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Abstract. In a GraphQL Web API, a so-called GraphQL schema defines the types of data objects that can be queried, and so-
called resolver functions are responsible for fetching the relevant data from underlying data sources. Thus, we can expect to
use GraphQL not only for data access but also for data integration, if the GraphQL schema reflects the semantics of data from
multiple data sources, and the resolver functions can obtain data from these data sources and structure the data according to the
schema. However, there does not exist a semantics-aware approach to employ GraphQL for data integration. Furthermore, there
are no formal methods for defining a GraphQL API based on an ontology. In this work, we introduce a framework for using
GraphQL in which a global domain ontology informs the generation of a GraphQL server that answers requests by querying
heterogeneous data sources. The core of this framework consists of an algorithm to generate a GraphQL schema based on an
ontology and a generic resolver function based on semantic mappings. We provide a prototype, OBG-gen, of this framework, and
we evaluate our approach over a real-world data integration scenario in the materials design domain and two synthetic benchmark
scenarios (Linköping GraphQL Benchmark and GTFS-Madrid-Bench). The experimental results of our evaluation indicate that:
(i) our approach is feasible to generate GraphQL servers for data access and integration over heterogeneous data sources, thus
avoiding a manual construction of GraphQL servers, and (ii) our data access and integration approach is general and applicable
to different domains where data is shared or queried via different ways.

Keywords: Data integration, ontology, GraphQL

1. Introduction

GraphQL is a conceptual framework to build APIs for Web and mobile applications [29]. It was publicly re-
leased by Facebook in 2015 and, since then, the GraphQL ecosystem1 has grown tremendously in terms of li-
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1https://landscape.graphql.org
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braries2 supporting different programming languages (such as Python, Java and JavaScript), tools (such as Apollo
and GraphiQL), and adopters (such as Airbnb, IBM and Twitter). The framework introduces the notion of a schema.
Such a schema of a GraphQL API contains type definitions which specify what data objects can be retrieved from
the API. The framework also contains a form of query language for expressing such data retrieval requests. A
third component of GraphQL are resolver functions, which are typically used for executing GraphQL queries in
a GraphQL server. That is, such resolvers specify – in terms of program code – how data related to the various
elements of a GraphQL schema has to be fetched from underlying data sources.3

GraphQL could be used to integrate data from different data sources by building a GraphQL server over these
sources, in which the GraphQL schema provides a view over data from multiple sources, and the resolver func-
tions contain implementations for accessing multiple sources. However, a semantics-aware approach to employing
GraphQL for data integration does not exist. The approaches in [11] and [4] introduce how to use GraphQL for data
federation. The semantics of data are not explicit in a machine-processable form which means the developer needs to
write program code (i.e., resolver functions) to populate the various elements of a GraphQL schema. Furthermore,
there are no formal methods for defining a GraphQL schema. The developers have to define a GraphQL schema
manually. The aim of this work is to provide a semantics-aware approach to employ GraphQL for data integration,
with formal methods to generate the GraphQL server.

Research problem: This article focuses on the following question: How can ontologies be leveraged to generate
GraphQL APIs for semantics-aware data access and data integration? We pursue the objectives: (i) to provide an
ontology-driven data access and integration approach in which a GraphQL server accesses underlying data sources
by providing an integrated view of the data; (ii) to formally generate GraphQL servers automatically to avoid manual
constructions of the servers.

Contributions: To address the research question, we propose a framework for GraphQL-based data access and
integration in which an ontology drives the generation of a GraphQL server.4 More specifically, given an ontology
as an integrated view of data from multiple data sources, the first contribution is that we propose and implement a
method for generating a GraphQL schema based on semantic assets in this ontology such that the schema becomes
a view of the data to be integrated. Then, the second contribution is that we introduce a generic approach to create
a GraphQL server that is capable to get data from the corresponding data sources by relying on semantic mappings
that use the ontology.

The remainder of the article is organized as follows. We provide the relevant background regarding ontologies,
description logics, data integration and GraphQL in Section 2. Then we outline the proposed GraphQL-based frame-
work in Section 3 and elaborate on the implementation of this framework in Sections 4 and 5. Section 6 introduces
related work. Section 7 presents an evaluation based on a real-world data integration scenario in the materials de-
sign domain and evaluations based on two synthetic benchmark scenarios, the Linköping GraphQL Benchmark
(LinGBM) and GTFS-Madrid-Bench. Section 8 discusses the strengths and limitations of our approach, and intro-
duces the directions for future work. Finally in Section 9, we present concluding remarks.

2. Background

This section provides background information on ontologies, description logics, data integration and GraphQL.

2.1. Ontologies and description logics

The term ontology originates in philosophy, in which it is the science of what is, of the kinds and structures
of objects, properties, and relationships in every area of reality [57,64]. Ontologies can be viewed, intuitively, as
defining the terms, relations, and rules that combine these terms and relations in a domain of interest [59]. Through

2https://graphql.org/code/
3Examples of a GraphQL schema, a resolver function, a GraphQL query and a query response will be described in Sections 2 and 3.
4All the material related to the prototype implementation (OBG-gen) is available online at https://github.com/LiUSemWeb/OBG-gen, and a

public page, https://liusemweb.github.io/obg-gen/demo/, including pointers to an introduction video and live servers as demonstrated in [46].

https://graphql.org/code/
https://github.com/LiUSemWeb/OBG-gen
https://liusemweb.github.io/obg-gen/demo/
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Fig. 1. Example of an ontology of the university domain including 4 concepts and relationships among them, as well as relationships between
concepts and datatypes.

ontologies, people and organizations are able to communicate by establishing a common terminology. They provide
the basis for interoperability between systems and are applicable as an index to a repository of information as
well as a query model and a navigation model for data sources. Moreover, they are often used as a foundation
for integrating data sources, thereby alleviating the heterogeneity issue. The benefits of using ontologies are their
improved reusability, share-ability and portability across platforms, as well as their increased maintainability and
reliability. On the whole, ontologies allow a field to be better understood and allow information in that field to be
handled much more effectively and efficiently (e.g., knowledge representation for bioinformatics discussed in [58]).

From a knowledge representation point of view, ontologies usually contain four components: (i) concepts that
represent sets or classes of entities in a domain, (ii) instances that represent the actual entities, (iii) relations, and
(iv) axioms that represent facts that are always true in the topic area of the ontology. Relations represent relation-
ships among concepts. Axioms represent domain restrictions, cardinality restrictions, or disjointness restrictions.
Depending on the components and information related to the components they contain, ontologies can be classified.
Figure 1 represents an example ontology for the university domain. The open-headed arrows represent axioms that
represent is-a relationships that is, if A is a B, then all entities belonging to concept A also belong to concept B.
We say that A is a sub-concept of B. In this example Professor is a sub-concept of Author. Therefore, all
Professor entities are Author entities. The closed-headed arrows represent general relations among concepts
other than is-a relations. For instance, the Professor concept has a connection to the University concept rep-
resented by the doctoralDegreeFrom relation. Additionally, a relation can exist between a concept and a data
type reference. For instance, University has a connection to the data type reference xsd:string represented
by the UniversityID relation. This means that each entity of the University concept can be associated with
a string type value by having a UniversityID connection.

To formally define the above concepts and relationships, we need representation languages. Description logics
(DL) are a family of knowledge representation languages. There are three basic building blocks of such a language,
namely: (i) atomic concepts (unary predicates) such as University and Department, (ii) atomic roles (bi-
nary predicates) such as departments, and (iii) individuals (constants) [7]. Complex concepts and roles can be
built by using atomic concepts and logical constructors (e.g., conjunction (�), disjunction (�), universal restriction
(∀) and existential restriction (∃)). Axioms can be defined using general concept inclusions (�). For instance, the
general concept inclusion (GCI) University � ∀departments.Department represents the fact that Uni-
versity is a sub-concept of the concept ∀departments.Department that represents all entities that may
have departments relations to entities and if so, these latter entities must belong to the Department concept;
an assertion University(Linköping University) means that the instance Linköping University belongs to the
University concept. A DL TBox is a finite set of GCIs and a DL ABox is a finite set of assertions.

2.2. Data integration

Data integration deals with combining data that resides at multiple different sources [14,26,43]. Ideally, a data
integration system should enable unified access to a number of data sources [26,43]. Formally, according to [43], a
data integration system can be formalized as a triple 〈G,S,M〉, where,

– G is the global schema, expressed in a language LG over an alphabet AG ;
– S is the source schema, expressed in a language LS over an alphabet AS ;
– M is the mapping between G and S , constituted by a set of assertions that define mappings from queries

over the source schema S to queries over the global schema G (similarly for mappings from queries over G to
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queries over S). Such a mapping specifies correspondences between concepts in the global schema and those
in the source schema.

Ontology-based data integration (OBDI) is a form of data integration in which an ontology plays the role of a
global schema that captures domain knowledge [15]. Usually, in an information system with only one single data
source, the formal treatment of OBDI is identical to that of ontology-based data access (OBDA) [15,67]. In this
article, we generally refer to both OBDI and OBDA as OBDA. OBDA, as a semantic technology, aims to facilitate
access to different underlying data sources [66]. Traditionally, these underlying data sources are considered to be
relational databases. Ontologies play the role of global views over multiple data sources. There are different ways to
implement an OBDA system. Generally, these systems can be categorized into two types, namely, data warehouse-
based approaches and virtual approaches. These two categories of methods both make use of semantic mappings
in order to overcome the differences between ontologies and local schemas, but in different ways [21,65]. In a data
warehouse-based approach, data from multiple sources are usually loaded or stored in a centralized storage, which
is the warehouse [26,63], based on semantic mappings. We refer to the data in such warehouses as materialized data.
Depending on the aims or functionalities of a system, the materialized data could be stored in local databases or
transformed into RDF graphs. Therefore, queries are evaluated against the materialized data. In a virtual approach,
data is retained at the original sources and mediators are used to translate queries defined in terms of a global or
mediated schema into queries defined in terms of each data source’s local schema, based on semantic mappings.
Therefore, queries are evaluated and executed against each data source. SPARQL queries are widely supported by
data integration systems that use ontologies as global schemas.

A number of semantic mapping definition languages have been proposed over the years. One such language is
R2RML (RDB to RDF Mapping Language),5 one of the two recommendations by the RDB2RDF W3C Working
Group6 to define semantic mappings [22]. It supports transformation rules defined by users, while the other rec-
ommendation, Direct Mapping [5], does not. Another language is RDF Mapping Language (RML) [24,25], which
allows underlying data in formats beyond relational databases and is a superset of R2RML. RML allows data from
CSV, JSON, and XML data sources. In our work we make use of RML and we introduce RML in more details in
Section 5.2.

2.3. GraphQL

GraphQL schemas and GraphQL resolver functions are basic building blocks in the implementations of GraphQL
servers. The former describe how users can retrieve data using GraphQL APIs. The latter contain program code in-
cluding how to access data sources and structure the obtained data according to the schema. We introduce GraphQL
schemas and GraphQL resolver functions in Section 2.3.1 and Section 2.3.2, respectively.

