-
verse relationships. Thus, alongside predicate-restricted families, the introduced partition shipping strategy
merges (i.e. groups) similar families into a single family. For instance, all disjoint families containing a
certain set of predicates e.g. F1 = {foaf : name,dbo : birthPlace,dbo : almaMater} and F2 =
{foaf : name,dbo:birthPlace,dbo:occupation} can be merged into a single family F{1,2} =
{foaf : name,dbo:birthPlace}. The intuition behind family grouping is to materialize families representing
overlapping predicate subsets which may be frequently present in query patterns as predicate families. Therefore,
smart-KG+ server can send a single compact partition representing the smallest merged families required to re-
solve a star query pattern rather than serving the union of partitions which have two main downsides: first, it requires
on average extra data transfer due to shipping needless predicates to the star query pattern; second, it requires to
locally union the shipped partitions on the client-side. While typed-based families can in theory also be grouped,
a preliminary study of ours showed that considering different combinations or even hierarchies of classes would
drastically increase the number of materialized partitions, which might benefit only a set of specific queries. For this
reason, in the remainder of this work, we focus on only grouping predicated-restricted families.

CORRECTED P
ROOF

16 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Algorithm 1: Family grouping

Input : F ′(G) = {F ′
1, . . . F

′
m}, the set of different (restricted) families.

Output: μ(·) a partial mapping from sets of predicates to index sets I ∈ 2{1,...,m}
1 Initialize μ with the original families:
2 foreach f ∈ F ′(G) do
3 μ(F ′

i) ← {i}
4 repeat
5 μ′(·) ← μ(·)
6 foreach f ∈ dom(μ) do
7 foreach g ∈ dom(μ) do
8 if g ∩ f �= ∅ then
9 if g ∩ f ∈ dom(μ) then

10 μ(g ∩ f) ← μ(g ∩ f) ∪ μ(g) ∪ μ(f)

11 else
12 μ(g ∩ f) ← μ(g) ∪ μ(f)

13 until μ �= μ′;
14 return μ

Note that, in order to define the notion of a merge of families and respective (predicate-restricted) partitions we
refer to particular families in F ′(G) = {F ′

1, F
′
2, . . . , F

′
m′ }, by their index {1, . . . , m′}. Using this notation, formally,

for an index set I ∈ 2{1,...,m′}, we define the merge F ′
I of the set of families {F ′

j |j ∈ I } as follows:9

F ′
I =

⋂
i∈I

F ′
i (18)

Analogously, the corresponding merged partition G′
I ⊆ ⋃

i∈I G′
i can also be defined as:

G′
I = {

(s, p, o) ∈ G|F ′
I ⊆ F(s)

}
(19)

if G′
1 and G′

2 are merged into G′{1,2}, then to evaluate a query pattern that involves the predicates foaf:name and
dbo:birthPlace, we only transfer G′{1,2} rather than G′

1 ∪ G′
2. Note that the most important consideration is

that all the subjects are a matching result for those queries only involving the predicates in G′
1,2.

Following similar premises, Gubichev and Neumann [29] establish a hierarchy of characteristic sets, in each
step removing one element of the set and keeping only the one that minimizes the query costs (i.e. cost can
be understood as cardinality, in this context). For instance, in the previous example, the approach by Gubichev
and Neumann will inspect all combinations of two predicates, F 1{1,2} = {foaf : name,foaf : birthPlace},
F 2{1,2} = {foaf : name,dct : title}, etc., to select the one with smallest cardinality, e.g. F 2{1,2}, for query plan-
ning.

We use a similar idea, but the main differences with the previous work are that (i) we do not compute all predicate
subsets of a given family (this is mainly to estimate the cost of join operations [29]) but only those subsets that rep-
resent merges, corresponding to non-empty intersections with other families, and (ii) we keep all these intersections
in a map, irrespective of their cardinality.

To create the map of merged families for all potentially non-empty intersections of sub-families, we start from
F ′(G) = {F ′

1, . . . F
′
m}, and iteratively construct a partial map μ such that, given a set of predicates f , μ(f) returns

(whenever f corresponds to a non-empty intersection) a set of indexes of all original families that contain subjects
contributing to f , as shown in Alg. 1. We initialize μ with F ′(G) (lines 2–3), and then, iteratively, until μ does

9Note that we consider the identity merge, i.e., F ′{j} = F ′
j

.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 17

not change anymore (lines 4–13), create mappings (corresponding to a merged family) collecting all indexes, for
each non-empty intersection of families (lines 9–12). If there already is a (merged) family corresponding to the
intersection found, i.e., f ∪ g appears already in the domain of μ (line 9), then also the corresponding index(es)
are considered (line 10) and the mapping is updated, otherwise, a new mapping is created (line 12). Note that, as
opposed to this pseudo-code, our actual implementation is using a hashmap for the (merged) families and avoids
revisiting the same intersections repeatedly.

Then, μ(·) is used to compute the partitions served by the smart-KG+ server, denoted Gserv, where G′ is replaced
with a set of partitions obtained from the merged families:

Gserv = {
G′

μ(f)|f ∈ dom(μ)
}

(20)

Note that the elements in Gserv are no longer non-overlapping, i.e., formally, they are not partitions anymore but
fragments of the graph G. However, for the sake of readability, we abuse notation and refer to these fragments as
merged partitions (or simply partitions). The advantage of serving these merged partitions is that the client can
determine a unique minimal matching partition among Gserv to answer a query using the mapping μ.

4.2.2. Family pruning
Note that, in practice, the cost of fully materializing the partitions generated from all potential merges (intersec-

tions) of all families in G could be prohibitive. For instance, as we will show in our evaluation, in the DBpedia
graph, a naive merge would create +600k partially very large families, which are unfeasible to serve.

To this end, we present a family pruning strategy for restricting the number of materialized partitions, where
we (i) restrict considered predicates in P ′

G based on their cardinality, (ii) restrict considered classes based on their
cardinality in generating typed families, (iii) avoid the creation of small families that deviate only slightly from other
overlapping, “core” families, and (iv) avoid materialization of families over a certain size.

(i) Restrict predicates based on cardinality. The cardinality of predicates is a key factor in determining the
number and size of shipped partitions. Therefore we distinguish between infrequent and frequent predicates in the
KG.

Infrequent predicates are those that occur rarely in the KG compared to the most commonly occurring predicates.
Infrequent predicates may be scattered across various subjects in the KG, leading to the creation of multiple small
families. In this case, a TPF/brTPF call efficiently evaluates a single triple pattern with an infrequent predicate
without the need to transfer large intermediate results (i.e. unnecessary materialization of small family partitions).

Frequent predicates can be part of almost all families such as dbo:wikiPageExternalLink in DBpedia
leading to an undesirable increase in the size of each family, especially if they are rarely mentioned in queries.10

Note specifically that although rdf:type is a typically frequent predicate, we do not exclude it at this point, as
we will tackle this issue separately in (ii), in the handling of typed partitions.

To control predicates cardinalities, we use thresholds τplow , τphigh with 0 � τplow < τphigh � 1, to delimit the min-
imum and maximum percentage of triples per predicate, and define P ′

G accordingly based on these two thresholds:

P ′
G =

{
p′ ∈ pred(G)|τplow � |(s, p′, o) ∈ G|

|G| � τphigh

}
(21)

(ii) Restrict classes cardinality based on cardinality to generate typed-families. As discussed when introduc-
ing typed partitions, rdf:type is a natural horizontal partitioner for predicate families, which plays an essential
role in reducing the size of the shipped families; plus, as also mentioned above, rdf:type is a heavy hitter in
real-world queries, since it is a frequently used predicate in log queries as shown in Table 4.

Therefore, similar to issue (i), the cardinality of classes contributes to the number and size of the shipped parti-
tions: firstly, rare classes occurring as rdf:type objects in triple patterns are by nature selective: such triple pat-
terns are better handled through a TPF/brTPF/SPF call without shipping a typed family; secondly, frequent classes

10For example, dbo:wikiPageExternalLink appears merely 59 times in the LSQ query log, or when they remain entirely unqueried,
as dbo:wikiPageLength, which is not mentioned in the LSQ query log.

CORRECTED P
ROOF

18 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

can be potentially present in many of the families (for instance owl:Thing) and, in practice, are rarely used in
queries.11

We address the aforementioned issues, similar to issue (i), by excluding these classes, and maintaining minimum
(τclasslow) and maximum (τclasshigh) thresholds for the percentage of triples per class. We rely on these two thresholds
to define the set of classes C′

G for restricting the created typed partitions:

C′
G =

{
c ∈ types(G)

∣∣τclasslow � |(s, rdf : type, c) ∈ G|
|G| � τclasshigh

}
(22)

(iii) Avoid the creation of small families. To address this issue, we aim at considering only “core” families for
the partition merging process, i.e., we select predicate combinations (i.e. families) that are used by a proportionally
large number of subjects, above a threshold αs . That is, we define these core families as

F ′
core =

{
F ′

i ∈ F ′∣∣ |subj(G′
i)|

|subj(G)| � αs

}
(23)

with the respective index set Icore = {i|F ′
i ∈ F ′

core} and predicate set P ′
core = {p ∈ F ′

i |F ′
i ∈ F ′

core}. Intuitively, these
core families represent the structured parts of the graph, i.e., star-shaped sub-graphs where entities are described
with the same attributes.

(iv) Avoid the creation of large families. Finally, we avoid the materialization of overly large (e.g. hundreds
of millions of triples in DBpedia) merged partitions GI with size above a threshold αt . In order to only take core
families into account for the creation of partitions, and limit merged families to sizes below αt , it is sufficient to
modify Equation (20) as follows:

Gserv =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G′
μ(f)

∣∣∣∣∣∣∣∣∣∣

f ∈ dom(μ)∧
μ(f) ∩ Icore �= ∅∧∑

i∈μ(f)

∣∣G′
i

∣∣ � αt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

︸ ︷︷ ︸
Merged partitions

∪ {
G{i}|F ′

i ∈ F ′}︸ ︷︷ ︸
Non-merged partitions

∪ {
Gi,class|class ∈ C′

G, F ′
i ∪ {class} ∈ F typed}︸ ︷︷ ︸

Typed partitions

(24)

In the conditions in the first part of Equation (24), line 2 addresses issue (iii)12 and line 3 addresses issue (iv).13

The second part ensures that, despite pruning, the non-merged partitions of families in F ′ remain being served.
Due to these pruning steps, no longer all the partitions corresponding to families in dom(μ) will be materialized

in Gserv. Therefore, in practice, we define another mapping function, μG, that allows us to directly map families
from dom(μ) to “minimal” sets of matching partitions in Gserv. In practice, we compute the partitions Gserv along
with μG in one go. That is, we build a mapping μG : dom(μ) �→ 22{1,...,m}

that maps a family f to a set of index
sets {I1, . . . Ik} representing (lists of) materialized matching partitions, i.e., where μG(f) = {I |G′

I ∈ G≺
serv(f)}. For

G′
μ(f) ∈ Gserv, i.e., if the respective partition is materialized, then μG(f) = {μ(f)}. In this case, G≺

serv(f) is defined

as: let Gserv(f) = {G′
I ∈ Gserv|f ⊆ μ−1(I)} be all materialized partitions matching a family f , then G≺

serv(f) is
the ≺-minimal subset of Gserv(f) with ≺ defined as: G′

I1
≺ G′

I2
iff μ−1(I1) ⊂ μ−1(I2). That is, as the partition

merging can result in no longer disjoint partitions in Gserv, the intuition is to pick, at query time, the partitions
that are “subset-minimal with respect to their corresponding families”. In practice, smart-KG+ materializes the
partitions in Gserv as HDT files.

11For instance foaf:Document is a large class but mentioned in only 68 queries in LSQ query log.
12since Subj(G′

i
) ∩ Subj(G′

j
) = ∅ for all original families F ′

i
, F ′

j
∈ F ′, by construction it holds that |Subj(G′

I
)| = ∑

i∈I |Subj(G′
i
)|.

13since |G′
I
| = ∑

i∈I |G′
i
|.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 19

Fig. 4. Example of processing a SPARQL query with the smart-KG+ client.

4.3. smart-KG+ query processing

In this section, we detail how the smart-KG+ server and client work together to process SPARQL queries. In
particular, we describe how the query processing is performed on the server-side and on the client-side.

4.3.1. smart-KG+ server
In this section, we describe how smart-KG+ server query planner creates a query execution plan for a submitted

BGP. In addition, we detail how smart-KG+ server enables the clients to access the partitions constructed by the
partition generator described in Section 4.2 and to evaluate single triple patterns using brTPF.

Query decomposer First, smart-KG+ splits parsed Basic Graph Patterns (BGPs) into stars as follows: given a
BGP Q, with subjects subj(Q), a decomposition Q = {Qs |s ∈ subj(Q)} of Q is a set of star-shaped BGPs Qs such
that Q = ⋃

s∈subj(Q) Qs :

Qs = {
tp ∈ Q|tp = (s, p, o)

}
(25)

Analogous to graphs, we can also associate a family to each star query Qs :

F(Qs) = {
p|∃o : (s, p, o) ∈ Qs, p ∈ U

}
(26)

Typed-families for a query F typed(Qs) can be computed analogously to graphs.
Given the SPARQL query in Fig. 4a, the BGP is decomposed into Q = {Q?film,Q?actress,Q?city}

around the three subjects (cf. Fig. 4b). Each of the star families F(Qs) that can be mapped to existing pred-
icate families in dom(μG) on the server that has a non-empty answer. For example, Q?film = {(?film,
dbo:starring, ?actress), (?film, foaf:name, ?filmName), (?film, rdf:type, dbo:Film)} has
F(Q?film) = {dbo:starring,foaf:name,rdf:type}. Note that Q?film contains rdf:type which will
be distinguished by the query planner and optimizer while devising the query plan.

Shipping-based query planner & optimizer In smart-KG+, the query planner and the optimizer are executed at
the server-side to provide more efficient query plans based on pre-computed characteristic set cardinality estimations
and the server’s partition metadata. When the smart-KG+ server receives a request Plan(Q) for a BGP Q from a
client, the server query planner devises an annotated query plan to specify which interfaces are used per subquery.
The interfaces are denoted with superscripts to represent triple pattern shipping using brTPF and partition shipping
using SKG to describe the interfaces as Q

interface
s .

Given Q, P ′
G, and C′

G as input, the query optimizer devises a query plan
Q where the resp. algorithm to compute
Plan(Q, P ′

G,C′
G) is shown in Alg. 2. If the estimated cardinality of a given star-shaped subquery Qs is zero (i.e.,

empty result set), then the result set of the query Q will be empty, therefore, the query planner returns an empty
plan (lines 4–5). Then, the optimizer finds the star-subquery Qsi with the lowest cardinality estimation using the
function card(Qs,
Q) (line 6); in our running example, this would order Q?actress, followed by Q?films, and lastly
the triple pattern in Q?city.

