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Abstract. Semantic rule mining can be used for both deriving task-agnostic or task-specific information within a Knowledge
Graph (KG). Underlying logical inferences to summarise the KG or fully interpretable binary classifiers predicting future events
are common results of such a rule mining process. The current methods to perform task-agnostic or task-specific semantic
rule mining operate, however, a completely different KG representation, making them less suitable to perform both tasks or
incorporate each other’s optimizations. This also results in the need to master multiple techniques for both exploring and mining
rules within KGs, as well losing time and resources when converting one KG format into another. In this paper, we use INK,
a KG representation based on neighbourhood nodes of interest to mine rules for improved decision support. By selecting one
or two sets of nodes of interest, the rule miner created on top of the INK representation will either mine task-agnostic or task-
specific rules. In both subfields, the INK miner is competitive to the currently state-of-the-art semantic rule miners on 14 different
benchmark datasets within multiple domains.
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1. Introduction

Knowledge graphs (KGs) are increasingly used as data structures to combine domain expertise with raw data
values [11]. In this work, we refer to a KG as a multi-relational directed graph, G = (V,E), where V are the
vertices or entities in our graph and E the edges or predicates. The example KG represented in Fig. 1 shows eight
interlinked nodes describing four members of the band Coldplay. Three of these members have a common subgraph
as they all studied and were born in England. One member was born in Scotland which is, at time of writing, still a
part of the United Kingdom (UK).

Numerous applications are built upon these KGs, covering various domains such as industry 4.0, pervasive health
and smart cities [2,27,30]. These applications interact with the KGs directly or transform the graph into a vector
representation to perform Machine Learning (ML) related tasks [13]. Rule mining is also such a KG application,
where the goal is to find logical rules in a given KG. For example, a rule mining application for the given example
KG in Fig. 1 could find the logical rule: If X has Alma mater Y and Y is Located In Z, Then X is born in Z. Such
logical rules will come with a certain confidence score, defining the general applicability of the rule. The more
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Fig. 1. Simple example of a KG, extracted from DBpedia [1]. Eight nodes are defined, linked to each other by four unique labelled edges.

reliable rules can then be used to complete the KG, perform downstream tasks such as fact prediction, fact checking
or anomaly and error detection.

Rule mining is part of data mining in general, where two broad subfields exist. On the one hand, there is task-
agnostic or descriptive mining, where one wants to mine some general information about the KG or some general
facts, which hold beyond this provided KG and are generally applicable. This subfield was originally created to
discover hidden knowledge from transactional data, such as relational databases. Association Rule Mining (ARM)
is the best-known descriptive technique. A transaction in ARM is an observation of the co-occurrence of a set of
items. One possible way to apply ARM to semantic data or KGs is by converting the internal representation to a
set of transactions. ARM thus identifies the transactions that identify co-occurrences of items that appear frequently
in the KG by calculating the associated metrics to quantify this, such as the confidence and the support of the
transactions. The logical rule defined, If X has Alma mater Y and Y is Located In Z, Then X is born in Z, is such a
possible hidden rule that could be mined with an ARM application. ARM for KGs is used in data integration and
KG completion tasks [4,22].

On the other hand, prescriptive mining is more task-specific and performs inferences on the current data, to make
predictions in the future [12]. Inductive Logic Programming (ILP) is the best-known paradigm in this subfield.
The ILP techniques deduce logical rules from a positive set of nodes and require some (generated) negative set
of counter-examples. An example ILP task could be to find one general rule to describe all four members of the
Coldplay band in Fig. 1. The positive set of nodes selected for this mining task are underlined in Fig. 1. One possible
rule could state the born In ?x and ?x Part of UK relationships hold for all members.

Both subfields are complementary. While the ILP field is able to handle task-agnostic cases, it is most known
by its task-specific capabilities, as specific facts are needed for those cases. Therefore, ILP directly captures the
available related information in the KG to generate the rules. The ILP program will immediately use the available
predicate-object information to discriminate between the provided positive and negative set. ILP can, however, be
relatively slow and can therefore not handle the huge amount of data that KGs provide today. ARM can handle large
KGs and generate rules for fully task-agnostic problems. It is fast and scales to large graphs. This often results in
the fact that ARM generates a lot of nonsense or too generally applicable rules as it considers all triples or facts.
The generated ARM rule for our example KG is such a rule with limited effect, because people do not always study
where they were born.

There does not exist a technique which can perform both prescriptive (task-specific) and descriptive (task-
agnostic) rule mining for KGs. The main reason, to our knowledge, is that the current techniques available for
both tasks require a different internal representation of the KG. These transformations are performed in relation to
the subfield they are operating on. ARM mainly requires the KG to be represented as transactions, which reduces
the linked aspects of the existing KG. ILP directly works on the graph representation itself, leading to the earlier
discussed performance issues.

The main contribution of this work is to use the existing paradigms of rule mining within ML such as ILP and
ARM directly on the KG to perform both task-specific and task-agnostic rule mining tasks. We propose a technique
to perform such rule mining on KGs by Instance Neighbouring using Knowledge (INK) [28]. INK represents a



B. Steenwinckel et al. / Instance-based neighbouring by using knowledge 1369

KG by analysing the neighbourhoods of selected nodes of interest. Given a set of nodes of interest T, a subset of
V, INK finds all paths with a certain depth D starting from T. By marking each path with its destination, a binary
feature set is created for each node within T that can be used in further downstream tasks. In the case of mining
rules over the whole KG, T will be equal to V and a mining algorithm was developed to search for frequently
occurring combinations of relationships within the INK representation. When a more specific task is given, only
the neighbourhoods of the nodes which have to be considered are taken into account. An interpretable ML rule set
approach was adapted to work with the INK representation to mine the relevant rules.

Combining these ILP and ARM techniques into a framework that is capable of directly mining the most interesting
rules, without changing the internal representation of the KG, makes INK capable of seamlessly switching between
task-agnostic and task-specific rule mining. This makes INK capable of dealing with varying scenarios and use cases
without the need to change the internal representation.. For both these mining paradigms, INK is able to capture the
complexity of the KG in an efficient manner.

The remainder of this paper is structured as follows. Section 2 gives an overview of the currently available
semantic rule mining techniques for both the task-agnostic and task-specific field. Section 3 details the INK KG
representation. Section 4 shows how INK can be incorporated into a rule mining system. Both the implementation
of INK and the accompanying rule miner are discussed in Section 5. In Section 6, we evaluate INK for both the
task-agnostic and task-specific rule mining, and compare the results with the current state-of-the-art. Section 7
discusses the advantages and drawbacks of INK in the perspective of task-agnostic and task-specific mining. At last,
the conclusion of this work is provided in Section 8.

2. Related work

Rule mining has a long history, but the existing techniques can be either based on ARM or ILP. ARM searches
for implication (if . . . then . . . ) rules, such as “If a person X has an Alma mater Y, and Y is located in Z, then X is
born in Z”. ILP techniques deduce logical rules from ground facts. Using ILP in the perspective of task-specific rule
mining might use negative statements as counterexamples to optimize the mining process. For task-agnostic cases,
this counterexample generation process is not necessarily required. In this section, the applicability of both these
techniques for either task-specific, task-agnostic or both are described in the context of KGs.

2.1. Task-agnostic semantic rule mining

Task-agnostic semantic rule mining is the term that relates the closest to the general description of rule mining
within ML. The goal of rule mining here is to find a rule or pattern for those examples that frequently occur together.
The approach relies on the generation of so-called frequent itemsets, where sets of two or more items occurring
together are combined with other itemsets to create rules [36]. Within the realm of KGs, task-agnostic rule mining
approaches are less dependent upon the generation of these frequent itemsets. The goal is also different: the rule
mining process tries to derive new facts and complete an existing KG, improve the reasoning quality or help to
identify potential errors [14].