2.3.1. GraphQL schemas
In a GraphQL API, the GraphQL schema defines types, their fields, and the value types of the fields. Such a

schema represents a form of vocabulary supported by a GraphQL API rather than specifying what the data instances
of an underlying data source may look like and what constraints have to be guaranteed [33]. There are six different
(named) type definitions in GraphQL, which are scalar type, object type, interface type, union type, enum type and
input object type. Listing 1 depicts a GraphQL schema example.

An object type represents a list of fields and each field has a value of a specific type such as object type or scalar
type. A scalar is used to represent a value such as a string. In Listing 1, there are three basic object type definitions,
which are University (line 1 to line 4), Department (line 5 to line 8), and Professor (line 12 to line 15).
They all have field definitions which represent the relationships to scalar types or to other object types. For instance,
the University type has a field definition UniversityID of which the value type is String (line 2), and
a field definition departments of which the value type is a list of Departments (line 3). GraphQL allows
defining abstract types by supporting the interface type and the union type. An interface type defines a list of fields
and allows object types to implement. An object type can then implement an interface type with the requirement

5https://www.w3.org/TR/r2rml/
6https://www.w3.org/2001/sw/rdb2rdf/

https://www.w3.org/TR/r2rml/
https://www.w3.org/2001/sw/rdb2rdf/
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Listing 1. Example of a GraphQL schema of the university domain

that the object type includes all fields defined by the interface type. The schema in Listing 1 contains an interface
type, Author with an AuthorID field of which the value type is String (line 9 to line 11). The object type
Professor implements Author and must have the same definition for AuthorID field (line 13) as that in
Author. A union type defines a list of possible types. An enum type describes the set of possible values that are in
scalars. For more details of union and enum types, we refer the reader to the latest GraphQL specification in [29].

GraphQL allows fields to accept arguments to configure their behavior [29]. These arguments can be defined
by input object types. An input object type defines an input object with a set of input fields; the input fields are
either scalars, enums, or other input objects. This allows arguments to accept arbitrarily complex structs, which
can capture notions of filtering conditions. For instance, according to the definitions of UniversityFilter
(line 16 to line 22) and StringFilter (line 30 to line 36), we can define an input argument as Univer-
sityID:{_eq:”u1”} to capture the meaning of “UniversityID is equal to ‘u1’”, where _eq represents the
equal to operator. In our approach, _and, _or and _not are used to represent boolean expressions. For in-
stance, _or:[{UniversityID:{_eq:”u1”}},{UniversityID:{_eq:”u2”}}] represents the expres-
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Listing 2. Example of a resolver function for the UniversityList field

sion “UniversityID is equal to ‘u1’ or ‘u2’”. In the example schema, we use the term filter to represent the name
of an input argument (e.g., line 38). Such input arguments defined as input objects are not built-in constructs of
GraphQL. Therefore, their meanings are essentially defined by the program code of the GraphQL server implemen-
tation, i.e., the resolver functions which manage requests to underlying data sources and structure the returned data
according to the GraphQL schema. Our approach presented in Section 4 and Section 5 uses input arguments named
as filter to represent filter conditions.

Additionally, a GraphQL schema supports defining types that represent operations such as query and mutation.
The schema presumes the Query type as the query root operation type. As Listing 1 shows, in the Query type
definition (line 37 to line 42), there are four field definitions, which are UniversityList, DepartmentList,
AuthorList, and ProfessorList. For instance, the returned type of UniversityList is [Univer-
sity], a list of Universities. The UniversityList takes an argument defined as UniversityFilter
as an input for capturing the notion of a filtering condition.

2.3.2. GraphQL resolver functions
In a GraphQL API, apart from the GraphQL schema defining types, their fields, and the value types of the fields,

resolver functions are responsible for populating the data for fields of types in the GraphQL schema. For instance,
for the schema example shown in Listing 1, there are four fields defined in the Query type. Therefore, in the
GraphQL server implementation, we are supposed to define resolver functions to populate data for these fields,
UniversityList, DepartmentList, AuthorList, and ProfessorList. In our approach, we assume
that the GraphQL schema supports a query that retrieves all the instances for each interface type or object type.
Therefore, we use the name of each interface type or object type concatenated with ‘List’ as the name of a field in
the Query type, where the returned type is a list of the interface or object type. This is a way to state the behavior
of a field in the Query type. We emphasize that what a GraphQL query can retrieve over the underlying data
sources relies on how the resolver function is implemented. For instance, if the underlying data source is a relational
database, the resolver function should contain code specifying the SQL query to be evaluated. Listing 2 illustrates
an example resolver function (written in JavaScript syntax) for the UniversityList field. We assume that the
underlying data source is a relational database that contains a table named university with a column named id. In
line 4, given an input argument (university_id) representing the id of a university, a query is evaluated against the
relational database. In line 7, the data is structured according to the University object defined in the JavaScript code
which corresponds to the University type definition in the schema shown in Listing 1.

3. GraphQL-based framework for data access and data integration

This section introduces an overview of the GraphQL-based framework for data access and integration and two
basic processes in this framework.

3.1. Overview of the framework

Figure 2 illustrates the framework for data access and integration based on GraphQL in which an ontology drives
the generation of GraphQL server that provides integrated access to data from heterogeneous data sources. These
data sources may be based on different schemas and formats and may be accessed in different ways (e.g., as tabular
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Fig. 2. GraphQL-based framework for data access and integration.

data accessed via SQL queries or as JSON-formatted data accessed via API requests). To address the heterogeneity,
the framework relies on an ontology that provides an integrated view of the data from the different sources, and
corresponding semantic mappings that define how the data from the underlying data sources is interpreted or anno-
tated by the ontology (arrows (a) and (b)). Furthermore, two processes are defined. The first process generates the
GraphQL server. The second process deals with answering queries and is performed after the GraphQL server is set
up. In accordance with these two processes, there are two types of intended users or developers in the framework.
One type is users or developers of the GraphQL server generator, who should have prior knowledge of the ontology,
semantic mappings and the domain. The other type is end users using a GraphQL server for data access and inte-
gration, who may or may not be familiar with the Semantic Web or ontologies. For the purpose of writing GraphQL
queries, they need basic prior knowledge of GraphQL, which can be learned from the self-documenting API of the
generated GraphQL server showing the schema. We introduce more details about these two processes in Section 3.2
and Section 3.3, respectively.

3.2. GraphQL server generation process

This process includes generating both a GraphQL schema for the API provided by the server (arrow (i)) and a
generic resolver function (arrow (ii)). Given an ontology as an integrated view of data from multiple data sources,
we propose a method for generating a GraphQL schema based on this ontology, with the result that the schema
becomes a view of the data to be integrated. Additionally, we propose a generic implementation of resolver functions
that takes semantic mappings as inputs, so that the server is able to get data from underlying data sources. In
Sections 4 and 5, we elaborate on the implementation of our approaches for generating a GraphQL schema and the
generic resolver function, respectively. This GraphQL server generation process does not need to be repeated unless
the ontology or the semantic mappings change. After this generation process, the GraphQL server can be set up.

This process requires users or developers who are familiar with the query mechanisms of underlying data sources,
domain ontologies that can be used for data access or integration. Consequently, they can define the scope of the
ontology that will be used for generating the GraphQL schema for the server, as well as the semantic mappings that
will be used for generating the generic resolver function. This type of automatic generation of GraphQL servers
based on ontologies and semantic mappings can also benefit general GraphQL application developers, since it can
eliminate the need to build GraphQL servers from scratch.

3.3. GraphQL query answering process

During this process the query is validated against the GraphQL schema (arrow (1)); the underlying data sources
are accessed via resolver functions, the retrieved data is combined, the data is structured according to the schema
(arrows (2) and (3)); and finally the query result is returned (arrow (4)).

A GraphQL query example and corresponding query result are shown in Listing 3 and Listing 4, respectively.
The example query is: “Get the university including the head of each department where the UniversityID is ‘u1’”.
The query takes as an input an argument defined as filter:{UniversityID:{_eq:”u1”}}, which follows
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Listing 3. Example of a GraphQL query Listing 4. Example of a GraphQL query response

the syntax of the input object type UniversityFilter. As mentioned in Section 2.3.1, the meaning of an input
argument defined as an input object type is essentially determined by the program code of the resolver functions.
Thus the query example shown in Listing 3 illustrates one way that we make use of input objects to represent
filtering conditions. In general, however, the input object types can be used in various ways for any field, depending
on the implementation of the GraphQL server.

As mentioned earlier, domain users are the intended users of GraphQL servers, regardless of whether they have
prior knowledge of the Semantic Web or ontologies. In order to write GraphQL queries, they only need to have a
basic understanding of GraphQL, which can easily be explored via the GraphQL API provided by the server.

4. Ontology-based GraphQL schema generation

As mentioned in Section 2.3.1, the GraphQL schema represents a form of vocabulary supported by the GraphQL
API rather than specifying what the data instances of an underlying data source may look like and what constraints
have to be guaranteed. Therefore, we focus on GraphQL language features supporting semantics-aware and inte-
grated data access, namely how data can be queried, rather than reflecting the semantics of a complex knowledge
representation language in the context of a GraphQL schema. Section 4.1 introduces how a GraphQL schema is for-
malized, and Section 4.2 introduces how an ontology is represented via a description logic TBox. Given an ontology
represented in a description logic TBox, the concept and role names can be used to generate types and fields in a
GraphQL schema. The general concept inclusions in a description logic TBox can be used to specify how to connect
generated types and fields in a GraphQL schema. Then, in Section 4.3, we present the core algorithm (Schema Gen-
erator) for generating a GraphQL schema based on an ontology. In Section 4.4, we present the intended meaning of
GraphQL schemas generated by the Schema Generator.

