
CORRECTED P
ROOF

Semantic Web -1 (2023) 1–29 1
DOI 10.3233/SW-233474
IOS Press

Differential privacy and SPARQL
Carlos Buil-Aranda a,*, Jorge Lobo b and Federico Olmedo c

a Departamento de Informática, Universidad Técnica Federico Santa María and IMFD Chile, Avda España 1680,
Valparaíso, Chile
E-mail: cbuil@inf.utfsm.cl
b ICREA and Universitat Pompeu Fabra, c/Roc Boronat 148, Barcelona, Spain
E-mail: jorge.lobo@upf.edu
c Departamento de Ciencias de la Computación, Universidad de Chile and IMFD, Beauchef 851, Santiago, Chile
E-mail: folmedo@dcc.uchile.cl

Editors: Michel Dumontier, Maastricht University, The Netherlands; Sabrina Kirrane, Vienna University of Economics and Business, Austria;
Oshani Seneviratne, Rensselaer Polytechnic Institute, USA
Solicited reviews: Olaf Hartig, Linkoping University, Sweden; Simon Steyskal, Siemens AG Austria, Austria; One anonymous reviewer

Abstract. Differential privacy is a framework that provides formal tools to develop algorithms to access databases and answer
statistical queries with quantifiable accuracy and privacy guarantees. The notions of differential privacy are defined independently
of the data model and the query language at steak. Most differential privacy results have been obtained on aggregation queries
such as counting or finding maximum or average values, and on grouping queries over aggregations such as the creation of
histograms. So far, the data model used by the framework research has typically been the relational model and the query language
SQL. However, effective realizations of differential privacy for SQL queries that required joins had been limited. This has
imposed severe restrictions on applying differential privacy in RDF knowledge graphs and SPARQL queries. By the simple
nature of RDF data, most useful queries accessing RDF graphs will require intensive use of joins. Recently, new differential
privacy techniques have been developed that can be applied to many types of joins in SQL with reasonable results. This opened
the question of whether these new results carry over to RDF and SPARQL. In this paper we provide a positive answer to this
question by presenting an algorithm that can answer counting queries over a large class of SPARQL queries that guarantees
differential privacy, if the RDF graph is accompanied with semantic information about its structure. We have implemented our
algorithm and conducted several experiments, showing the feasibility of our approach for large graph databases. Our aim has
been to present an approach that can be used as a stepping stone towards extensions and other realizations of differential privacy
for SPARQL and RDF.

Keywords: Differential privacy, SPARQL

1. Introduction

As many social norms, privacy, or the right to privacy, is an evolving term that is invoked in many contexts as
eloquently described by Louis Menand in [25]: “Privacy is associated with liberty, but it is also associated with
privilege (private roads and private sales), with confidentiality (private conversations), with nonconformity and
dissent, with shame and embarrassment, with the deviant and the taboo (...), and with subterfuge and concealment”.

*Corresponding author. E-mail: cbuil@inf.utfsm.cl.

1570-0844 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:cbuil@inf.utfsm.cl
mailto:jorge.lobo@upf.edu
mailto:folmedo@dcc.uchile.cl
mailto:cbuil@inf.utfsm.cl
https://creativecommons.org/licenses/by/4.0/

CORRECTED P
ROOF

2 C. Buil-Aranda et al. / Differential privacy and SPARQL

In order to get some formal underpinning of privacy in the context of electronic data collection and publishing,
Li et al [22] have looked at privacy breaches, studied their general characteristics, and concluded, that electronic
privacy breaches always ended with giving an attacker the ability to identify (using public data) whether an indi-
vidual is member of a set or class that had been intended to be anonymous (e.g., the class of individuals with high
cholesterol). Hence, they define preservation of privacy as avoiding privacy breaches in the sense of not disclosing
set memberships of individuals.

For the public good, such as the advance of public health, or the fair distribution of government resources, such
data is frequently made public. There are also situations in which governmental and commercial organizations
collect and analyze data to improve or provide new services. Especially in such cases, society expects a certain
level of privacy on the way these organizations use the data. Publishing data with perfect privacy means that no
assumption can be made about the prior knowledge an attacker may have about the supposedly anonymous set.
Under this assumption, there would be little utility in published data if perfect privacy is expected [11,22]. Therefore,
the research community has looked at weaker definitions of “acceptable” privacy. Useful concepts like k-anonymity
[33], l-diversity [23] and t-closeness [21] were developed but they were shown to have weak privacy guarantees [10].