The rules generated within these KG rule miners are Horn clauses and are denoted as Horn rules when they
contain an implication. They usually consist of a head and a body, where the head is a single atom:

B1 ∧ B2 ∧ · · · ∧ Bn ⇒ r(x, y)

with head r(x, y) and body B1 ∧ B2 ∧ · · · ∧ Bn. All these atoms in our head and body are binary predicates. The
body atoms are, therefore, frequently represented as a binary vector �B. The rules state that if all instantiated body
atoms appear in the KG, the head atom can be derived. Additional rule specifications can be introduced to reduce
the search space. Searching for connected and closed rules that are not reflexive can be such a rule specification:

– A rule is connected if every atom is connected transitively to every other atom of the rule.
– A rule is closed if all its variables are closed. A variable is closed when it appears at least twice in the rule.
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– A rule is reflexive if it contains atoms of the form r(x,x)

The example rule “If a person X has an Alma mater Y, and Y is located in Z, then X is born in Z” is an example of
a connected and closed, not reflexive rule.

Solutions have been proposed for mining such rules in large KGs. These solutions, such as AMIE, use a
generation-then-evaluation approach [20]. For example, given a head predicate (say born_in(x, y)), the available
techniques first generate all possible rules within a certain length with this head predicate and then evaluate their
quality to find high quality rules (such as alma_mater(x, y)∧ located_in(y, z) → born_in(x, y)). To define whether
a rule is of high quality, widely used statistical measurement, such as support and confidence, from the ML rule
mining field were used.

The support of a rule quantifies the number of correct predictions in the existing KG. More in general, the support
of a rule R in a KG G is the number of true derivations r(x, y) (with r(x, y) the head atom as explained above) that
the rule makes in the KG:

support(R) = ∣∣{r(x, y) : (
G ∧ R |= r(x, y)

)
∧ r(x, y) ∈ G

}∣∣
By providing a threshold on this support value, rules and facts which are less common can be pruned.

Confidence is a measure that also takes the incorrect rule implications into account. The standard confidence of a
rule is the ratio of all its predictions that are in the KG. All facts that are not in the KG are seen as negative evidence.

conf
( �B ⇒ r(x, y)

) = support( �B ⇒ r(x, y))

|(x, y) : �B|

Despite the fact that approaches like AMIE could mine rules from large KGs, the efficiency and effectiveness
needed to be improved to overcome many drawbacks. ML rule mining operates under the closed world assumption:
a statement that is true is also known to be true and conversely, what is not currently known to be true, is false and
introduces negative evidence for those cases which are not available in the dataset. KGs can, however, be incomplete
and follow the open world principle: the truth value of a statement may be true irrespective of whether or not it is
known to be true [19]. The partial completeness assumption (PCA) is therefore proposed to debias the statistical
estimation of the support and confidence measurements [7]. For efficiency, sampling and approximation measures
[12] are adopted to reduce time overheads of accurate rule evaluations; besides, many efficiency optimizations are
proposed [28] to speed up rule evaluation. All these modifications resulted in tools like AMIE+ and AMIE3 [16].
Nevertheless, the time-consuming candidate generation step is still inevitable.

The recent advances in the area of embeddings and KG vector representations resulted in some additional rule
mining methods. The main goal of such miners is to deal with the possible incompleteness or large scale of the
KGs, which reduces the need for partial completeness calculations [34]. One such miner is RuLes [10]. It iteratively
constructs rules over a KG and collects feedback for assessing the quality of (partially constructed) rule candidates
through specific queries issued to a precomputed embedding model. Within the Rules framework, the confidence
measures capture the rule quality better than other techniques because they now reflect the patterns in the missing
facts. The improved confidence measures, therefore, improve the ranking of rules. An embedded version of the KG
is used here to define the quality of the rule and is not used to mine the task-agnostic rules themselves.

Another such technique is RLvLR (Rule Learning via Learning Representations) miner, an embedding-based
approach to rule learning focusing on descriptive rule mining [21]. This miner specifies a target predicate in a KG to
mine quality rules whose head has that predicate. The combination of the technique of embedding in representation
learning together with a new sampling method results in more quality rules than major systems for rule learning in
KGs such as AMIE+. The main focus of the RLvLR miner is defined in the scope of only mining specific rules for
a given predicate. The RLvLR miner is, however, not made publicly available, except for an compiled executable to
reproduce the fixed experimental setup.
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2.2. Task-specific semantic rule mining

ILP was created in between the worlds of ML and Logic Programming where the logic programs or rules are
derived from examples and the available KG. Rules here can be seen as hypotheses and the available examples are
used to support the evidence for these hypotheses.

Learning hypotheses or descriptions for certain concepts gained interest in the field of ILP along the adoption of
OWL and Description Logic (DL). Within this realm of concept learning, the obtained rules are different from the
ones described in Section 2.1. Here, the logical rules capture the relationships and dependencies among attributes,
providing explicit explanations of the learned concept based on the available data. The current state-of-the-art ap-
proaches for rule mining within ILP start from a general concept � (Thing) and further on refine this concept
iteratively [5,18]. Learning algorithms can be designed by combining such a refinement operator with a search
heuristic.

DL-Learner is such a tool that can learn logically entailed rules for a specific set of examples within a KG.
The aim of DL-Learner is to find those rules covering as many positive examples while only applying to as few
as possible negative examples [17]. Refinement operators are used to explore the search space of possible concept
descriptions. Learning within DL-Learner can be seen as the search for such a correct rule description. Suitable
operators to traverse the search space can be easily found but the goal of DL-Learner is to use those operators that
have many useful properties like finiteness, non-redundancy, properness and completeness, while still allowing to
efficiently traverse through the search space in pursuit of good hypotheses. DL-FOIL is another technique that uses
refinement operators and progressively constructs the rule as a disjunction of partial descriptions [5]. Each partial
description covers a part of the positive examples and rules out as many negative or uncertain membership examples
as possible.

Both the strength of these two techniques is that they use reasoning techniques under the hood to derive expressive
task-specific rules. On the other hand, this is also a weakness as it makes them less scalable and robust when they
have to deal with large KGs. Large KGs might also result in a large search space when the conditions of the generated
candidate rules never appear in the provided set of examples. Therefore, methods such as EvoLearner were designed
that instead of refining the top concept �, start with biassed random walks from the positive examples within the
KG and use evolutionary algorithms to further refine these initial candidate rules [9].

Starting bottom-up (from the available positive and negative set) is quite common in the realm of ML. Here,
the positive and negative sets are seen as data samples. The task is to find a good separation between these two
sets. In addition to a reliable decision, one would also like to understand how this decision is generated, and more
importantly, what the decision says about the data itself. Here, a few summarising and descriptive rules can provide
intuition about the data and help to understand the decision process. The whole realm of interpretable ML models
uses this idea to replace black-box models (e.g. random forests) with simpler models (e.g. rule sets) while improving
interpretability and computational efficiency, without sacrificing predictive accuracy [24]. To our knowledge, none
of these techniques are applied to KGs in a task-specific rule mining context, mainly due to the characteristics of
the original graph representation.

2.3. Combining them both

The advancements within the ILP domain also resulted in task-agnostic techniques that use the available schema
information within the knowledge graph to mine generic rules [8]. They can even be used for scheme completion or
find faults within this schema level [3]. Those techniques are not optimised to solve task-specific problems, but can
be applied for this when limiting, e.g., the search space to a specific predicate.

3. INK representation

While many task-specific and task-agnostic mining techniques use refinement operators to traverse the search
space, INK builds its internal representation by transforming the neighbourhood of the nodes of interest into a
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binary matrix representation. With this binary matrix representation, column operations based and comparisons of
columns for a large number of nodes of interest can be easily performed to reveal new patterns or rules. The binary
representation can be seen as a KG embedding and was evaluated in this perspective for multiple node classification
tasks [28]. To explain how this binary representation is built, we use the example KG visualised in Fig. 1 throughout
this section.