CORRECTED P
ROOF

20 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Algorithm 2: Query optimizer and planner: optimizePlan

Input: Star-shaped query decomposition Q , P ′
G, C′

G

Output:
Q an annotated query plan for Q
1
Q ← ()

2 while Q �= ∅ do
3 for Qs ∈ Q do
4 if card(Qs,
Q) = 0 then
5 return ()

6 Qsi ← Qs ∈ Q such that card(Qs,
Q) � card(Qsj ,
Q) for all Qsj ∈ Q
7 Q′

si
← {(si , p, o) ∈ Qsi |p ∈ P ′

G}
8 Q′′

si
← Qsi \ Q′

si

// Check if there exists family-typed partitions for classes in Q′
si

9 for tp = (si , rdf : type, o) ∈ Q′
si

do
10 if o /∈ C′

G then
11 Q′′

si
← Q′′

si
∪ {tp}

12 Q′
si

← Q′
si

\ {tp}
// Re-order triple patterns within subqueries

13 Q′
si

← reorder(Q′
si
)

14 Q′′
si

← reorder(Q′′
si
)

// Annotate plan with interface
15 if |Q′

si
| > 1 then

16
Q ← append(
Q,Q′ SKG
si

) // Evaluate plan using partitions

17 else
18
Q ← append(
Q,Q′ brTPF

si
) // Evaluate plan using brTPF

// Evaluate tps with no materialized partitions using brTPF

19
Q ← append(
Q,Q′′ brTPF
si

)

20 Q ← Q \ {Qsi }
21 return (
Q)

Next, Qsi is annotated with a label that corresponds to the interface that will be utilized to evaluate the subquery:
SKG label and brTPF label. Therefore, the optimizer characterizes each Qsi to decide whether to use partition
shipping or triple pattern (for parts) of Qsi , as follows:

Partition Shipping. Shipping relevant partitions to evaluate a star Qs ∈ Q requires considering the materialized
partitions at the server. Since graph partitions are generated based on the pruned families (cf. Section 4.2), only stars
with F(Qs) ⊆ P ′

G can be fully evaluated by served partitions. Therefore, the optimizer partitions each Qsi ∈ Q
into the disjoint sets Q′

si
and Q′′

si
, where Q′

si
is the part of the star that can potentially be evaluated over the served

partitions (line 7), whereas the remaining triple patterns in Q′′
si

are delegated to brTPF requests (line 8). Note that
Q′′

si
also includes triple patterns with predicate variables, i.e., p ∈ V . Then, optimizer checks (lines 9–12) for each

triple pattern tp with rdf:type predicate whether the class o belongs to the restricted set of classes C′
G. Note that

this also captures the case with o ∈ V . In the negative case, there is no materialized typed-family partition to serve
Qsi , therefore, this tp will be pushed to Q′′

s to be evaluated using brTPF (line 11). Then, the optimizer considers
heuristics that partition shipping is only followed if |Q′

si
| > 1 where Q′

si
is annotated with the respective label for

partition shipping SKG (lines 15–16). As in practice, the transfer of graph partitions to resolve a single triple pattern
usually takes longer than delegating to a brTPF request directly (line 18).

Triple Pattern Shipping. Qs with a single triple pattern, triple patterns with infrequent predicates, and triple
patterns with predicate variables will be annotated with brTPF label (lines 17). These subqueries will be eventually
evaluated using a brTPF request to the server.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 21

Lastly, the optimizer reorders the triple patterns with the function reorder in the sub-plans based on their cardi-
nality estimations; this allows for an efficient evaluation at the client side. Then, the optimizer attaches the sub-
plans with the append function to build the final plan
Q. The resulting query plan
Q comprises sub-plans
annotated with the corresponding shipping strategy. We describe a full annotated query plan as sequences of pat-
terns being interpreted as left-linear query plans, that is, we write query plans that evaluate patterns as permuta-
tions of the decomposed stars in Q. For our example shown in Fig. 4a, the annotated plan could be written as

 = (Q′ SKG

?actress,Q
′′ brTPF
?actress,Q

SKG
?film,QbrTPF

?city), describing an execution plan at the level of joining star patterns as fol-
lows: (((Q′

?actress �� Q′′
?actress) �� Q?film) �� Q?city). Figure 4c shows the shipping strategies for each sub-plan from

our example. The query optimizer first starts with the subquery Q?actress which is the most selective subquery. For
Q?actress, the optimizer creates Q′ SKG

?actress �� Q′′ TPF
?actress, as the triple pattern tp4 in Q?actress is evaluated using triple

pattern shipping as the optimizer determined that the predicate dbo:wikiPageExternalLink is not in P ′
G.

Next, the query optimizer evaluates Q?film via partition shipping on the client based on a family-based partition.
Finally, Q?city is added to be executed as a single triple pattern using brTPF.

Server operators The smart-KG+ server provides operators to ship partitions and their metadata, or to respond
to brTPF requests. These operators are defined in the following interface calls to access a KG G:

– A brTPF LDF API interface brTPF(Qs,�) which returns σbrTPF(G,Qs,�) = s(G,Qs,�), that retrieves
the answers for a single triple pattern Qs while taking into consideration the attached bindings �, i.e., the
smart-KG+ server returns the triples from G that match Qs based on brTPF requests.

– A SKG LDF API interface SKG(Qs,∅) that handles star-shaped queries Qs and returns σSKG(G,Qs,∅) =
σ(G,Qs), i.e., the set of typed-family partitions if exists, otherwise the family partitions, of which �Qs�G can
be computed and joined on the client-side.

– Plan(Q) to create a query plan for the received BGP Q. Unlike the initial smart-KG+ prototype [15], where
the query plan was inaccurately created on the client-side, we propose shifting the query execution planning
from the client to the server to compute better query plans as the server has access to more accurate cardinality
estimations to determine the order of stars and triple patterns.

4.3.2. smart-KG+ client
The primary focus of this work is on evaluating BGPs as the essential retrieval functionality of the SPARQL

query language. However, our introduced interface is able to process a full SPARQL query including operators such
as UNION and OPTIONAL, FILTER, etc., which are all evaluated locally on the client-side. Herein, we introduce
the general approach for processing a SPARQL query, as follows:

1. Upon receiving a SPARQL query, the query parser translates the input query string into the corresponding
SPARQL algebra expressions.

2. Initially, the client sends a request Plan(Q) to retrieve from the server an optimized query execution plan
Q

for the extracted BGP Q.
3. The query executor evaluates the received plan and iteratively combines the results using a dynamic pipeline

of iterators, following brTPF [37], where each iterator deals with a certain annotated subquery Qc
s that request

a partition or performs a brTPF request.
4. The results serializer translates the locally joined results into the specified format. Note that the downloaded

partitions from the smart-KG+ server during query evaluation can be locally stored in the family cache to be
reused in the upcoming queries.

We describe in detail the algorithms that implement the query executor in a recursive manner in Alg. 3 and
Alg. 4. The function evalPlan recursively evaluates the received plan
 by traversing the left-tree of sub-plans (cf.
Alg. 3). The query executor initially evaluates the first and most selective subquery Qc1

s1 (line 1). Then, the algorithm
traverses the rest of the plan (lines 2–6). The base case is when the plan is associated with a single star pattern Qc

s

(line 2). In this case, the executor evaluates the star using evalc(Qc
s ,�

′) while considering the intermediate results
from earlier subqueries �′ (for details, cf. Alg. 4). Otherwise, the query executor will recursively call the evaluation
of the remaining subtree and join them with the set of bindings retrieved from the previous calls (line 5). The final
output of the query executor is the query result set � of a given plan (line 6). In practice, the executor implements

CORRECTED P
ROOF

22 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Algorithm 3: Query executor: evalPlan

Input:

 = (Q

c1
s1 , . . . ,Q

cn
sn), // an execution plan for a BGP query with stars Q

c1
s1 , . . . ,Q

cn
sn ;

� // a set of bindings; the initial recursive call will set � = ∅
Output: � // set of solution mappings

1 � ← evalc(Q
c1
s1 ,�)

2 if |(Qc2
s2 , . . . ,Q

cn
sn)| = 1 then

3 � ← � �� evalc(Q
cn
sn ,�)

4 else if |(Qc2
s2 , . . . ,Q

cn
sn)| > 1 then

5 � ← � �� evalPlan((Q
c2
s2 , . . . ,Q

cn
sn),�)

6 return �

Algorithm 4: Query executor: evalc
Input:
Qc

s // A decomposed pattern and it is annotated execution plan;
�′ // a set of binding if available
Output: � a set of solution mappings

1 if c = SKG then
2 G∗ = SKG(Qc

s ,∅)

3 � ← {ω∅}
4 for tp ∈ Qc

s do
5 � ← � ��

⋃
Gj ∈G∗�tp�Gj

6 else if c = brTPF then
7 � ← brTPF(Qc

s ,�
′)

8 return �

an iterator to push intermediate results of evaluating one sub-plan to the next operator in the plan. This allows the
smart-KG+ client to incrementally stream query results once computed.

Alg. 4 presents the function evalc(Qc
s ,�

′), which calls the corresponding interface (i.e. the respective smart-
KG+ server operators for the shipping strategy determined by the server query plan). The first case c = SKG is to
evaluate a star pattern using a shipped partition on the client-side. The second case c = TPF involves calling the
brTPF interface which directly returns the result bindings. In the following, we explain the two cases in detail:

Case SKG. Each sub-plan QSKG
s is evaluated (cf. Alg. 4, lines 2–5) by retrieving HDT partitions using the server

operator for partition shipping SKG(Qs,∅). This operation returns a set of partitions G∗ which is either a set of
family-based partitions or a set of typed-family partitions (cf. Alg. 4, line 2). The query executor evaluates each
triple pattern tp of the star pattern QSKG

s (lines 4–5) over the partitions (using the SPARQL algebra union operator
when several partitions are retrieved). The results of each tp are joined to produce the final results of the star pattern.

Case: brTPF. Each sub-plan QbrTPF
s involves a single triple pattern which is executed by calling the server

operator brTPF(tp, �′) which is a brTPF interface that directly returns the result bindings (cf. Alg. 4, lines 6–7).
The evaluation of SPARQL BGP queries with smart-KG+ is correct, as stated in the following proposition. The

proof can be found in Appendix A.

Proposition 1. The result of evaluating a BGP Q over an RDF graph G with smart-KG+, denoted
smart − eval(Q,G), is correct w.r.t. the semantics of the SPARQL language, i.e., smart − eval(Q,G) = �Q�G.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 23

5. Experimental evaluation

We report the performance of smart-KG+ in comparison to state-of-the-art SPARQL engines over Linked Data
Fragments. All datasets, queries, and results, including additional experiments, details on the implementation and
configurations used in the experiments are available online.14 We organize the conducted experiments as follows:
First, in Section 5.1, we present the details of our experimental setup. Next, in Section 5.2, we present the results
of the partition generation. We perform an ablation study to assess the impact of each contribution in Section 5.3.
Subsequently, in Section 5.4, we conduct a performance evaluation of our approach, comparing it to the state of the
art. Further, we extend this evaluation in Section 5.5 to assess the query performance under different query shapes.
The resource consumption of our introduced interface is compared to other existing interfaces in Section 5.6. Finally,
in Section 5.7, we evaluate typed-family partitioning using multiple datasets.

5.1. Experimental setup

In this section, we present the experimental setup, including the characteristics of the compared systems, the
benchmark KGs, the query workloads, the hardware and software configurations, and the evaluation metrics.

5.1.1. Compared systems
– smart-KG: We use the Java implementation of smart-KG [15], extending the TPF implementations.15 HDT

indexes and data are stored on the server’s disk, with no client-side family caching. This implementation
includes:

∗ Query Planner: The smart-KG client-side query planner generates left-linear plans. This planner relies
on the server’s partition metadata to determine whether to use the triple pattern or partition shipping. The
metadata is transferred to the client-side once before evaluating queries, requiring additional data transfer.

∗ Client-side Joining: We implement a joining strategy, following TPF implementation [78]. The join process-
ing is performed on the client-side based on the client-side query plan.

– smart-KG+: We implement both client and server in Java14, extending smart-KG, which includes:

∗ Query Planner: We implement a server-side query planner to re-order the star-subqueries and triple patterns,
which relies on cardinality estimations computed at the server. Details are presented in Section 4.3.1, Alg. 2.

∗ Client-side and Server-side Joining: We implement a joining strategy, following the brTPF implementa-
tion [37]. We enable the clients to attach intermediate results to brTPF requests.This enables a distributed
join execution between the client and server using the bind join strategy [33].

– Triple Pattern Fragments (TPF): We use the Java TPF client along with the TPF server [78].
– SaGe: We use the Python implementation of both the SaGe server and client. We follow the recommended

a time quantum of 75 milliseconds as recommended by the authors [61]. Specifically, we configure SaGe to
operate with 65 workers following SPF experiements [5] and gunicorn recommendation16

– WISEKG: We utilize the WISEKG client and server Java implementation, extending the TPF implementa-
tions. The WISEKG server employs Star Pattern Fragments (SPF) for efficient server-side processing of star-
subqueries and uses the family generator from smart-KG to manage and store HDT files for family-based
partitions. The WISEKG client implements a bind join strategy similar to brTPF and SPF, smart-KG+ client
implementations.

In our experiments, we do not consider SPARQL endpoints, since several previous studies [5,61,78] including
ours [15] have already shown that endpoints suffer from scalability problems when increasing the number of clients.

