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Abstract. Robust estimation of concept similarity is crucial for applications of AI in the commercial, biomedical, and publishing
domains, among others. While the related task of word similarity has been extensively studied, resulting in a wide range of
methods, estimating concept similarity between nodes in Wikidata has not been considered so far. In light of the adoption of
Wikidata for increasingly complex tasks that rely on similarity, and its unique size, breadth, and crowdsourcing nature, we pro-
pose that conceptual similarity should be revisited for the case of Wikidata. In this paper, we study a wide range of representative
similarity methods for Wikidata, organized into three categories, and leverage background information for knowledge injection
via retrofitting. We measure the impact of retrofitting with different weighted subsets from Wikidata and ProBase. Experiments
on three benchmarks show that the best performance is achieved by pairing language models with rich information, whereas
the impact of injecting knowledge is most positive on methods that originally do not consider comprehensive information. The
performance of retrofitting is conditioned on the selection of high-quality similarity knowledge. A key limitation of this study,
similar to prior work lies in the limited size and scope of the similarity benchmarks. While Wikidata provides an unprecedented
possibility for a representative evaluation of concept similarity, effectively doing so remains a key challenge.
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1. Introduction

Large Knowledge Graphs (KGs) support a growing set of real-world knowledge-intensive tasks that rely on
the notion of similarity [22,43,99]. Similarity-based search facilitates use cases in a commercial setting, where,
e.g., one might search for a dress in a certain price range that is similar to what celebrities wear [99]. The article
screening process for systematic reviews of publications can be facilitated by retrieving similar concepts and concept
relations [43]. In a biomedical setting, one might integrate knowledge extracted from documents and publications
into existing domain ontologies [22]. Workable solutions for such knowledge-intensive tasks like advanced search,
information retrieval, and integration rely heavily on robust notions of similarity between concepts, as well as a rich
and reliable knowledge about those concepts.

As the largest public KG with billions of statements and a large number of concepts, Wikidata [94] provides
knowledge at an unprecedented scale that can intuitively support similarity-driven applications. Recognizing that,
for instance, the concept of natural science (Q7991) is more similar to logic (Q8078) than to bus
(Q5638) or plant (Q756) can be potentially deduced from the concept- or the instance-level knowledge
stored in Wikidata. However, as its knowledge has largely been contributed following the Wisdom-of-the-Crowd
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approach [86], Wikidata exhibits notable challenges of deduplication, blurred distinction between classes and in-
stances, and inconsistencies in terms of the modeling of its knowledge [39,74,82]. Because of such challenges,
estimating concept similarity in Wikidata is nontrivial. Rather than estimating similarity, prior work on reasoning
with Wikidata has focused mostly on methods that solve downstream tasks directly. For instance, a wide range of
knowledge graph embedding models has been created to solve the task of link prediction and node classification.
Notable early examples are TransE [8] and ComplEx [88], which organize nodes in a geometric space according
to their structural links to other nodes. Random walk methods, such as node2vec variants [33,105], leverage the
generalizability of language modeling by applying it to graph nodes instead of words. More recently, inspired by the
success of contextualized language models such as BERT [20], methods that combine structure and semantics have
been devised for these tasks [81,101,102]. Recent work, however, has signaled a lack of generalizability and robust-
ness of these methods [89,104], which further motivates the need to understand the underlying similarity reflected
by knowledge graph embedding models.

While estimating similarity between concepts in large KGs is relatively understudied, the related task of word
similarity has been very popular in computational linguistics [35,65,78,90]. Early work generally relies on ontology-
based similarity metrics [44] that leverage properties of a word in an ontology like WordNet [57]. Ontology-based
vector representation models [2,31] leverage the ontological structure in resources like WordNet, e.g., based on
random walks, to create word vector representations. More recently, pre-trained word embeddings have been shown
to natively capture word similarity at scale [20,51,56]. Early word embeddings have been shown to benefit from
knowledge injection [21], again based on lexical resources like WordNet. A variant of the word similarity task,
called WordType [107], deliberately translates the word similarity task to a concept similarity task by mapping
words to nodes in a KG, which provides an opening for these methods to be applied to Wikidata. However, the
applicability of existing word similarity tasks and metrics [2,44,48] to KGs such as Wikidata is limited, as these
methods have been built for resources like WordNet [57] that are heavily curated and have a clearly distinguishable
ontology. These metrics, for instance, do not have inherent mechanisms to benefit from the instance-rich content
of Wikidata, nor can they estimate the similarity of multi-word and abstract expressions (e.g., natural science as a
branch of science about the natural world). As such, it is important to investigate metrics that are tailored to the size,
inconsistency, and open-ended nature of realistic large KGs, such as Wikidata.

In this paper, we study the ability of ontological and distributional methods to capture the similarity of concepts
in Wikidata. For Wikidata, we assume that concepts correspond to classes that have one or more instances or sub-
class relations. Aiming to reconcile the rich prior work on word similarity and on KG similarity-related tasks, we
design a framework that includes representative similarity metrics based on ontological structure, language model-
ing, knowledge graph embeddings, and their combinations. We experiment with a novel aggregation method, called
TopSim, that aggregates over different regions in the KG. Example estimations of the similarity between natural
science (Q7991) and seven other concepts with a representative metric from each of these families are shown
in Fig. 1. Besides these metrics, we investigate the impact of knowledge injection, where the idea behind is to adapt
the precomputed embeddings to a downstream task by leveraging structured knowledge. We perform knowledge
injection with subsets of two large KGs: Wikidata and ProBase [11], and experiment with different relation weight-
ing functions (e.g., based on BERT or ontological metrics). As no similarity benchmarks for Wikidata exist, we
adopt three popular word similarity benchmarks by mapping them to Wikidata following the WordType setup [107].
This study reveals that many of the existing similarity metrics can be partially adapted for estimating similarity on
large-scale knowledge graphs like Wikidata. We observe that retrofitting to Wikidata is typically beneficial, but not
to ProBase. This paper concludes with open questions regarding novel metrics that focus on the wealth of instance
knowledge in Wikidata, a meaningful evaluation of similarity between two Wikidata concepts, and the need for
novel benchmarks that support the evaluation of concept similarity in KGs.

In summary, we make the following contributions:

1. We motivate the task of estimating the similarity between pairs of concepts in Wikidata. While prior work
has considered word similarity and well-curated resources like WordNet, this is the first paper that addresses
conceptual similarity in large and relatively noisy sources such as Wikidata (Section 2).

2. We present a computational framework that includes three families of models, publicly available knowledge
for self-supervision, and a retrofitting method that leverages this knowledge to customize the models (Sec-
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Fig. 1. Example of similarity judgments between natural science and seven other concepts in Wikidata.

tion 3). To our knowledge, we are the first to propose the TopSim metric that aggregates over KG regions, and
we are the first to retrofit similarity estimations based on knowledge in Wikidata and ProBase.

3. We adapt three benchmarks to Wikidata (Section 4) and perform extensive experiments that investigate the
comparative success of different models and their combinations, the impact of retrofitting, and the impact of
various background knowledge sets (Section 5).