3.1. Neighbourhood dictionary

INK operates by selecting nodes of interest. This can be both all nodes within a graph (for task-agnostic mining),
as well as some nodes specified upfront (task-specific mining). In our example KG, we select two nodes of interest:
Chris Martin and Guy Berryman. INK will first query the neighbourhood of a given depth for all these nodes
of interest. If we define the depth parameter K to be two, the neighbourhood for Chris Martin will exist of the
ALMA MATER and BORN IN relations, together with the neighbourhood of the University College London node
providing the LOCATED IN relation and the neighbourhood of the England node with the PART OF relation. To store
these neighbourhoods efficiently, a dictionary representation is used. For a given node of interest, this dictionary is
built in an iterative fashion. The predicates in a neighbourhood of depth one are inserted first into our dictionary,
together with their corresponding objects as values. These dictionary values are lists, as a single predicate can occur
multiple times with different objects in the neighbourhood of a node. For our given example node Chris Martin,
we represent the neighbourhood at depth one by:

{
ALMA MATER −→ [University College London],

BORN IN −→ [England]}
To add the neighbourhoods of depths > one, INK concatenates the predicates together. By concatenating these

relations, INK provides a path from the node of interest to another node within our graph without providing detailed
information about all intermediate nodes on that path. However, this information is still available in the (key, value)
pairs added to our dictionary at the lower neighbourhood’s depths. In our example node, the previous dictionary will
be extended with the following (key, value) pairs at depth two:

ALMA MATER.LOCATED IN −→ [England]
BORN IN.PART OF −→ [UK]

Here, we see a link from the node of interest to the UK node over the BORN IN relation. The BORN IN object value
is not represented in this (key, value) pair, but was specified at the previous depth 1.

In several cases, it is also beneficial to indicate that the relationship itself within the neighbourhood of a node of
interest is provided. The current dictionary structure does not explicitly indicate this presence. To ensure relationship
edges within their neighbourhoods can be compared against each other on a predicate level, the transformation step
will also explicitly state that a particular predicate is available:

ALMA MATER −→ True,

BORN IN −→ True,

ALMA MATER.LOCATED IN −→ True

BORN IN.PART OF −→ True

Here, no lists were used as values for our dictionary as we just want to indicate a specific relationship is available
for that particular node of interest.
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Completely similar, the dictionary representation of Guy Berryman until depth 2 is:

{
BORN IN −→ [Scotland],

BORN IN.PART OF −→ [UK]
BORN IN −→ [True],
BORN IN.PART OF −→ [True]}

More in general, combined for all nodes of interest N , the initial data structure of INK uses the following list
format:

[(
n, neighbourhood(n, k)

) ∀ n in N
]

where the neighbourhood(n, k) is the function which outputs the dictionary representation for our node n till a
defined depth k.

3.2. Binary format

As the [(n, neighbourhood(n, k))] representation is 3 dimensional (one axis for the nodes of interest, one for the
dictionary relation keys and one for dictionary object list values), an additional transformation is required to provide
a binary representation of this data. All of the object’s values inside our neighbourhood dictionary are combined
using a delimiter § to their corresponding key. In the strict sense, the binary format is created by unravelling the lists
within our dictionary by string concatenating them with the corresponding dictionary key. When our 3 dimension
representation contains the following entry,

[
(
Guy Berryman,

{
BORN IN −→ [Scotland],
BORN IN.PART OF −→ [UK]
BORN IN −→ [True],
BORN IN.PART OF −→ [True]})

]
our string concatenation operation would create the following features for the Guy Berryman entry:

BORN IN§Scotland

BORN IN.PART OF§UK

BORN IN§True

BORN IN.PART OF§True

Such features can be easily represented in a binary matrix, indicating for e.g. Guy Berryman that those features
hold using a Boolean mark. Creating this binary representation for only one node of interest is not that interesting.
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Table 1

INK’s binary representation of Chris Martin and Guy Berryman nodes in the example graph of Fig. 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Chris Martin 1 1 0 1 1 1 1 1 1

Guy Berryman 0 0 1 0 1 0 1 0 1

When we combine the created features till depth 2 for both Chris Martin and Guy Berryman, more features
will be available and some of these features will be a discriminator for either one of them.

ALMA MATER§University College London (1)

BORN IN§England (2)

BORN IN§Scotland (3)

ALMA MATER.LOCATED IN§England (4)

BORN IN.PART OF§UK (5)

ALMA MATER§True (6)

BORN IN§True (7)

ALMA MATER.LOCATED IN§True (8)

BORN IN.PART OF§True (9)

The binary INK representation for both Chris Martin and Guy Berryman is visualised in Table 1. The
rows are defined by the nodes of interest, such that each cell indicates whether or not the subject of interest contains
the relation(s)§object value. In this matrix, column (3) is a specific feature (BORN IN§Scotland) for Guy Berry-
man and could be of interest to differentiate Guy Berryman from the other team members.

3.3. Extension modules

While the binary representation of INK reflects the whole KG, it can derive additional information based, e.g.
datatype properties or the amount of relationships that are available. This subsection describes two optional exten-
sion modules which are available in INK.

3.3.1. Numerical inequality
To deal with numerical data, a preprocessing module will check if the values corresponding to a specific relation

are all floats or integers for all the corresponding objects and nodes of interest. When such a relation is found, we
build a set of all possible inequalities using all the found objects for that relation. In our example KG, we could
add the birth year of all our Coldplay members, which would be an integer value. When this extension module is
enabled, all these integer values will be stored inside a set. INK compares for each node of interest the value of the
BIRTH YEAR relation with all possible values in our set and adds a new entry to our neighbourhood dictionary as
follow:

BIRTH YEAR < l −→ [True or False] &

l >= BIRTH YEAR −→ [True or False],
∀l in inequality set

Concrete, eight new entries for will be added, describing if the BIRTH YEAR of Band Member X is smaller
than the BIRTH YEAR of the Band Member Y, or if BIRTH YEAR of Band Member X is greater than or equal
the BIRTH YEAR of the Band Member Y, with both X and Y ∈ Chis Martin, Will Champion, Guy
Berryman, Jonny Buckland.
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3.3.2. Relation count
Another preprocessing module is available in INK to deal with relations having more than one object value. It

can be beneficial to indicate how many of these relationships are available for a given node of interest. Therefore, a
module was added that counts the objects related to a relationship starting from the node of interest. This model adds
new entries to the neighbourhoods dictionary indicating how many times the objects share the same relationship,
starting from the node of interest. More specifically, if in our example graph Chris Martin would have a second
ALMA MATER relation, this module would add the following entry:

COUNT.ALMA MATER −→ [2]

This entry can be directly transformed to

COUNT.ALMA MATER§2

as described above. The previous inequality module can also use these counting values, as they are stored as integer
values.

4. INK rule mining

The 2D matrix representation discussed above can be seen as a KG embedding and it was already evaluated
regarding a node classification task in this perspective [28]. It can be used to perform both task-specific and task-
agnostic rule mining. More in general, rules will be built based on the column description or features of our binary
matrix, as shown in Table 1. The fourth column in this example, i.e. ALMA MATER.LOCATED IN§England, already
introduced implicitly a variable to ignore the specific alma mater located in England. This fourth column states that
there is a relation from our nodes of interest about a non-specified university, school, or college that one formerly
attended which is located in England. This column can be interpreted more formally by:

ALMA MATER(?i, ?x) ∧ LOCATED IN(?x, England)

with ?x and ?i a variable.
As both task-specific and task-agnostic techniques use this representation, the only difference between them is

how they interact and extract the relevant information. The task-agnostic miner operates on the columns themselves,
comparing the Boolean values to build so-called frequent itemsets and create the rules. The task-specific miner
operates on the rows to differentiate between the nodes of interest. The task-specific miner uses the columns as
features within its model to define a more specific rule given the task it wants to solve.