14https://github.com/smartkgplus/smartkgplus/tree/master
15Linked Data Fragments: http://linkeddatafragments.org/software/.
16https://docs.gunicorn.org/en/stable/design.html#how-many-workers

https://github.com/smartkgplus/smartkgplus/tree/master
http://linkeddatafragments.org/software/
https://docs.gunicorn.org/en/stable/design.html#how-many-workers

CORRECTED P
ROOF

24 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Table 3

Characteristics of the evaluated knowledge graphs

RDF graph G # triples |G| # subjects |SG| # predicates |PG| # objects |OG|
WatDiv-10M 10,916,457 521,585 86 1,005,832

WatDiv-100M 108,997,714 5,212,385 86 9,753,266

WatDiv-1B 1,092,155,948 52,120,385 86 92,220,397

DBpedia 837,257,959 113,986,155 60,264 221,623,898

5.1.2. Knowledge graphs
We use various RDF graph datasets including synthetic and real-world datasets. We construct three different

dataset sizes including 10M, 100M, and 1B triples from the synthetic dataset Waterloo SPARQL Diversity Bench-
mark (WatDiv) [9]. We design these KG sizes according to the size of open KGs on the LOD Cloud,17 with an
average of 183M RDF triples. In addition, we evaluate the compared systems based on a real-world dataset such
as DBpedia (v.2015A) [53]. We report the characteristics of the evaluated RDF KGs in Table 3. In addition, in
Appendix B, we report statistics on computing family partitioning over other real-world RDF KGs such as Word-
Net [24], Yago2 [44], DBLP [55], Freebase [16]. However, these KGs are not used for assessing the performance of
the query engines, as there are no well-known benchmark queries for these datasets

5.1.3. Queries and workloads
We consider two different query workloads for the synthetic WatDiv datasets:

– A basic testing workload denoted as watdiv-btt that includes a set of queries extracted from WatDiv
basic testing templates.18 We generate for each client a set of 20 queries with the following shapes: linear
(L), which represents simple path queries; star (S), which includes star queries with at least one instantiated
object; snowflake (F), which combines multiple star shapes connected with short paths; and complex (C),
which provides challenging queries composed of typically low-selective stars and path queries. Various clients
may exhibit query overlap among themselves, but within an individual client, there are no instances of query
repetition.

– A stress testing workload denoted as watdiv-sts comprises a collection of queries sourced from the Wat-
Div stress-testing suite.19 Each client workload encompasses a total of 156 non-overlapping queries.20 These
queries were generated using the Waterloo SPARQL Diversity Test Suite (WatDiv), which provides stress test-
ing tools [9], allowing us to randomly select queries from the WatDiv stress test query workload in a uniform
manner. This workload offers a diverse range of structural and data-driven features [9].

In addition, we consider a DBpedia real-world query workload:

– A real-world testing workload, named DBpedia-lsq, consists of 30 SELECT queries per client obtained
from the FEASIBLE framework [68]. These queries are derived from real user interactions and were executed
on the DBpedia 3.5.1 dataset. FEASIBLE is a benchmark generation framework that receives a query log
(LSQ [67] in our case) and produces a representative set of queries from the log considering both data-driven
and structural query features. Since we are interested in highly-demanding queries, we randomly selected 30
BGP queries (out of 259) from FEASIBLE with runtime higher than 1 s. We include the results of this workload
in our online repository

In order to evaluate the proposed typed-family partitioning, as shown in details in Table 4, we derive the follow-
ing testing workloads from basic testing and stress testing workloads on Watdiv dataset and a real-world testing
workload extracted from LSQ query logs based on FEASBLE benchmark framework:

17The Linked Open Data Cloud. https://lod-cloud.net/.
18https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
19Waterloo SPARQL Diversity Benchmark. https://dsg.uwaterloo.ca/watdiv/.
20brTPF: http://olafhartig.de/brTPF-ODBASE2016/.

https://lod-cloud.net/
https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
https://dsg.uwaterloo.ca/watdiv/
http://olafhartig.de/brTPF-ODBASE2016/

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 25

Table 4

Evaluation workloads statistics. We provide the total numbers for all the 128 clients

Query workload Number of queries Number of stars Number of stars with type predicate Number of stars with bounded type predicate

watdiv-sts 19968 35683 6283 3886

watdiv-btt 2560 5248 1152 512

watdiv-btf 1024 1664 1152 512

watdiv-btfbounded 512 640 640 512

watdiv-btfunbounded 512 1024 512 0

watdiv-stfbounded 2944 6144 2944 2944

watdiv-stfunbounded 1792 3072 1792 0

watdiv-stfboth 768 1792 1536 768

DBpedia-lsq 3840 5632 896 768

DBpedia-bttbounded 2432 4352 3200 3200

DBpedia-bttunbounded 768 768 0 0

– A typed-family partitioning testing workload, named as watdiv-btf, includes 8 queries derived for each
client from watdiv-btt. Each query contains at least one star-shaped subquery Qs with a triple pattern that
has a rdf:type predicate. We divide this workload into two workloads: the first workload named watdiv-
btfbounded includes 4 queries for each client where the object of the triple pattern with rdf:type predicate is
bounded to a value, the second workload, named watdiv-btfunbounded , where the object of the triple pattern
with the rdf:type predicate is unbounded (i.e. variable).

– A typed-family partitioning testing workload derived from watdiv-sts named watdiv-stf. We include
a set of queries that contain at least one star-shaped subquery Qs with the rdf:type predicate. We divide
the obtained queries into three different workloads. The first workload, named watdiv-stfbounded , includes
23 queries for each client where the object of the triple pattern with type predicate is bounded. The second
workload, watdiv-stfunbounded , includes 14 queries for each client where the object of the triple pattern
with rdf:type predicate is a variable. The third workload, watdiv-stfboth, contains 6 queries per client,
where one star-subquery involves a bounded object in the triple pattern with the type predicate, while another
star-subquery includes an unbounded object in the triple pattern with the type predicate.

– A real-world typed-family partitioning testing workload. We extract 25 real-users SELECT queries for each
client from FEASIBLE [68] benchmark on the DBpedia 3.5.1 dataset. Note that we make sure that the queries
are compatible with our DBpedia dataset version, v.2015A. We selected queries that contain at least one-star
pattern with at least one triple pattern with the rdf:type predicate. We divide the selected queries into two
workloads. The first workload, named as DBpedia-bttbounded, consists of 19 queries with at least one-star
query with a bounded type predicate. The second workload, named as DBpedia-bttunbounded , consists of 6
queries for each client with at least one-star query with an unbounded rdf:type predicate.

5.1.4. Hardware setup
– Client specifications: We design experiments with an increasing number of clients following eight configura-

tions with 2i clients (0 � i � 7) issuing concurrent queries to the server. Each client executes one query at a
time, i.e., the server receives at most 128 queries simultaneously. We ran all eight configurations 1, 2, 4, 8, 16,
32, 64, and 128 clients concurrently on a virtual machine with 128 vCPU cores of 2.5 GHz, 64 KB L1 cache,
512 KB L2 cache, 8192 KB L3 cache, and 2TB main memory. To ensure equal resource allocation among the
clients, we bound each client (for the compared systems) to a single vCPU core and 15 GB of main memory.

– Server specifications: The compared systems servers run on a virtual machine (VM) hosted on a machine
with 32 3 GHz vCPU cores, 64 KB L1 cache, 4096 KB L2 cache, 16384 KB L3 cache, and 128 GB main
memory. To ensure that enough resources are left for the VM, it was made sure that the hypervisor was not
over-committing resources. Furthermore, KVM processor affinity was configured so that each VM would be
only using a set of explicitly defined CPU cores, ensuring that other VMs running on the hyper-visor are not
using the resources of the VM running the SPARQL servers.

CORRECTED P
ROOF

26 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Table 5

Family-based partitions parameter settings in our experiment

RDF graph G αs αt τplow τphigh τclasslow τclasshigh |P ′
G

| |P ′
core| |F ′

core| |Gserv| C. time (h)

WatDiv-10M 0 |G| 0 1 0 1 85 85 13,002 38,400 2

WatDiv-10M 0 0.05|G| 0.01/100 1 0 1 59 59 10,106 21,210 1

WatDiv-100M 0 0.05|G| 0.01/100 1 0 1 59 59 22,855 37,392 7

WatDiv-1B 0 0.05|G| 0.01/100 1 0 1 59 59 39,046 52,885 12

DBpedia 0.01/100 0.05|G| 0.01/100 0.1/100 0.01/100 0.1/100 218 84 35 29,965 23

– Network configuration: While clients and servers are connected over a 1 GBit Ethernet network, we bound
the network speed of each client to 20MBit/sec to emulate a practical bandwidth offered by internet service
providers.

5.1.5. Evaluation metrics
– Throughput: Number of workload queries completed per minute.
– Timeouts (TO): Number of workload queries that exceed the timeout. We set timeout thresholds of 5 and 30

minutes for WatDiv and DBpedia queries, respectively.
– Workload Completion Time: Total elapsed time required by a client to execute an entire query workload.
– Query Execution Time (ET): Average elapsed time to execute a single query in a query workload.
– First Result of a Query: Elapsed time to retrieve the first result of a query in a query workload.
– Server CPU load: The average percentage of server CPU used during the execution of a query workload.
– Number of Requests (Req): Total number of requests received by the server from a client.
– Number of Transferred Bytes (DT): Total number of bytes transferred on the network between the server and

clients.

5.2. Creation of family-based partitions

Table 5 presents the thresholds used for creating the family-based partitions for each KG G. Note that the configu-
ration (αs, αt , τplow , τphigh , τclasslow , τclasshigh) = (0, |G|, 0, 1, 0, 1) corresponds to full materialization of all families.
For the smallest dataset WatDiv-10M, we tested this configuration. Then, we assess the impact of the smart-KG+
family pruning strategies with the following set up. We empirically set αt = 0.05|G| for all datasets, to avoid large
families containing more than 5% of the triples in G. Then, we use αs = 0 for WatDiv to allow all families (even
small ones), but αs = 0.01/100 for DBpedia to create families where the predicates appear in at least 0.01 of the
subjects in the graph. Likewise, we fixed τplow = 0.01/100 for all G, while we set τphigh = 0.1/100 for DBpedia,
as we empirically tested that the resultant predicate set filters out both infrequent and heavy hitters. We refer to [15]
for a study on DBpedia on the number of families with different values of our parameters. Lastly, for typed families,
we tested the parameters τclasslow = 0.01/100 and τclasshigh = 0.1/100 for DBpedia, applied to 376 classes selected
based on an empirical test that the resultant class set filters out heavy hitter classes as well as infrequent classes.

For each graph G, Table 3 also shows the number of restricted and core predicates (|P ′
G|, |P ′

core|), core fami-
lies, |F ′

core|, and the materialized partitions after grouping/pruning, |Gserv|, as well as the total computation time
(including family computation, pruning, and partition generation). Table 3 also shows that |F ′

core|, |Gserv|, and the
computation time are sub-linearly increasing with the graph sizes. In WatDiv, F ′

core = F ′(G), whereas in DBpedia,
the initial number of P ′

G-restricted21 families |F ′(G)| is >600K: the family pruning strategy allows smart-KG+
to identify |F ′

core| = 35 core families, which are merged into ∼30K materialized partitions. We provide an analysis
of the impact/coverage of different parameter values for the case of DBpedia in our online repository14. Lastly,
Appendix B presents the results of family creation in further real-world KGs, i.e., Yago2, WordNet, and DBLP.

21The 218 restricted DBpedia predicates cover over 40% of the predicates occurring in highly-demanding BGPs (>1 s of execution time) in
the real-world LSQ query log [67].

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 27

Table 6

An ablation study to assess the performance of each individual contribution over watdiv10M using watdiv-btt workload. (Req: requests,
DT: data transfer in MB, ET: execution time in ms, TO: timeouts). GM-T = total geometric mean for all query classes

Query smart-KG+ (brTPF + NP) smart-KG (TPF + NP) smart-KG (TPF + OP)

Req DT ET Req DT ET Req DT ET

L1 4 0.54 206 28 1.1 333 60 0.54 218

L2 3 0.34 175 3 0.34 188 2 0.34 51

L3 2 0.5 579 2 0.5 566 2 0.5 28

L4 2 0.5 188 2 0.5 169 2 0.48 69

L5 3 0.16 192 3 0.16 221 2 0.16 52

S1 3 0.13 221 3 0.13 206 2 0.12 66

S2 2 0.22 191 2 0.22 204 2 0.22 117

S3 2 0.59 209 2 0.59 181 2 0.55 61

S4 10 0.48 226 16 0.66 575 216 0.72 1476

S5 2 0.42 161 2 0.42 163 2 0.39 3863

S6 2 0.01 170 2 0.01 141 699 3.8 7508

S7 2 0.003 221 2 0.003 224 2 0.003 52

F1 4 0.9 240 4 0.98 228 15 2.95 452

F2 3 0.9 184 3 0.91 179 2 1.2 361

F3 5 1.5 311 1503 0.16 268 2541 1.4 298

F4 5 0.8 217 2029 30.56 31858 24000 0.81 76073

F5 5 5.8 247 5 5.8 282 3 5.8 2478

C1 4 6.9 372 4 6.9 384 6 7.4 683

C2 39218 52.1 300071 3181 52.1 171848 102441 3.1 208721

C3 2 0.8 21635 2 0.81 22200 2 0.8 28316

GM-T 4.9 0.5 407.7 8.76 0.57 539.03 18.82 0.64 605.12

Table 7

An ablation study to assess the performance of each individual contribution over watdiv10M using watdiv-sts workload. (Req: requests,
DT: data transfer in MB, ET: execution time in ms, TO: timeouts). GM-T = total geometric mean for all query classes

Workload smart-KG+ (brTPF + NP) smart-KG (TPF + NP) smart-KG (TPF + OP)

Req DT ET TO Req DT ET TO Req DT ET TO

watdiv-sts 554 203.41 24.405 6 24722 546.26 382.236 0 3768 387.953458 55.876 0

5.3. Ablation study: Assessing the impact of the smart-KG+ components

In this section, we conduct an ablation study to evaluate the performance of each individual contribution made to
smart-KG+. The goal is to gain insights into the significance of each change introduced w.r.t. the earlier version.
For this purpose, we developed three configurations of the interface:

– TPF + OP: This configuration represents the early version of smart-KG, combining TPF with client-side
query planning (OP).

– TPF + NP: This configuration is a variant of our smartKG interface that allows us to observe the impact of
the new server-side query planning (NP) while using TPF.

– brTPF + NP: This configuration represents our proposed solution smart-KG+, which combines brTPF with
server-side query planning (NP).

To assess the performance of these configurations, we conduct a performance evaluation using watdiv-btt
and watdiv-sts on watdiv10M; results are presented in Table 6 and Table 7.

In Table 6, we observe that the smart-KG outperforms other approaches in handling simple linear queries
(L1–L5) and highly selective star queries (S1–S3). This performance superiority is attributed to the comparatively
lower average execution time of 82 milliseconds for these queries, while the query planning process in our proposed

CORRECTED P
ROOF

28 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

solution, smart-KG+, requires an average of 70 milliseconds. However, it is essential to consider that client-side
query planning requires an initial data transfer of 1.75 MB on average, comprising metadata that represents the
family partitioning of the queried knowledge graph. This metadata is crucial for identifying the required partition
for each query. Shipping the metadata file demands an average of 700 milliseconds, but it can be cached locally
and subsequently utilized for multiple queries. It is important to note that the performance results presented for
smart-KG presume that the metadata file is already stored on the client-side.