The entire code and pointers to the data supporting our experiments can be found on GitHub: https://github.com/
usc-isi-i2/wd-similarity.

2. Capturing similarity of concepts

In this section, we provide background information from cognitive studies on similarity and put the problem of
automatically estimating conceptual similarity in the context of prior work in the fields of Computational Linguistics
and Semantic Web.

2.1. Background

Conceptual similarity is a central theoretical construct in psychology, facilitating the transfer of a situation to
an original training context [54,62]. Tversky [91] poses that the literal similarity between two objects A and B is
proportional to the intersection of their features and inversely proportional to the features that differ (A − B and
B − A). In other words, A and B are literally similar if their set of shared features is relatively larger than the non-
shared ones. Here, features include both attributes and relational predicates. This differs from analogy, where only
relational predicates are shared (e.g., atom – solar system), and from mere appearance, where only the attributes
are shared and not the relationships (e.g., moon – coin) [27]. When A and B do not have any attribute nor relational
overlap (e.g., coffee and solar system), this is called anomaly [27].

Gentner and Markman [29] argue that similarity is like an analogy, in the sense that both rely on the alignment
between the two compared objects or domains. When provided a pair of similar concepts, for example, hotel-

https://github.com/usc-isi-i2/wd-similarity
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motel, people align them based on their shared properties (e.g, used for accommodation), and are able to easily
point out differences (e.g., hotels are in cities, motels are along highways). The authors discuss that it makes no
sense to talk about differences in the absence of a meaningful alignment (e.g., kitten – magazine). Which features
are or should be considered when computing similarity? According to [60], the relative importance of a feature
depends on the stimulus task and the context. This flexibility of the estimation of similarity led to criticism, which
argues that the set of features that are being compared is seemingly arbitrary [32]. Yet, the relatively high inter-
annotator agreement across human subjects when judging similarity indicates systematicity in the human judgments
of similarity [54]. In addition, some of the variations across human subjects can be explained with phenomena like
selective learning [83], developmental changes [28], and knowledge and expertise [13]. Similarity judgments are
also known to be impacted by the context of the task [79], i.e., the features activated depend on the object we
compare against; as well as the direction of the comparison: people tend to rate the similarity of North Korea to
China higher than the reverse [54].

One can distinguish three measures of similarity: indirect, direct, and theoretical [54]. An example for indi-
rect similarity comparison is asking human participants to identify potentially confusable stimuli, such as judging
whether an object has been observed before. Similarity can be measured directly, by rating the similarity of stimuli
on a numeric scale. The theoretical similarity is observed as a component in human cognition, for instance, when
participants categorize an item by comparing its fit in various categories.

In this paper, we consider the task of literal similarity between two concepts. Given two concept nodes, c1 and c2

described in a KG G, a system is asked to provide a numeric pairwise similarity score sim(c1, c2) that would mimic
the average judgment provided by human subjects.

2.2. Related work

Word similarity metrics Computational Linguistics research has studied the extent to which two words are similar
or related. Here, similarity follows the notion of literal similarity in psycholinguistics, while relatedness is a broader
notion that indicates that two words tend to appear in the same topical context [9,65]. Literally similar words
are found nearby in an is-a hierarchy, whereas related words connect through another relation, e.g., causality or
part-whole [65]. In practice, the similarity between two words is evaluated by comparing the human scores to the
algorithmic scores. Attaching meaning to the absolute scores is difficult, thus it is common to consider the scores
across pairs relative to each other, and compare the pair similarity ordering between the algorithm and humans.

Lastra-Díaz et al. [48] survey a wide range of methods for word similarity, and they categorize the methods into
two large families: ontology-based semantic similarity and distributional features captured with word embeddings.
The ontology-based metrics are further divided into topological measures, gloss-based measures, and ontology-
based vector models. Word embedding metrics are divided into two groups: text-based word embeddings and word
embedding computation of ontologies and distributional models. Multiple ways to use ontologies and distributional
models together exist, including joint approach [69,98], injection [21,59], and embedding combination [30]. Our
framework for conceptual similarity in Wikidata is partially aligned with the categorization of [48] for word similar-
ity. Namely, we include topological measures, as well as ontology-based vector models in the form of graph embed-
dings. Within word embeddings, we specifically focus on language model embeddings, which have become superior
in the meantime. Rather than only combining knowledge and word embeddings, we promote the knowledge injec-
tion component to an independent component in our framework that enriches both embeddings of language models
and knowledge graph nodes, in an attempt to emphasize the extensive knowledge available in external sources like
Wikidata. We also include embedding combinations as a separate framework component, where we contribute a
novel combination approach, called TopSim. Following common practice in the word similarity tasks, we assume
that the similarity of two concepts can be measured on a continuous numeric scale. We compare the relative order
of the machine similarity for a dataset against human judgments.

Concept similarity metrics Algorithmic measures that capture the similarity between two concepts can be clas-
sified broadly into corpus-based and knowledge-based metrics [35]. Corpus-based semantic metrics are based on
text analysis and typically rely on the distributional hypothesis that concept meanings can be inferred based on
their co-occurrence in language [6]. Language structure comes from two aspects: paradigmatic and syntagmatic.
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According to the paradigmatic view, linguistic symbols are regarded as paradigms that are members of a specific
group (e.g., nouns), whereas syntagmatic relationships are formed between surface symbols (e.g., words) to form
a syntagm and define the meaning of a sentence. While set-based [7] and probabilistic [14] methods exist, most
distributional metrics are geometric, including Latent Semantic Analysis [47], Explicit Semantic Analysis [25], and
Hyperspace Analogue to Language [52]. State-of-the-art distributional measures of similarity are based on large-
scale language models, such as Word2Vec [56], GloVe [67], BERT [20], and RoBERTa [51]. Knowledge-based
metrics rely on the analysis of ontological structures, which formally indicate how concepts (i.e., words grounded
in the ontology) relate to each other. Metrics based on graph structure estimate the similarity as a function of the
degree of interconnection between concepts, captured through shortest paths [75], ontology depth [49,77], concept
specificity [66,100], and concept density [3]. The main idea of the feature-based metrics is to represent concepts
as sets of features and compute similarity by comparing these sets [17,53]. Information theoretical methods are
typically based on the Information Content (IC) of the concepts or their common ancestors [44,73,77], where IC is
typically a proportion of all instances that belong to a concept. Hybrid measures combine aspects from multiple met-
ric categories, e.g., depth and density with information content [44]. In recent years, various graph embeddings have
been proposed [8,88], which can be used to estimate concept similarity based on cosine distance in vector space.
We design our framework to consolidate these corpus- and knowledge-based metrics. We include corpus metrics
based on LM embeddings, and two families of knowledge-based metrics: ontology-based topological metrics and
KG embedding metrics.