4.1. INK task-agnostic mining

To apply ML ARM techniques, the INK task-agnostic mining component must define frequent itemsets. Here, the
frequent itemsets will be based on the columns of INK’s binary representation. But in order to build these frequent
itemsets, we first have to extract the neighbourhood for all subject nodes containing a fact in our KG. For our
example graph in Fig. 1, this means that not only the neighbourhoods for Chris Martin and Guy Berryman
will be extracted, but also for all other nodes in our KG as they are also subjects of facts.

The frequent itemsets exist out of one or a combination of relationships accompanied with the calculated support.
Despite the fact that many different combinations of relationships exist, INK use the anti-monotone property of
support (adding a new relationship to a frequent itemset will never increase the support value) and searches for the
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following defined patterns in the KG:

x
relationship−−−−−−→ y (10)

x
relationship 2←−−−−−−−−−−−−−−−−−−−−−−→
relationship 1

y (11)

x
relationship 1−−−−−−−→ z

relationship 2−−−−−−−→ y (12)

x
relationship 1−−−−−−−→ z

relationship 2←−−−−−−− y (13)

x
relationship 1←−−−−−−− z

relationship 2−−−−−−−→ y (14)

The combination of some of these patterns could lead to a plausible rule within our KG. If we combine the patterns
of (10) and (12) for example, the rule miner could create rules such as:

x
relationship 1−−−−−−−→ z

∧ z
relationship 2−−−−−−−→ y =⇒ x

relationship 3−−−−−−−→ y

Traditional ML ARM rule mining techniques can easily derive these rules when the frequent itemset is being pro-
vided. The above derived rule was originated from the following frequent itemsets:

itemset1 = {
x

relationship 1−−−−−−−→ y
}

itemset2 = {
x

relationship 2−−−−−−−→ y
}

itemset3 = {
x

relationship 3−−−−−−−→ y
}

itemset4 = {
x

relationship 1−−−−−−−→ z, z
relationship 2−−−−−−−→ y

}
itemset5 = {(

x
relationship 1−−−−−−−→ z, z

relationship 2−−−−−−−→ y
)
,

x
relationship 3−−−−−−−→ y

}
Accompanying this itemset are all unique x & y nodes that hold for that itemset. The length of these unique node
sets is our support metric.

INK actively searches for these itemsets within its 2D matrix representation. Some of these itemsets are trivial
to calculate. The itemsets originating from pattern (10) described above can be easily identified within our matrix
representation. INK extracts by default the relation§object columns but the task-agnostic miner is more interested
in colums obeying the §object values. These columns already introduce a variable near the end, for example we can
write ALMA MATER(?X) to indicate that those columns contain an, not specified, alma mater, indicated through the
variable X. Based on these relation columns, INK calculates the occurrence of the associated subject and object pairs.
If the amount of pairs is higher than a defined support threshold, a frequent itemset for that specific relationship is
created.

Frequent itemsets defined by the patterns in (11) and (12) might be harder to calculate. In traditional frequent
itemset miners, the number of items inside the set must be defined upfront. Due to the INK relationship concatena-
tion, they can be treated as the ones in (10). INK can fix the number of items within an itemset to two, as the depth
parameter of the neighbourhood already implicitly introduces additional preconfigured items in our itemsets with
possible lengths greater than one. In our example graph, the relation ALMA MATER.LOCATED IN is already such a
predefined item, combining the ALMA MATER and LOCATED IN relationship. As this combined relation can already
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be found in the neighbourhood of the nodes of interest, there is a high chance that they can occur frequently together.
When we add to this combined relation, a second, single relation, we implicitly have a frequent itemset of length
3 as shown above in itemset5. For example, if we combine ALMA MATER.LOCATED IN, with BORN IN, we get
an itemset stating (ALMA MATER(?x, ?y)∧ LOCATED IN(?y, ?z), BORN IN(?x, ?z)). However, purely algorithmic,
the length of the itemset remains to two. We just provided additional variables within the items themselves to chain
relationships, occurring frequently together, within the KG.

Computationally hard to calculate are the frequent itemsets belonging to patterns (13) and (14). Here the pairs of
x & y have to be determined between two relationships where they share one variable z. These calculations are hard
to perform efficiently in terms of time and memory ass,multiple intersections of x & y pairs have to be filtered to
reduce the possible duplicate pairs. The INK miner will first find all z values in its 2D representation that are shared
between two relationships as indicated in (13) and (14). Next, for each z, all x & y combinations are stored in a set.
In the end, the length of this set is our support measure for this itemset.

Whether the items within an itemsets can be used in an interesting rule, depends on the calculated support value
and corresponding threshold. The support for each itemset within INK is calculated using the following rule:

∣∣∣∣∣∀R1 in Cink,∀R2 in Cink

R1!=R2∑
∀ o in OR1∩R2

R1§o & R2§o

∣∣∣∣∣
Where Cink are all the relation-only columns of our INK representation, OR1∩R2 contains the intersection of all

object values of the two relations R1 and R2 and & is the bitwise and operator. Note that both R1 and R2 can be a
chain of relationships as discussed above and that the sets used to calculate the intersection are calculated upfront.
The algorithm to define these itemsets for each of the provided patterns (10-14) is given in pseudocode in Listing 1.

Based on these itemsets, we can select both an antecedent and consequent to get rules of interest. Measures such
as confidence, lift and conviction are calculated from the support values and can be used to filter these rules.

INK is in this perspective also not limited to mine closed rules as any item within our itemset can be either head
or body within our rule mining approach. The rule can still be connected. The head atom can also contain additional
free variables due INK’s item representation within the frequent itemsets.

4.2. INK task-specific mining

The INK 2D representation is used directly within a task-specific mining approach. The task-specific mining
approach is based on the Bayesian rule set mining technique described by Wang et al. [32]. In this approach, the
model consists of a set of rules and each rule is a conjunction of conditions. The model predicts that an observation
is in a positive class when at least one of these rules is satisfied. In contrast, the observation belongs to the negative
class if none of the rules apply. This problem is also visually represented in Fig. 2 where the goal is to find a set of
rules for the positive class.

More formally, a set of rules is denoted as R. Checking if one of the rules within R applies for a x within a dataset
{xn, yn} n = 1..N where yn ∈ 0, 1 and x ∈ V (as it is in our case a node of interest) can be performed by the general
R(.) function. Let r represent a rule and r(.) a corresponding Boolean function:

r(.) : V → {0, 1}.

r(x) thereby identifies if x satisfies the rule r. Checking if this applies for the whole rule set can simply defined by:

R(x) =
{

1 ∃r ∈ R, r(x) = 1.

0 otherwise.