Table 6 also shows a significant improvement in performance, with up to a 50% reduction in execution time
observed, for both systems reliant on the server-side query planner for F queries comprising 2–3 stars per query. This
improvement can be attributed to our server-side query planner’s utilization of star reordering based on characteristic
sets, which offers a better reordering compared to the one achieved by smart-KG in the case of snowflake queries.

In the case of C queries, C1 demonstrates performance enhancement through the adoption of the star-reordering
technique provided by the query planner of smart-KG+. However, for C2, brTPF + NP exhibits slightly lower
performance compared to other systems. This is attributed to the query execution strategy of smart-KG+, which
always pushes intermediate results to brTPF, instead of joining the intermediate results entirely at the client-side.
This lead to unnecessary requests in C2, resulting in a longer runtime. Still, brTPF + NP provides the best total
geometric mean for the number of requests, data transfer, and execution time compared to the other two versions.

In Table 7, we present the performance analysis of three different configurations applied to the stress workload
watdiv-sts. The results demonstrate a significant improvement in the performance of smart-KG+ (brTPF +
NP) when compared to the other two versions. We note that the smart-KG+ (brTPF + NP) version experienced 6
timeouts, whereas the remaining versions did not encounter any timeouts. These timeouts results from the following
reasons. First, low selective queries may time out due to the strategy of attaching large intermediate results back
to the server. Second, the process of attaching the intermediate results to the brTPF request incurs higher costs
compared to a regular TPF request. This increased cost further affects the overall performance and contributes to
the occurrence of timeouts. Third, a mismatch in query planning can potentially lead to longer execution times. This
was observed in two queries in TPF + NP, which took more than a minute to execute, as well as in the case of C2.

To conclude, the new query planner finds better query plans but with the cost of a server request. In addition, our
strategy to query brTPF achieves better performance in queries that require shipping a small number of intermediate
result, while querying TPF achieves better performance for queries that require shipping many intermediate results.

5.4. System performance evaluation

In this section, we evaluate the performance of an increasing number of concurrent clients (up to 128 clients) on
three different graph sizes including watdiv10M, watdiv100M, and watdiv1B using watdiv-stsworkload.
For these experiments, and the ones presented in Section 5.5 and Section 5.6, smart-KG+ does not use the typed-
partitions. This allows for measuring the impact of the new planning and pipelined join strategies implemented and
comparing them to the previous techniques implemented in smart-KG.

Workload Completion Time Analysis. Fig. 5 shows the average workload completion time results of executing
the watdiv-sts workload including the queries that have timed out. Figure 5a shows the scenario of increasing
KG size with the highest number of concurrent clients (128 clients) on using watdiv-sts. smart-KG+ is up to
7, 2, and 1.3 times faster than smart-KG on watdiv10M, watdiv100M, and watdiv1B datasets, respectively.
This improvement in performance is due to performing query planning on the server-side, which results in fewer
intermediate results transferred over the network.

As shown in Fig. 5b, smart-KG+ provides a significant performance improvement compared to all systems;
smart-KG+ has an outstanding performance over watdiv1B dataset from 1 up to 32 clients compared to smart-
KG since smart-KG+ utilizes brTPF which significantly reduces the number of HTTP requests. Note that smart-
KG performance slightly improves with an increasing number of concurrent clients since TPF requests sent by
smart-KG clients have a higher potential for a cache hit than brTPF request sent by smart-KG+ client since the
HTTP caching is designed to serve the identical requests to earlier ones without the need to access the server to
recompute the response over again.

Overall, smart-KG+ provides a faster workload completion time on using watdiv-sts than TPF and SaGe
in all experiment setups from 1 up to 128 clients over watdiv1B dataset. smart-KG+ is up to 18 and 7 times

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 29

Fig. 5. Workload completion time (lower is better).

Fig. 6. Number of timeouts (lower is better).

faster in the case of 1 client workload, and 3 and 2.6 times with 128 concurrent client workloads than TPF and
SaGe, respectively. For less than 16 concurrent clients, SaGe provides a slightly faster workload completion time
than smart-KG. From this point forth, SaGe suffers from performance degradation due to the excessive waiting
queue time of the round-robin policy.

Timeout Analysis. Fig. 6a illustrates that smart-KG and smart-KG+ produces relatively low timeouts com-
pared to the state-of-the-art system TPF and SaGe. That is, with 128 concurrent clients, smart-KG+ and smart-
KG have approximately a percentage of 9% and 13% of watdiv-stsworkload queries timed out over watdiv1B
dataset. In contrast, as shown in Fig. 6b, on watdiv1B, the percentage of timeouts increases for TPF with an in-
creasing number of clients, from 44% in 1-client workload to 56% with 128 clients. Similarly, the percentage of
timeouts rises rapidly from 10% with 1 client up to 54% with 128 concurrent clients.

As expected, the number of timeouts of TPF and SaGe has excessively increased with the size of the RDF KG size.
On watdiv10M, SaGe produces no timeouts while TPF has a percentage of 10% timeouts. In turn, SaGe timeouts
increase substantially with increasing KG sizes, with a trend similar to TPF over watdiv100M and watdiv1B.

Throughput Analysis. We consider throughput as a metric to explore the performance of the systems under high
load, i.e., an increasing number of concurrent clients and the sizes of the KGs. We measure the throughput as the

CORRECTED P
ROOF

30 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Fig. 7. Throughput (higher is better).

Fig. 8. Average first result time (lower is better).

total number of queries executed per minute from all concurrent clients. Note that we consider the queries that have
terminated successfully and provided complete results within the predetermined timeout limit.

Figure 7a shows that smart-KG+ achieves higher throughput values than all the compared systems over different
KG sizes reaching 4132, 678, 109 query/min over watdiv10M, watdiv100M and watdiv1B, respectively. In
Fig. 7b, we report two main findings. First, smart-KG+ scales better than the other approaches since it has a higher
query throughput with an increasing number of clients. Second, all compared systems are able to achieve higher
throughput with an increasing number of clients, which shows that the systems can scale well but at a different rate.

First Result of a Query Analysis. Fig. 8a shows that SaGe provides the best response time to all systems over
different sizes of KGs. This is not surprising since SaGe is, in principle, a SPARQL endpoint that adopts a Web
preemption technique to avoid the convoy effect phenomenon caused by the long-running queries. smart-KG+
provides a comparable query response time to smart-KG and SaGe and even slightly better than TPF on wat-
div10M dataset. However, as the KG size increases, the average response time also increases for watdiv100M
and watdiv1B. This can be attributed to two factors. First, the larger sizes of the shipped KG partitions result in
longer download times. Second, smart-KG+ relies on brTPF for handling single triple pattern fragments, unlike
the previous version smart-KG which used TPF. While brTPF potentially requires fewer requests compared to

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 31

Fig. 9. Avg. execution time per client on WatDiv-100M, for the first query of each category L, S, F, and C and the rest in Appendix C.

TPF, it introduces additional time for attaching and parsing solution mappings. Moreover, brTPF utilizes the bind-
ing join strategy to distribute the workload between clients and the server. Consequently, with an increasing number
of clients, brTPF puts more load on the server compared to TPF, resulting in slightly slower query response times
as shown in Fig. 8a.

In Fig. 8b, we observe that TPF and SaGe have an almost constant curve (i.e. negligible response time increase)
with an increasing number of clients. In turn, smart-KG+ has on average a longer response time between 2
seconds on 1 client workload and 17 seconds on 128 client workload. As a final noteworthy observation regarding
the response time metric, smart-KG response time is actually decreasing with an increasing number of concurrent
clients, as we discussed earlier, the likelihood of a cache hit for identical TPF requests from different query execution
is higher than brTPF requests. In other words, with an increasing number of clients, TPF requests issued by smart-
KG clients are more frequently answered from an HTTP cache that acts as a proxy server than brTPF requests issued
by smart-KG+. This is consistent with the results reported by Hartig and Buil-Aranda [37].

5.5. Performance evaluation on different query shapes

In this section, we investigate the query performance of smart-KG+ compered to the state-of-the-art interfaces
on four different query shapes previously introduced by the WatDiv Basic Testing [9]. In the following, we provide
an overview of the trend of the average execution time of each category in Fig. 9, while the rest of the queries
are analyzed in detail in Appendix C. In general, SaGe has an outstanding performance for all query shapes. This
behavior can be explained by the size of the workload; the watdiv-btt workload includes only 20 queries per
client inducing a low query arrival rate to the SaGe server. In contrast, TPF is significantly worse than most of
the compared systems except in simple queries due to shipping large intermediate results and a high number of
requests. In turn, smart-KG provides a relatively slow performance in L, S, and F queries since it ships partitions
with unnecessary intermediate results for such selective queries. Yet, smart-KG+ provides an efficient query
performance in F and C queries. Interestingly, although smart-KG+ still has to ship the same partitions as smart-
KG, smart-KG+ provides better performance in most query shapes thanks to the more accurate query planner. As
expected, the performance of smart-KG+ enhances gradually from simple L queries reaching its best performance
in complex C queries.

Table 8 summarises the average execution time for all different query shapes over watdiv100Mwith 128 clients.
For the L-workload, smart-KG+ and SaGe offer comparable performance in L, with a better geometric mean in
the simplest queries and highly selective queries with a small diameter. For the F queries, SaGe provides the best
performance in F-workload compared to all systems. In turn, smart-KG+ outperforms all the compared systems in
C queries, except in C2, where both smart-KG and TPF timeouts are due to the large intermediate results. Finally,
smart-KG+ achieves the second smallest total geometric mean after SaGe that behaves watdiv-btt workload
as a SPARQL endpoint since watdiv-btt has low number of queries (cf. Table 8, GM-T column).

5.6. Resource consumption

Network Load. We report two main metrics to describe the network load: the total number of requests received
by the server and the number of bytes transferred on the network between clients and the server. The results reported
in the following do not account for queries that timed out.

CORRECTED P
ROOF

32 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Table 8

Avg. execution time per client (in sec.) for 128 clients over watdiv100M for the watdiv-btt workload. GM = geometric mean per query
class. GM-T = total geometric mean for all query classes

Query L1 L2 L3 L4 L5 GM-L F1 F2 F3 F4 F5 GM-F

TPF 0.39 268.7 0.16 35.9 117.18 9.3 22.60 44.35 41.8 50.27 2.21 21.5

SaGe 0.141 11.27 0.26 6.86 7.47 1.84 1.21 0.93 1.67 2.33 0.37 1.1

smart-KG 7.13 20.66 0.88 2.89 0.94 3.23 23.58 7.19 28.19 7.17 7.83 12.18

smart-KG+ 3.90 5.9 0.92 1.99 0.875 2.05 1.8 1.832 3.34 2.75 2.27 2.39

Query S1 S2 S3 S4 S5 S6 S7 GM-S C1 C2 C3 GM-C GM-T

TPF 3.36 59.2 38.063 36.91 92.39 9.58 0.034 9.75 300.0 300.0 510.37 358.13 20.19

SaGe 0.17 2.79 10.85 2.9 5.70 0.77 0.09 1.28 77.74 74.18 480.10 140.41 2.73

smart-KG 2.61 0.99 0.91 43.02 3.62 67.41 0.97 4.22 39.85 200.0 363.35 163.16 4.58

smart-KG+ 1.81 0.83 0.402 23.02 2.8 3.6 0.43 1.79 14.85 310.0 260.11 106.18 3.65

Fig. 10. Server resource consumption with increasing number of clients and increasing dataset sizes on watdiv-sts workload.

Figure 10a shows the distribution of the number of transferred bytes on increasing KG sizes with 128 concurrent
clients. SaGe transfers the least number of bytes over the network compared to all state-of-the-art systems since
SaGe acts as a full SPARQL endpoint with a Web preemption as an additional feature to prevent query execution
starvation with no intermediate results. SaGe only consumes a small extra data transfer overhead to send query
plans of a long running-query in order to enable the clients to resume query execution afterward. In contrast, TPF
incurs the highest data transfer cost due to the enormous amount of shipped intermediate results leading to low
query execution performance as already shown in Fig. 5 and Fig. 6.
smart-KG+ requires less data transfer than smart-KG. This is expected for two main reasons. First, smart-

KG+ utilizes a star pattern reordering based on cardinality estimation which eventually reduces the intermediate
results transferred on the network. Second, smart-KG+ employs brTPF to handle single non-star triple patterns
which reduces the data transfer compared to TPF. To be precise, smart-KG+ requires to transfer on average 8.1 MB
and 86.8 MB per query over watdiv100M and watdiv1B. As expected, smart-KG+ transfers more data over
the network than SaGe, but up to 87% and 40% less data than TPF and smart-KG per query over watdiv100M
dataset. Yet, smart-KG+ can leverage the transferred partitions by reusing them in future queries.

As shown in Fig. 10b, smart-KG+ significantly reduces the number of requests in comparison to all of the
compared systems. smart-KG+ requires on average 8, 17 and 178 requests over watdiv10M, watdiv100M,
and watdiv1B. In contrast, TPF incurs an enormous number of requests, reaching more than 10 − 30K requests
per query (on average) over the different WatDiv datasets. For SaGe, the number of requests considerably increases
as a consequence of the scheduling mechanism to allocate server resources among the workload queries.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 33

Table 9

Comparison of storage requirements (in MB) for systems with HDT backend vs original graph size (raw)

Dataset Raw Family partitioning Typed-family partitioning TPF/SaGe

WatDiv-10M 1,471 2,783 5,632 112

WatDiv-100M 14,876 29,711 58,265 1,186

WatDiv-1000M 151,862 310,574 624,253 12,793

DBpedia 158,197 122,440 150,528 17,904

In both versions of smart-KG, the implementation of a caching mechanism would potentially yield a substantial
performance improvement. Two strategies can be employed: server-side caching of popular families in-memory and
client-side caching, where families are stored locally upon shipment, enabling their reuse for subsequent queries
involving the same families. Caching the partitions on the client-side will execute streak queries with minimal com-
munication to the server. A streak [19] is defined as a sequence of queries that appear as subsequent modifications
of a seed query.

Server CPU Usage. Fig. 10c shows that smart-KG, TPF, and smart-KG+ only consume less than 30% of
server CPU in order to process the watdiv-sts query workload on all number of clients setups. This is because
the aforementioned interfaces limit the client to send certain query patterns (i.e less expressive queries) to the server
(e.g. single triple patterns and star patterns). This allows for distributing the query execution computation cost
between the client and the server. In contrast, SaGe offers a more expressive server interface with few operators
executed on the clients. Thus, SaGe server is able to execute more complex queries which extensively use the server
CPU leading to a rapid surge of CPU usage. In particular, SaGe uses less than 30% CPU usage for 1 up to 16 clients
and then escalates up to 80 − 100% for 32 to 128 clients.