Concept similarity in Linked Data sources Similarity allows for direct comparison between two KG node repre-
sentations, thus facilitating the matching of ontological schema across multiple knowledge sources [70]. In [12],
the authors propose a LOD-based similarity measure based on the combination of ontological, classification, and
property dimensions of knowledge. This metric has been used on a set of RDF graphs, centered around DBpedia,
and evaluated on three-word similarity benchmarks mapped to DBpedia. Zhu and Iglesias [107] formalize the tasks
of Word-Noun, Word-Graph, and Word-Type, all of which adapt traditional word similarity metrics to concepts
in Linked Open Data sources such as DBpedia. They propose a novel metric that combines the semantic network
structure between concepts with the information content of the concepts. In follow-up work, Alkhamees et al. [4]
devise a metric that exploits the information content of the least common consumer of two concepts. Our work is
complementary to prior efforts that propose novel similarity metrics for the similarity of the concepts in DBpedia,
as we motivate the task of estimating the similarity of pairs of concepts in Wikidata, a KG with different properties
compared to WordNet and DBpedia. We address this task with a computational framework that includes metrics
based on information content and graph structures, but also metrics based on language models that focus on the
literal content present in Wikidata.

Entity similarity in Linked Data sources REW OrD [72] is a method to estimate relatedness between two entities,
based on predicate frequency – inverse triple frequency (PF/ITF). It has been applied on DBpedia and Linked-
MDB. The information content metric, called Partitioned Information Content Semantic Similarity (PICSS) [55],
aims to give more importance to significant relations. Caballero and Hogan [10] propose four metrics for global node
similarity in Wikidata. They also release two Wikidata benchmarks for entity similarity: movies and music albums.
Most specific similarity query (MSSQ) [71] is a similarity algorithm that can estimate similarity of two entities
in a single RDF graph. The evaluation in this work shows that an approximation of MSSQ scales well, without
an indication of the extent to which the computed similarities correspond to human judgments. In [63] the author
proposed a Linked Data Semantic Distance (LDSD) which relies on direct and indirect relationships between two
DBpedia resources. The distance measure was employed in a music recommendation system [64]. More recently,
Wang et al. [97] propose a matrix factorization method that enhances recommendation with an LOD-based semantic
similarity measure. Long-tail entities are explicitly considered by the collaborative filtering method in [61]. In [37],
the similarity is used to judge whether two representations refer to the same long-tail entity. In order to account
for the large sparsity of long-tail entity knowledge, the representations include probabilistic information, based on
models over instance-level knowledge in Wikidata. Rather than focusing on the similarity between KG entities, we
study the effect of adapting various methods that capture conceptual similarity to large KGs like Wikidata.
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Fig. 2. Overview of our similarity estimation framework.

3. Framework for estimating similarity

Our framework for estimating similarity is visually depicted in Fig. 2. We use graph embedding and text embed-
ding models, as well as ontology-based metrics, as initial similarity estimators. We also concatenate the embeddings
in order to combine their scores. We use retrofitting as a knowledge injection mechanism to further tune the indi-
vidual or the combined embedding models, through distant supervision over millions of weighted pairs extracted
automatically from large-scale knowledge graphs. For a given concept pair from Wikidata, the similarity scores
generated by the retrofitted embedding models can be combined with the scores by the ontology-based models. We
next describe the individual components of our similarity framework.

3.1. Similarity models

We distinguish between similarity models based on KG embeddings, language models, and ontology-based topo-
logical metrics. We employ representative methods from each category, as well as aggregate methods that combine
them in intuitive ways. The goal of our framework is to evaluate a representative sample of metrics and their com-
binations for the novel task of estimating similarity between Wikidata nodes. To the extent possible, we follow the
terminology of [48] and we adapt methods and ideas from prior work on word similarity and concept similarity with
WordNet and DBpedia. We leave it to future work to perform an exhaustive evaluation of the wide range of metrics
for word and concept similarity developed in the past, e.g., for WordNet [35,48], within our framework.

Knowledge Graph Embedding (KGE) metrics KGE models have been popular for graph-based tasks like link
prediction and node classification [96], which rely on the similarity between nodes or graph structures. The KGE
models are analogous to the Ontology-based Vector Models in [48]. We experiment with four KG embedding mod-
els, which can be divided into translation, tensor factorization, and random walk models.

We adopt popular models based on translation, TransE [8], and tensor factorization, ComplEx [88]. We select
TransE and ComplEx because they have been commonly applied for representation learning of KGs and for KG
prediction tasks that relate to similarity (e.g., link prediction) [16]. Moreover, these two models are relatively simple
and intuitive, which enables an understanding of their behavior.1 TransE represents graph nodes and relations in
the same space. Given a KG triple (h, r, t), the relation r acts as a translation vector that connects the nodes h

to the nodes t . The intuition behind TransE’s translation comes from distributed word representations that capture
linguistic regularities in the form of proportional analogies, e.g., (keyboard, button) is analogous to (office, chair),
as both pairs are connected with the relation part-of. The embeddings in TransE are then optimized to minimize the
distance between h+ t and t in an embedding space. Our tensor factorization model, ComplEx, introduces complex-
valued embeddings that allow it to better model asymmetric relations. The main novelty of ComplEx is that its node

1We note that these models may not achieve state-of-the-art across KG tasks and cannot encode semantic information about literals. Including
state-of-the-art methods, like RotatE [85] and JointE [106], and literal-aware methods, like LiteralE [46] and KGA [95], is a key future pursuit.
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and relation embeddings lie in a complex, rather than real, embedding space. Its loss function is designed to assign
different scores to asymmetric relations depending on the order of the nodes involved in the relation. For further
details on these models, we direct the reader to the survey by Wang et al. [96]. TransE, ComplEx, and related KGE
models can be readily applied to estimate the similarity between any two nodes (concepts or entities) in Wikidata.
Once the embeddings by a model are computed, we estimate the similarity between two nodes through the cosine
similarity between their KGEs. As Wikidata is not based on a well-founded formal ontology and also does not
explicitly separate TBox and Abox, we train translation and tensor factorization embeddings over the entire set of
node-node relationships in Wikidata as is commonly done. We do not perform any pre-processing or pre-selection,
i.e., we treat all relationships in Wikidata as one large KG.2

For random walk models, we adopt DeepWalk [68]. Analogous to our choice of translation models, we choose
DeepWalk given its simplicity and retained popularity for KG prediction tasks to this day. DeepWalk is a method
that uses skip-gram to train over randomly generated sequences of nodes (“random walks”) in a KG, and generates
the vector of nodes involved in that sequence. This model is analogous to skip-gram models in natural language,
like word2vec [56]. DeepWalk assumes that distributed representations of nodes can be learned through a stream
of relatively short walks, which capture neighborhood similarity and community membership, according to the ho-
mophily principle [105]. We also experiment with a variant of Deepwalk, which we call S-DeepWalk, originally
proposed in [105], which is designed to capture the structural similarity between nodes. For example, two profes-
sors may have a high structural similarity if they play analogous roles in their social networks, e.g., connecting to
many students or working for an educational institution. The input graph for generating walks in S-Deepwalk is,
thus, constructed by connecting the nodes that have neighbors from similar classes in the original KG. For Wiki-
data, we use class membership as indicated by its instance-of property (P31). Identical to the translation models,
we estimate similarity with the random walk models by computing cosine similarity of their resulting embed-
dings.