The approach described by Wang et al. optimises the search for these rule sets by relying on Bayesian analysis. In
a first phase, candidate rules are generated using a random forest approach. Instead of using the created classifier,
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i n p u t : INK 2D m a t r i x I , S u p p o r t t h r e s h o l d T
o u t p u t : f r e q u e n t i t e m s e t s fq

fq = {}
r e l _ x y = {}
f o r c i n I . columns :

r e l , o b j = c . s p l i t ( )
f o r n o i i n I [ c ] :

r e l _ x y [ r e l ] . add ( ( noi , o b j ) )

f o r r i n r e l _ x y :
i f l e n ( r e l _ x y [ r ] ) >T :

fq [ ( r , ) ] = l e n ( r e l _ x y [ r ] )

r e l _ x z y = {}
f o r r1 i n r e l _ x y :

f o r r2 i n r e l _ x y :
i f r 1 != r2 : / / p a t t e r n ( 1 0 , 12)

combined = i n t e r s e c t ( r e l _ x y [ r1 ] , r e l _ x y [ r2 ] )
e l s e : / / p a t t e r n ( 1 1 )

combined = i n t e r s e c t ( r e l _ x y [ r1 ] , i n v ( r e l _ x y [ r2 ] ) )
i f l e n ( combined ) >T :

fq [ ( r1 , r2 ) ] = l e n ( combined )

/ / p r ep p a t t e r n ( 1 3 )
r1_z = [ x [ 0 ] f o r x i n r e l _ x y [ r1 ] ]
r2_z = [ x [ 0 ] f o r x i n r e l _ x y [ r2 ] ]
r 1 _ r 2 _ z = i n t e r s e c t ( r1_z , r2_z )

p a i r s = s e t ( )
f o r p1 i n r e l _ x y [ r1 ] :

f o r p2 i n r e l _ x y [ r2 ] :
i f p1 [ 0 ] i n r 1 _ r 2 _ z and p2 [ 0 ] i n r 1 _ r 2 _ z :

p a i r s . add ( ( p1 [ 1 ] , p2 [ 1 ] ) )

r e l _ x z y [ ( r1 , r2 ) ] = p a i r s

/ / p r ep p a t t e r n ( 1 4 )
r1_z = [ x [ 1 ] f o r x i n r e l _ x y [ r1 ] ]
r2_z = [ x [ 1 ] f o r x i n r e l _ x y [ r2 ] ]
r 1 _ r 2 _ z = i n t e r s e c t ( r1_z , r2_z )

p a i r s = s e t ( )
f o r p1 i n r e l _ x y [ r1 ] :

f o r p2 i n r e l _ x y [ r2 ] :
i f p1 [ 1 ] i n r 1 _ r 2 _ z and p2 [ 1 ] i n r 1 _ r 2 _ z :

p a i r s . add ( ( p1 [ 0 ] , p2 [ 0 ] ) )

r e l _ x z y [ ( r1 , r2 ) ] = p a i r s

f o r comb i n r e l _ x z y :
f o r r3 i n r e l _ x y :

combined = i n t e r s e c t ( r e l _ x z y [ comb ] , r e l _ x y [ r3 ] )
i f l e n ( combined ) >T :

fq [ ( comb , r3 ) ] = l e n ( combined )

r e t u r n fq

Listing 1. INK task-agnostic mining pseudocode

Fig. 2. Illustration of a rule set. The area covered by any of the rule squares is classified as positive. Areas not covered by any rules are classified
as negative. The goal is to select those rule areas within the positive class but with as minimal areas outside this oval.
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the rules within the built decision trees are collected and provided in a set. In a second phase, the rules are divided
in different pools based upon their length. The length of a rule is defined upfront by the user. If the user sets the
maximum rule length to L, L pools will be created. In the third phase, a globally optimised rule set is learned by
considering both the accuracy and the interpretability of a model, while keeping computation simple. By controlling
the parameters of the Bayesian prior, rules are drawn and combined independently from the pools. Large models
are penalised. For the Bayesian Rule Set model, this results in a smaller number of rules. Since a small number of
rules must cover the positive class, each rule in this model must cover as many observations as possible. To enforce
this, a threshold on the number of examples satisfying the rule, more commonly known as the support of a rule, is
introduced. It is due to this threshold that a significant reduction of the rule set’s search space can be made. Due to
the anti-monotone property of the support metric, rules for which the support is initially too low will not be added
to their corresponding Pool.

The required input for this Bayesian rule set mining is a binary matrix, which fits with the proposed INK repre-
sentation of Section 3. This also means that this approach can’t work with numerical values such as floating points.
INK is accompanied with several extension modules to enrich this binary representation, such that it can resolve
these issues.

To train this model, INK will extract the neighbourhoods from two sets of nodes of interest, for a given depth
parameter. One set contains all the positive nodes, the other set contains all negative ones. For task-specific cases, it
is therefore required to specify these sets upfront. The labels for each node are stored in a different array. Optional
parameters, such as the support, maximum length of the concatenation and the maximum number of rules in the
rule set can be provided as input for the algorithm. A more formal algorithm is provided in pseudocode within
Listing 2. Here we show the different aspects of rule set candidate generation and how 4 different actions influence
the different rule candidate set. More information about the full implementation of this Bayesian Rule Set approach
can be found in the original paper of Wang et al.

The output of the Bayesian rule set mining module contains both the rules learned on the given training dataset
to discriminate both positive and negative nodes of interest, as well the mechanism to evaluate the rules on the new
unseen nodes.

input : INK 2D m a t r i x I , L a b e l s Y, S u p p o r t t h r e s h o l d T
Max Length L

o u t p u t : r u l e s

r u l e s = [ ]
f o r l in range ( 0 , L ) :

f o r e s t = RandomForest ( max_depth= l )
f o r e s t . f i t ( I , Y)
f o r e in f o r e s t . e s t i m a t o r s :

r u l e s . e x t e n d ( e x t r a c t _ s i m p l e _ r u l e s ( e ) )

f o r r in r u l e s :
r u l e s , r u l e _ l e n = s c r e e n _ r u l e s ( r , T )

p o o l s = {}
f o r l in L :

f o r r u l e s wi th r u l e _ l e n == l :
p o o l s [ l ] . add ( r u l e s )

c a n d i d a t e _ s e t = random . s e l e c t ( p o o l s )
whi le i <1000:

s e l e c t _ a c t i o n = random . i n t ( 4 )
i f s e l e c t _ a c t i o n ==1:

#Add r u l e t o c a n d i d a t e s e t
i f s e l e c t _ a c t i o n ==2:

# Cut r u l e from c a n d i d a t e s e t
i f s e l e c t _ a c t i o n ==3:

# Cut & add r u l e from c a n d i d a t e s e t
i f s e l e c t _ a c t i o n ==4:

# c l e a n r u l e ( remove d u p l i c a t e s )

r u l e s = c a n d i d a t e _ s e t
re turn r u l e s

Listing 2. INK task-agnostic mining pseudocode
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SELECT ? p ? o ? d t
WHERE {

<ind > ? p ? o .
BIND ( d a t a t y p e ( ? o ) AS ? d t )

}

Listing 3. SPARQL query

5. Implementation

The INK representation described in Section 3 and the INK rule mining module of Section 4 are both implemented
in Python. To extract the neighbourhoods for a given set of nodes of interest, a component was implemented which
can query these relations iteratively. Two options are currently available inside this component: either a KG or a
SPARQL endpoint is given as input. When a KG file is given, RDFLib [15] will be used to load the graph in the
internal memory of the operating system. However, some large KGs can be hard to fit within the internal memory.
Therefore, INK can use RDFLib in combination with the Header, Dictionary Triples (HDT) file format [6]. HDT
compresses big RDF datasets while maintaining basic search operations, such as providing the neighbourhood
of a node of interest. Listing 3 shows the query used for both options to extract the neighbourhood nodes and
relation. The variable subject <ind> starts with the nodes of interest, but differs in each iteration given the graph.
The datatype of the object within this query is used to determine if queried objects can be used as subjects in the
next iteration (when the neighbourhood depth is not reached yet). The predicates and objects in each iteration are
stored as described in Section 3. Python’s internal multiprocessing library is used to speed up the extraction of the
neighbourhoods, as this operation can be performed over multiple processors given the amount of nodes of interest.

To transform the initial representation into a binary matrix, we used the Scikit-learn DictVectorizer [23] with the
sparse option set to true and specifying the data type to be Boolean. This is necessary when we want to deal with
large KGs and a large number of nodes of interest.

If positive and negative labels are defined together with these nodes of interest, the INK miner assumes a task-
specific mining operation must be executed. Code from Wang et al. [32] was adapted to operate on our representa-
tion.

When no target array, task-agnostic mining is executed on the neighbourhoods of all nodes of interest. The task-
agnostic code uses the MLxtend library [25] to produce the rules based on the calculated frequent itemsets, based
on the INK representation.