In spite of its limitations [12], but because of its formal properties, a privacy notion that has gained a lot of ac-
ceptance is differential privacy. We will present precise definitions later in the paper, but informally, differential
privacy tries to hide the identity of individuals that are members of a particular class, while still providing quantifi-
able utility guarantees to the data published about the class. The basic principle is simple. Given a universe D of
all possible datasets and a query f : D → R that can be applied to a dataset D in D and results in a value of an
abstract domain R, f is said to be differentially private if it yields indistinguishable results when applied to similar
datasets. Differential privacy uses randomized algorithms to answer queries, typically by adding noise to the true
query results. This noise is calibrated according to query sensitivity – how much the query result varies between
similar datasets –, turning the task of query sensitivity computation essential for the endeavor of differential privacy.
In practice, calculating the exact sensitivity of a query is not trivial and approximations are used instead [3].

Even though the notion of differential privacy is in principle independent of the data model and query language
at steak, so far most practical, automated implementations over well-established languages have been in the context
of relational databases, over SQL, and have been restricted to aggregation queries or grouping. Aggregations are
queries such as counting, finding maximum or average values over a certain data subset; grouping is the creation of
histograms based on aggregations.

Furthermore, to allow for reasonable approximations of sensitivity, the support of these implementations for
queries with joins has been rather limited [24]. It was only in 2018, when Johnson et al. [19] introduced a new
approach to approximate sensitivity that can be applied to a wider class of SQL joins, with reasonable results.

In the past decades, graph data models have enjoyed a growing adoption in comparison to the more traditional
relational model. One such notable example is the RDF data standard, queried over by the SPARQL language,
which have become extremely popular, in particular, for their role in the development of the Semantic Web. By the
simple nature of RDF, it can be stored using binary relations [6] and most interesting queries will require operations
equivalent to joins. This raises the question whether Johnson et al.’s approach [19] can also be applied to RDF and
SPARQL.

In this paper we provide a positive answer to this question by presenting an algorithm that can answer counting
queries over a large class of SPARQL queries that guarantees differential privacy. This result has been made possible
by introducing the notion of a differential privacy schema that allows redefining Johnson et al.’s sensitivity approx-
imation of SQL queries in the appropriate terms for answering SPARQL queries. A differential privacy schema
groups sets of RDF tuples into sub-graphs that can be then used as single units for privacy protection. Examples
show that this type of schema naturally arises from the semantics of the data stored in the tuples, and it should not
be difficult for a database administrator to define.

We demonstrate the applicability of our approach by implementing a differential privacy query engine that uses
the approximation to answer counting and grouping SPARQL queries, and evaluate the implementation running
simulations using the Wikidata knowledge base [34].

The rest of the paper is organized as follows: in Section 2 we introduce the readers to the fundamental concepts
of differential privacy. In Section 3, we present the core concepts of SPARQL used within the paper, including
the notion of differential privacy schema. In Section 5 we prove the correctness of our proposed approximation

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 3

to sensitivity and in Section 6 we evaluate the effectiveness of our proposed approximation in an implementation
that we apply to both synthetic and real world datasets and queries. We present related work in Section 7, and we
conclude the paper in Section 8.

2. Preliminaries about differential privacy

We now describe the framework of differential privacy, the problem that arises when applying differential privacy
to SQL queries with general joins and how it has been addressed by the scientific community.

2.1. Definition

Intuitively, a randomized algorithm [26] is differentially private if it behaves similarly on similar input datasets.
To formalize this intuition, the framework of differential privacy relies on a notion of distance between datasets.
We model datasets as a multiset of tuples and we say that two datasets are k-far apart if one can be obtained from
the other by changing the value of k tuples. Formally, this corresponds to (a mild generalization of) the notion of
distance used for defining bounded differential privacy [20], which quantifies (only) over pairs of datasets of the
same size. In the remainder, we let D be the set of all possible datasets, and use d(D,D′) = k to denote that
D,D′ ∈ D are k-far apart. In particular, two datasets D,D′ ∈ D that are 1-far apart are called neighbors, written
D ∼ D′.