Language Model Embedding (LME) metrics We use Transformer LMs based on BERT [20] to represent textual
information associated with a node in the graph, which broadly correspond to the Word Embeddings category in
[48]. BERT [20] is a pre-trained Transformer network [92] that has been optimized for the tasks of language model-
ing and next sentence prediction. In BERT, a Multi-head attention over 12 (base-model) or 24 layers (large-model)
is applied and the output is passed to a simple regression function to derive the final prediction. In this work, we
use the sentence-transformer [76] method, which uses use siamese and triplet network structures to derive seman-
tically meaningful sentence embeddings. We compare the resulting embeddings using cosine similarity. To adapt
BERT-based models to the task of estimating similarity between concepts in Wikidata, it is required to transcribe
the information about a node in natural language. As describing a KG node with a representative text is an active re-
search area [1,34], we experiment with two input variants: using human-generated abstracts and machine-generated
lexicalizations based on Wikidata.

Our Abstract model is based on the abstracts found in the DBpedia KG. We map these abstracts to Wikidata via
the sitelinks dataset, which is available via our GitHub repository. For the nodes that could not be automatically
mapped to DBpedia abstracts, we use a fallback strategy of concatenating their Wikidata label and description. We
use the first sentences of the aligned abstracts, because we observe that using the first sentence performs on par with
using the entire abstract. In our Lexicalization variant, we automatically generate a node description based on five
optional kinds of information, which we illustrate for the concept of cat (Q146): 1) node labels (e.g., “house cat”),
2) node descriptions (e.g., “domesticated feline”), 3) is-a values (e.g., cat is an organism known by a name), 4) has
properties (e.g., cat has a heart rate and life expectancy), and 5) property values (e.g., cat is studied by felinology).
Each of the five elements is optional, and requires further specification in terms of which properties should be
used for which element. The selected pieces of information are seamlessly combined with a template.3 An example
lexicalization for this example would be “House cat, domesticated feline, is an organism known by a name, has a
heart rate and life expectancy, and is studied by felinology”.

2As a side note, understanding the quality of KG embeddings trained on large KGs for similarity tasks is a timely pursuit, as KG embeddings
so far have mainly been trained on relatively small graphs and evaluated on the task of link prediction [26,95].

3For more information, we refer the reader to the documentation page: https://kgtk.readthedocs.io/en/latest/transform/lexicalize/.

https://kgtk.readthedocs.io/en/latest/transform/lexicalize/
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Ontology-based Topological (OT) metrics OT metrics use features derived from the structure (topology) of the
underlying base ontology [48]. We adopt two OT metrics. Jiang Conrath [44] is an information-theoretic distance
metric that combines path-based features with information content. The Jiang Conrath metric leverages the infor-
mation content of the least common subsumer which is given by jc(c1, c2) = 2 ∗ log p(mss(c1, c2))− (log p(c1)+
log p(c2)). Here, mss(c1, c2) is the most specific subsumer, whereas p(c) is the normalized probability that a par-
ticular concept c is of type C. We normalize Jiang Conrath distances onto a [0 . . . 1] similarity measure by dividing
by the largest possible distance between c1 and c2 through the root node in the ontology.

Our second metric, which we dub Class similarity, has been inspired by methods that use inverse document
frequency (IDF) for string matching for table linking [87]. While, to our knowledge, the idea of IDF has not been
applied directly to the task of word and concept similarity, related metrics based on information content have been
relatively popular [48]. Our formulation of this method for concept similarity consists of four steps (we illustrate
them for c1 being dog and c2 being lion):

1. We compute the set of IsA parents for both concepts based on their instanceOf (P31) and subclassOf relations
(P279). Formally: IsA(c1) = P 31/P 279∗(c1) and IsA(c2) = P 31/P 279∗(c2). For our example, IsA(dog) =
[pet, mammal, animal] and IsA(lion) = [big cat, Felidae, mammal, animal].

2. We compute the common parents for both concepts, formally, common(c1, c2) = IsA(c1) ∩ IsA(c2). For our
example, common(c1, c2) = [mammal, animal].

3. We compute the total class_sim score as a sum of the IDF scores of the common classes, namely, class_sim =∑
IDF(c), where c ∈ common(c1, c2). We compute the IDF of a class c as a ratio between the number

of instances of the class c and the total number of Qnodes in the KG. For our example, let’s assume that
IDF(mammal) = 0.7 and IDF(animal) = 0.18. Then class_sim(dog, lion) = 0.88.

3.2. Embedding combination

Composite embeddings Considering that KG and LM embeddings may provide complementary insights for sim-
ilarity [40], we create two composite embeddings. Composite-all combines all our embedding models: two trans-
lation models (TransE and ComplEx), two random-walk models (Deepwalk, S-Deepwalk), and two LMs (Abstract
and Lexicalize). Composite-best combines the best KG and the best LM embeddings. For the composite embed-
dings, we estimate cosine similarity in the same way as with the individual models.

TopSim Similarity functions vary significantly in the kind of similarity they capture. They are also generally better
at ranking within the high-similarity region, for example, whether cat is more similar to dog than to horse, but then
become more random in the long tail, such as whether cat is more similar to car than to house. For this reason, we
develop TopSim,4 which aggregates different base similarity measures into a combined measure for more robust
performance and ranking. In addition to aggregating individual measures, TopSim averages over a whole region of
high-similarity KG nodes for added robustness. Next, we describe TopSim in detail.

TopSim is an aggregation framework that can be instantiated with an arbitrary set of measures. Let simi (x, y) be
a set of N base similarity measures that compute a similarity between two KG nodes x and y. We define a basic
combination measure as a weighted average of the chosen base measures:

csim(x, y) =
∑N

i=1 wi × simi (x, y)∑N
i=1 wi

Let candj (x) be a set of M candidate generation functions to compute potential high similarity regions for any
node. Candidate regions serve two basic purposes: (1) they make the computation of high-similarity regions more
efficient by not having to compare a node to all other nodes in the KG, and (2) they reduce the noise that comes from
comparing a node to everything else, since similarity functions are generally not very good at ranking outside the

4This is not to be confused with a measure of the same name but different semantics described in [50].
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high similarity region. Candidate generation functions can be implemented by looking for the most-similar nodes
of some embedding-based measures, or by doing a constrained walk of the ontology, for example.

For each node x and y we compute a ranked top-similarity region tsim of size T as follows:

tsim∗(x) =
(

ck ∈
C⋃

j=1

candj (x)

∣∣∣csim(x, ck) � csim(x, ck+1)

)

tsim(x) = (
c1, . . . , cT |ci ∈ tsim∗(x)

)
This means we take the union of all candidate sets candj (x), compute csim(x, c) for each candidate, order them by
their similarity to node x and then take the top-T elements of that set as the result of tsim(x). Finally, given the two
top-similarity regions tsim(x) and tsim(y), we compute topsim(x, y) as a weighted average of the cross-product of
similarities between the two regions:

topsim(x, y) = min

(
csim(x, y) + ∑

cyi∈tsim(y) csim(x, cyi) + ∑
cxi∈tsim(x) csim(y, cxi)

1 + ∑
cxi∈tsim(x) csim(x, cxi) + ∑

cyi∈tsim(y) csim(y, cyi)
, 1

)

The intuition here is that instead of just computing csim(x, y), which would simply average the base similarity
measures for the two nodes, we additionally aggregate similarities between a node and all the candidates in the
top-similarity region of the other node, which is more robust than looking at individual nodes alone.