Server Disk Usage. Table 9 presents a comparison of the required disk storage for all compared systems. We
consider four KGs with diverse raw data sizes (in N-Triples). In practice, TPF and SaGe rely on the compressed
HDT file format that offers a high space-efficient representation. In turn, smart-KG and smart-KG+ rely on
the family partitioning mechanism that demands additional disk space to store HDT partitions, specifically both
systems mandate double the N-Triples format size of Watdiv KG. Note that DBpedia requires less storage space
since we apply the pruning parameters to reduce the number of materialized HDT partitions. Considering that disk
storage is the most economical server resource, smart-KG+ supports an admissible trade-off to obtain better query
performance alongside less server CPU consumption.

Client CPU and RAM usage. The SaGe client locally performs two main tasks: first, resuming the sus-
pended query execution based on the saved plan received earlier from the SaGe server; second, executing the
non-preemptable SPARQL operators including aggregation functions as well as OPTIONAL, ORDER BY, GROUP
BY, DISTINCT, etc. Given the aforementioned tasks, SaGe clients, nevertheless, demand a feasible (on average
15%) CPU usage and reasonable RAM size (∼ 2 GB) for all workloads. In turn, TPF requires a higher computation
cost (on average 45%) on the client-side than SaGe since TPF clients locally execute the expensive join operator.
Similar to TPF, smart-KG performs the join processing of single triple patterns and star patterns queries over the
shipped partitions, leading to a higher client CPU consumption (on average 70%) than TPF and SaGe which could
be expensive for light client systems. In turn, smart-KG+ demands (on average 55%) less client-side processing
than smart-KG, as it processes fewer intermediate results on the client due to the bind join strategy supported by
brTPF as well as the more efficient query plans devised by the server-side optimizer and planner.

Note that the aforementioned percentages de-escalate with an increasing number of clients due to the bottleneck
on the server-side since the clients are almost idle awaiting to receive the server response. In other words, the network
traffic dominates the query execution of TPF, smart-KG, and smart-KG+ while context switching overhead and
waiting queues dominate in the case of SaGe. Upon comparing the two versions of smart-KG, as depicted in Fig. 10a,
we observe that the smart-KG exhibits a higher data transfer and has the potential to consume a greater amount
of client RAM compared to smart-KG+. Compared to SaGe and TPF, smart-KG+ needs a higher client RAM
since it loads the HDT partitions in client memory, however it still affordable. For instance, smart-KG+ requires
up to 3 GB to execute the watdiv-sts workload over watdiv1B.

CORRECTED P
ROOF

34 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Table 10

Workload Transferred Data and Workload Completion Time per client over watdiv10M and watdiv100M on watdiv-
stfbounded , watdiv-stfunbounded and watdiv-stfboth workloads

Query workload Workload transferred data (MB) Workload completion time (ms)

10M 100M 10M 100M

Original Typed % Original Typed % Original Typed % Original Typed %

watdiv-stfbounded 42.14 24.8 (−) 41% 401.97 216.71 (−) 46% 22956 12621 (−) 45% 47167 27479 (−) 42%

watdiv-stfunbounded 28.82 28.85 (+) 0.12 % 236.21 236.24 (+) 0.01% 10538 11237 (+) 7% 12228 12691 (+) 3%

watdiv-stfboth 6.02 2.29 (−) 62% 68.61 24.59 (−) 64% 7668 3702 (−) 52% 15022 5941 (−) 60%

Summary 76.99 55.95 (−) 27% 706.79 477.54 (−) 32% 41162 27560 (−) 33% 74417 46111 (−) 38%

Fig. 11. Data transferred per query (in bytes) over watdiv10M and watdiv100M on watdiv-btfunbounded and watdiv-btfbounded
workloads.

5.7. Typed-family partitioning evaluation

In this part of the evaluation, we focus on evaluating typed-family partitioning using synthetic and real-world
KGs on multiple KG sizes and on different query workloads. Therefore, we compare the smart-KG+ imple-
mentation using only family partitioning and the extended version that additionally uses typed-family partition-
ing. smart-KG+ adopts the server-side query planner and Client-side and Server-side Joining evaluated in Sec-
tion 5.4–Section 5.6.

5.7.1. Typed-family evaluation on the WatDiv dataset
Table 10 presents a comparison between typed-family partitioning and family partitioning on total transferred

data and workload completion time on different sizes of the WatDiv dataset. Typed-family partitioning significantly
decreases the number of transferred bytes (on average 27% and 32% over 10M and 100M datasets, respectively)
shipped over the network compared to the original family partitioning on watdiv-sts workload. As expected,
typed-family partitioning demands up to 41% and 46% less transferred data over watdiv10M and watdiv100M,
respectively on watdiv-stfbounded and watdiv-stfboth workloads since we only ship the family partitions
that contains the exact solution bindings to the star-shaped subquery. We also show in Table 10 the impact of typed-
family partitioning on the watdiv-sts workload completion time. Typed-family partitioning has substantially
reduced (over 40%) the completion time for watdiv-stfbounded and watdiv-stfboth on both watdiv10M
and watdiv100M datasets.

In Fig. 11 and Fig. 12, we show at the query level the impact of typed-family partitioning on the execution of
different query shapes extracted from the WatDiv Basic Testing query set. Figure 11 shows that typed-family par-
titioning significantly decreases the data transferred of watdiv-btfbounded workload queries. For instance, using
typed-family partitioning, query S3 requires only 3% and 1% of the transferred data required over watdiv10M and
watdiv100M, respectively, in comparison to using original family partitioning. In addition, when using typed-
family partitioning, queries F1 and S2 demand 97%–99% less data transfer than when using family partitioning.
Note that typed-family partitioning has no major influence on the queries of the watdiv-btfunbounded .

Figure 12 shows the execution time of the workloads. For the watdiv-btfbounded workload, the execution time
of queries has been significantly reduced thanks to typed-partitioning for downsizing the shipped partitions, e.g.,
with a percent of decrease between −30% and −60 % in watdiv-100M dataset. Yet, typed-family partitioning

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 35

Fig. 12. Execution time per query (in ms) over watdiv10M and watdiv100M on watdiv-btfunbounded and watdiv-btfbounded work-
loads.

has a positive bearing on the query performance of the watdiv-btfbounded workload for several queries. For the
watdiv-btfunbounded workload, the runtime with typed-family partitioning has a slight increase of 5–8 ms for
unbounded queries. This increase is attributed to the query planner needing to search through additional metadata
associated with typed family partitioning. Yet, this delay is an implementation detail that can be optimized further.

5.7.2. Typed-family evaluation on the DBpedia dataset
In this section, we analyze the impact of typed family-partitioning compared to family partitioning on the execu-

tion time of the DBpedia-bttbounded and workload. Note that smart-KG relies on family partitioning where we
do not materialize any partition that contains the predicate rdf:type since rdf : type /∈ P ′

G.
In Fig. 13, we divide the queries in Dbpedia-bttbounded into four different categories based on the num-

ber of star-shaped subqueries, subquery selectivity, and a star-shaped query combined with single triple patterns.
Figure 13a shows the performance for highly selective star queries. smart-KG+ with typed family-partitioning
executes queries Q1 up Q4 slightly slower than smart-KG+ with family partitioning. This is due to the fact that
family partitioning does not materialize any partitions that contain rdf:type predicate, since the percentage of
triples with this predicate is higher than the defined threshold τphigh . In queries Q5 and Q6, smart-KG+ with typed
family-partitioning achieves a better performance since it ships a partition that resolves the query locally while
brTPF has a poor performance since some of the triple patterns are non-selective (even though the entire star-query
is highly selective).

Figure 13b shows that relying on typed family-partitioning achieves better query processing performance com-
pared to family partitioning. This is because smart-KG+ ships a typed partition that contains the solution map-
pings of the entire star query, while on using family-based partitioning, smart-KG+ will utilize brTPF to resolve
the triple pattern with rdf:type, which requires an enormous number of requests to join with a non-selective star
subquery.

Figure 13c presents the execution time of queries that combine a star subquery with a couple of single triple
patterns in a BGP. In queries Q11 and Q12, smart-KG+ with family partitioning performs slightly better than with
typed family-partitioning, since these queries include highly selective triple patterns and do not require shipping an
entire partition to resolve the query. On the other hand, Q13, Q14, and Q15 show a significant improvement when
using typed family-partition since it reduces the amount of data transferred.

Figure 13d shows that smart-KG+ has a better performance in queries Q17, Q18, and Q19 when relying on
typed family-partitioning and better performance in query Q16 when using a family partition. Note that the query
performance highly depends on the selectivity of the star-typed subquery Qs (i.e the size of the shipped partition in
case of typed family-partitions) compared to the selectivity of Q′

s after decomposing the typed star to Q′
s and Q′′

s .
Finally, in queries with no bound types, the observed performance of family partitions and typed-family partitions
is almost identical. This is consistent with the results on WatDiv watdiv-btfunbounded presented in Section 5.7.1.

5.7.3. Assessing the impact of typed-family partitioning on WISEKG
WISEKG [14] is an LDF interface that dynamically shifts the query processing load between client and server.

WISEKG combines two LDF APIs (SPF and smart-KG) that enable server-side and client-side processing of star-
shaped sub-patterns. WISEKG decides whether the star-subqueries should be processed on the client or on the server.
For this, WISEKG relies on a cost model that picks the best-suited API per sub-query based on the current server
load, client capabilities, estimation of necessary data transfer between client and server, and network bandwidth. By

CORRECTED P
ROOF

36 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Fig. 13. Execution time per query (in sec) on DBpedia-bttbounded workload.

leveraging this cost model, WISEKG dynamically distributes query processing tasks between servers and clients,
better-utilizing server resources and maintaining high-performance levels even under conditions of heavy load.

Earlier experiments have demonstrated that WISEKG outperforms state-of-the-art stand-alone LDF interfaces,
especially under highly demanding workloads. Consequently, this section evaluates the impact of our typed-family
partitioning on WISEKG’s performance. To do so, the following two versions of WISEKG are developed:

– WISEKGFamily: The original version of WISEKG relies on the family generator from smart-KG.
– WISEKGTyped−Family: An extension of the earlier version where we incorporate typed-family partitioning pro-

posed in smart-KG+.

The experimental results, as presented in Table 11, are based on watdiv10M dataset. We observe that
WISEKGTyped−Family achieves significant reductions in data transfer by 16%, 54%, and 71% for watdiv-
sts, watdiv-stfbounded, and watdiv-stfboth, respectively, when compared to WISEKGFamily. Additionally,
WISEKGTyped−Family requires 7% fewer requests than WISEKGFamily for watdiv-sts and 28% fewer requests
for watdiv-stfbounded . This performance improvement is attributed to the adoption of typed-family partition-
ing, which effectively reduces data transfer and the number of requests for queries involving bounded star-typed
patterns. It is worth noting that the number of requests and the data transferred by WISEKG remain unaffected by
typed-family partitioning in the case of the watdiv-stfunbounded workload, consistent with the results presented
in Section 5.7.1. Moreover, the impact of typed-partitioning on WISEKG’s performance with the watdiv-btf
workload is minimal due to its relatively smaller size query workload, and the cost model of WISEKG effectively
executes most of the queries on the server-side using the SPF API.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 37

Table 11

Impact of typed-family partitioning on WISEKG’s performance on watdiv10M dataset (Req: requests, DT: data transfer in MB, ET: execution
time in milliseconds, TO: timeouts)

Workload WISEKGFamily WISEKGTyped−Family

Req DT ET TO Req DT ET TO

watdiv-sts 2452 101.81 39610 6 2301 85.72 39093 6

watdiv-btf 179 27.32 23666 1 179 27.32 23680 1

watdiv-stfbounded 528 22.54 17097 0 377 10.20 12285 0

watdiv-stfunbounded 36 9.0 3286 0 36 9.0 3235 0

watdiv-stfboth 98 5.24 2787 0 98 1.49 1970 0

5.8. Lesson learned

Concluding the evaluation of the experimental results for our proposed approach, we provide a summary of our
lessons learned in the following:

Ablation study

– Server-side query planning (NP) enhances complex query performance: The proposed solution (brTPF +
NP) enhances the performance of complex queries (C) by up to 50% through effective star reordering. However,
our solution encounters timeouts in some cases, mainly because of attaching large intermediate results back to
the server and query planning mismatches.

– Trade-off in query planning strategies: The new server-side query planner in smart-KG+ achieves better
query plans, but this improvement comes at the cost of increased server requests. Additionally, the strategy to
query brTPF achieves better performance in queries requiring a small number of intermediate results, while
querying TPF is more efficient for queries involving many intermediate results.

System performance evaluation

– Improved throughput, resource consumption and scalability: smart-KG+ scales better, achieving higher
query throughput with an increasing number of clients over various graph sizes. Our solution requires fewer
transferred data and sends a lower number of requests per query compared to other systems. Additionally,
it performs efficiently on different graph sizes, outperforming TPF and SaGe in workload completion time,
achieving up to 18x and 7x faster performance with increasing the number of concurrent clients. In summary,
smart-KG+ demonstrates efficient resource consumption and scalability.

– Query shape matters: smart-KG+ excels in complex queries (C), it may not be as efficient in simple queries
(L) and moderately selective queries (F).

Typed-family partitioning

– Typed-Family partitioning reduces data transfer: The evaluation shows that typed-family partitioning sig-
nificantly decreases the amount of data transferred over the network compared to using only family partition-
ing. On average, using typed-family partitioning results in a reduction of 27% and 32% in transferred bytes
for 10M- and 100M-sized datasets, respectively, in the watdiv-sts workload. This reduction can be even
higher (up to 46%) in certain cases, such as watdiv-stfbounded workload.

– Query completion time improvement: Typed-family partitioning substantially reduces the completion time
for queries in the watdiv-stfbounded workload on both 10M- and 100M-sized datasets. The improvement in
completion time ranges from 40% to 46% for these specific workloads.

– Minimal impact/overhead on unbounded queries: For queries without bound types (unbounded queries),
the observed performance of family partitions and typed-family partitions is almost identical.

– Extension to WISEKG: The evaluation also extends the evaluation to WISEKG, an LDF interface that dynam-
ically shifts query processing load between clients and servers. The results show that typed-family partitioning
significantly reduces data transfer and the number of requests of WISEKG in star queries with bound rdf:type
predicates.