Definition 1. Let ε, δ � 0. A randomized algorithm A is (ε, δ)-differentially private if for every pair of neighbor
datasets D,D′ ∈ D and every set S ⊆ range(A),

Pr
[
A(D) ∈ S

]
� eεPr

[
A

(
D′) ∈ S

] + δ.

This inequality establishes a quantitative closeness condition between Pr[A(D) ∈ S] and Pr[A(D′) ∈ S], the
probabilities that on inputs D and D′, the outcome of A lies within S. The smaller the ε and δ, the closer these two
probabilities are, and therefore, the less likely that an adversary can tell D and D′ apart. In other words, parameters
ε and δ quantify the privacy guarantees of the randomized algorithm.

Multi-table datasets Our notions of dataset and distance between datasets can be extended to collections of datasets
as follows: A dataset formed by multiple sets D1, . . . , Dn will contain (tagged) data points belonging to D1, . . . , Dn

and the distance between two such datasets D, D′ will reduce to d(D,D′) = ∑n
i=1 d(πi(D), πi(D

′)), πi(D)

representing the subset of data points from D belonging to Di . In the context of relational databases, the Di’s
correspond to relational tables.

2.2. Realization via global sensibility

Establishing differential privacy for numeric queries of limited sensitivity is relatively simple. The Laplacian
mechanism [9] says that we can obtain a differentially private version of query f : D → R by simply perturbing
its output: On input D, we return f (D) plus some noise sampled from a Laplacian distribution. The noise must
be calibrated according to the global sensitivity GSf of f , which measures its maximum variation upon neighbor
datasets; formally, GSf = maxD,D′|D∼D′ |f (D) − f (D′)|.
Theorem 1. Given a numeric query f : D → R of global sensitivity GSf , the randomized algorithm

A(D) = f (D) + Lap

(
GSf

ε

)

is an (ε, 0)-differentially private version of f .

CORRECTED P
ROOF

4 C. Buil-Aranda et al. / Differential privacy and SPARQL

Here, Lap(λ) represents a sample from the Laplacian distribution with parameter λ, a symmetric distribution with
probability density function pdf (x) = 1

2λ
e−|x|/λ, mean 0 and variance 2λ2. Parameter λ measures how concentrated

the mass of the distribution is around its mean 0: The smaller the λ, the less noise we add to the true query result and
therefore, the more faithful the mechanism becomes. In the realm of differential privacy, this “faithfulness” property
is referred to as the mechanism utility [10]. An important point here is that utility and privacy are always conflicting
requirements: adding more noise results in more private and – at the same time – less useful mechanisms.

In practice, when implementing the Laplacian mechanism we approximate the global sensibility of queries by
exploiting their structures: Numeric queries are typically constructed by first transforming the original dataset us-
ing some standard transformers and by returning as final result some aggregation on the obtained dataset. For
example, we join two tables, filter the result (dataset transformations) and return the count (aggregation) of the
obtained table. The global sensitivity of such a query can be estimated from the so-called stability properties
of the involved transformers. Intuitively, a stable transformer can increase the distance between nearby datasets
at most by a multiplicative factor. Formally, we call a dataset transformer T : D → D α-globally-stable if
d(T (D), T (D′)) � αd(D,D′) for every D,D′ ∈ D. Transformers with bounded global stability yield bounded
global sensitivities: GSf ◦T � αGSf whenever T is α-globally-stable.

Conversely, the use of transformers with unbounded stability might result in queries of unbounded sensitivity.
A prominent example of a transformer exhibiting this problem is join. Assume we join two tables, say t1 and t2,
by matching a pair of their attributes. A modification in a mere tuple from t1 may result in the addition and/or
deletion of an unpredictable number of tuples in the result of the join, leaving elementary queries such as counting
the number of tuples in a join already out of the scope of the Laplacian mechanism. The applicability of differential
privacy approaches based on query global sensitivity is thus rather limited.