3.3. Knowledge injection

Our KG and LM embedding models, as well as their combinations, can be expected to capture a wide range of rich
information about concepts. KGEs will capture information about concepts in relation to their instances in Wikidata,
whereas LM embeddings will connect a portion of the graph information with the rich background knowledge that
LM models have acquired during pretraining. However, none of these models are directly intended for the task
of concept similarity over Wikidata. Their application to estimate similarity is relatively speaking in a “zero-shot”
manner. In this section we experiment with retrofitting, a technique for knowledge injection that is aimed to tune
the models to the task of concept similarity in Wikidata. To support retrofitting, we experiment with subsets from
two large knowledge graphs: Wikidata and ProBase. We select Wikidata to understand whether directly tuning on
the graph used for prediction can improve model performance. We include ProBase because of its rich coverage of
is-a knowledge, which is essential for estimating model similarity.

Retrofitting We use the retrofitting technique proposed by Faruqui et al. [21] as a straightforward and intuitive
knowledge injection method. Retrofitting iteratively updates node embeddings in order to bring them closer in
accordance to their connections in an external dataset. Retrofitting is a weighted model, i.e., the impact of the
neighbors is not constant and can be flexibly specified. Given a node with an embedding qi , and n neighbours,
where the j th neighbour with weight βj has an embedding qj , the retrofitted embedding q̂i is computed as follows:

q̂i = qi × nk + ∑n
j=1 qj × βj

nk + ∑n
j=1 βj

The parameter k dictates how much the original embedding will be changed based on its neighbors. Higher k values
result in higher preservation of the original embedding. While retrofitting has been introduced for lexical resources
like WordNet [57] and FrameNet [5], in this paper, we adapt retrofitting to tune the KGE and LM embeddings with
large-scale background knowledge. Namely, we tune the original embeddings by knowledge injection from two
large KGs: Wikidata and ProBase.
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Wikidata We derive three datasets from Wikidata’s subclass-of (P279) ontology. First, WD-child-parent consists
of subclass-of relations whose nodes have non-empty and non-identical labels and descriptions, and both nodes
have at least 10 P279 descendants. If more than 500 children are present for a parent, we randomly sample 500 of
them. This yields 304k relations in total. Second, WD-sibling is a dataset with sibling relations between two nodes
in WD-child-parent that share the same immediate parent and have a non-identical description. WD-sibling contains
785k relations, e.g., dog – sibling – cat. Third, we construct WD-all as a union of WD-child-parent and WD-sibling.
From a total of 472,563 Qnodes in WD-all, there are 241,699 (51%) Qnodes that have a short abstract, whereas,
for the remaining 49%, we use a fallback strategy of concatenating their Wikidata label and description (Label +
Desc).

We define three weighing methods for the generated pairs from these datasets: (1) constant weighting value of 1;
(2) class similarity between the two nodes (using the Class metric described in Section 3.1); and (3) cosine similarity
between the concatenated labels and descriptions of the two nodes. For WD-child-parent pairs, we compute cosine
similarity of the LM embeddings of their labels and descriptions, whereas for the WD-sibling pairs, we compute
cosine similarity between the LM embeddings of their sentences. Both sentences follow the template {Label},
{Description}, is {Parent}. We use the absolute cosine values as similarities, formally sim(c1, c2) =
|cosine(c1, c2)|. We focus our experiments on cosine similarity as a weighting function, because we observed
empirically that it consistently performs better or comparable to the other two weighting functions. We take its
absolute value because we interpret negative similarity as an indicator of antonymy rather than dissimilarity.

ProBase [11] has child-parent pairs associated with a count of occurrences (relations) in textual sources. Based
on an exact matching strategy, we aligned 1.6 M (4.79 %) of these pairs to Qnodes in Wikidata. If multiple Qnodes
are retrieved, we choose the Qnode with the lowest numeric ID. We opt for this strategy as a lightweight heuristic
to obtain popular entities, as they have typically been added to Wikidata early and their IDs are typically low [15].
Meanwhile, popularity has been shown to be a strong and lightweight entity linking baseline [15,41]. The number
of relations in this subset range from 1 to 35,167 per subject node. As most nodes have a small number of relations,
we scale the edge weight based on the following equation: β = s × (1 + log(no_of _relations)

log(max(no_of _relations)) ).

4. Experimental setup

4.1. Benchmarks and metrics

This paper is based on the premise that the similarity between Wikidata concepts should be evaluated with large-
scale benchmarks. However, while we were able to infer large datasets for data augmentation at training time, large-
scale similarity evaluation datasets for Wikidata are not available. As a proxy, we turn to the existing word similarity
benchmarks [48]. Adapting word similarity datasets to Wikidata requires (dominantly) manual mapping of words
into Qnodes, which is laborious and expensive. Therefore, we select three popular word similarity benchmarks for
this paper and map them to Wikidata, resulting in the novel benchmarks WD-WordSim353, WD-RG65, and WD-
MC30. With these benchmarks, we follow the Word-Type task formulation [107]. In the Word-Type setup, words
are mapped to concepts in a knowledge graph, and word pairs that cannot be mapped to a KG are left out of the
benchmark.

WD-WordSim353 is derived based on the popular word similarity dataset WordSim-353 [23].5 WordSim-353
contains 353 pairs of English words (334 without duplicate pairs), along with human similarity scores. Words
in WordSim-353 were mapped to Wikidata in a semi-automatic manner, by first using text search to obtain top
Wikidata candidates for a word, followed by a manual validation or reranking of the top result performed by a
single human annotator. As we observed that the original scores often conflate the notions of semantic similarity
(car-bike) with relatedness (car-wheel), we re-annotated the dataset with numeric scores between 1 and 4: using 1
for (near-) identity; 2 for cases where two entities are partially substitutable, one is a slight specification of the other,

5http://www.gabrilovich.com/resources/data/wordsim353/wordsim353.html

http://www.gabrilovich.com/resources/data/wordsim353/wordsim353.html
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Table 1

Statistics of our evaluation benchmarks

Benchmark #pairs #unique concepts

WD-WordSim353 334 420

WD-RG65 34 31

WD-MC30 16 23

or they are close siblings of the same category; 3 for pairs that are related by one of the following relations: distant
inheritance, location, utility/capability, part-whole, antonymy, or domain; and 4 for unrelated pairs. Five researchers
participated in this annotation. After an initial trial phase that allowed us to set the annotation guidelines, in the
actual annotation, we observe a Fleiss’ kappa [24] agreement of 0.542, which is a moderate agreement. We opt for
averaging the judgments rather than resolving the disagreements. This is because our annotation aims to capture the
immediate intuition of humans when presented with a pair to judge. We believe that similarity judgments should not
be negotiated, as this would take away the intuitive nature of the task. Rather, we believe that disagreements may be
a useful signal to indicate the implicit context that the annotator considers subconsciously, however, pursuing this
direction is out of the scope of our paper.