CORRECTED P
ROOF

38 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

6. Conclusion and future work

We introduced smart-KG+, a hybrid shipping approach to efficiently query Knowledge Graphs (KGs) on the
Web, while balancing the load between servers and clients. We combine the Bindings-Restricted Triple Pattern
Fragment (brTPF) strategy with shipping compressed graph partitions that can be locally queried at the client. The
served partitions are based on grouping entities described with the same sets of properties and classes benefiting
from the special nature of the rdf:type predicate. In smart-KG+, we implement a server-side query planner to
provide accurate plans to optimize the trade-off between brTPF and partition shipping.

Our evaluation shows that smart-KG+ performs on average 10 times faster, use 5 times less network traffic,
and sends 20 times fewer requests, with 5 times less server CPU, outperforming the state-of-the-art approaches.
We show an extensive experimental study on synthetic and real datasets that, at the cost of reasonable server disk
storage, smart-KG+ improves the execution time of the query workloads and reduces network cost.

There are several research directions that can be followed in future work. This includes the extension of our frame-
work to define interfaces and their admissible queries for other types of partitioning strategies including workload-
aware and k-way partitioning. Furthermore, future work can investigate other partitioning strategies to reduce the
network traffic since this is one of the main factors impacting the performance as shown in our experiments. For
example, a study [65] shows that a tiny portion of the KG is actually accessed by a typical DBpedia query workload.
Thus, future work can consider the query workload during the KG partitioning (including online partitioning [7]) to
minimize the size of materialized partitions to transfer only the data that is required for the query load [27,46,56].

In the future, we also plan to investigate the automation of parameter settings for family partitioning in smart-
KG+. We aim to create a system that autonomously analyzes the RDF graph and suggest optimal parameter settings,
based on the trade-off of disk usage and graph coverage with the partitions.

Lastly, in terms of query processing, future work can focus on client-side optimization and devise novel tech-
niques for selecting appropriate physical join operators (e.g., [4,40]) but that can work on partitioned-based inter-
faces using, for example, sampled statistics from the partitions [42]. Additionally, the integration of partition-based
LDF interfaces in the heterogeneous KG federations landscape can be investigated [41].

Acknowledgements

We would like to thank Prof. Katja Hose and Christian Aebeloe from University of Aalborg for allowing us to
perform some of our experiments on their servers. The research was partially funded by the EU H2020 research and
innovation programme under grant agreement No 957402 (TEAMING.AI), as well as by the European Cooperation
in Science and Technology, under COST Action CA19134 (Distributed Knowledge Graphs).

Appendix A. Proof of smart-KG+ correctness

Proposition 1. The result of evaluating a BGP Q over an RDF graph G with smart-KG+, denoted
smart − eval(Q,G), is correct with respect to the SPARQL query language semantics, i.e., smart − eval(Q,G) =
�Q�G.

Proof. For this proof, we first show that the smart-KG+ query decomposer and planner are correct. By construc-
tion, the query decomposer is correct, as the combination of the star-shaped queries Qs corresponds to the original
Q (cf. Eq. (25)). Furthermore, the tasks of the query planner are two-fold. First, the optimizer devises an ordering of
the star-shaped queries Qi and the triple patterns within Qi (Alg. 2, lines 3–7). This first task ensures that the plans
are correct since the join operator is commutative and associative in the SPARQL algebra [73]. The second task is
to partition Qi into subsets Q′

i and Q′′
i to be evaluated using the TPF or the SKG APIs (Alg. 2, lines 8–13). In the

second task, it is easy to see that Qi = Q′
i ∪ Q′′

i and that Q′
i ∩ Q′′

i = ∅, i.e., all triple patterns of the star-shaped
query Qi are evaluated once either using the TPF or SKG APIs. Lastly, since all stars in the input decomposition Q
are processed in Alg. 2, the produced plans are correct.

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 39

Now we proceed to show that the execution of plans (cf. Alg. 4) is also correct. For this proof, we assume that the
server operators (i.e., the SKG API and the LDF API) are implemented correctly. By contradiction, let us assume
that smart − eval(Q,G) �= �Q�G. We distinguish three cases based on the shipping strategy used for evaluating Q.

(i) Q is evaluated with Partition Shipping. For this case, we assume the correct implementation of the join
operator. Therefore, by induction on the structure of the query, it is sufficient to prove this case when Q is composed
of a pair of triple patterns each with variable-free-predicates p1, p2 ∈ P ′

G. With partition shipping, the evaluation
of Q is carried out against the set of corresponding partitions obtained with SKG(Q,∅). After applying the server
operators, the query executor obtains the set of relevant partitions G∗ from Gserv (Eq. (24)), i.e, G∗ ⊆ Gserv for Q

(Alg. 4, line 2). Next, we consider two sub-cases. In the first sub-case, we have that smart − eval(Q,G) ⊂ �Q�G,
i.e., there exists an RDF triple t ∈ G with predicate p1 (resp. p2) such that t /∈ ⋃

Gj ∈G∗ Gj . Therefore, the partitions
in Gserv are created incorrectly, which contradicts Equation (24). The sub-case �Q�G ⊂ smart − eval(Q,G) does
not occur even in the case that F(Q) is a subset of the predicates covered by Gj , as the executor performs triple
pattern matching over each partition (Alg. 4, line 5) to get exact matches.

(ii) Q is evaluated with triple pattern shipping. For this case, the evaluation of Q is carried out as TPF(Q,�)

and Q corresponds to a single triple pattern (which is ensured by the query optimizer). Note that � can also be ∅
when there are no other intermediate results). By hypothesis, TPF(Q,�) does not produce �Q�G, which contradicts
the definition of the TPF server operator.

(iii) Q is evaluated following a hybrid shipping. This proof follows from the correctness of the query decom-
poser and optimizer, the cases (i) and (ii). Without loss of generality, assume that Q is composed of two subqueries
Q1 and Q2 evaluated using the APIs, and Q2 is evaluated using the TPF API. From cases (i) or (ii), it follows
that smart − eval(Q1,G) is correct and produces the intermediate results �. Then, the executor proceeds with the
evaluation of Q2 with intermediate results � as TPF(Q2,�); from case (ii), it follows that smart − eval(Q2,G) is
correct. Therefore, we conclude that smart − eval(Q,G) is also correct.

Appendix B. Family partitioning on real-world KGs

In Table 12, we present additional real-world Knowledge Graphs (KGs) partitioned using family-based tech-
niques. Freebase and Yago2 follow the parametrization of DBpedia due to their similar characteristics (see Table 5).
DBLP and WordNet use the same setup as WatDiv due to their comparable characteristics.

Appendix C. Detailed performance evaluation on different query shapes

This appendix contains detailed experimental results of the compared systems on different query shapes extracted
from the WatDiv Basic Testing [9]. Figure 14 shows the performance in the simplest L-queries of the different
systems on WatDiv-100M. Similar to our previous results, smart-KG+ reports a stable query execution time, which
ranges between 1–5 seconds. smart-KG+ performs better than the original smart-KG due to the asynchronous
pipeline of iterators executing first the most selective iterator. As expected, SaGe provides excellent performance in
L queries (i.e. simple queries), with the best performance in the L3 query with an average execution time of less
than 1 second. The main reason is that SaGe server in the case of L queries acts as a SPARQL endpoint since it
requires a single request to process L query. Finally, TPF is the slowest approach in L2, L4, and L5 queries, while it
excels in L1 and L3 with up to 40 clients since the queries are very selective and do not require pagination.

Table 12

Characteristics of the evaluated knowledge graphs

RDF graph G # triples |G| # subjects |SG| # predicates |PG| # objects |OG| |P ′
G

| |P ′
core| |F ′

core| |Gserv| C. time (h)

Freebase 2,067,068,155 102,001,451 770,415 438,832,462 530 171 479 11979 18

Yago2 158,991,568 67,813,972 104 22,354,760 35 19 65 638 5

DBLP 88,150,324 5,125,936 27 36,413,780 27 27 270 990 3

WordNet 5,558,748 647,215 64 2,483,030 64 64 777 1156 0.5

CORRECTED P
ROOF

40 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

Fig. 14. Avg. execution time per client on the standard WatDiv-100M, for simplest L queries.

Fig. 15. Avg. execution time per client on the standard WatDiv-100M, for star S queries.

Fig. 16. Avg. execution time per client on the standard WatDiv-100M, for snowflake F queries.

Figure 15 shows the query execution time of S-queries. smart-KG+ provides a more efficient performance than
smart-KG, since in this case, smart-KG+ server query planner generates far more accurate triple pattern ordering
than smart-KG, relying on pre-computed cardinality estimations (i.e. characteristics sets) stored on the server-
side. SaGe maintains a solid performance in S-queries (very selective) requiring less time on the server. As shown
in Fig. 16, SaGe provides the best execution time for F queries (i.e snowflake queries). smart-KG has on average
a slow query execution time in F queries (i.e snowflake queries) since snowflake queries require a join operation
between the shipped stars which are typically connected with a non-selective single triple pattern evaluated by a
high number of TPF requests. However, smart-KG+ significantly outperforms TPF and smart-KG thanks to the
accurate server-side query planning. Finally, Fig. 17 shows the overall execution times for the C-queries workload
on (WatDiv-100M, 80 clients, 5 min timeout). TPF is again the slowest solution, while smart-KG+ significantly
outperforms all the compared systems. For instance, smart-KG timeouts at C2 since the query includes 3 stars

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 41

Fig. 17. Avg. execution time per client on the standard WatDiv-100M, for complex C queries.

and 3 single triple patterns with high cardinalities causing a tremendous number of TPF requests. smart-KG+
avoids the large intermediate results by better subqueries reordering. For C3 (unbounded star query), smart-KG
and smart-KG+ provide the best performance since they are optimized for star queries. In contrast, SaGe suffers
from additional delays in case of complex queries to maintain the fair resources allocation policy.

References

[1] D.J. Abadi, A. Marcus, S. Madden and K. Hollenbach, SW-store: A vertically partitioned DBMS for Semantic Web data management,
VLDB J. 18(2) (2009), 385–406. doi:10.1007/s00778-008-0125-y.

[2] D.J. Abadi, A. Marcus, S. Madden and K.J. Hollenbach, Scalable Semantic Web data management using vertical partitioning, in: Pro-
ceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23–27, 2007,
C. Koch, J. Gehrke, M.N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C.Y. Chan, V. Ganti, C. Kanne, W. Klas
and E.J. Neuhold, eds, ACM, 2007, pp. 411–422, http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf.

[3] I. Abdelaziz, R. Harbi, Z. Khayyat and P. Kalnis, A survey and experimental comparison of distributed SPARQL engines for very large
RDF data, Proc. VLDB Endow. 10(13) (2017), 2049–2060, http://www.vldb.org/pvldb/vol10/p2049-abdelaziz.pdf. doi:10.14778/3151106.
3151109.

[4] M. Acosta and M. Vidal, Networks of linked data eddies: An adaptive web query processing engine for RDF data, in: The Semantic Web –
ISWC 2015 – 14th International Semantic Web Conference, Proceedings, Part I, Bethlehem, PA, USA, October 11–15, 2015, M. Arenas,
Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, eds,
Lecture Notes in Computer Science, Vol. 9366, Springer, 2015, pp. 111–127. doi:10.1007/978-3-319-25007-6_7.

[5] C. Aebeloe, I. Keles, G. Montoya and K. Hose, Star Pattern Fragments: Accessing knowledge graphs through star patterns, CoRR, 2020,
arXiv:2002.09172.

[6] A. Akhter, A.N. Ngomo and M. Saleem, An empirical evaluation of RDF graph partitioning techniques, in: Knowledge Engineering and
Knowledge Management – 21st International Conference, EKAW 2018, Proceedings, Nancy, France, November 12–16, 2018, C. Faron-
Zucker, C. Ghidini, A. Napoli and Y. Toussaint, eds, Lecture Notes in Computer Science, Vol. 11313, Springer, 2018, pp. 3–18. doi:10.
1007/978-3-030-03667-6_1.

[7] R. Al-Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim and M. Sahli, Accelerating SPARQL queries by exploiting hash-based
locality and adaptive partitioning, VLDB J. 25(3) (2016), 355–380. doi:10.1007/s00778-016-0420-y.

[8] W. Ali, M. Saleem, B. Yao, A. Hogan and A.N. Ngomo, A survey of RDF stores & SPARQL engines for querying knowledge graphs,
VLDB J. 31(3) (2022), 1–26. doi:10.1007/s00778-021-00711-3.

[9] G. Aluç, O. Hartig, M.T. Özsu and K. Daudjee, Diversified stress testing of RDF data management systems, in: The Semantic Web –
ISWC 2014 – 13th International Semantic Web Conference, Proceedings, Part I, Riva del Garda, Italy, October 19–23, 2014, P. Mika,
T. Tudorache, A. Bernstein, C. Welty, C.A. Knoblock, D. Vrandecic, P. Groth, N.F. Noy, K. Janowicz and C.A. Goble, eds, Lecture Notes
in Computer Science, Vol. 8796, Springer, 2014, pp. 197–212. doi:10.1007/978-3-319-11964-9_13.

[10] G. Aluç, M.T. Özsu, K.S. Daudjee and O. Hartig, chameleon-db: A workload-aware robust RDF data management system, 2013.
[11] C.B. Aranda, A. Hogan, J. Umbrich and P. Vandenbussche, SPARQL web-querying infrastructure: Ready for action?, in: The Semantic

Web – ISWC 2013 – 12th International Semantic Web Conference, Proceedings, Part II, Sydney, NSW, Australia, October 21–25, 2013,
H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann, J.X. Parreira, L. Aroyo, N.F. Noy, C. Welty and K. Janowicz, eds, Lecture Notes in
Computer Science, Vol. 8219, Springer, 2013, pp. 277–293. doi:10.1007/978-3-642-41338-4_18.

[12] C.B. Aranda, A. Polleres and J. Umbrich, Strategies for executing federated queries in SPARQL1.1, in: The Semantic Web – ISWC 2014 –
13th International Semantic Web Conference, Proceedings, Part II, Riva del Garda, Italy, October 19–23, 2014, P. Mika, T. Tudorache,
A. Bernstein, C. Welty, C.A. Knoblock, D. Vrandecic, P. Groth, N.F. Noy, K. Janowicz and C.A. Goble, eds, Lecture Notes in Computer
Science, Vol. 8797, Springer, 2014, pp. 390–405. doi:10.1007/978-3-319-11915-1_25.