4.1. GraphQL schema formalization

According to [33,34], a GraphQL schema can be defined over five finite sets. These five sets are F ⊂ Fields,
A ⊂ Arguments, T ⊂ Types, S ⊂ Scalars, and D ⊂ Directives where T is the disjoint union of
OT (object types), IT (interface types), UT (union types), IOT (input object types) and S (scalar types). Fields,
Arguments, Types, and Directives are pairwise disjoint, countably infinite sets representing field names,
argument names, type names, and directive names, respectively. Scalars, which is a subset of Types, represents
five built-in scalar types, which are Int, Float, String, Boolean, and ID. Moreover, the GraphQL schema
definition language introduces non-null types and list types, called wrapping types, according to types in Types.
Given a type t belonging to Types, the former is denoted as t!, while the latter is denoted as [t]. WT is used to
denote the set of all types that can be formed by wrapping the types in T, and WS denotes the set of all types that
can be formed by wrapping the scalar types in S. In our current work, considering the knowledge representation
language we use for the ontology (see next section), our GraphQL schema generator will neither produce union types
nor directive definitions. Therefore, a GraphQL schema S is defined over (F, A, T, S) consisting of two assignments
that are typeS and implementationS :
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- F = {UniversityID, departments, DepartmentID, head, AuthorID, doctoralDegreeFrom, _and, _or, _not,

_eq, _in, _neq, _nin, _like, UniversityList, DepartmentList, AuthorList, ProfessorList};
- A = {filter};
- T = IT ∪ OT ∪ S ∪ IOT where,
* IT = {Author},
* OT = {Query, University, Department, Professor},
* S = {String},
* IOT = {UniversityFilter, DepartmentFilter, StringFilter};

- typeS = typeFS ∪ typeAFS where,

* typeFS = {(University, UniversityID) �→ String,
(University, departments) �→ [Department],
(Department, DepartmentID) �→ String,
(Department, head) �→ String,
(Author, AuthorID) �→ String,
(Professor, AuthorID) �→ String,
(Professor, doctoralDegreeFrom) �→ [University],
(UniversityFilter, UniversityID) �→ StringFilter,
(UniversityFilter, departments) �→ DepartmentFilter,
(UniversityFilter, _and) �→ [UniversityFilter],
(UniversityFilter, _or) �→ [UniversityFilter],
(UniversityFilter, _not) �→ UniversityFilter,
(DepartmentFilter, DepartmentID) �→ StringFilter,
(DepartmentFilter, head) �→ StringFilter,
(DepartmentFilter, _and) �→ [DepartmentFilter],
(DepartmentFilter, _or) �→ [DepartmentFilter],
(DepartmentFilter, _not) �→ DepartmentFilter,
(StringFilter, _eq) �→ String,
(StringFilter, _in) �→ [String],
(StringFilter, _neq) �→ String,
(StringFilter, _nin) �→ [String],
(StringFilter, _like) �→ String,
(Query, UniversityList) �→ [University],
(Query, DepartmentList) �→ [Department],
(Query, AuthorList) �→ [Author],
(Query, ProfessorList) �→ [Professor]};

* typeAFS = {((Query, UniversityList), filter) �→ UniversityFilter,
((Query, DepartmentList), filter) �→ DepartmentFilter};

- implementationS = {Author �→ {Professor}}.

Listing 5. The formalization of the GraphQL schema shown in Listing 1

– typeS = typeFS ∪ typeAFS where,

∗ typeFS : (OT ∪IT ∪IOT) ×F ⇀ T∪WT, which is a partial function since a type has a set of fields which is a
subset of F, assigns a type to each field that is defined for an object type, an interface type or an input object
type,

∗ typeAFS : dom(typeFS) × A ⇀ S ∪ WS ∪ IOT, which is a partial function since a field has a set of arguments
which is a subset of A, assigns a type to every argument of fields that are defined for a type;

– implementationS : IT → 2OT∪IT assigns a set of object types or interface types to every interface type.

Listing 5 illustrates a formalized representation of the GraphQL schema shown in Listing 1. In the formaliza-
tion, we have sets F, A, IT, OT, S and IOT, which contains all the field names, argument names, interface type
names, object type names, scalar type names and input object type names, respectively. Additionally, the formal-
ization contains field declarations in the set typeFS ; argument declarations in typeAFS ; object types implementing
interface types declarations in implementationS . For instance, (University,UniversityID) �→ String
declares that the University type has a field UniversityID of which the returned type is String;
((Query,UniversityList),filter) �→ UniversityFilter declares that the UniversityList field
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Table 1

The syntax and semantics for the description logic used in our approach

Name Syntax Semantics

Construct Top concept � �I

Atomic concept P PI ⊆ �I

Role R RI ⊆ �I × �I

Attribute A AI ⊆ �I × �I
D

Datatype d dI ⊆ �I
D

Conjunction P � Q PI ∩ QI

Role value restriction ∀R.P {x ∈ �I |∀y ∈ �I : (x, y) ∈ RI → y ∈ PI }
Role qualified number restriction = 1R.P {x ∈ �I ||{y ∈ �I |(x, y) ∈ RI ∧ y ∈ PI }| = 1}
Attribute value restriction ∀A.d {x ∈ �I |∀y ∈ �I

D : (x, y) ∈ AI → y ∈ dI }
Attribute qualified number restriction = 1A.d {x ∈ �I ||{y ∈ �I

D|(x, y) ∈ AI ∧ y ∈ dI }| = 1}
TBox GCI P � Q PI ⊆ QI

ABox Concept assertion P(a) aI ∈ PI

Role assertion R(a, b) (aI , bI ) ∈ RI

Attribute assertion A(a, v) (aI , vI ) ∈ AI

accepts an input argument which is defined as the type UniversityFilter; Author �→ {Professor} de-
clares that the Professor type is one of the types that implement the interface Author.

4.2. Ontology representation by a description logic TBox

In this work we assume that the ontology is represented by a TBox in a description logic which is an extension
of FL0 by adding qualified number restrictions and datatypes. FL0 allows atomic concepts, the universal concept,
intersection and value restriction [8]. This description logic can represent the semantics that can be reflected in a
GraphQL schema for data access and integration where the schema follows the GraphQL schema definition lan-
guage. Note that we do not aim to represent the full ontology in DL, but that, for our purposes, we only need the part
of the ontology that is needed for data access. Therefore, we only use the DL constructors that cover the existing
GraphQL features for data access.

The syntax and semantics of the description logic used in our approach are shown in Table 1. The introduction of
datatypes is based on the work presented in [35] and [36]. Let NC, NR, NA, and D be disjoint finite sets of concept
names, role names, attribute names, and datatype names respectively. An interpretation I consists of a non-empty set
�I representing the domain of individuals, and an interpretation function ·I . In addition, the interpretation includes
an interpretation domain for data values �I

D which is disjoint from the domain of individuals �I [35]. A datatype,
such as integer, is interpreted as a subset of �I

D and a value such as the integer 5 is interpreted as an element of �I
D.

Thus, the interpretation function ·I assigns to each atomic concept P ∈ NC a subset P I ⊆ �I , to each d ∈ D a set
dI ⊆ �I

D, to each role r ∈ NR a relation rI ⊆ �I × �I , to each attribute a ∈ NA a relation aI ⊆ �I × �I
D, to

each individual name i an element iI ∈ �I , and to each data value v an element vI ∈ �I
D.

NF1 : P � Q NF2 : P � ∀r.Q NF3 : P �= 1r.Q NF4 : P � ∀a.d NF5 : P �= 1a.d (1)

A TBox over NC, NR, NA and D is a finite set of general concept inclusions (GCI) where each GCI is a statement
in the form of B � C, where B and C are concepts. For generating GraphQL schemas, we use normalized TBoxes
that contain only GCIs in the normal forms given in formula (1) where P, Q ∈ NC, r ∈ NR, a ∈ NA, and d ∈ D.
There exist normalization rules to obtain such a TBox (e.g., an axiom P � Q�M is converted to two axioms, P � Q
and P � M) [9]. Baader et al. show that such normalization rules can preserve a conservative extension of a TBox
in FL0 [10]. A conservative extension guarantees that subsumptions according to the original TBox coincide with
those with respect to the normalized TBox. An example TBox input is shown in Listing 6.
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NC ={University, Department, Author, Professor}, NR ={departments, doctoralDegreeFrom},
NA ={UniversityID, DepartmentID, head, AuthorID}, D ={xsd:string},
University � ∀ departments.Department, University �= 1 UniversityID.xsd:string
Department �= 1 DepartmentID.xsd:string, Department �= 1 head.xsd:string
Author �= 1 AuthorID.xsd:string, Professor � Author
Professor �= 1 AuthorID.xsd:string, Professor � ∀ doctoralDegreeFrom.University

Listing 6. TBox example representing the example ontology as shown in Fig. 1

4.3. Schema Generator algorithm

Algorithm 1 shows the details to generate a GraphQL schema. The output for the example is the schema shown
in Listing 1. First, the algorithm iterates over the concept names in NC (line 1 to line 5). For each concept, such
as University in the TBox, the concept name (University) is used as the name of an object type to be
generated (line 2); the term concatenated with ‘Filter’ is used as the name of an input type (UniversityFilter)
to be generated (line 3); the term concatenated with ‘List’ is used as the name of a field (UniversityList) of the
Query type (line 4). Additionally, each such field of the Query type is assigned an argument named ‘filter’, with a
type that is the corresponding input type (e.g., filter:UniversityFilter to UniversityList) (line 5).
Next, the algorithm iterates over GCIs in the TBox (line 6 to line 30). For a GCI in the form of NF1, the name of
the super-concept is used as the name of an interface type to be generated; a field for the Query type named by
concatenating the interface type name and ‘List’ is generated; the previously generated object type corresponding
to the sub-concept implements the generated interface type.

From line 13 to line 21, the algorithm deals with GCIs containing roles, which can be of the form NF2 or
NF3 (such as University � ∀ departments.Department). In both cases, a field definition (e.g., de-
partments) of the object type (e.g., University) and a field definition (departments) of the input type
(UniversityFilter) are generated. However, for NF3, the returned type of the field is defined as the original
object type corresponding to the concept appearing on the right side of the GCI (line 20). For NF2, the returned type
is defined as a wrapped type, which is a list type (line 17). For instance, the departments field declaration for
the University type is departments:[Department]. The algorithm deals with GCIs containing attributes
in a similar way (line 22 to line 30). For example, the University object type has a field declaration, which is
UniversityID:String.

We define a function � for mapping a datatype that exists in the TBox to a scalar type in GraphQL. Due to the
fact that current GraphQL supports five basic scalar types which are ID, Float, Int, Boolean, and String,
our current implementation of function � focuses on mapping datatypes xsd:float, xsd:int, xsd:string
and xsd:boolean to scalar types Float, Int, String and Boolean, respectively. However, GraphQL allows
users to define custom scalar types, and the values of such custom types should be JSON serializable. Therefore,
our � function can be extended in the future for mapping any datatype besides the above four types from a TBox
into a custom scalar type in GraphQL.

By generating the GraphQL schema based on an ontology, the schema will contain object or interface types cor-
responding to concepts in the ontology, and field declarations corresponding to relationships in the ontology. When
a GraphQL query is sent to the GraphQL server, a resolver function parses the query to determine which type in the
schema is requested. It then parses the relevant definitions corresponding to such a type in the semantic mappings to
retrieve data. For instance, if a query requests all the entities of the University object type, the resolver function
parses the semantic mappings that are defined for the University concept to get information regarding how to access
the underlying data sources.
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4.4. The intended meaning of a generated GraphQL schema

In Section 4.3, we present the Schema Generator which takes a TBox representing an ontology as an input, to
generate a GraphQL schema. Such a GraphQL schema can describe how to access underlying data sources in which
the data can be annotated by the ontology. The underlying data can thus be viewed as an ABox for the TBox.
Therefore, a GraphQL query that conforms to this GraphQL schema can be considered as a query over the ABox.
To make this intention more formal we consider an ABox A as a finite set of assertions of the form P(x), R(x, y) or
A(x, z), where P ∈ Nc, R ∈ NR, A ∈ NA, x and y are instance names, z are literals. Listing 7 illustrates an example
ABox based on the TBox in Listing 6.

Let O be an ontology represented by a TBox T ; let S be a GraphQL schema over (F , A, T , S) generated by
Algorithm 1 based on T ; let Q be a GraphQL query over (F , A, T , S) such that Q conforms to S . Evaluating Q
over underlying data sources that are instantiated in terms of O can be defined as retrieving an ABox A based on T :
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University(university_1), University(university_2);
Department(d1), Department(d2), Department(d3), Department(d4);
departments(university_1, d1), departments(university_1, d2),
departments(university_2, d3), departments(university_2, d4);
UniversityID(university_1, "u1"), UniversityID(university_2, "u2");
head(d1, "Harry, Potter"), head(d2, "Sheldon, Cooper"),
head(d3, "Paul, Atreides"), head(d4, "Jack, Lee").