The whole INK package is made available on GitHub.1

6. Evaluation set-up & results

Both the task-specific and task-agnostic mining capabilities are evaluated on multiple benchmark datasets as
specified below. To extract the neighbourhoods of interest, all benchmark datasets were transformed to an HDT
format such that the SPARQL query of listing 3 can be executed performant. All evaluations were performed on an
Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz processor with 32 cores and 128 GB RAM.

6.1. Task-agnostic evaluation

To compare the task independent rule mining capacities, we made a comparison between INK and AMIE3 on five
benchmark datasets, which were already frequently used during various AMIE evaluations. Many competitors of
AMIE exist as defined [35] and most of them improve the efficiency of the rule mining process, providing metrics
to deal with the incompleteness of the KG and taking into account the open world assumption. This comparison
focuses more on the quantitative mining capabilities of AMIE. YAGO (2 and 2s) is a semantic knowledge base

1https://github.com/IBCNServices/INK

https://github.com/IBCNServices/INK
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Table 2

Comparison between INK and AMIE3 on 5 benchmark datasets. Both the average standard confidence measures and standard deviation (between
brackets) for the best 10, 25 and top N rules of either INK or AMIE3 are visualised. N is determined by the minimum number of rules of either
AMIE3 or INK. An indication of the total number of mined rules and the time it takes to run both INK and AMIE are provided

Confidence Top 10 Confidence Top 25 Confidence Top N # Rules Duration (min)

INK AMIE3 INK AMIE3 INK AMIE3 INK AMIE3 INK AMIE3

Yago2 0.553 (0.09) 0.507 (0.08) 0.421 (0.13) 0.353 (0.15) 0.12 (0.15) 0.086 (0.13) 294 166 4.30 0.50

Yago2s 0.927 (0.05) 0.898 (0.08) 0.787 (0.14) 0.707 (0.18) 0.31 (0.24) 0.221 (0.23) 754 405 52.65 241.0

DBpedia 2.0 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.329 (0.27) 0.238 (0.3) 16957 8963 676.5 235.0

DBpedia 3.8 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.162 (0.22) 0.126 (0.21) 16499 9383 644.4 85.0

Wikidata 1.0 (0.0) 1.0 (0.0) 0.998 (0.0) 0.998 (0.0) 0.287 (0.29) 0.223 (0.3) 3993 2121 482.9 233.0

derived from Wikipedia, WordNet and GeoNames [26]. The latest version, YAGO2s, contains 4.1M facts, where
the first YAGO version contained 0.9M facts. The DBpedia datasets (2.0 and 3.8) are a subset of the crowd-sourced
community effort to extract structured information from Wikipedia [1]. DBpedia 2.0 and DBpedia 3.8 contain 6.7M
and 11.02M facts respectively. The Wikidata dataset is a Wikidata dump from December 2014 and contains 8.4M
facts. Wikidata is a free, community-based knowledge base maintained by the Wikimedia Foundation with the goal
to provide the same information as Wikipedia but in a computer-readable format [31]. All 5 benchmark datasets are
made available by the Max Planck Institute.2

Both AMIE and INK prune rules based on both the default support level of 100 and a default max rule length
of 3. To mine rules of length 3, the INK neighbourhood’s depth parameter was set to 2. This could result in rules
containing atoms for both the head and body of length 2. When the support level of those atoms is above the provided
thresholds, they can both be combined into a rule which implicitly results in a rule with length of 4. To make a fair
quantitative comparison towards the mined AMIE rules of length 3, we filtered all those length 4 rules.

For all datasets, the average standard confidence of the top 10, top 25 and top N, with N the smallest number
of rules from either INK or AMIE are compared as shown in Table 2. The standard deviation is provided between
brackets. When, e.g., AMIE mines 166 rules and INK mines 294 rules, the Top N confidence will be the average of
the 166 rules with the highest confidence for both AMIE and INK. The total number of filtered rules and the time it
requires to mine these rules are also listed for both AMIE and INK.

6.2. Task-agnostic discussion

Compared to AMIE3, INK mined in all datasets more rules and most of these rules have also a high standard
confidence level. The larger number of rules are mainly due to the fact that INK is also capable of analysing head
atoms with more than 2 variables. While in previous works the perception raised that those rules could be neglected
as their confidence level should be extremely low, INK showed that some of these rules do occur quite frequently in
large datasets. An example of such a rule in DBpedia 3.8: ?a isCitizenOf ?b ⇒ ?a wasBornIn ?x ∧ ?x isLocatedIn ?b
(confidence: 0.27). In this case, the introduction of the variable ?x in the head of the rule allows for more flexibility
in capturing relationships between the entities involved. The rule suggests that if ?a is a citizen of ?b, then there
exists some place ?x where ?a was born, and that place ?x is located in ?b. By allowing the introduction of new
variables in the head, open rules can capture a wider range of associations and potentially discover more patterns
in the data. Besides more flexibility, these non-closed rules enable the discovery of implicit relationships, such as
the relationship between wasBornIn and isLocatedIn. As INK is not constrained to closed rules, it can extract more
general rules that capture broader associations in the data. The downside is that these non-closed rules introduce
additional complexity and require additional, mostly human-based, validation and interpretation. Post-processing
analyses showed that all rules that were mined with AMIE were also available in the rules generated by INK. All
additional INK rules were these non-closed or open rules, as the head atoms contain a variable inside the rule that
didn’t occur in its body (such as the ?x in the example above). These rules can be of interest to either further
summarise or investigate certain parts of our KG.

2https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie
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Table 3

Detailed overview of the embedding size and the time needed to create the INK
representation for the task-agnostic rule mining datasets

INK creation time (min) #noi #columns

Yago2 0.78 470483 607102

Yago2s 12.83 1653880 1057539

DBpedia 2.0 6.71 1376877 6946046

DBpedia 3.8 11.38 2198871 5647489

Wikidata 12.93 2990435 2983585

Table 4

Overview of the datasets that are part of SML-Bench with their number of axioms (#A), classes (#C), object properties (#O), datatype properties
(#D) and their description

Dataset #A #C #O #D N.o.i. pos/neg Prediction of

Carcino 74,566 142 4 15 298 1.19 Carcinogenic drugs

Hepatitis 73,114 14 5 12 500 0.70 Hepatitis type based on patient data

Lympho 2,187 53 0 0 148 1.21 Diagnosis class based on lymphography patient data

Mammo 6,808 19 3 2 961 0.86 Breast cancer severity

Muta 62,066 86 5 6 42 0.44 Mutagenicity of chemical compounds

NCTRER 92,861 37 9 50 224 1.41 Molecule’s oestrogen receptor binding activity

Prem. League 214,566 10 14 202 81 0.97 Goal keepers based on player statistics

Pyrimidine 2,006 1 0 27 40 1.0 Inhibition activity of pyrimidines and the DHFR enzyme

Suramin 13,506 46 3 1 17 0.70 Suramin analogues for cancer treatment

INK does have some disadvantages compared to AMIE3. INK consumes a large amount of RAM in order to build
the internal representation and to generate the frequent itemsets. The time needed to create those rules is, except for
the Yago2s dataset, substantially higher compared to INK. Further analyses, represented in Table 3, shows that the
initial INK representation can be built quite fast and INK requires more time to actually mine all the relevant rules.

Another advantage of AMIE3 is that it is designed to mine rules iteratively and therefore uses less RAM to obtain
rules. INK’s configuration settings are currently also limited as AMIE can also take into account constants, PCA
confidence, removals of perfect rules, etc. INK does however have the capability to mine long rules (rules with a
large amount of atoms) without expanding the frequent itemsets.