WD-RG65 Our second benchmark, WD-RG65, is based on the DBpedia disambiguation [12] of the RG-65 bench-
mark [80]. The original paper [12] indicates that 54 of the pairs in RG-65 were mapped to DBpedia, without pro-
viding specific details about the disambiguation procedure. We derived WD-RG65 from its DBpedia version by
using sitelinks data. After linking these pairs to Wikidata, our benchmark WD-RG65 consists of 34 concept pairs
featuring 32 unique concepts.

WD-MC30 is a benchmark that is based on the DBpedia disambiguation [12] of the MC-30 benchmark [58]. The
original paper [12] states that 25 of the pairs were mapped to DBpedia, and it does not provide specific details about
the disambiguation procedure of these nodes. Analogous to WD-RG65, we translated the DBpedia identifiers to
Wikidata by using sitelinks data. Our resulting benchmark, WD-MC30, consists of 16 concept pairs featuring 23
unique concepts.

Statistics about the three benchmarks can be found in Table 1. We evaluate using three metrics to measure corre-
spondence with human annotations: Kendall-Tau (KT), Spearman rank (SR), and Root Mean Square Error (RMSE).
We make the resulting benchmarks available for future evaluations through our project’s GitHub page.

4.2. Modeling and implementation details

Individual models To train the KGE models, we use the DWD version of Wikidata based on its February 15th, 2021
dump [95]. We extract its relationships between two Qnodes, i.e., we preserve the subset of this data where both the
subject and the object are Qnodes. The statistics of the resulting graph are shown in Table 2. We note that the node
degrees has a high variance across the graph, with a median of 3, a mean of 8.5, and a standard deviation of 2285.
Meanwhile, the graph has a high Qnode-to-property ratio. To understand the distribution of the properties further,
we plot their frequency distribution in Fig. 3. Similar to nodes, we observe a high imbalance across properties.
Certain properties, like instance-of (P31), country (P17), and located in the administrative territorial entity (P131),
are very common, with tens of millions of statements. Meanwhile, most of the properties participate in less than
10,000 relationships. While we expect that the skewness of the data may have an impact on the model performance
and its ability to capture the KG information [42], experimentation with data balancing and sampling strategies is
beyond the scope of this paper.

For Lexicalization, we use the BERT embeddings provided by [45], which have been shown to work relatively
well for entity similarity. These embeddings include the following Wikidata properties: P31 (instance of), P279 (sub-
class of), P106 (occupation), P39 (position held), P1382 (partially coincident with), P373 (Commons Category), and
P452 (industry). We include two baseline versions of Lexicalization that use restricted inputs: Label, which consid-
ers only the English label of a concept as found in Wikidata; and Label + Desc, which considers a concatenation
between a node label and its description in English as given in Wikidata. We note that these descriptions are dif-
ferent from the abstracts from DBpedia, though the two may overlap partially. For instance, the DBpedia abstract
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Table 2

Statistics of our subset of Wikidata, which is used as a basis to train the KGE models

Statistic # Qnodes # Properties # Relationships Mean Degree Median degree Stdev Degree

Value 53,002,670 1,368 225,893,116 8.52 3.0 2285.05

Fig. 3. Frequency distribution of properties in the data used to train the KGE models.

for universe is “The universe (Latin: universus) is all of space and time and their contents, including planets, stars,
galaxies, and all other forms of matter and energy.”, whereas the Wikidata description is “totality consisting of space,
time, matter and energy”. For Label, Label + Desc, and Abstract we create novel embeddings with DistilRoberta.6

For the Class similarity model, IsA relations are computed as a transitive closure over both the subclass-of (P279)
and the instance-of (P31) relations. For Jiang Conrath, instance counts are computed using the following properties:
P31 (instance of), P39 (position held), P106 (occupation) and transitive P279 (subclass of). The reason for using
positions and occupations in addition to P31 is that more descriptive classes (e.g., actor) are usually not linked via
P31 which generally only points to Q5 (human) in those cases. The dimensions of the different embeddings are as
follows: ComplEx – 100, TransE – 100, Deepwalk – 200, S-Deepwalk – 200, Lexicalize – 1024, Abstract – 768,
Label – 768, and Label + Desc – 768.

Model combinations When creating composite embeddings, we use tSNE to reduce the dimensions of the individ-
ual models to the same size. For the results reported in this paper we compute TopSim using Class, Jiang Conrath,
ComplEx, TransE, and Lexicalization as the N = 5 base similarity measures and combine them in an unweighted
simple average. We use the top-100 similar nodes based on ComplEx and a Node2Vec embedding-based similarity
measure to compute candidate regions, plus an ontology-based candidate function that first goes up one step in the
class hierarchy from a source node and then down one step to enumerate ontology-based neighbors. For the final
aggregation, we compute similarities over the top T = 5 most similar nodes to each of x and y.

Knowledge injection details We experiment with three values for the retrofitting variable k: 0.5, 1, and 2. We
generally observe best results with k = 2 and 2 iterations of retrofitting, and we present results for this configuration.
We use DistilRoberta embeddings [76] to compute cosine similarity as a weighting function. We use the DWD
version of Wikidata, whose statistics are given in Table 2. We use the latest version of ProBase, which includes 33M
triples.7 We use s = 0.5 as a scaling factor for ProBase.

Implementation details We use the KGTK [36] toolkit to lexicalize a node, subset the graphs, and create vari-
ous graph and language model-based embeddings. We use scikit-learn for supervised learning. We use KGTK’s
similarity API [40] to obtain scores for the metrics Class, Jiang Conrath, and TopSim.8

6https://huggingface.co/sentence-transformers/all-distilroberta-v1
7https://concept.research.microsoft.com/Home/Download, accessed on January 21st, 2022.
8https://kgtk.isi.edu/similarity_api

https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://concept.research.microsoft.com/Home/Download
https://kgtk.isi.edu/similarity_api
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Table 3

Correlation scores for the raw methods and combinations that we have, for each of the benchmarks: Kendall-Tau (KT), Spearman rank (SR), and
Root Mean Square Error (RMSE). Best values per column are marked in bold