Listing 7. ABox example based on the example ontology as shown in Fig. 1

– If Q requests an object or an interface type t with a field f of which the returned type is a scalar type s or the
wrapping type [s] (i.e., t ∈ OT � IT, f ∈ F, s ∈ S, and (t, f ) �→ s ∈ typeFS or (t, f ) �→ [s] ∈ typeFS ), we can
find the corresponding assertions in the ABox A of forms: t (x) and f (x, z);

– If Q requests an object or an interface type t1 with a field f of which the returned type is another object
or interface type t2 or the wrapping type [t2] (i.e., t1, t2 ∈ OT � IT, f ∈ F, and (t1, f ) �→ t2 ∈ typeFS or
(t1, f ) �→ [t2] ∈ typeFS ), we can find the corresponding assertions in the ABox A of forms: t1(x), t2(y) and
f (x, y).

For instance, given the query (as shown in Listing 3) and the above ABox, University(university_1), de-
partments(university_1, d1), departments(university_1, d2), head(d1, “Harry, Potter”), head(d2, “Shel-
don, Cooper”) are supposed to be retrieved. The above definition presents the meaning of the GraphQL schema
generated based on a TBox for evaluating GraphQL queries. The definition relies on the Schema Generator where
for each concept, the algorithm creates a corresponding type with the same name of the concept, same for roles and
attributes. This guarantees to find the corresponding assertions from the ABox. However, in practice, as we pre-
sented in Section 2.3.2, how a GraphQL query retrieves data over the underlying data sources, depends on how the
resolver function is implemented when we construct GraphQL servers. In the next section, we present how resolver
functions can be implemented in a generic way based on semantic mappings.

5. Generic GraphQL resolver function

In general, there are two styles for implementing resolver functions for a GraphQL server. One option is to
implement one resolver function per type (object or interface) defined in the GraphQL schema, where such a function
states how to fetch the data to populate relevant fields. For instance, since the Query type in Listing 1 has four field
definitions (UniversityList, DepartmentList, AuthorList, and ProfessorList), we may provide
four resolver functions for getting entities of the University, Department, Author and Professor types
from underlying data sources, respectively. The other option is to provide a resolver function for every field of every
type defined in the GraphQL schema, such that this resolver could return data for this field of any type. In our
framework, we adopt the first style because it can be easily generalized based on semantic mappings. That is, we
implement a generic resolver function that can be used to populate objects of any object type or interface type, and
can be viewed as a built-in function of the GraphQL server. In Section 5.1, we introduce how a GraphQL query is
represented by Abstract Syntax Trees (ASTs), in which one represents query fields and others represent the filter
expression. Section 5.2 introduces the RDF Mapping Language (RML), which is used for representing semantic
mappings, and Section 5.3 describes the components of the generic resolver function. In Section 5.4, we present the
core algorithm for the generic resolver function, which is responsible for accessing underlying data sources based
on semantic mappings.

5.1. GraphQL queries represented by abstract syntax trees

In general, a GraphQL query can be represented using a single AST that contains nodes representing the fields
requested in the query, and also contains additional nodes for the input arguments that may be used for each of
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Fig. 3. Example abstract syntax trees for the query shown in Listing 3.

these fields. In our approach, we assume that each query accepts an input argument which captures the notion of a
filter condition. Therefore, we specify the query evaluation in two steps: (i) evaluating for a filter condition, which
is represented via an input argument that is defined as an input object type in the schema, (ii) evaluating for those
fields that are requested in the GraphQL query. For instance, in the query example shown in Listing 3, the field
having a filtering condition is different from the requested fields (the former is UniversityID while the latter
includes departments and head). In the evaluation step for the filter condition, the identifier information of
the filtered out instances of the requested type (i.e., University) are obtained after accessing the underlying
data sources. In the next step, the underlying data sources are accessed again to retrieve only the requested fields
for the filtered instances. Therefore, to enable such two steps in the query evaluation, we use multiple ASTs to
represent a GraphQL query (cf. Fig. 3, these two ASTs represent the query shown in Listing 3), one of which
captures the input argument structure (Fig. 3a), and the other of which captures the structure of the query, including
the requested fields and their types (Fig. 3b). More specifically, every node in such ASTs represents either a named
type (i.e., object type, interface type, input type, or scalar type), a wrapping type, or a field. Additionally, ASTs
that represent input arguments also contain nodes that represent the values of scalar-typed fields (e.g., “u1” in the
AST shown in Fig. 3a). The types (i.e., UniversityFilter, StringFilter, String) or wrapping types
(i.e., [University], [Department]) are drawn with rectangle nodes. The fields (i.e., UniversityID, _eq,
departments, head) are drawn with rounded rectangle nodes.

In practice, a filter condition is converted into disjunctive normal form (DNF).7 A query result in DNF contains
data formed by the union of data that satisfies each disjunct. Therefore, in the step of evaluating for a filter condition:
(i) multiple ASTs are generated where each represents one of the disjuncts, (ii) the underlying data source are
accessed several times to obtain instances satisfying each disjunct, (iii) a union of identifier information for these
instances of the requested type is returned.

5.2. RDF Mapping Language (RML)

RML is a declarative mapping language for linking data to ontologies [51]. An RML document has one or more
Triples Maps, which declare how input data is mapped into triples of the form (subject, predicate, object).
An example of RML mappings is shown in Listing 8. A Triples Map contains the following three components
(Logical Source, Subject Map and a set of Predicate-Object Maps). A logical source declares the
source of input data to be mapped. It contains definitions of source that locate the input data source, reference
formulation declaring how to refer to the input data, and logical iterator declaring the iteration loop
used to map the input data. For instance, line 2 to line 6 in Listing 8 constitute the definition of a logical source. The
definition declares that the data source is a JSON-formatted data source on the Web and also describes the way of
iterating the JSON-formatted data (line 5). A subject map declares a rule for generating subjects when transforming
underlying data into triples, including how to construct URIs of subjects (e.g., line 8) and specifying the concept to
which subjects belong (e.g., line 9). A predicate-object map consists of one or more predicate maps declaring how

7A statement is in DNF if it is a disjunction of conjunctions of literals. A disjunction uses the OR (∨) operator. A conjunction uses the AND
(∧) operator.
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Listing 8. Example of RML mappings transforming university domain data, defined based on the example ontology as shown in Fig. 1

to generate predicates of triples (e.g., line 12), and one or more object maps or referencing object maps defining how
to generate objects of triples. An object map can be a reference-valued term map or a constant-valued term map.
The former declares a valid reference to a column (relational data sources), or to an object (JSON data sources). The
latter declares the value of the object as constant data. For instance, line 39 to line 41 make up a reference-valued
term map. Line 19 to line 25 constitute a definition of a referencing object map including the join condition based
on two triples maps. A referencing object map refers to another triples map (called a parent triples map) by using
a rr:joinCondition property to state the join condition between the current triples map and the parent triples
map. A join condition contains two properties, rr:child and rr:parent, of which the values must be logical
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Fig. 4. Technical components in the generic resolver function.

references to logical sources of the current triples map and the parent triples map, respectively.

5.3. Components of the generic resolver function

We show the basic technical components of the generic resolver function including QueryParser and Evaluator
in Fig. 4. In Algorithm 2, we show the generic resolver function. The inputs to the generic resolver function are
a GraphQL schema, a GraphQL query and semantic mappings. The GraphQL query and schema are inputs of
the QueryParser. The QueryParser parses a query including a filter expression given as an input argument, and
outputs the corresponding ASTs (Fig. 3) for the input argument and the query structure, respectively (shown as
arrows 1© and 2© in Fig. 4). As mentioned in Section 5.1, in our practical solution a filter condition is converted
into disjunctive normal form. In Algorithm 2, the QueryParser parses the query, converts a filter expression into
a union of conjunctive expressions, and generates an AST for each conjunctive expression and an AST for the
query structure (line 2). Then, the filter expression (line 5 to line 7 in Algorithm 2, frame a© in Fig. 4) and the
query fields (line 9 and line 13 in Algorithm 2, frame b© in Fig. 4) are evaluated. The Evaluator is responsible
for sending requests to underlying data sources and fetching data according to an AST. During evaluation of the
filter expression, for each AST representing a conjunctive (sub-)expression, an evaluator is called to request data
that satisfies the conjunctive (sub-)expression (line 6). After a call to an evaluator based on an AST (filter_ast in
line 6), data representing the requested type, which contains identifier information, is returned (identifier_info in
line 6). Taking the query in Listing 3 represented by the ASTs shown in Fig. 3 as an example, the requested type
is University and data that can identify university instances is supposed to be returned in identifier_info. Such
identifier information is captured in semantic mappings, which are used to construct the URIs for subjects where
such subjects represent instances of the University concept. For instance, in line 8 of the RML mappings example
in Listing 8, the values of the uid attribute of the underlying data source are used to construct URIs of subjects
representing instances of the University concept. The identifier information returned by evaluating each filter_ast is
merged into filtered_identifiers (line 7). During evaluation of the query fields, such merged identifier information is
taken into account in the call to the evaluator of the query fields (line 9 in Algorithm 2, arrow 3© in Fig. 4).

As mentioned in Section 4.3, by generating the GraphQL schema based on an ontology, we can therefore, for each
object or interface type and each field declaration, find the corresponding concept and relationship in the ontology.
Since such concepts and relationships are used to define semantic mappings, when a generic resolver function
retrieves data from the underlying sources of a requested type and relevant fields, it can therefore understand the
semantic mappings regarding how to access underlying data sources and structure the returned data according to
the GraphQL schema. Taking the query in Listing 3 represented by the ASTs shown in Fig. 3 as an example, as the
requested type is University, the generic resolver function can therefore make use of relevant triples maps (line 1
to line 26 in Listing 8) defined in semantic mappings which are used for transforming underlying data following the
semantics related to the University concept in the ontology.
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5.4. The Evaluator algorithm

We present the details of Evaluator in Algorithm 3 and show an example in Fig. 5 of how evaluators work for
answering the query in Listing 3. An AST and a number of triples maps from the semantic mappings are essential
inputs to the algorithm. For a given AST, we can obtain the object type and fields that are requested in the query based
on the root node and child nodes, respectively (line 2). For instance, taking the ASTs in Fig. 3 as examples, the root
type and the field for evaluating the filter expression are University and UniversityID, and the root type and
the first level requested field for evaluating query fields are University and departments, respectively. After
getting the relevant triples maps based on the root node type (line 4 in Algorithm 3, e.g., UniversityMapping
in Listing 8) or from the argument (line 30, the parent triples map, DepartmentMapping, which is an argument
in the recursive call of an evaluator), the algorithm iterates over triples maps and merges the data obtained based on
each triples map (line 5 to line 32). Exploring this in more detail, the algorithm parses each triples map to get the
logical source and relevant predicate-object maps (line 8 and line 9). As described in Section 5.2, there are three
different types of predicate-object map depending on the different maps of object, which are a reference-valued
term map, a constant-valued term map or a referencing-object map. The algorithm iterates over the predicate-object
maps and parses each one (line 10 to line 18). For a reference-valued term map, the mapping between the predicate
and the reference column or attribute is stored (line 12, e.g., {UniversityID: uid} is stored in pred_attr),
which will be used for rewriting a filter expression according to the underlying data source (line 20, e.g., uid =
‘u1’), annotating the obtained underlying data (line 23, e.g., HEAD is annotated as head for Department data). For
a constant-valued term map, the mapping between the predicate and the constant data value, type is stored (line 14).
For a template-valued term map, the mapping between the predicate and the template format is stored (line 16). All
the pred_attr, pred_const, and pred_template will be used to annotate the data from underlying sources (line 23).