2.3. Realization via local sensibility

To handle queries that involve transformers of unbounded stability, such as joins, we require the use of more
advanced techniques. The Laplacian mechanism calibrates noise according to the query, overlooking the fact that
queries are done on concrete datasets, hence the employed noise could be potentially customized for each dataset.
Nissim et al. show how to exploit this idea of instance-based noise [27]. Their approach relies on the notion of local
sensitivity.

Definition 2. The local sensitivity LSf (D) of a numeric query f : D → R on dataset D ∈ D is defined as

LSf (D) = max
D′|d(D,D′)=1

∣∣f (D) − f
(
D′)∣∣.

The local sensitivity LS(k)
f (D) at distance k ∈ N0 of D is defined as

LS(k)
f (D) = max

D′|d(D,D′)=k
LSf

(
D′).

Observe that LS(0)
f (D) coincides with LSf (D). Similar to global stability, a dataset transformer T : D → D, is

α-local-stable for a dataset D if d(T (D), T (D′)) � αd(D,D′) for every D′ ∈ D. And as with global sensitivity,
LSf ◦T (D) � αLSf (D) whenever T is α-local-stable for D.

For answering a query f on dataset D, we cannot simply use noise calibrated according to LSf (D) because the
noise level itself may reveal information about D [19]. Instead, we should use an approximation of LSf that is
insensitive to small variations of its input dataset. This is captured by the notion of smooth upper bound.

Definition 3. A function Uf : D → R�0 is called a β-smooth upper bound of the local sensitivity LSf : D → R�0
of query f : D → R if it satisfies the following requirements:

1. Uf (D) � LSf (D) for all dataset D, and
2. Uf (D) � eβUf (D′) for all neighbor datasets D and D′.

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 5

We can readily achieve differential privacy by adding noise calibrated according to a smooth upper bound of the
query local sensitivity [28, Corollary 2.4].

Theorem 2. Let f : D → R be a numeric query and let Uf : D → R�0 be a β-smooth upper bound of its local
sensitivity LSf . Moreover, let δ ∈ (0, 1) and let β � ε

2 ln(2/δ)
. Then, the randomized algorithm

A(D) = f (D) + Lap

(
2Uf (D)

ε

)

is an (ε, δ)-differentially private version of f .

The benefits of this mechanism are twofold. On the one hand, it allows handling queries that fail to have a
bounded global sensitivity, but do have a bounded local sensitivity. These include e.g. the query we considered
earlier, consisting of the count of the join between two tables. On the other hand, it does not require computing the
local sensitivity of the queries itself, but only a smooth upper bound thereof. This is key for its practical adoption
since calculating the local sensitivity of queries is computationally prohibitive: As observed by Johnson et al. [19],
“it requires running the query on every possible neighbor of the original dataset”.

To apply the mechanism from Theorem 2, we must provide a smooth upper bound for the local sensitivity of
queries. We can construct the smooth upper bound using approximations for the local sensitivity at fixed distances.

Lemma 1. Let f : D → R be a numeric query and assume that U (k)
f is a pointwise upper bound of the local

sensitivity LS(k)
f of f at distance k, that is,

U (k)
f (D) � LS(k)

f (D) for all D ∈ D.

Then,

Uf (D) = max
0�k�size(D)

e−βkU (k)
f (D)

is a β-smooth upper bound of the local sensitivity LSf (D) of f on D, where size(D) denotes the number of rows
(in all the tables) in D.

The goal of Section 5 is to apply the differential privacy mechanism from Theorem 2 to SPARQL counting
queries. To do so, we will use Lemma 1 to derive smooth upper bounds of the local sensitivity of queries. In turn,
this requires constructing upper bounds for the local sensitivity of queries at fixed distances, for which we will
leverage local stability properties of SPARQL dataset transformers.

3. Toward differential privacy over RDF graphs

In this section we examine the semantic information that is necessary considering over RDF graphs, in order to
answer counting queries in a differentially private manner. This comprises a data schema and upper bounds on the
predicate multiplicities.