6.3. Task-specific evaluation

To compare the INK miner in the context of task-specific mining, we used the Structured Machine Learning
benchmark framework (SML-Bench) [33]. This framework enables some specific tasks where structured hypotheses
are learned from data with a rich internal structure or knowledge representation, usually in the form of one or more
relations. The systems within this framework might differ in the knowledge representation languages they support
and the programming languages they are written in. Many different systems can be incorporated within this SML-
Bench framework but due to the nature of this paper regarding rule mining within KG, we selected those techniques
from the related work in Section 2 that can be applied on KGs (more specifically, those techniques that take an OWL
or triple file as input). INK was incorporated in this framework and a comparison was made between the top-down
approach DL-learner and a bottom-up evolutionary approach EvoLearner. The code to incorporate INK within the
SML-Bench framework is provided online3 such that INK can also be used in future evaluations.

In total, nine different datasets are available in the SML-Bench 3.0 version, all containing an OWL knowledge
base and a single task based on two sets of files indicating the positive and negative nodes of interest. An overview
of all these different datasets is provided in Table 4. All these datasets vary in terms of number of axioms, number

3https://github.com/IBCNServices/INK

https://github.com/IBCNServices/INK
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of available classes, number of object and data properties. They all have a different amount of nodes of interest and
can be either more or less balanced towards one class (either positive or negative).

The default SML-Bench configuration options were used within all our evaluations: 10-fold cross validation was
used with a maximum execution time of 15 minutes for each fold. DL-learner version 1.5 was used with the SML-
Bench default parameters for each learning task: For all tests, the CELEO algorithm was used to traverse the search
space guided by the Pellet reasoner. By using these settings, DL-Learner will keep searching for relevant rules
until the time threshold has passed. The optimised parameters provided by the original authors of the EvoLearner
algorithm were used to evaluate their system. INK was initialised with a maximum neighbourhood depth of 3 such
that the neighbourhoods of the neighbours from our start nodes were taken into account during the rule generation
phase. The numerical levels and relation count extension modules described in Section 3.3 were also enabled. The
OWL datasets were transformed into the HDT format, which was used as input to generate the INK representation.
Four different metrics are reported in Table 5:

– Accuracy score: The number of correct predictions divided by all predictions. All learning tasks are binary
classification problems, but can be unbalanced. We report the average accuracy score between 0 and 1 together
with the standard deviation across the 10 folds.

– F1 score: The harmonic mean of the precision and recall: F1 = 2 ∗ precision∗recall
precision+recall . Again, the average and

standard deviation over 10 folds are reported.
– Matthews Correlation Coefficient (MCC): This metric takes into account the true and false positives and

negatives and is generally regarded as a balanced measure which can be used even if the classes are of very dif-
ferent sizes: MCC = TP∗TN−FP∗FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
. MCC returns a value between −1 and +1: A coefficient

of +1 represents a perfect prediction, 0 no better than random prediction and −1 indicates total disagreement
between prediction and observation. Again, averages and standard deviations over 10 folds are reported.

– Duration: The time needed to find the most descriptive rule, based on the nine out of 10-folds + the time to
evaluate this rule on one holdout fold. Averages and standard deviations over 10 folds are reported in seconds.

The results for each learning task are provided in Table 5. The task-specific rule mining results showed that INK
is highly competitive with DL-Learner and is competitive in terms of time and predictive performance compared to
EvoLearner.

6.4. Task-specific discussion

The INK miner holds both a predictive and time advantage compared to DL-Learning in the context of task-
specific rule mining, given a large enough positive and negative set of instances. DL-Learner always searches for
better, more descriptive and generic rules when enough time is left. This behaviour is also stated in the obtained
results of Table 5. Here, nevertheless the used dataset, the duration of the DL-Learner training and evaluation phase
is almost always the same. The difference in time across multiple datasets is due to the loading phase of the dataset
itself before the actual rule mining starts. DL-Learner outputs the specified rules whenever they appear. In this
perspective, it is possible to run DL-Learner in a forever state and receive updates of new rules whenever they
become available. In a ML context, this might not be a desired behaviour as results and prediction should be final.
In critical domains, the fact that an algorithm finalises within a certain amount of time is important to ensure the
feasibility of the system. In that perspective, having a finalising process like INK and EvoLearner is of uttermost
interest. The maximum execution time is a parameter within the DL-Learner configuration file. INK does not have
such a timing constraint, but is constrained in rule mining’s search space by limiting the neighbourhood’s depth.
As shown in the performed experiments, high quality rules can already be found when limiting the neighbourhood
depth to three.

EvoLearner provides similar and for some cases even better results in terms of predictive performance compared
to INK. The different parameters within EvoLearner were already optimised upfront during this evaluation setting.
In contrast, INK learns the ideal set of rules within each fold and verifies this trained set towards unseen instances.
The fact that INK is capable of doing this in a very short amount of time is again relevant in a broader ML context.

More in depth, within the Carcinogenesis dataset, the accuracy measures for both INK and DL-Learner are similar.
DL-Learner, however, optimises its rules to benefit the instances of the majority class. These cases are reflected in
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Table 5

SML-Benchmark comparison between INK, DL-Learner (abbreviated by DL) and EvoLearner (abbreviated by Evo) for 4 metrics on 9 benchmark datasets. The results show both the average
and standard deviation (between brackets) for a 10-fold cross validation evaluation

Accuracy (std) F1 (std) MCC (std) Duration (std)

INK DL Evo INK DL Evo INK DL Evo INK DL Evo

Carcino 0.56 (0.12) 0.54 (0.02) 0.66 (0.17) 0.47 (0.13) 0.70 (0.01) 0.72 (0.12) 0.18 (0.28) 0.00 (0.09) 0.31 (0.38) 191.4 (23.31) 888.3 (0.46) 146.7 (33.08)

Hepatitis 0.78 (0.03) 0.49 (0.06) 0.85 (0.04) 0.73 (0.07) 0.61 (0.03) 0.83 (0.05) 0.56 (0.09) 0.21 (0.07) 0.72 (0.06) 55.4 (1.28) 879.0 (0.0) 86.7 (12.61)

Lympho 0.80 (0.09) 0.82 (0.1) 0.80 (0.13) 0.82 (0.07) 0.86 (0.07) 0.84 (0.1) 0.64 (0.15) 0.67 (0.18) 0.62 (0.26) 33.3 (1.27) 873.7 (0.46) 45.7 (10.88)

Mammo 0.83 (0.04) 0.49 (0.02) 0.83 (0.04) 0.80 (0.05) 0.64 (0.01) 0.82 (0.05) 0.66 (0.07) 0.12 (0.1) 0.67 (0.08) 85.8 (2.52) 874.1 (0.3) 67.4 (3.04)

mutagenesis 0.98 (0.06) 0.94 (0.13) 1.0 (0.0) 0.97 (0.1) 0.93 (0.13) 1.0 (0.0) 0.96 (0.12) 0.9 (0.2) 1.0 (0.0) 31.4 (0.8) 883.0 (0.0) 53.6 (0.66)

NCTRER 0.99 (0.2) 0.59 (0.04) 1.0 (0.0) 0.99 (0.02) 0.73 (0.02) 1.0 (0.0) 0.98 (0.04) 0.01 (0.12) 1.0 (0.0) 201.9 (3.14) 885.2 (0.87) 242.0 (0.45)

Prem. League 0.99 (0.04) DNF 1.0 (0.0) 0.99 (0.04) DNF 1.0 (0.0) 0.98 (0.07) DNF 1.0 (0.0) 167.9 (2.7)) DNF 169.0 (0.77)

Pyrimidine 0.95 (0.1) 0.82 (0.16) 0.88 (0.17) 0.93 (0.13) 0.84 (0.14) 0.89 (0.14) 0.92 (0.17) 0.69 (0.3) 0.77 (0.32) 28.0 (0.89) 874.0 (0.0) 38.2 (1.72)

Suramin 0.65 (0.32) 0.71 (0.25) 0.65 (0.32) 0.33 (0.42) 0.71 (0.33) 0.27 (0.42) 0.20 (0.4) 0.43 (0.49) 0.20 (0.4) 26.7 (0.9) 875.0 (0.0) 42.1 (1.22)



B. Steenwinckel et al. / Instance-based neighbouring by using knowledge 1385

a MCC score close to zero, which indicates that the used rules hold the same predictive performance as a random
classifier. MCC score is a good metric to show the difference between the available task-specific rule miners. It is a
metric that takes into account the number of false negatives. DL-Learner focuses on the positive examples and will
optimise towards true positives and try to reduce the number of false positives. This is reflected in the accuracy and
F1 scores but they give a misleading result when the dataset is imbalanced.