In the phase of evaluating a filter expression, local_filter, which represents the rewritten filter expression, is a
necessary argument when sending requests to underlying data sources (line 21). While in the phase of evaluating
query fields, filter_ids, being a NULL value or having at least one element, is a necessary argument (line 21, ar-
row (a) in Fig. 5). A NULL value represents the fact that the GraphQL query does not include an input argument.
After obtaining the data from the underlying data sources, the data is serialized into JSON format (key/value pairs)
in which the keys are predicates stated in the predicate-object map (line 23), where each predicate corresponds to a
field in the GraphQL schema. In the next step, the algorithm iterates over predicate-object maps in which the object
map refers to another triples map (called a parent triples map) (line 24 to line 31). An evaluator is called again to
fetch data based on this parent triples map (line 30, arrow (4) in Fig. 5). For the query example, the parent triples
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Algorithm 3: Evaluator
Input : an Abstract Syntax Tree: ast; the semantic mappings: triples_maps; the referencing data: ref ; the identifiers for

filtered out result: filtered_ids
Output: result of evaluating a filter expression or query fields

1 Initialize an empty list: result
2 get the root type and query fields from ast: root_type, query_fields
3 if triples_maps is Empty then
4 get relevant triples maps based on the root_type: triples_maps
5 for tm in triples_maps do
6 Initialize an empty list: referencing_poms
7 Initialize three empty lists: pred_attr, pred_const, pred_template
8 get the logical source from tm: source
9 get all the predicate-object maps from tm based on query_fields: queried_poms

10 for pom in queried_poms do
11 if object_map in pom is a reference-valued term map then
12 extend pred_attr with a map between the predicate and column/attribute
13 if object_map in pom is a constant-valued term map then
14 extend pred_const with a map between the predicate and data value, type
15 if object_map in pom is a template-valued term map then
16 extend pred_template with a map between the predicate and template
17 if object_map is a referencing-object map term map then
18 extend referencing_poms with pom
19 parse ast and get the filter expression: filter_expr
20 localize filter_expr based on pred_attr, pred_const, pred_template: local_filter
21 access the data source based on source, local_filter, ref , filtered_ids: temp_result
22 if temp_result is not Empty then
23 annotate temp_result based on pred_attr, pred_const, pred_template
24 for (pred, object_map) in referencing_poms do
25 get the sub tree from ast based on pred: sub_ast
26 parse object_map: parent_triples_map, join_condition
27 parse join_condition: child_field, parent_field
28 get the referencing data from temp_result on child_field: child_data
29 ref = (child_data, parent_field)

30 call Evaluator based on sub_ast, parent_triples_map, ref : parent_data
31 join temp_result and parent_data based on join_condition, pred: temp_result
32 merge result and temp_result: result
33 return result

map refers to the DepartmentMapping. Since such a referencing-object map definition states the join condition
between the current triples map (UniversityMapping) based on child_field (uid) and the parent triples map
(DepartmentMapping) based on parent_field (university_id) (line 21 to line 23 of the mappings in List-
ing 8), we can pass referencing data (ref ), which contains the data obtained according to the current triples map
and parent_field, to the call of an evaluator when we fetch data according to the parent triples map (line 30). Such
referencing data is taken into account, in the recursive call to an evaluator, when the request is sent to the underlying
data sources (line 21, arrow (b) in Fig. 5). After the data is obtained according to the parent triples map (arrow (c)

in Fig. 5), it is joined with data obtained according to the current triples map (line 31, frame (A) in Fig. 5).

6. Related work

The widely used Semantic Web-based techniques and the recently developed GraphQL have led to a number of
works relevant to our GraphQL-based framework for data access and data integration. We extend the summary of
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Fig. 5. Example for answering the query in Listing 3, (1)–(3) indicate the requests to and responses from the data sources; (a)–(c) indicate
the parameter passing between the calls to evaluators; (4) indicates a recursive call to evaluator for getting the data of departments; frame (A)
indicates a join operation.

approaches presented in [17] by adding several new related approaches and new perspectives on the comparison. Ta-
ble 2 summarizes these systems and our approach. These systems can be divided into two categories, namely OBDA-
based systems and GraphQL-based systems. The former group contains Morph-RDB [49,52], Morph-CSV [19],
Ontop [13,50], Squerall [47] and Ontario [28]. The latter group consists of GraphQL-LD [60], HyperGraphQL [55],
UltraGraphQL [32,56], Morph-GraphQL [17], Ontology2GraphQL [30] and our OBG-gen. OBG-gen can also be
categorized as an OBDA-based system in the first group. In addition to the two groups described above, there is
another system that is related to our work. It is OBA [31], which is an ontology-based framework that facilitates the
development of REST APIs for knowledge graphs.

As a new perspective to the summary in [17], all the approaches (except for GraphQL-LD) have two processes:
(i) the service setup (preparation) process and (ii) the query answering process. During the service setup process, all
OBDA-based approaches need semantic mappings as input. In these systems, semantic mappings are used in a sim-
ilar manner to represent differences between global and local schemas, namely mapping translations as highlighted
in [21]. Some approaches take additional resources as inputs. Morph-CSV uses CSVW8 to annotate tabular data.
OBG-gen needs an ontology and semantic mappings together in order to generate a GraphQL server that is intended
not only for semantics-aware data access but for data integration.9 Another system that also uses ontologies in the
service setup process is OBA. OBA generates an OpenAPI Specification (OAS)10 based on ontologies. It is also
highlighted in [21] that the diversity of how underlying data sources provide data brings challenges to mapping
translations. For instance, REST is a popular architecture for web services and is commonly used for Web-based ap-
plications to provide data since 2000. GraphQL becomes an alternative since 2012. In this respect, OBA, OBG-gen
and Morph-GraphQL explore how semantic resources (i.e., ontologies and semantic mappings) can be used to pro-
vide access to data that is provided by Web APIs. For the other GraphQL related work, Ontology2GraphQL needs a
meta model for the GraphQL query language and requires an ontology following the meta model for generating the
GraphQL schema. HyperGraphQL requires no inputs during the service setup process, but the developer must build
the GraphQL server from scratch. UltraGraphQL, based on HyperGraphQL, requires RDF schemas of SPARQL
endpoints for bootstrapping the GraphQL server. In actuality, GraphQL-LD does not require any GraphQL servers,

8CSVW is used to annotate CSV files with JSON metadata (https://csvw.org).
9Morph-GraphQL requires semantic mappings to generate a GraphQL server intended for data access. It does not consider data integration

scenarios where integrated views are required.
10https://swagger.io/specification/

https://csvw.org
https://swagger.io/specification/
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Table 2

Summary of related approaches

Approach Service setup (preparation) process Query answering process

Input Output Input Output Underlying data

Morph-RDB [49,52] Semantic mappings – SPARQL query SQL query Relational data

Morph-CSV [19] Semantic mappings,
tabular metadata

– SPARQL query SQL query Tabular data

Ontop [13,50] Semantic mappings – SPARQL query Queries based on data
sources

Relational data,
non-relational data via
database federators

Squerall [47] Semantic mappings – SPARQL query Queries based on data
sources and their
wrappers

Diverse data sources
in a Data Lake

Ontario [28] Semantic mappings – SPARQL query Queries based on data
sources and their
wrappers

Diverse data sources
in a Data Lake

GraphQL-LD [60] – – GraphQL query,
JSON-LD context

SPARQL query SPARQL endpoint

HyperGraphQL [55] – GraphQL server
(manually)

GraphQL query,
JSON-LD context

SPARQL query SPARQL endpoint

UltraGraphQL [32,56] RDF schemas of
SPARQL endpoints

GraphQL server
(automatically)

GraphQL query,
JSON-LD context

SPARQL query SPARQL endpoint

Morph-GraphQL [17] Semantic mappings GraphQL server
(automatically)

GraphQL query SQL Query Relational data

Ontology2GraphQL [30] A meta model, an
ontology follows
the model

GraphQL server
(automatically)

GraphQL query SPARQL query SPARQL endpoint

OBA [31] An ontology Open API
specification, a
REST API server
(automatically)

API requests SPARQL query SPARQL endpoint

OBG-gen Semantic mappings,
an ontology

GraphQL server
(automatically)

GraphQL query SQL query, API
requests

Relational data,
tabular data,
JSON-formatted data

but instead focuses on how to represent GraphQL queries using SPARQL algebra and how to convert the results of
a SPARQL query into a tree structure in response to a GraphQL query.

For the query answering process, OBDA-based approaches (i.e., Morph-RDB, Morph-CSV, Ontop, Squerall and
Ontario) accept SPARQL queries and translate them into specific queries. Morph-RDB handle underlying data
stored in relational databases, while Morph-CSV deals with data stored in CSV files. Morph-RDB and Morph-CSV
translate SPARQL queries into SQL queries. Ontario, Squerall and Ontop support heterogeneous data sources. These
three systems can translate SPARQL queries into various queries according to the query languages of the underlying
data sources or queries accepted by data source wrappers. Our approach, OBG-gen, accepts relational data, tabular
data and JSON-formatted data as the underlying data. Moreover, OBG-gen can integrate data in different formats
from multiple sources, due to the generic resolver function implementation that can structure obtained data in
the JSON format according to the GraphQL schema. The remaining approaches are based on underlying data in
SPARQL endpoints and translate GraphQL queries into SPARQL queries (GraphQL queries for GraphQL-based
approaches, API requests for OBA). GraphQL-LD, HyperGraphQL, and UltraGraphQL require context information
expressed in JSON-LD. Such JSON-LD context information contains URIs of classes to which instances in the RDF
data belong.