Type Model WD-WordSim353 WD-RG65 WD-MC30

Coverage KT SR RMSE KT SR RMSE KT SR RMSE

KGE TransE 334 0.22 0.305 0.699 0.182 0.301 0.793 0.133 0.244 0.87

ComplEx 334 0.208 0.294 0.81 0.161 0.274 0.748 0.25 0.426 0.763

Deepwalk 327 0.281 0.392 0.731 0.238 0.322 0.741 0.291 0.422 0.683

S-Deepwalk 226 0.042 0.055 0.916 0.03 0.054 1.17 −0.143 −0.201 1.177

LME Abstract 334 0.523 0.697 0.523 0.518 0.662 0.592 0.567 0.753 0.568

Lexicalization 334 0.374 0.512 1.031 0.408 0.581 0.734 0.45 0.597 0.799

Label 334 0.041 0.059 0.732 −0.032 −0.047 0.909 0.167 0.218 0.948

Label + Desc 334 0.368 0.508 0.646 0.132 0.219 0.897 0.25 0.388 0.937

OT Jiang Conrath 334 0.28 0.393 0.725 −0.065 −0.095 1.03 0.076 0.1 1.074

Class 334 0.319 0.441 0.741 0 −0.031 1.054 −0.059 −0.091 1.14

Comb. Composite-All 334 0.437 0.587 0.707 0.304 0.432 0.882 0.25 0.409 0.97

Composite-Best 334 0.488 0.654 0.572 0.408 0.516 0.718 0.45 0.585 0.729

TopSim 334 0.382 0.517 0.703 0.257 0.37 0.660 0.217 0.324 0.764

5. Results

5.1. How well do different algorithms and combinations capture semantic similarity?

As can be seen from Table 3, the Abstract model performs best among all language model variants, and overall. It
outperforms the other LMs because DBpedia’s abstracts, being written by humans, contain information that is more
comprehensive and tailored to concepts than automatically lexicalized knowledge in Wikidata. The Lexicalization
model outperforms the other simpler baselines, but it may be improved further by a dynamic selection of properties,
e.g., through profiling [45]. Language models perform worst when they consider labels only, which can be expected
because node labels contain the least information. Adding a description to labels yields a notable improvement, and
the Lexicalization method further improves upon Labels + desc. These results together show that the exact kind and
amount of information fed to language models matters strongly for estimating similarity.

The graph embedding methods each focus on abstracting the rich information available in Wikidata. Among
these methods, the Deepwalk embeddings perform the best. These methods are consistently outperformed by the
Lexicalization and Abstract methods, suggesting that the graph embeddings’ wealth of information to consider is
a double-edged-sword: many properties are considered that may not be useful for determining similarity, adding
distractions that can decrease performance. The Abstract method has an additional advantage over the graph em-
beddings in that it is less restricted in terms of the kind of information it can consider, whereas the graph embeddings
focus solely on relations and can not make use of literals directly.

Our topological models (OT category) perform better than the KGE and worse than the LME models on the
WD-WordSim353 dataset, and the worst among the categories on the other two datasets. Class performs better than
Jiang Conrath on two out of three datasets, though the difference between the methods is not significant. Generally
speaking, TopSim is able to combine the different regions in a way that outperforms most of the individual models,
and it clearly outperforms the methods that only rely on ontological structure (Class and Jiang Conrath). However,
TopSim consistently performs worse than the composite embeddings. Among the combinations, Composite-Best
performs the best, indicating that combining a small set of reliable models may be a better strategy than composing
a larger set of embeddings together. However, here we note that the composite embeddings do not improve over
the Abstract LME score, despite the fact that they include Abstract as one of their embeddings. This indicates
that it is difficult to combine models that consider additional information without adding noise that decreases the
utility.
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Table 4

Impact of retrofitting across the different benchmarks. Here we show results on retrofitting with WD-all, where the edges are scored with BERT-
based cosine similarity. Highest Kendall-Tau (KT) values and increases per column are marked in bold

Type Model WD-WordSim353 WD-RG65 WD-MC30 Avg �

Old KT New KT � Old KT New KT � Old KT New KT �

KGE TransE 0.220 0.212 −0.008 0.182 0.132 −0.05 0.133 0.167 0.033 −0.008

ComplEx 0.208 0.237 0.029 0.161 0.193 0.032 0.250 0.233 −0.017 0.015

Deepwalk 0.281 0.323 0.042 0.238 0.212 −0.026 0.291 0.291 0 0.005

S-Deepwalk 0.042 0.099 0.058 0.030 0.124 0.093 −0.143 0.067 0.210 0.120

LME Abstract 0.523 0.567 0.044 0.518 0.497 −0.021 0.567 0.583 0.017 0.013

Lexicalization 0.374 0.381 0.007 0.408 0.397 −0.011 0.450 0.400 −0.050 −0.018

Label 0.041 0.140 0.099 −0.032 0.029 0.061 0.167 0.267 0.100 0.087

Label + Desc 0.368 0.448 0.080 0.132 0.154 0.021 0.25 0.283 0.033 0.045

Comb. Composite-All 0.437 0.489 0.052 0.304 0.275 −0.029 0.250 0.317 0.067 0.030

Composite-Best 0.483 0.533 0.050 0.393 0.411 0.018 0.483 0.517 0.033 0.034

5.2. What is the impact of retrofitting?

Retrofitting is overall beneficial for estimating similarity (Table 4). On average across the three benchmarks, it
improves the performance of nine out of the eleven methods. The highest overall improvement is observed for the S-
Deepwalk method, whose Kendall-Tau score on the WD-MC30 benchmark is increased by 0.2. Despite this bump,
the new S-DeepWalk score is still relatively low (0.067). We also note a consistent improvement with the simpler
methods, like Label and Label + Desc, which can be expected given that these methods do not consider taxonomic
information sufficiently before retrofitting. For example, the distance between dissimilar objects, like credit and
card, is nearly the same before and after retrofitting the Label method, whereas the distance between highly similar
objects like money and cash decreases significantly (from 3.7 to 2.2, on a scale where 4 is the maximum and 1 is
the minimum). The impact of retrofitting is lower on methods that consider richer information already, like Abstract
and Lexicalized. This is because these methods already integrate taxonomic information, and retrofitting might
bring concepts that are nearly identical or merely related too close in the embedding space. For instance, retrofitting
decreases the distance between seafood and lobster from 2.8 to 1.3. Still, the impact of retrofitting on Abstract is
positive on two out of three benchmarks, leading to the new top results on the benchmarks WD-WordSim353 and
WD-MC30.

5.3. What knowledge is most beneficial for retrofitting?

We analyze the impact of different retrofitting knowledge sources in Table 5. Among the Wikidata variants, we
observe that retrofitting with child-parent data performs comparable to using both child-parent and sibling data
together, and this finding is consistent across the methods. This result indicates that WD-sibling data is less useful
for retrofitting of models compared to parent-child data. We believe that this observation is due to the Wisdom-of-
the-crowd [86] knowledge creation method of Wikidata, which results in a wide ontology with many children per
parent. Each of the child-parent relations is reasonable and connects two relatively similar concepts, but two children
connecting to the same parent may be dissimilar and may specialize the parent node in different dimensions [39]. We
illustrate this reasoning with the following example. Fairy tale (Q699) is a child of the concept tale (Q17991521),
and the similarity between the two concepts is relatively high. At the same time, other children of tale include old-
fashioned tale, cumulative tale, urban tale, and Zeichengeschichte (a German television genre), whose similarity
with fairy tale is lower, as each of these siblings describes a different aspect of a tale: its location, ethnic tradition,
form, or genre. To quantify this phenomenon, we show similarity scores with the KGTK similarity GUI [40] between
fairy tale, and its parent (tale) and siblings in Fig. 4. As apparent in the figure, the similarity between the child and
the parent (fairy tale and tale) is clearly higher than any of the similarities between two siblings (e.g., fairy tale and
old-fashioned tale), according to any of the similarity metrics.
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Table 5

Impact of different retrofitting knowledge variants on the WD-WordSim353 dataset. Highest Kendall-Tau (KT) increases per column are marked
in bold