[13] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z.G. Ives, DBpedia: A nucleus for a web of open data, in: The Semantic
Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, Novem-
ber 11–15, 2007, K. Aberer, K. Choi, N.F. Noy, D. Allemang, K. Lee, L.J.B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,

https://doi.org/10.1007/s00778-008-0125-y
http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf
http://www.vldb.org/pvldb/vol10/p2049-abdelaziz.pdf
https://doi.org/10.14778/3151106.3151109
https://doi.org/10.14778/3151106.3151109
https://doi.org/10.1007/978-3-319-25007-6_7
http://arxiv.org/abs/2002.09172
https://doi.org/10.1007/978-3-030-03667-6_1
https://doi.org/10.1007/978-3-030-03667-6_1
https://doi.org/10.1007/s00778-016-0420-y
https://doi.org/10.1007/s00778-021-00711-3
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-319-11915-1_25

CORRECTED P
ROOF

42 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

G. Schreiber and P. Cudré-Mauroux, eds, Lecture Notes in Computer Science, Vol. 4825, Springer, 2007, pp. 722–735. doi:10.1007/978-3-
540-76298-0_52.

[14] A. Azzam, C. Aebeloe, G. Montoya, I. Keles, A. Polleres and K. Hose, WiseKG: Balanced access to web knowledge graphs, in: WWW
’21: The Web Conference 2021, Virtual Event, Ljubljana, Slovenia, April 19–23, 2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang and
L. Zia, eds, ACM / IW3C2, 2021, pp. 1422–1434. doi:10.1145/3442381.3449911.

[15] A. Azzam, J.D. Fernández, M. Acosta, M. Beno and A. Polleres, SMART-KG: Hybrid shipping for SPARQL querying on the web, in:
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20–24, 2020, Y. Huang, I. King, T. Liu and M. van Steen, eds, ACM / IW3C2,
2020, pp. 984–994. doi:10.1145/3366423.3380177.

[16] K.D. Bollacker, C. Evans, P.K. Paritosh, T. Sturge and J. Taylor, Freebase: A collaboratively created graph database for structuring human
knowledge, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10–12, 2008, J.T. Wang, ed., ACM, 2008, pp. 1247–1250. doi:10.1145/1376616.1376746.

[17] P.A. Bonatti, S. Decker, A. Polleres and V. Presutti, Knowledge graphs: New directions for knowledge representation on the Semantic Web
(Dagstuhl seminar 18371), Dagstuhl Reports 8(9) (2018), 29–111. doi:10.4230/DagRep.8.9.29.

[18] A. Bonifati, W. Martens and T. Timm, Navigating the maze of Wikidata query logs, in: The World Wide Web Conference, WWW ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 127–138. ISBN 9781450366748. doi:10.1145/3308558.3313472.

[19] A. Bonifati, W. Martens and T. Timm, An analytical study of large SPARQL query logs, VLDB J. 29(2–3) (2020), 655–679. doi:10.1007/
s00778-019-00558-9.

[20] X. Chen, H. Chen, N. Zhang and S. Zhang, SparkRDF: Elastic discreted RDF graph processing engine with distributed memory, in:
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015, Singapore, December 6–9,
2015, Vol. I, IEEE Computer Society, 2015, pp. 292–300. doi:10.1109/WI-IAT.2015.186.

[21] M. Cossu, M. Färber and G. Lausen, PRoST: Distributed execution of SPARQL queries using mixed partitioning strategies, in: Proceedings
of the 21st International Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26–29, 2018, M.H. Böhlen,
R. Pichler, N. May, E. Rahm, S. Wu and K. Hose, eds, OpenProceedings.org, 2018, pp. 469–472. doi:10.5441/002/edbt.2018.49.

[22] B. Djahandideh, F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz and S. Zampetakis, CliqueSquare in action: Flat plans for massively
parallel RDF queries, in: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13–17, 2015,
J. Gehrke, W. Lehner, K. Shim, S.K. Cha and G.M. Lohman, eds, IEEE Computer Society, 2015, pp. 1432–1435. doi:10.1109/ICDE.2015.
7113394.

[23] J. Du, H. Wang, Y. Ni and Y. Yu, HadoopRDF: A scalable semantic data analytical engine, in: Intelligent Computing Theories and Ap-
plications – 8th International Conference, ICIC 2012, Proceedings, Huangshan, China, July 25–29, 2012, D. Huang, J. Ma, K. Jo and
M.M. Gromiha, eds, Lecture Notes in Computer Science, Vol. 7390, Springer, 2012, pp. 633–641. doi:10.1007/978-3-642-31576-3_80.

[24] C. Fellbaum, WordNet: An Electronic Lexical Database, Bradford Books, 1998.
[25] J.D. Fernández, M.A. Martínez-P., C. Gutiérrez, A. Polleres and M. Arias, Binary RDF representation for publication and exchange (HDT),

J. Web Semant. 19 (2013), 22–41. doi:10.1016/j.websem.2013.01.002.
[26] J.D. Fernández, M.A. Martínez-Prieto, P. de la Fuente Redondo and C. Gutiérrez, Characterising RDF data sets, J. Inf. Sci. 44(2) (2018),

203–229. doi:10.1177/0165551516677945.
[27] L. Galárraga, K. Hose and R. Schenkel, Partout: A distributed engine for efficient RDF processing, in: 23rd International World Wide Web

Conference, WWW ’14, Companion Volume, Seoul, Republic of Korea, April 7–11, 2014, C. Chung, A.Z. Broder, K. Shim and T. Suel, eds,
ACM, 2014, pp. 267–268. doi:10.1145/2567948.2577302.

[28] D. Graux, L. Jachiet, P. Genevès and N. Layaïda, SPARQLGX in action: Efficient distributed evaluation of SPARQL with Apache Spark,
in: Proceedings of the ISWC 2016 Posters & Demonstrations Track Co-Located with 15th International Semantic Web Conference (ISWC
2016), Kobe, Japan, October 19, 2016, T. Kawamura and H. Paulheim, eds, CEUR Workshop Proceedings, Vol. 1690, CEUR-WS.org,
2016, https://ceur-ws.org/Vol-1690/paper68.pdf.

[29] A. Gubichev and T. Neumann, Exploiting the query structure for efficient join ordering in SPARQL queries, in: EDBT, 2014.
[30] C. Guéret, P. Groth, F. van Harmelen and S. Schlobach, Finding the Achilles heel of the web of data: Using network analysis for link-

recommendation, in: The Semantic Web – ISWC 2010 – 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, Novem-
ber 7–11, 2010, P.F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J.Z. Pan, I. Horrocks and B. Glimm, eds, Lecture Notes in
Computer Science, Vol. 6496, Springer, 2010, pp. 289–304, Revised Selected Papers, Part I. doi:10.1007/978-3-642-17746-0_19.

[31] S. Gurajada, S. Seufert, I. Miliaraki and M. Theobald, TriAD: A distributed shared-nothing RDF engine based on asynchronous message
passing, in: International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22–27, 2014, C.E. Dyreson, F. Li
and M.T. Özsu, eds, ACM, 2014, pp. 289–300. doi:10.1145/2588555.2610511.

[32] C. Gutierrez, C.A. Hurtado, A.O. Mendelzon and J. Pérez, Foundations of Semantic Web databases, J. Comput. Syst. Sci. 77(3) (2011),
520–541. doi:10.1016/j.jcss.2010.04.009.

[33] L.M. Haas, D. Kossmann, E.L. Wimmers and J. Yang, Optimizing queries across diverse data sources, in: VLDB’97, Proceedings of
23rd International Conference on Very Large Data Bases, Athens, Greece, August 25–29, 1997, M. Jarke, M.J. Carey, K.R. Dittrich,
F.H. Lochovsky, P. Loucopoulos and M.A. Jeusfeld, eds, Morgan Kaufmann, 1997, pp. 276–285, http://www.vldb.org/conf/1997/P276.
PDF.

[34] S. Harris and A. Seaborne, SPARQL 1.1 Query Language, W3C, 2013, https://www.w3.org/TR/sparql11-query/.
[35] A. Harth, CumulusRDF: Linked Data Management on Nested Key-Value Stores, 2011.

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/3442381.3449911
https://doi.org/10.1145/3366423.3380177
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.4230/DagRep.8.9.29
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1109/WI-IAT.2015.186
https://doi.org/10.5441/002/edbt.2018.49
https://doi.org/10.1109/ICDE.2015.7113394
https://doi.org/10.1109/ICDE.2015.7113394
https://doi.org/10.1007/978-3-642-31576-3_80
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1177/0165551516677945
https://doi.org/10.1145/2567948.2577302
https://ceur-ws.org/Vol-1690/paper68.pdf
https://doi.org/10.1007/978-3-642-17746-0_19
https://doi.org/10.1145/2588555.2610511
https://doi.org/10.1016/j.jcss.2010.04.009
http://www.vldb.org/conf/1997/P276.PDF
http://www.vldb.org/conf/1997/P276.PDF
https://www.w3.org/TR/sparql11-query/

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 43

[36] A. Harth, J. Umbrich, A. Hogan and S. Decker, YARS2: A federated repository for querying graph structured data from the web, in: The
Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11–15, 2007, K. Aberer, K. Choi, N.F. Noy, D. Allemang, K. Lee, L.J.B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber and P. Cudré-Mauroux, eds, Lecture Notes in Computer Science, Vol. 4825, Springer, 2007, pp. 211–224. doi:10.1007/978-3-
540-76298-0_16.

[37] O. Hartig and C.B. Aranda, Bindings-Restricted Triple Pattern Fragments, in: On the Move to Meaningful Internet Systems: OTM 2016
Conferences – Confederated International Conferences: CoopIS, C&TC, and ODBASE 2016, Proceedings, Rhodes, Greece, October 24–28,
2016, C. Debruyne, H. Panetto, R. Meersman, T.S. Dillon, E. Kühn, D. O’Sullivan and C.A. Ardagna, eds, Lecture Notes in Computer
Science, Vol. 10033, 2016, pp. 762–779. doi:10.1007/978-3-319-48472-3_48.

[38] O. Hartig, I. Letter and J. Pérez, A formal framework for comparing Linked Data Fragments, in: The Semantic Web – ISWC 2017 –
16th International Semantic Web Conference, Proceedings, Part I, Vienna, Austria, October 21–25, 2017, C. d’Amato, M. Fernández,
V.A.M. Tamma, F. Lécué, P. Cudré-Mauroux, J.F. Sequeda, C. Lange and J. Heflin, eds, Lecture Notes in Computer Science, Vol. 10587,
Springer, 2017, pp. 364–382. doi:10.1007/978-3-319-68288-4_22.

[39] L. Heling and M. Acosta, Cost- and robustness-based query optimization for Linked Data Fragments, in: The Semantic Web – ISWC
2020 – 19th International Semantic Web Conference, Proceedings, Part I, Athens, Greece, November 2–6, 2020, J.Z. Pan, V.A.M. Tamma,
C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. Seneviratne and L. Kagal, eds, Lecture Notes in Computer Science, Vol. 12506, Springer,
2020, pp. 238–257. doi:10.1007/978-3-030-62419-4_14.

[40] L. Heling and M. Acosta, Robust query processing for Linked Data Fragments, Semantic Web 13(4) (2022), 623–657. doi:10.3233/SW-
212888.

[41] L. Heling and M. Acosta, Federated SPARQL query processing over Heterogeneous Linked Data Fragments, in: WWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April 25–29, 2022, F. Laforest, R. Troncy, E. Simperl, D. Agarwal, A. Gionis, I. Herman
and L. Médini, eds, ACM, 2022, pp. 1047–1057. doi:10.1145/3485447.3511947.

[42] L. Heling and M. Acosta, Characteristic sets profile features: Estimation and application to SPARQL query planning, Semantic Web 14(3)
(2023), 491–526. doi:10.3233/SW-222903.

[43] A. Hernández-Illera, M.A. Martínez-Prieto and J.D. Fernández, Serializing RDF in compressed space, in: 2015 Data Compression Con-
ference, DCC 2015, Snowbird, UT, USA, April 7–9, 2015, A. Bilgin, M.W. Marcellin, J. Serra-Sagristà and J.A. Storer, eds, IEEE, 2015,
pp. 363–372. doi:10.1109/DCC.2015.16.

[44] J. Hoffart, F.M. Suchanek, K. Berberich and G. Weikum, YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia,
Artif. Intell. 194 (2013), 28–61. doi:10.1016/j.artint.2012.06.001.

[45] A. Hogan, Canonical forms for isomorphic and equivalent RDF graphs: Algorithms for leaning and labelling blank nodes, ACM Trans. Web
11(4) (2017). doi:10.1145/3068333.

[46] K. Hose and R. Schenkel, WARP: Workload-aware replication and partitioning for RDF, in: Workshops Proceedings of the 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8–12, 2013, C.Y. Chan, J. Lu, K. Nørvåg and
E. Tanin, eds, IEEE Computer Society, 2013, pp. 1–6. doi:10.1109/ICDEW.2013.6547414.

[47] J. Huang, D.J. Abadi and K. Ren, Scalable SPARQL querying of large RDF graphs, Proc. VLDB Endow. 4(11) (2011), 1123–1134, http://
www.vldb.org/pvldb/vol4/p1123-huang.pdf. doi:10.14778/3402707.3402747.

[48] D. Janke, S. Staab and M. Thimm, Koral: A glass box profiling system for individual components of distributed RDF stores, in: Joint
Proceedings of BLINK2017: 2nd International Workshop on Benchmarking Linked Data and NLIWoD3: Natural Language Interfaces
for the Web of Data Co-Located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21st-to-22nd,
2017, R. Usbeck, A.N. Ngomo, J. Kim, K. Choi, P. Cimiano, I. Fundulaki and A. Krithara, eds, CEUR Workshop Proceedings, Vol. 1932,
CEUR-WS.org, 2017, https://ceur-ws.org/Vol-1932/paper-05.pdf.

[49] Z. Kaoudi and I. Manolescu, RDF in the clouds: A survey, VLDB J. 24(1) (2015), 67–91. doi:10.1007/s00778-014-0364-z.
[50] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20(1) (1998),

359–392. doi:10.1137/S1064827595287997.
[51] V. Khadilkar, M. Kantarcioglu, B. Thuraisingham and P. Castagna, Jena-HBase: A distributed, scalable and effcient RDF triple store, in:

Proceedings of the ISWC 2012 Posters & Demonstrations Track, Boston, USA, November 11–15, 2012, B. Glimm and D. Huynh, eds,
CEUR Workshop Proceedings, Vol. 914, CEUR-WS.org, 2012, https://ceur-ws.org/Vol-914/paper_14.pdf.

[52] K. Lee and L. Liu, Scaling queries over big RDF graphs with semantic hash partitioning, Proc. VLDB Endow. 6(14) (2013), 1894–1905,
http://www.vldb.org/pvldb/vol6/p1894-lee.pdf. doi:10.14778/2556549.2556571.