In addition, we study relevant OBDA/OBDI and GraphQL benchmarks to conduct our experiments and eval-
uation. These benchmarks are Berlin SPARQL Benchmark (BSBM) [12], Norwegian Petroleum Directorate
Benchmark (NPD) [42], GTFS-Madrid-Bench [18], ForBackBench [2] and Linköping GraphQL Benchmark
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(LinGBM) [20]. These OBDA/OBDI related benchmarks are built based on different use cases (BSBM for the e-
commerce use case, NPD for the oil industry, GTFS-Madrid-Bench for the transport domain, ForBackBench reusing
data from other benchmarks) and focus on testing different abilities of OBDA/OBDI engines. In more detail, the
BSBM benchmark aims to test and compare the performance of native RDF stores with engines implementing
SPARQL-to-SQL query translation. The NPD benchmark can be used to analyze OBDA system implementations
in terms of query rewriting, query unfolding and query execution. The GTFS-Madrid-Bench aims to test engines
focusing on virtualized access to heterogeneous data. The above three benchmarks commonly focus on testing
engines that contain query rewriting mechanisms, which are usually implemented by OBDA/OBDI engines. The
ForBackBench benchmark has a focus on both data integration scenarios and data exchange scenarios. In the former
scenarios, engines usually implement query rewriting mechanisms. While in the latter scenarios, engines usually im-
plement forward-chaining algorithms (e.g., [16,48]) to populate a centralized data warehouse. Therefore, in contrast
to the previous three benchmarks, ForBackBench focuses on comparing and analyzing systems across both two dif-
ferent mechanisms (i.e., query writing and forward-chaining algorithms). In terms of GraphQL-related benchmarks,
the LinGBM benchmark is the first one that can be used to study the behavior of GraphQL server implementations
at scale [20]. It provides a scalable dataset regarding the University domain and specifies key technical challenges
(e.g., relationship traversal) of GraphQL server implementations. For the evaluation of our work (see next section),
among these OBDA/OBDI and GraphQL related benchmarks, we choose GTFS-Madrid-Bench and LinGBM, re-
spectively. The reasons are: (i) for the real case evaluation in the materials design domain, LinGBM can guide us to
characteristic the GraphQL queries to better compare and analyze the abilities of GraphQL systems; (ii) by follow-
ing the scenarios in LinGBM and GTFS-Madrid-Bench, we can test the ability of our approach to work for general
different domains.

7. Evaluation

In this section, we present an evaluation of the framework shown in Section 3. We consider a real case application
scenario in the materials design domain, and two synthetic benchmark scenarios based on the Linköping GraphQL
Benchmark (LinGBM)11 [20] and GTFS-Madrid-Bench12 [18], respectively. The main goals of the evaluation are:
(i) to validate that GraphQL can be used to assemble an integrated view of underlying data and manage requests to
underlying data sources in an ontology-driven data access and integration scenario; (ii) to validate that the approach
can work in general domains for data access and integration. Meanwhile, we intend to provide initial insights into
the query performance of our approach by comparing it with existing OBDA-based and GraphQL-based solutions
for data access and data integration. Therefore, the evaluation focuses on validating the generability and feasibility
of our approach, and aims to answer the following detailed research questions:

RQ1: Can the generated GraphQL server provide integrated access to heterogeneous data sources? For instance
in the real case application scenario, data from different sources may follow different models and is shared
or queried in different ways.

RQ2: How does the generated GraphQL server compare to other OBDA-based systems and other GraphQL-
based systems in terms of query performance and its behavior for increasing dataset sizes?

RQ3: Is the proposed approach, ontology-based GraphQL server generation, a general approach that can work
in different domains for data access and integration?

In the first evaluation scenario based on the real case application scenario in the materials design domain, we
aim to answer RQ1 and RQ2. In the second and third evaluation scenarios based on the LinGBM and the GTFS-
Madrid-Bench benchmarks, we aim to answer RQ3 to validate the generability and feasibility of our approach. We
performed all experiments on a server machine with Intel Xeon Gold 6130 @ 2.10 GHz CPUs. The machine runs a
64-bit CentOS Linux 7 (Core) operating system. We reserved 8 CPU cores and 4 GB memory for the experiments.

11https://github.com/LiUGraphQL/LinGBM
12https://github.com/oeg-upm/gtfs-bench

https://github.com/LiUGraphQL/LinGBM
https://github.com/oeg-upm/gtfs-bench
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Fig. 6. Example of searching materials from materials project, OQMD and NOMAD.

7.1. Real case evaluation

In the real case evaluation, we focus on a use case in the materials design domain where the task is data integration
over two data sources, Materials Project [37] and OQMD (The Open Quantum Materials Database) [54].

Motivation The materials science domain, like many other domains, is at an early stage when it comes to intro-
ducing Semantic Web-based technologies into its data-driven workflows. A large number of research groups and
communities have thus developed a variety of data-driven workflows, including data repositories [40,41] and data
analytics tools. As data-driven techniques become more prevalent, more data is produced by computer programs
and is available from various sources, which leads to challenges associated with reproducing, sharing, exchanging,
and integrating data among these sources [1,38,39,53,61]. Figure 6 illustrates an example of searching for gallium
nitride materials with the reduced chemical formula of GaN in three databases of the materials design domain, Ma-
terials Project [37], OQMD [54] and NOMAD (Novel Materials Discovery) [27]. As shown in the results, each of
them contains a column that represents chemical composition, but with different column names or different insights
(i.e., ‘Formula’ for Materials Project and NOMAD, ‘Composition’ for OQMD). The ‘Formula’ column for Mate-
rials Project actually represents the reduced chemical formula. More detailed information regarding the chemical
composition can be found based on the value of the ‘Nsites’ column. For instance, for the second row of the result
from Materials Project, we can derive that the unit cell formula is Ga2N2 based on the values of the ‘Formula’ and
‘Nsites’ columns. Meanwhile, the ‘Formula’ column for NOMAD represents the unit cell formula rather than the
reduced chemical formula. Unlike the other two databases, OQMD contains a column for reduced chemical formu-
las, but with a different column name (‘Composition’). Such differences have to be addressed in order to integrate
or exchange data from these data sources. Apart from such differences in terminology, the data that needs to be
accessed or integrated from multiple data sources is typically heterogeneous in different models (i.e., relational data
stored in relational databases, and hierarchical data stored in JSON data stores). In our previous work, we developed
the Materials Design Ontology (MDO) [45] to enable ontology-driven data access and integration. Furthermore, we
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Fig. 7. Outline of the real case evaluation.

have applied our MDO and OBG-gen in the OPTIMADE (Open Database Integrations for Materials Design) [3]
consortium which is a domain effort to make materials databases inter operable. As the work in the consortium is
under development, our application is at the level of a proof of concept. Details are presented in [44, p. 141–148].

Data We collect data from the Materials Project and OQMD representing five different types of real-world entities
(Calculation, Structure, Composition, Band Gap and Formation Energy). We define semantic mappings (for all the
systems, see the next paragraph) based on MDO to interpret such data. We collect data in the sizes of 1K, 2K, 4K,
8K, 16K and 32K from each database for populating the five entities. The size 1K means 1000 entities of each entity
type. We represent this data in different formats such as tabular data for relational databases and for CSV files, and
JSON-formatted data for JSON files. Additionally, for HyperGraphQL and UltraGraphQL in our evaluation, we
create an RDF file based on RML mappings and MDO for each dataset setting. We have six dataset settings for the
experiments, which are 1K–1K, 2K–2K, 4K–4K, 8K–8K, 16K–16K and 32K–32K. Taking 2K–2K as an example,
for each entity type, the test data contains data in the size of 2K from Materials Project and 2K from OQMD,
respectively.

Systems We compare our tool, OBG-gen in two versions (OBG-gen-rdb and OBG-gen-mix) with four systems:
Morph-RDB [49], Ontop [50], HyperGraphQL [55], and UltraGraphQL [56]. OBG-gen-rdb represents the case
where the generated GraphQL server handles data in relational databases, and OBG-gen-mix represents the case
where the generated GraphQL server handles data not only in relational databases but also data in JSON and CSV
formats. They take different RML mappings as inputs. Morph-RDB and Ontop are representatives from the group
of OBDA-based tools. They can access relational databases as data sources by translating SPARQL queries into
SQL queries based on semantic mappings, written in R2RML. As for the group of GraphQL-related tools, we in-
tended to include Morph-GraphQL and Ontology2GraphQL in our evaluation. However, Morph-GraphQL fails to
parse mappings; Ontology2GraphQL cannot be run due to a lack of detailed instructions regarding its setup. In
the case of GraphQL-LD, since it focuses on querying Linked Data via GraphQL queries and a JSON-LD context
using a SPARQL engine instead of a GraphQL interface, we did not consider it in our evaluation. Therefore, Hy-
perGraphQL and its extension UltraGraphQL are the GraphQL engines that are included in our evaluation. They
can query Linked Data that may be provided by local RDF files and remote SPARQL endpoints. The semantic
mappings for all the systems in the evaluation are based on MDO. OBG-gen generates the GraphQL schema based
on MDO. UltraGraphQL and HyperGraphQL use a modified version of the generated schema since they require
directive definitions to specify the correspondences between query entries and the data. Figure 7 shows how the sys-
tems are configured in the evaluation. HyperGraphQL and UltraGraphQL are provided with the same RDF data for
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Table 3

Features of queries without filter conditions

Query Choke points Domain Interest (DI) Result Size (RS)

Q1 2.1, 2.2 L

Q2 2.1, 2.2 � L

Q3 1.1, 2.1, 2.2 � L

Q4 1.1, 2.1, 2.2 � L

Q5 2.2 L

Table 4

Features of queries with filter conditions

Query Choke points Domain Interest (DI) Diffs Filter expression form Result Size (RS)

Q6 1.1, 2.1, 2.2, 4.1, 4.4 � A C

Q7 1.1, 2.1, 2.2, 4.1, 4.4 � A & B C

Q8 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 � � A & (B | C) C

Q9 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 � � A & B C

Q10 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 � � A & (B & C) NL

Q11 2.2, 4.1, 4.4, 4.5 � (A & B) & ((A & B) | C) NL

Q12 2.2, 4.1, 4.4 � A NL

each dataset setting. OBG-gen-rdb is provided with two MySQL database instances hosting data from the Materials
Project and OQMD respectively. Morph-RDB and Ontop are provided with one single MySQL database instance
hosting data from the two sources. Conceptually, OBG-gen-mix is also provided with two database instances. How-
ever, each instance contains different formats of data such as data in a MySQL database, or in CSV or JSON files.
More detailed, the instance for Materials Project has Composition data in JSON format and Band Gap data in CSV
format. The instance for OQMD has Structure and Band Gap data in JSON format and Formation Energy data in
CSV format. The data representing other entities for each instance is stored in MySQL database instances.

Queries We create queries that cover different features, aiming to evaluate our system based on qualitative aspects
regarding what functionalities the system can satisfy and quantitative aspects regarding how the system performs
over different data sizes. Additionally, we use competency questions stated in the requirements analysis of MDO to
create queries with domain interests. The features of queries without and with filter expressions are shown in Table 3
and Table 4, respectively. From the perspective of GraphQL, we consider which choke point a query covers. The
details of choke points are introduced in LinGBM.13 These choke points are regarding the key technical challenges.
We characterize all queries using the perspectives of choke points, domain interest (DI), and result size (RS). DI
indicates that the query is a domain-interest query. Such a query corresponds to a relevant competency question
stated in the requirements analysis of MDO. For RS, as the dataset grows, we consider whether the result size
increases linearly (L) or more than linearly (NL), or stays a constant value (C). For queries with filter expressions
we take into account the filter expression form and whether the filtering AST differs from the query AST (Diffs),
such as in the example in Fig. 3b where the filtering AST and the query AST are different.