For both the rules of the Carcinogenesis and NCTRER datasets, DL-Learner obtained such a MCC score of zero.
INK and Evolearner obtain a positive MCC score for these datasets. These differences in MCC score also illustrate
the difference in learning mechanisms. INK and EvoLearner are bottom-up learners, starting from the available
instances. DL-Learner is a top-down approach and starts from the available knowledge inside the KG and uses
mainly the positive class to verify the mined generic rules.

In contrast, for the Lymphography and Suramin dataset, INK’s MCC scores are lower than the MCC scores of DL-
Learner. The explanation is two-fold. First, DL-Learner introduces negation within its rules. By explicitly stating
within a rule, a concept must not be available, DL-Learner is able to obtain a predictive advantage. DL-Learner has
a competitive advantage on the Suramin dataset based on its top-down reasoning capabilities. Second, some of the
benchmark datasets have a too small set of nodes of interest for INK to be operational. While DL-Learner is able to
correctly define generic rules for the Suramin dataset, INK’s strengths lie within larger datasets, with more nodes of
interest to mine rules from.

For the Prem. League dataset, DL-Learner was unable to finish the training procedure within the time limit of 15
minutes. In contrast, the most interesting rules generated from the INK and EvoLearner miner were available within
less than 3 minutes.

The INK and EvoLearner rules for the Hepatitis, Mammographic, Mutagenesis and Pyrimidine datasets extend
in some sort the obtained DL-Learner rules. In most of these cases INK finds additional information within the
neighbourhood and adds one or two extra rule atoms or sub rules to achieve a better predictive performance. INK
and EvoLearner are also able to better define the numerical properties within a rule. DL-Learner tries to minimise
the full integer or floating point range when mining such rules, while INK and EvoLearner use the available data
within the neighbourhood to already limit the ranges upfront in the rule mining process.

7. Remarks

Based on the results provided in Section 6, the INK representation and defined INK miners show for both task-
specific and task-agnostics rule mining interesting results.

The task-agnostic approach showed the benefit of using the concatenation of relationships to build frequent item-
sets. However, this approach had some drawbacks related to time and memory consumption. Increasing the number
of facts within the dataset results in more time needed to mine the rules. This trend is noticed for both INK and
AMIE as they both use these amounts of facts to determine the support and confidence levels. INK does generate
additional overhead by the implicitly mined rules of length 4 when only rules of length 3 are requested. The need
for additional filtering operations and the fact that INK is written in Python while AMIE is purely Java clarifies
the differences in performance. AMIE’s Java implementation has also many optimizations under the hood, which
lead to faster rule mining generation operations in those KGs that might have fewer predicates compared to the
number of subjects and objects. INK can currently not take advantage of some of these optimizations as the binary
representation of INK and subsequent rule mining is performed depth-first over the whole KG up to the specified
depth. This depth-first approach is a relevant choice when dealing with tasks like node classification, where the
INK representation was originally designed for, as it can capture the relevant aspects of the neighbourhood until a
certain depth fast. Optimizing the implementation of the creation of the INK representation to a breadth-first ap-
proach would already resolve some of the performance drawbacks as INK will then be able to 1) show preliminary
results faster by returning the mined rules after every depth, and 2) use the results at lower depths to prune the more
complex rules that are already below the set support level. This is possible due to the fact that adding additional
conditions to a rule will never increase its support. This last optimization can reduce the large number of columns
that needs to be checked.
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For both task-specific and task-agnostic mining, an INK representation must be created. As already mentioned
before, this comes at a certain cost in terms of memory consumption and as visualised in Table 3. These results
are mainly dependent on the amount of nodes within the dataset and the provided INK depth parameter. The time
to create this representation is, however, neglectable in all evaluated task-specific evaluations as the datasets are
very small. Even within the task-agnostic evaluations, the creation of our INK representation only covers a small
portion of the time required to mine confident rules. To resolve memory issues, it might be a good idea to reduce the
number of string variables in INK’s dictionary structure. Every string takes at least 40 bytes in Python. Hashing both
the predicates and object results of a query and keeping these mappings of the hash values with the original string
on disk could already resolve these issues. This on-disk dictionary is smaller than our INK dictionary because the
nodes of interest can have similar relationships, resulting in similar paths and thus similar dictionary entries. Another
solution would be to use HDT identifiers instead. HDT builds such a hash index by default to make this structure
queryable for systems with a lower amount of memory. The triples in our KG are defined by 3 integer hashes in
the HDT structure. They thus inherently map the URIs to an integer index that represents the hash Transforming
these integer indices back to their original string representation comes with an additional performance cost, but this
cost is neglectable if it can avoid that INK needs to store parts of its internal representation to disk during the rule
generation phase (as was the case in our experiments).

The task-specific approach indicates that training and searching for a set of rules and filtering them towards the
task that needs to be performed is an interesting approach. INK showed that many of the top-down drawbacks can
be resolved in this perspective and that it can compete with similar top-down approaches such as EvoLearner. The
fact that INK can mine these rules in a finite time, using an interpretable ML rule set over a KG, is relevant for
a large number of application domains. DL-Learner still has the advantage that it uses a reasoner under the hood.
This reasoner enables DL-Learner to traverse a search space which uses inferred knowledge, something which is
not inherently possible with INK and EvoLearner. The SML-bench results do not show this lack of reasoner. Only
in the Suramin dataset, which has a very low amount of instantiated data samples, DL-Learner shows that it is able
to deliver a rule which is more generically applicable compared to INK and EvoLearner.

As discussed before, the evaluation performed in this work was mainly focused on the quantitative capabilities of
the rule miners in a closed-world setting. Closed-world evaluations use the fact that anything not explicitly stated in
the knowledge graph is false. This here leads to more straightforward rules as they do not need to handle uncertain
or incomplete information. The rule mining techniques used on top of the INK representation originate from the
ML domain and inherently consider the KG as complete. AMIE and DL-Learner are designed to deal with open-
world cases and incomplete KGs. Future research is needed to design new rule mining algorithms based on the INK
representation that also take into account the incompleteness of the KG, to allow and evaluate the open world cases.

8. Conclusion

In this work, we addressed the current problems of both task-specific and task-agnostic semantic rule mining and
the need for one technique which can perform both. The main contribution to fulfil this need is the development
of an internal representation benefiting both techniques. INK is such a representation, where the neighbourhood of
nodes in a KG are represented as a binary matrix. Combining this INK representation with a Bayesian Rule miner
resulted in outperforming the current state of the art top-down methods to perform structured machine learning, both
in prediction performance and in time. The same representation can be used to mine frequent itemsets of nodes of
interest and build general rules filtered by confidence and a given support level. Compared with the filtered results
of AMIE, more confident and new rules were mined by INK for several benchmark datasets.

The INK representation resembles a binary vector matrix, and can be used in several other situations going beyond
the general purpose of rule mining. Future work will try to resolve some of the stated remarks regarding memory
and the time constraint for large KGs. Another interesting research path is the combination of INK with a reasoner
such as Fact++ [29] or by using reasoning on query mechanism to use inferred knowledge. Beyond the scope of
this work, future work will adapt INK to mine rules with both constants or a wider range scalar data in combination
with a temporal aspect. This would enable INK to mine temporal rules, originated from a sensor or more broader,
Internet of Things (IoT) streaming data domain.
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