[53] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer and C. Bizer,
DBpedia – a large-scale, multilingual knowledge base extracted from Wikipedia, Semantic Web 6(2) (2015), 167–195. doi:10.3233/SW-
140134.

[54] J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, I. Ermilov, S. Bin, N. Chakraborty, M. Saleem, A.N. Ngomo and H. Jabeen,
Distributed semantic analytics using the SANSA stack, in: The Semantic Web – ISWC 2017 – 16th International Semantic Web Conference,
Proceedings, Part II, Vienna, Austria, October 21–25, 2017, C. d’Amato, M. Fernández, V.A.M. Tamma, F. Lécué, P. Cudré-Mauroux,
J.F. Sequeda, C. Lange and J. Heflin, eds, Lecture Notes in Computer Science, Vol. 10588, Springer, 2017, pp. 147–155. doi:10.1007/978-
3-319-68204-4_15.

[55] M. Ley, The DBLP computer science bibliography: Evolution, research issues, perspectives, in: String Processing and Information
Retrieval, 9th International Symposium, SPIRE 2002, Proceedings, Lisbon, Portugal, September 11–13, 2002„ A.H.F. Laender and
A.L. Oliveira, eds, Lecture Notes in Computer Science, Vol. 2476, Springer, 2002, pp. 1–10. doi:10.1007/3-540-45735-6_1.

https://doi.org/10.1007/978-3-540-76298-0_16
https://doi.org/10.1007/978-3-540-76298-0_16
https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.1007/978-3-319-68288-4_22
https://doi.org/10.1007/978-3-030-62419-4_14
https://doi.org/10.3233/SW-212888
https://doi.org/10.3233/SW-212888
https://doi.org/10.1145/3485447.3511947
https://doi.org/10.3233/SW-222903
https://doi.org/10.1109/DCC.2015.16
https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/10.1145/3068333
https://doi.org/10.1109/ICDEW.2013.6547414
http://www.vldb.org/pvldb/vol4/p1123-huang.pdf
http://www.vldb.org/pvldb/vol4/p1123-huang.pdf
https://doi.org/10.14778/3402707.3402747
https://ceur-ws.org/Vol-1932/paper-05.pdf
https://doi.org/10.1007/s00778-014-0364-z
https://doi.org/10.1137/S1064827595287997
https://ceur-ws.org/Vol-914/paper_14.pdf
http://www.vldb.org/pvldb/vol6/p1894-lee.pdf
https://doi.org/10.14778/2556549.2556571
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1007/3-540-45735-6_1

CORRECTED P
ROOF

44 A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs

[56] A. Madkour, A.M. Aly and W.G. Aref, WORQ: Workload-driven RDF query processing, in: The Semantic Web – ISWC 2018 – 17th
International Semantic Web Conference, Proceedings, Part I, Monterey, CA, USA, October 8–12, 2018, D. Vrandecic, K. Bontcheva,
M.C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl, eds, Lecture Notes in Computer Science, Vol. 11136,
Springer, 2018, pp. 583–599. doi:10.1007/978-3-030-00671-6_34.

[57] M. Martin, J. Unbehauen and S. Auer, Improving the performance of Semantic Web applications with SPARQL query caching, in: The
Semantic Web: Research and Applications, L. Aroyo, G. Antoniou, E. Hyvönen, A. Ten Teije, H. Stuckenschmidt, L. Cabral and T. Tudo-
rache, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 304–318. ISBN 978-3-642-13489-0. doi:10.1007/978-3-642-13489-
0_21.

[58] M.A. Martínez-Prieto, N.R. Brisaboa, R. Cánovas, F. Claude and G. Navarro, Practical compressed string dictionaries, Inf. Syst. 56 (2016),
73–108. doi:10.1016/j.is.2015.08.008.

[59] M.A. Martínez-Prieto, M.A. Gallego and J.D. Fernández, Exchange and consumption of huge RDF data, in: The Semantic Web: Research
and Applications – 9th Extended Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece, May 27–31, 2012, E. Simperl, P. Cimi-
ano, A. Polleres, Ó. Corcho and V. Presutti, eds, Lecture Notes in Computer Science, Vol. 7295, Springer, 2012, pp. 437–452. doi:10.1007/
978-3-642-30284-8_36.

[60] M. Meimaris, G. Papastefanatos, N. Mamoulis and I. Anagnostopoulos, Extended characteristic sets: Graph indexing for SPARQL query
optimization, in: 33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19–22, 2017, IEEE
Computer Society, 2017, pp. 497–508. doi:10.1109/ICDE.2017.106.

[61] T. Minier, H. Skaf-Molli and P. Molli, SaGe: Web preemption for public SPARQL query services, in: The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13–17, 2019, L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.J. McAuley, R. Baeza-Yates and
L. Zia, eds, ACM, 2019, pp. 1268–1278. doi:10.1145/3308558.3313652.

[62] T. Neumann and G. Moerkotte, Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins, in: Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, Hannover, Germany, April 11–16, 2011, S. Abiteboul, K. Böhm,
C. Koch and K. Tan, eds, IEEE Computer Society, 2011, pp. 984–994. doi:10.1109/ICDE.2011.5767868.

[63] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complexity of SPARQL, ACM Trans. Database Syst. 34(3) (2009), 16:1–16:45. doi:10.
1145/1567274.1567278.

[64] A. Polleres, M.R. Kamdar, J.D. Fernández, T. Tudorache and M.A. Musen, A more decentralized vision for linked data, Semantic Web
11(1) (2020), 101–113. doi:10.3233/SW-190380.

[65] L. Rietveld, R. Hoekstra, S. Schlobach and C. Guéret, Structural properties as proxy for semantic relevance in RDF graph sampling, in: The
Semantic Web – ISWC 2014 – 13th International Semantic Web Conference, Proceedings, Part II, Riva del Garda, Italy, October 19–23,
2014, P. Mika, T. Tudorache, A. Bernstein, C. Welty, C.A. Knoblock, D. Vrandecic, P. Groth, N.F. Noy, K. Janowicz and C.A. Goble, eds,
Lecture Notes in Computer Science, Vol. 8797, Springer, 2014, pp. 81–96. doi:10.1007/978-3-319-11915-1_6.

[66] K. Rohloff and R.E. Schantz, High-performance, massively scalable distributed systems using the MapReduce software framework: The
SHARD triple-store, in: SPLASH Workshop on Programming Support Innovations for Emerging Distributed Applications, ACM, 2010,
p. 4. doi:10.1145/1940747.1940751.

[67] M. Saleem, M.I. Ali, A. Hogan, Q. Mehmood and A.N. Ngomo, LSQ: The linked SPARQL queries dataset, in: The Semantic Web –
ISWC 2015 – 14th International Semantic Web Conference, Bethlehem, Proceedings, Part II, Bethlehem, PA, USA, October 11–15, 2015,
M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and
S. Staab, eds, Lecture Notes in Computer Science, Vol. 9367, Springer, 2015, pp. 261–269. doi:10.1007/978-3-319-25010-6_15.

[68] M. Saleem, Q. Mehmood and A.N. Ngomo, FEASIBLE: A feature-based SPARQL benchmark generation framework, in: The Semantic
Web – ISWC 2015 – 14th International Semantic Web Conference, Proceedings, Part I, Bethlehem, PA, USA, October 11–15, 2015,
M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and
S. Staab, eds, Lecture Notes in Computer Science, Vol. 9366, Springer, 2015, pp. 52–69. doi:10.1007/978-3-319-25007-6_4.

[69] M. Salvadores, M. Horridge, P.R. Alexander, R.W. Fergerson, M.A. Musen and N.F. Noy, Using SPARQL to query BioPortal ontologies
and metadata, in: The Semantic Web – ISWC 2012 – 11th International Semantic Web Conference, Proceedings, Part II, Boston, MA,
USA, November 11–15, 2012, P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J.X. Parreira, J. Hendler,
G. Schreiber, A. Bernstein and E. Blomqvist, eds, Lecture Notes in Computer Science, Vol. 7650, Springer, 2012, pp. 180–195. doi:10.
1007/978-3-642-35173-0_12.

[70] A. Schätzle, M. Przyjaciel-Zablocki and G. Lausen, PigSPARQL: Mapping SPARQL to pig Latin, in: Proceedings of the International
Workshop on Semantic Web Information Management, SWIM 2011, Athens, Greece, June 12, 2011, R.D. Virgilio, F. Giunchiglia and
L. Tanca, eds, ACM, 2011, p. 4. doi:10.1145/1999299.1999303.

[71] A. Schätzle, M. Przyjaciel-Zablocki, A. Neu and G. Lausen, Sempala: Interactive SPARQL query processing on hadoop, in: The Semantic
Web – ISWC 2014 – 13th International Semantic Web Conference, Proceedings, Part I, Riva del Garda, Italy, October 19–23, 2014, P. Mika,
T. Tudorache, A. Bernstein, C. Welty, C.A. Knoblock, D. Vrandecic, P. Groth, N.F. Noy, K. Janowicz and C.A. Goble, eds, Lecture Notes
in Computer Science, Vol. 8796, Springer, 2014, pp. 164–179. doi:10.1007/978-3-319-11964-9_11.

[72] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic and G. Lausen, S2RDF: RDF querying with SPARQL on Spark, Proc. VLDB Endow. 9(10)
(2016), 804–815, http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf. doi:10.14778/2977797.2977806.

[73] M. Schmidt, M. Meier and G. Lausen, Foundations of SPARQL query optimization, in: Database Theory – ICDT 2010, 13th International
Conference, Lausanne, Switzerland, March 23–25, 2010, L. Segoufin, ed., ACM International Conference Proceeding Series, ACM, 2010,
pp. 4–33. doi:10.1145/1804669.1804675.

[74] G. Schreiber and Y. Raimond, RDF 1.1 primer, W3C working group note, 2014, https://www.w3.org/TR/rdf11-primer/.

https://doi.org/10.1007/978-3-030-00671-6_34
https://doi.org/10.1007/978-3-642-13489-0_21
https://doi.org/10.1007/978-3-642-13489-0_21
https://doi.org/10.1016/j.is.2015.08.008
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1109/ICDE.2017.106
https://doi.org/10.1145/3308558.3313652
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.3233/SW-190380
https://doi.org/10.1007/978-3-319-11915-1_6
https://doi.org/10.1145/1940747.1940751
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25007-6_4
https://doi.org/10.1007/978-3-642-35173-0_12
https://doi.org/10.1007/978-3-642-35173-0_12
https://doi.org/10.1145/1999299.1999303
https://doi.org/10.1007/978-3-319-11964-9_11
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
https://doi.org/10.14778/2977797.2977806
https://doi.org/10.1145/1804669.1804675
https://www.w3.org/TR/rdf11-primer/

CORRECTED P
ROOF

A. Azzam et al. / smart-KG: Partition-Based Linked Data Fragment for querying knowledge graphs 45

[75] F.M. Suchanek, G. Kasneci and G. Weikum, Yago: A core of semantic knowledge, in: Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8–12, 2007, C.L. Williamson, M.E. Zurko, P.F. Patel-Schneider and P.J. Shenoy,
eds, ACM, 2007, pp. 697–706. doi:10.1145/1242572.1242667.

[76] R. Taelman, J.V. Herwegen, M.V. Sande and R. Verborgh, Comunica: A modular SPARQL query engine for the web, in: The Semantic Web –
ISWC 2018 – 17th International Semantic Web Conference, Proceedings, Part II, Monterey, CA, USA, October 8–12, 2018, D. Vrandecic,
K. Bontcheva, M.C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl, eds, Lecture Notes in Computer Science,
Vol. 11137, Springer, 2018, pp. 239–255. doi:10.1007/978-3-030-00668-6_15.

[77] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan and C.B. Aranda, SPARQLES: Monitoring public SPARQL endpoints, Semantic Web
8(6) (2017), 1049–1065. doi:10.3233/SW-170254.

[78] R. Verborgh, M.V. Sande, O. Hartig, J.V. Herwegen, L.D. Vocht, B.D. Meester, G. Haesendonck and P. Colpaert, Triple Pattern Fragments:
A low-cost knowledge graph interface for the web, J. Web Semant. 37–38 (2016), 184–206. doi:10.1016/j.websem.2016.03.003.

[79] D. Vrandecic and M. Krötzsch, Wikidata: A free collaborative knowledgebase, Commun. ACM 57(10) (2014), 78–85. doi:10.1145/2629489.
[80] R.T. Whitman, B.G. Marsh, M.B. Park and E.G. Hoel, Distributed spatial and spatio-temporal join on Apache Spark, ACM Trans. Spatial

Algorithms Syst. 5(1) (2019), 6:1–6:28. doi:10.1145/3325135.
[81] X. Zhang, L. Chen, Y. Tong and M. Wang, EAGRE: Towards scalable I/o efficient SPARQL query evaluation on the cloud, in: 29th

IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8–12, 2013, C.S. Jensen, C.M. Jermaine and
X. Zhou, eds, IEEE Computer Society, 2013, pp. 565–576. doi:10.1109/ICDE.2013.6544856.

https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.3233/SW-170254
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3325135
https://doi.org/10.1109/ICDE.2013.6544856

	Introduction
	Background
	RDF and SPARQL
	RDF HDT compression
	Linked Data Fragments (LDF)
	Characterization of existing KG interfaces as Linked Data Fragments (LDF)
	Partition-based LDF

	Concrete implementations of partition-based LDF
	Vertical partitioning (VP)
	Horizontal/range/sharding partitioning
	Hash partitioning (HP)
	Workload-aware partitioning
	K-way partitioning (KP)
	Family-based partitioning of RDF graphs
	Typed family-partitioning

	Our approach: Smart-KG+
	Design and overview
	smart-KG+ partition generator
	Family grouping
	Family pruning

	smart-KG+ query processing
	smart-KG+ server
	smart-KG+ client

	Experimental evaluation
	Experimental setup
	Compared systems
	Knowledge graphs
	Queries and workloads
	Hardware setup
	Evaluation metrics

	Creation of family-based partitions
	Ablation study: Assessing the impact of the smart-KG+ components
	System performance evaluation
	Performance evaluation on different query shapes
	Resource consumption
	Typed-family partitioning evaluation
	Typed-family evaluation on the WatDiv dataset
	Typed-family evaluation on the DBpedia dataset
	Assessing the impact of typed-family partitioning on WiseKG

	Lesson learned

	Conclusion and future work
	Acknowledgements
	Appendix A. Proof of smart-KG+ correctness
	Appendix B. Family partitioning on real-world KGs
	Appendix C. Detailed performance evaluation on different query shapes
	References