Table 5 shows more details of meanings of different filter expressions for Q6–Q12. The filter expressions for Q6
and Q12 are simpler than those for Q7–Q11 where the filter expressions have sub-expressions connected by boolean
operators. Query features in terms of DI, and the filter expression form can help us understand systems qualitatively;
Diffs and RS help in understanding systems quantitatively in the scaling analysis over different data sizes. We show
Q1 in Listing 10 and Q7 in Listing 12. The results of these two queries are given in Listing 11 and Listing 13,
respectively. Q1 requests all the structures containing the reduced chemical formula of each structure composition.
Q7 requests all the calculations where the ID is in a given list of values, and the reduced chemical formula is in a
given list of values.

13https://github.com/LiUGraphQL/LinGBM/wiki/Choke-Points

https://github.com/LiUGraphQL/LinGBM/wiki/Choke-Points
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Table 5

Meanings of filter expressions in Q6 to Q12

Query Filter expression meaning

Q6: A Id is in a list

Q7: A & B Id is in a list and reduced chemical formula is in a list

Q8: A & (B | C) Id is in a list and (reduced chemical formula is in list a1 or list a2)

Q9: A & B Property name is “Band Gap” and value is greater than 5

Q10: A & (B & C) Reduced chemical formula is in a list and (property name is “Band Gap” and value is greater than 5)

Q11: (A & B) & ((A & B) | C) (Property name is “Band Gap” and value is greater than 4) and ((property name is “Band Gap” and value
is greater than 4) or reduced chemical formula is in a list)

Q12: A Reduced chemical formula contains silicon element

Experiments and measurements We evaluate the query execution time (QET) of the different systems over the six
dataset settings. Separately for each query, we run the query four times and always consider the first run to be a
warm-up, then take the averaged value of the remaining three runs. Figure 8 illustrates the measurements over the
six data sizes per query (Q1–Q12). Figure 9 and Figure 10 illustrate the measurements of all systems per data size
for queries without filtering conditions and with filtering conditions, respectively. The measures for all data sizes
and all queries are available online.14 For UltraGraphQL, we have measurements only for queries Q1–Q4 because
UltraGraphQL does not support queries with filtering conditions. For HyperGraphQL answering queries with filter
expressions, we have only the measurement for Q6 because the system can only deal with filtering by resource IRIs.

Results and discussion By analyzing the obtained measurements, we summarize three observations. The first ob-
servation is that both GraphQL servers generated by OBG-gen-rdb and OBG-gen-mix can answer all 12 of the
queries covering different features (such as choke points). Therefore, the framework presented in Section 3 is fea-
sible for data access and integration; this answers RQ1. Particularly, the GraphQL schema generated based on the
ontology can provide an (integrated) view of underlying (heterogeneous) data; the generic resolver function based
on the semantic mappings is capable of accessing heterogeneous data sources, combining the retrieved data (which
may be in different formats), and structuring the data according to the GraphQL schema.

The second observation is regarding queries without filtering conditions (Q1–Q5) (cf. Figs 8 and 9). All of the
systems have increases of QETs as the size of the dataset increases. However, Morph-RDB is less sensitive to the
data size increase compared with other systems. UltraGraphQL and HyperGraphQL outperform other systems for
some smaller datasets (e.g., UltraGraphQL’s QETs of Q1 and Q2, HyperGraphQL’s QETs for Q1 from 1K–1K to
4K–4K). We explain this by the fact that these two systems have additional context information declaring URIs of
classes to which instances in the RDF data belong, which is unlike the other systems which have to make use of
semantic mappings to output queries to be evaluated against the underlying data sources. OBG-gen-rdb outperforms
Morph-RDB for some queries in smaller datasets (e.g., Q1 in 1K–1K, Q5 in 1K–1K and 2K–2K). For some queries,
OBG-gen-rdb and Morph-RDB have close QETs (e.g., Q2 in 1K–1K). Ontop outperforms the other two in smaller
datasets (e.g., Q1 in 1K–1K to 8K–8K, Q5 in 1K–1K to 4K–4K), but is more sensitive to data size increase compared
with Morph-RDB.

The third observation is regarding how OBG-gen-rdb, Ontop and Morph-RDB perform for queries with filter
conditions (Q6–Q12) (cf. Figs 8 and 10). Ontop outperforms the other two engines in most cases but is more
sensitive to increases in dataset size (e.g., Q9 from 1K–1K to 8K–8K). According to [13], Ontop has a mapping
optimization step which is not included in the query execution period. This could be a reason why Ontop outperforms
the other engines. OBG-gen-rdb and Morph-RDB behave similarly for Q6 with stable QETs and Q12 with slight
increases, as the data size increases. As Table 4 shows, the result size of Q6 is a constant over all the datasets in
different sizes. Additionally, the filter expressions for Q6 and Q12 are simpler compared with those of Q7–Q11.
Therefore, the QETs for evaluating filtering expressions for Q6 and Q12 are less than those of Q7–Q11. For other
queries (Q7–Q11) Morph-RDB outperforms OBG-gen-rdb, however the differences between the two systems are

14https://github.com/LiUSemWeb/OBG-gen/tree/main/evaluation

https://github.com/LiUSemWeb/OBG-gen/tree/main/evaluation
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Fig. 8. Query Execution Time (QET) per query on materials dataset.

less than those for queries without filtering conditions (e.g., Q1–Q4). The filtering conditions in GraphQL queries
for OBG-gen-rdb and in SPARQL queries for Morph-RDB are written within WHERE clauses in SQL queries, thus
will be evaluated against the back-end databases. A similar observation is also found in [17] where the experiment
metrics shows that Morph-RDB outperforms other systems (e.g., Morph-GraphQL) as the size of dataset increase
due to the SPARQL to SQL optimizations [17].

Based on the second and the third observations, we can answer the research question RQ2. The GraphQL servers
generated by OBG-gen perform similarly compared with other systems for queries without filtering conditions, but
are more sensitive to the increase of datasets even they can outperform for some queries in smaller datasets. By
comparing OBG-gen-rdb, Ontop and Morph-RDB, we summarize the reasons as follows. As shown in Section 5,
the implementation of OBG-gen is based on representing a GraphQL query with Abstract Syntax Trees (Fig. 3). In
this way, two basic requests are sent to underlying data sources to get the data with respect to the semantic mappings.
While for Morph-RDB and Ontop, based on semantic mappings, a SPARQL query is translated into a single SQL
query. For queries with filtering conditions, all the three engines (OBG-gen-rdb, Morph-RDB and Ontop) can take
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Fig. 9. Query Execution Time (QET) per data size on materials dataset for queries without filtering conditions.

Fig. 10. Query Execution Time (QET) per data size on materials dataset for queries with filtering conditions.
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Listing 9. A query according to QT5, such a query goes from a given department to its university, then retrieves all graduate students who get
the bachelor’s degree from the university, then comes back to department. This cycle is repeated two times

the advantages of rewriting filter conditions into SQL queries so that the QETs do not show a significant increase as
the data size increases.

7.2. Evaluation based on LinGBM (Linköping GraphQL Benchmark)

To show the generalizability of our system, we conduct an evaluation based on LinGBM. LinGBM provides
tools for generating datasets (data generator)15 and queries (query generator),16 and for testing execution time and
response time (test driver).17

Data The dataset generated by the data generator is a scalable, synthetic dataset regarding the University domain,
including several entity types (e.g., University and Department). We generate data in scale factors (sf ) 4, 20 and 100
where a scale factor represents the number of universities [20]. We then create three MySQL database instances to
store the data in these three scale factors, respectively. We use a modified version of the GraphQL schema provided
by LinGBM for our GraphQL server, and define RML mappings according to the work in Morph-GraphQL.18 The
modification part is regarding input object type definitions so that they can be used to represent filtering conditions.

Queries The experiments are performed over eight query sets, where each set contains 100 queries that are gen-
erated using the LinGBM query generator based on a query template (QT). A query template has placeholders for
input arguments. The query generator can generate a set of actual queries (query instances) based on a query tem-
plate in which the placeholder in the query template is replaced by an actual value. We select eight query templates
(QT1–QT6, QT10 and QT11) for constructing eight query sets (QS1–QS8). We show an example query according
to QT5 in Listing 9. The other six query templates from LinGBM require GraphQL servers to have implementations
for functionalities such as ordering and paging which are not considered currently by OBG-gen. However, these
functionalities are interesting for future extension of OBG-gen.

Experiments, results and discussion Same as the real case evaluation, we evaluate the query execution time (QET)
of our system on the three datasets. Each query from a query set is evaluated once. We show the average query
execution times for the different query sets in Table 6. Based on the obtained measurements, we observe that our
system has slight increases for QS1, QS2, QS4, QS6 and QS7 in terms of the average QETs. For QS3, the average

15https://github.com/LiUGraphQL/LinGBM/tree/master/tools/datasetgen
16https://github.com/LiUGraphQL/LinGBM/tree/master/tools/querygen
17https://github.com/LiUGraphQL/LinGBM/tree/master/tools/testdriver_QET_QRT
18https://github.com/oeg-upm/morph-graphql/tree/master/examples/LinGBM-v2

https://github.com/LiUGraphQL/LinGBM/tree/master/tools/datasetgen
https://github.com/LiUGraphQL/LinGBM/tree/master/tools/querygen
https://github.com/LiUGraphQL/LinGBM/tree/master/tools/testdriver_QET_QRT
https://github.com/oeg-upm/morph-graphql/tree/master/examples/LinGBM-v2
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Table 6

Average QET (in seconds) in the evaluation based on LinGBM

Scale factor QS1 (QT1) QS2 (QT2) QS3 (QT3) QS4 (QT4) QS5 (QT5) QS6 (QT6) QS7 (QT10) QS8 (QT11)

4 0.11 0.13 0.12 0.15 0.19 0.13 0.10 0.26

20 0.12 0.15 0.12 0.18 0.51 0.15 0.18 0.90

100 0.15 0.27 0.12 0.26 13.85 0.23 0.72 4.41

QET is stable for all the three datasets. For QT5, the increase from 0.51 seconds at data scale factor 20 to 13.85
seconds at data scale factor 100 is due to the dramatic increase in result size. More specifically, the queries in QS5
and QS8 need to access the ‘graduateStudent’ table which increases dramatically in size from 50,482 rows in the
table (sf = 20) to 252,562 (sf = 100). This is the reason for the average QET of QS8 increasing in sf = 100.
Additionally, each query in QS5 repeats a cycle two times (‘university’ to ‘graduateStudent’ to ‘university’) and
requests the students’ emails and addresses along the way. This causes the larger increase in average QET of QS5.
The above synthetic experiments indicate that our system can work in another domain than the materials science
domain.

7.3. Evaluation based on GTFS-Madrid-Bench

We furthermore demonstrate the generalizability of our system by evaluating it against GTFS-Madrid-Bench,
which is a benchmark for evaluating OBDI systems.