Type Model / WD-all WD-child-parent WD-siblings ProBase

KT KT � KT � KT � KT �

KGE TransE 0.220 0.212 −0.008 0.210 −0.010 0.212 −0.008 0.092 −0.128

ComplEx 0.208 0.237 0.029 0.248 0.040 0.219 0.011 0.123 −0.085

Deepwalk 0.281 0.323 0.042 0.323 0.042 0.296 0.015 0.220 −0.061

S-Deepwalk 0.042 0.099 0.057 0.125 0.083 0.04 −0.002 −0.091 −0.133

LME Abstract 0.523 0.567 0.044 0.569 0.046 0.521 −0.002 0.462 −0.061

Lexicalization 0.374 0.381 0.007 0.372 −0.002 0.373 −0.001 0.273 −0.101

Label 0.041 0.140 0.099 0.156 0.115 0.07 0.029 0.037 −0.004

Label + Desc 0.368 0.448 0.080 0.457 0.089 0.401 0.033 0.318 −0.050

Comb. Composite-6 0.437 0.489 0.052 0.488 0.051 0.471 0.034 0.369 −0.068

Composite-2 0.483 0.533 0.050 0.529 0.046 0.500 0.017 0.464 −0.019

Fig. 4. Similarity scores with the KGTK similarity GUI [40] between fairy tale, and its parent (tale) and siblings.

Retrofitting with ProBase’s IsA relations yields consistently negative results across all methods. This could be due
to the quality of the underlying data, our choice to use the relation counts as similarity estimates, or the imperfect
mapping of ProBase nodes to Wikidata. Comparing the results across the different methods, we again observe that
the simpler methods and the composite methods benefit most from retrofitting, whereas the more elaborate methods
benefit from retrofitting much less.

6. Discussion and future work

In summary, our evaluation of a variety of KGE, LME, OT, and combinations of models reveals several key
insights. First, language models are strong indicators of concept similarity in KGs, however, they are extremely sen-
sitive to the kind of input that they operate on. Therefore, scalable and reliable lexicalization is a key component of
LME-based similarity models. Second, KGE models, which largely transfer knowledge about instances to concepts,
are also strong indicators of similarity, but not encoding the literal content is a key limitation for these models. Third,
retrofitting is helpful across the board, though its impact is larger for simpler models that originally did not encode
structural information. Fourth, we note that careful selection of knowledge for retrofitting is essential, given the size
of the sources of background knowledge and their creation methods. Here, we note that parent-child relations from
Wikidata are most useful for retrofitting, whereas knowledge from ProBase generally hurts performance.
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Looking forward, we discuss four key considerations for reliable methods and evaluation of concept similarity
over Wikidata: dimensional metrics of similarity, extending coverage to entity nodes, large-scale evaluation, and
downstream applications.

From a single number to a set of dimensions Word and concept similarity tasks have typically strived to produce
a single similarity score that aggregates over all aspects of two concepts. However, concepts may be similar in
different ways, i.e., they may have similar parts, utility, physical appearance, typical location, and so on. Moreover,
concepts may be antonyms or opposites, which may not map easily to a single numeric similarity scale. Applications
that reason over concepts, e.g., for search or intelligent analytics, can benefit from a dimensional notion of similarity
that scores concepts with an interpretable similarity vector rather than a single scalar. An opening for this idea is
provided by prior work on dimensions of commonsense knowledge [38] and concept norms benchmarks with human
judgments about salient concept features [19].

From concepts to all Wikidata nodes In this work, we focus on concepts in Wikidata, and leave out entities from
the current evaluation. A comprehensive similarity framework should include entities as well, especially given that
these are prevalent in Wikidata. While our metrics and models technically work for entities too, it is an empirical
question whether they will generalize well, given that concepts and instances are conceptually different despite
certain overlaps [74,82]. One way to qualify these differences is by following up on our first point and devising a
set of dimensions that qualify entities as well. Here, we believe that the relations found in Wikidata provide a useful
entry point for creating a vector of entity dimensions, though certain engineering may be needed to make sure that
the dimensions are meaningful and complete.

From small-scale to representative evaluation The most urgent obstacle to a representative evaluation of concept
similarity is the lack of large-scale evaluation data. Creating evaluation data for similarity is extremely laborious,
and typically entails a pairwise comparison of conceptual pairs, which is difficult to perform at scale. It is unclear
how to create a large-scale evaluation dataset for Wikidata, which would ideally also include multiple dimensions
of similarity (point 1) and both concepts and entities (point 2). We attempted to infer data for evaluating similarity
from sources of commonsense knowledge, like ConceptNet [84], but this appeared to be difficult in practice due to
the excessive noise present in these sources. The CSLB property norms dataset [19] provides a positive example
of how similarity judgments can be elicited from humans, but it still remains to map these judgments to Wikidata,
and their size is still relatively small. Using the data-to-text idea [93], one can leverage the Wikidata structure to
generate a large number of pairs, however, it is not clear how to generate similarity judgments, given the inconsistent
modeling of Wikidata [39].

From similarity tasks to applications Besides the need to test the generalizability of our findings on a broader set
of Wikidata nodes (entities) and on larger evaluation sets, we suggest the integration of explicit similarity metrics
for downstream applications. Robust metrics of concept and entity similarity are essential to improve the quality
of knowledge graphs. Concept similarity metrics can be applied retrospectively to detect existing duplicates in
large knowledge graphs, as well as to provide similar suggestions to human or bot editors when entering new
information [82,103]. Concept similarity can be instrumental in providing alignment and recommendations for a
variety of application domains, including food, biomedicine, and science. Namely, concept similarity can be used
to customize or personalize a recipe for a user, by replacing an ingredient with a similar one that is preferred or
more accessible to the user [18]. In the domain of biomedicine, concept similarity can be applied to connect pieces
of knowledge between different modalities of data, including documents and domain ontologies [22]. In science,
concept similarity can be used to perform fair automatic screening and matching between reviewers and papers based
on the similarity of the reviewer’s work [43]. While devising effective methods for these tasks will likely require
substantial engineering, we expect that the framework and the insights provided in our paper will be beneficial for
those efforts.

7. Conclusions

This paper designed a framework with representative models for estimating the similarity of concepts in Wiki-
data. We considered language model embeddings, knowledge graph embeddings, and topological information. We
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developed combinations of these models, and experimented with knowledge injection via retrofitting to two large
knowledge graphs: Wikidata and ProBase. The experiments revealed that pairing language models with well-curated
information found in abstracts led to optimal performance. Balancing between information wealth and noise, on the
one hand, and between structure and content, on the other hand, are important considerations for future model en-
gineering. We found that retrofitting with taxonomic information from Wikidata generally improved performance
across methods, with simpler methods benefiting more from retrofitting. Retrofitting with the ProBase KG yielded
consistently negative results, indicating that the impact of retrofitting directly depends on the quality of the under-
lying data. Future work should investigate contextual similarity between concepts, which would characterize the
partial identity of concept and entity pairs. The key obstacle to developing reliable metrics for concept similarity
in Wikidata lies in the lack of representative evaluation – addressing this challenge is a high-priority task for sub-
sequent research. Finally, applying the similarity metrics at scale for downstream reasoning tasks is a necessary
follow-up step to understand their potential for impact and their latent shortcomings.
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