Data, queries and systems The dataset provided by GTFS-Madrid-Bench is a scalable dataset regarding the Trans-
port domain (the metro system of Madrid), including several entity types (e.g., Route, Stop, Shape and Trip). We
use the data generator provided by GTFS-Madrid-Bench to generate data in scale factors (sf ) 1, 5, 10 and 50. For
instance, the dataset in sf 1 contains 13 instances for the Route type, 1,262 instances for the Stop type, 58,540 in-
stances for the Shape type and 130 instances for the Trip type. An increase in sf from 1 to 5 results in an increase in
the dataset size of 5 times (e.g., 65 instances for the Route type and 6,310 instances for the Stop type). Each instance
is represented by a row in the corresponding relational table. These scale factors are also used for the experiments
in [18]. We then create four MySQL database instances to store the data in these four scale factors, respectively. A
total of 18 queries are included in the GTFS-Madrid-Bench benchmark that cover the different features of SPARQL
1.1. For conducting the experiment based on GTFS-Madrid-Bench, we select seven queries (Q1–Q5, Q9, Q13) to
create corresponding GraphQL queries. Among these four queries, Q1 retrieves all the shape entities where each
shape entity is a polygon associated with a trip; Q2 retrieves all the stop entities where the latitude is greater than a
specific value; Q3 retrieves accessibility information of all stop entities; Q4 retrieves all the route entities and their
associated agency entities; Q5 retrieves services that have been added after a specific date; Q9 retrieves trips and
associated shapes with latitude higher than a specific value; Q13 retrieves all the accesses of the stations [18]. The
other queries contain SPARQL 1.1 features such as order by, group by and distinct. Currently, OBG-gen does not
implement functionalities to cover these features. However, these functionalities are interesting for future extension
of OBG-gen. In addition to OBG-gen-rdb, we conduct experiments based on Ontop to learn how two engines behave
in this GTFS-Madrid-Bench benchmark scenario.

Experiments, results and discussion Same as the previous two evaluation scenarios, we evaluate the query ex-
ecution time (QET) of systems on different datasets. We show the measurements in Table 7. According to the
measurements, both OBG-gen-rdb and Ontop show increases in QETs for all four queries as the dataset increases.
However, as with the observation in the real case evaluation, Ontop behaves less sensitively to the increase in dataset.
In terms of how the two systems behave for different queries, both engines spend more time to answer Q1 (without
any filter conditions) and Q9 (with several relationship retrievals). For answering Q1, OBG-gen-rdb spends more
than 3,600 seconds for scale factors 10 and 50. Although Ontop is able to answer Q1 in less time than OBG-gen, it
cannot finish the execution because it runs out of the reserved 4 GB memory for scale factor 50. More specifically,
Q1 needs to access the ‘Shape’ table which increases dramatically in size from 58,540 rows in the table (sf = 1) to
292,700 (sf = 5) and furthermore to 585,400 (sf = 10) and 2,927,000 (sf = 50). For answering Q9, OBG-gen can
only return query result for scale factor 1, while Ontop for just scale factors 1 and 5. Both engines have relatively
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Table 7

QET (in seconds) in the evaluation based on GTFS-Madrid-Bench

Scale factor System Q1 Q2 Q3 Q4 Q5 Q9 Q13

1 OBG-gen-rdb 82.220 0.373 0.337 0.085 0.093 209.441 0.425

Ontop 7.311 0.132 0.100 0.014 0.035 44.003 0.058

5 OBG-gen-rdb 2610 1.743 1.413 0.115 0.153 out of memory 1.633

Ontop 37.596 0.480 0.384 0.030 0.094 252.040 0.128

10 OBG-gen-rdb time out 4.700 3.030 0.143 0.134 time out 4.048

Ontop 75.072 0.939 0.703 0.048 0.129 out of memory 0.235

50 OBG-gen-rdb time out 84.159 50.125 0.255 0.378 time out 48.683

Ontop out of memory 8.052 4.044 0.155 0.340 time out 0.839

stable QETs for Q4 that retrieves all the route entities without any filter conditions, and for Q5 that retrieves services
with a filter condition. The corresponding ‘Route’ table is relatively small (e.g., 13 for sf 1 and 1,300 for sf 100).
Q2 and Q3 retrieve all the station entities but with different filter conditions. The two engines spend more time to
evaluate Q2 since the result size of Q2 is larger than that of Q3. OBG-gen has an obvious increase for answering
Q13 from scale factor 10 to 50. This is because that the corresponding retrieved table, ‘Stop’ increases in size from
scale factors 10 to 50 (12,620 rows to 63,100 rows).

7.4. Summary

For evaluating our approach, ontology-based GraphQL server generation, we conducted an experiment motivated
by the materials design domain and experiments based on two synthetic benchmark scenarios (LinGBM and GTFS-
Madrid-Bench). Based on the measurements of these experiments, we can answer the three research questions
presented at the beginning of Section 7. Our approach can generate GraphQL servers for data access and data
integration and can be used in various domains (RQ1 and RQ3). The other GraphQL interfaces, HyperGraphQL
and UltraGraphQL, can be used for data integration to a limited extent due to the fact that they do not support various
filter conditions. This means questions with filter conditions cannot be answered. By comparing our approach with
other well-known systems (RQ2), we learn that our system can perform relatively similar to others (e.g., Morph-
RDB) in terms of QETs for queries with filter conditions (as shown in Fig. 10), and for some queries without filter
conditions in smaller datasets (as shown in Fig. 9). Morph-RDB and Ontop are both less sensitive to the data size
increase. The reason for this can be explained by the fact that they have optimization techniques that enable queries to
be executed in a shorter amount of time. For instance, Ontop has a mapping optimization step which is not included
in the query execution period [13,62]; Morph-RDB has a query rewriting optimization step where projections and
selections are pushed down for removing non-correlated subqueries [52,62]. However, our approach supports data
integration where the underlying data is from different kinds of sources (i.e., OBG-gen-mix), in contrast to Morph-
RDB that only support data integration where the underlying data is from relational databases. This is due to the
implementation of the generic resolver function presented in Section 5, that combines data from multiple sources
according to a GraphQL schema, as an integrated view of underlying data. Moreover, OBG-gen-mix can integrate
data where underlying data is provided in different ways. In contrast, the other systems require the underlying data to
be materialized as RDF triple stores (e.g., UltraGraphQL and HyperGraphQL) or to be stored in one single database
(e.g., Morph-RDB and Ontop).

8. Discussion and future work

We emphasize that our work aims to enable GraphQL for not only data access (as other GraphQL-based ap-
proaches) but also data integration, by automatically generating the server based on an ontology and semantic
mappings. Our work presents the first solution to this problem. Essentially, our approach concentrates on providing
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data access and integration using an ontology in a GraphQL setting with an approach that provides support for prac-
tical applications. In this respect, our work fills a gap in GraphQL applications (e.g., [17,30,32,55,60]). Compared
with existing GraphQL-based approaches (e.g., UltraGraphQL [32] and HyperGraphQL [55]) for data access, our
approach provides more GraphQL query features by supporting arbitrary filtering conditions. Our work can also
provide an alternative to build data access and data integration applications, in addition to existing OBDA or OBDI
approaches [13,19,28,47,49] (e.g, users can write GraphQL queries).

It should be noted that our current effort of OBG-gen focuses only on the GraphQL language [29] features
that support semantics-aware and integrated data access, namely how underlying data can be queried, rather than
reflecting the semantics of a complex knowledge representation language in the context of GraphQL schemas.
Therefore, not all description logic constructors are used, but rather only those that are necessary for data access
via GraphQL. It would be worthwhile to investigate how to represent more complex description logic constructors
within the GraphQL context. In the future we will follow the development of the GraphQL language and investigate
if any new features for data access can be generated formally based on the description logic currently used by OBG-
gen or whether a more expressive language is needed. One specific example is the formal generation of union types
in GraphQL schemas, based on ontologies. This will necessitate updates to the schema generator algorithm and the
generic resolver function. Another extension related to the schema generator algorithm is to extend the � function
which is responsible for translating a datatype in the DL TBox to a corresponding datatype in GraphQL. Our
current work focuses on generating basic datatypes supported by GraphQL (e.g., String, Float, Integer). However,
in GraphQL schemas, custom type definitions can be used to represent datatypes rather than above basic ones. We
will extend the � function to support translating more datatypes in the DL TBox into custom type definitions in
GraphQL schemas.

In contrast to the query languages SQL and SPARQL, which have been specifically designed for relational
databases and triple stores, respectively, and encompass a wide range of query features, the capabilities of the
GraphQL query language are contingent on the definitions of GraphQL schemas and the implementation of resolver
functions. In our work, we implement resolver functions in a generic manner. As a result, along with GraphQL
schemas containing input type definitions, OBG-gen enables the support of arbitrary filtering conditions in GraphQL
queries. Additional query features, including aggregates (group by, having), solution sequences and modifiers (order
by, distinct, offset, limit), are not yet covered but are part of our planned future work. Another extension related to
the generic resolver function is to support user-defined functions (e.g., a date normalization function) on underly-
ing data, which is not implemented in our approach currently. To support this, the Function Ontology (FnO) [23]
can be used during creating RML mappings. We will work on extending the generic resolver function to enable
user-defined functions.

In this work, we conducted a query performance comparison, specifically evaluating query execution times, be-
tween our tool and various OBDA-based and GraphQL-based approaches. While our approach shows more ample
query capabilities than other GraphQL-based methods, and demonstrates similar performance to other OBDA-based
approaches (as demonstrated in Section 7), there is still room for optimizing query performance. We emphasize that
we did such comparisons aiming at providing initial insights into the query performance. A direction for future
work includes optimizing our generic resolver function to enhance query performance. This may involve adapting
the mapping partition group rules recently proposed in [6].

From a practical standpoint, we plan to implement a search system for OPTIMADE in the materials design
domain based on our approach. As we mentioned before, OPTIMADE aims to make materials databases inter
operable. Our approach can provide an integrated view of data to increase the interoperability. This will result
to achieve data integration over more data sources, by considering more material databases. Our previous work
in [45] has shown the capability of MDO to represent an integrated view of data over several representative material
databases.

9. Concluding remarks

To leverage ontologies for generating GraphQL APIs to support semantics-aware data access and data integration,
in this article, we have presented a GraphQL-based framework (Section 3) for data access and integration in which
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an ontology drives the generation of the GraphQL server. Our approach consists of a formal method to generate a
GraphQL schema based on an ontology (Section 4), and a generic implementation of resolver functions (Section 5).
In detail, ontologies play two roles in our approach: one is as an integrated view of underlying data sources for
generating a GraphQL schema; the other is as a basis for defining semantic mappings on which the generic GraphQL
resolver function is based. Generating a GraphQL schema based on an ontology rather than just semantic mappings
(e.g., Morph-GraphQL) can ensure to have an integrated view of data in data integration scenarios. Such a schema
does not need to be regenerated when new data sources are added, unless the ontology needs to be modified. We
show the feasibility and usefulness of our approach in terms of using GraphQL for data integration and avoiding
implementing a GraphQL server from scratch, based on a real-world data integration scenario motivated by the
materials design domain (Section 7.1) and two synthetic benchmark scenarios, LinGBM and GTFS-Madrid-Bench
(Sections 7.2 and 7.3). Additionally, we discuss the strengths and limitations of our approach, moreover show some
directions for future work (Section 8).
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Appendix. Example GraphQL queries for the real case evaluation

Listing 10. List all the structures with reduced chemical formulas (Q1 in Table 3)

Listing 11. The JSON response (an excerpt) of the query in Listing 10
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Listing 12. List all the calculations based on a given filter condition (Q7 in Table 4)
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Listing 13. The JSON response (an excerpt) of the query in Listing 12
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