3.1. Privacy schema

3.1.1. Motivation
As mentioned earlier, the goal of differential privacy is to protect the (possibly sensible) contribution of each

individual within a dataset when publicly releasing aggregate information about the dataset – in our case, the result
of counting queries. In the relational model, individuals are typically identified with rows of the database which
significantly simplifies all the technical development. For instance, if the database at stake consists of a single table,
we consider two instances of the database neighboring, i.e. differing in the contribution of a single individual, if

CORRECTED P
ROOF

6 C. Buil-Aranda et al. / Differential privacy and SPARQL

Fig. 1. RDF graph G containing information about three types of entities: people, companies and cites.

they differ in a single row. On the other hand, if the database consists of multiple tables, we consider two database
instances neighboring if they differ in a row of some of the tables (see paragraph Multi-table datasets in Section 2).
The underlying assumption behind this is that each table groups attributes of individuals in a particular entity type,
e.g. people, political parties or companies, or part thereof, whose identities must be protected.

To be able to apply differential privacy to a dataset in the form of an RDF graph, we must thus begin by identifying
the different types of entities present in the graph, and the set of individuals in each type. Consider, for instance,
the RDF graph G in Fig. 1, which will be the running example of our presentation. This graph contains information
about three types of entities: people, companies and cites. In particular, it contains information about two people
(depicted in), two companies (depicted in) and two cities (depicted in). Said otherwise, there are two
individuals of each entity type, adding up to six individuals in all. When querying the graph, we will be interested
in protecting the contribution of all these individuals, and when applying differential privacy techniques to this end,
we will then consider as a neighbor any other graph that differs in the contribution of either of them.

We refer to the semantic information necessary to identify the individuals in an RDF graph G as a differential
privacy schema. More formally, its goal is to partition G as a set {g1, . . . , gn} of sub-graphs, where each gi represents
the contribution of an individual, and G = ⊎

i gi is the disjoint union of all these sub-graphs. For example, the graph
in Fig. 1 is decomposed as the disjoint union of the pair of sub-graphs in blue, the pair of sub-graphs red and the pair
of sub-graphs green. Observe that in the relational model, this corresponds to nothing more than understanding a (set
of) table(s) as the disjoint union of its (their) rows. Here, our interest is to protect the contribution of the individuals
represented by each gi . In Fig. 1, this means, for example, the data related to Alice and to the Walt Disney company.

3.1.2. Formal definition
We briefly review some basic RDF terminology following standard notation used in the literature [14,16], where

more details can be found. The RDF language assumes the existence of an infinite set U (of URI references),
an infinite set B (of blank nodes), and an infinite set L (of RDF literals). An RDF triple is a term of the form
(v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L). An RDF dataset is a finite set of RDF triples. RDF triples are interpreted
as labeled arcs or edges in a directed graph from a vertex v1, called the triple subject, to a vertex v3, called the triple
object, and label v2, called the triple predicate. Figure 1 shows an example of an RDF graph G. We denote by voc(G)

the finite subset of elements from (U ∪ B ∪ L) that appear in G. More importantly, because of the nature of the
aggregation queries under consideration, we will restrict ourselves to graphs without blank nodes, i.e. graphs where

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 7

B = ∅.1 We also require a restricted version of the concept of triple patterns, which, similarly to RDF triples, are
terms of the form (v1, v2, v3) ∈ (U ∪ B ∪ V) × U × (U ∪ B ∪ L ∪ V), with V an infinite set of variables, and basic
graph patterns (BGPs) which are finite sets of triple patterns.2

To hint how we can formally define entities within an RDF graph, observe first the six colored sub-graphs iden-
tified in Fig. 1: two green, two blue and two red. All have a star shape [1], consisting of a “center” with outgoing
and/or incoming edges, i.e. predicates. Sub-graphs representing individuals of the same entity type are built from the
same set of predicates. For example, both (blue) sub-graphs, representing people, are built from predicates phone,
livesIn and member. We can characterize entity types through a set of triple patterns (i.e. a BGP) that share a com-
mon or “join” vertex. Formally, a join vertex in a BGP is a variable that appears either as a subject or as an object
multiple times in the BGP. The type of BGP’s that we need have further restrictions, which are captured by the
notion of star BGP below:

Definition 4 (Star BGP). A BGP is called a star if

1. both the subject and the object of all its triple patterns are variables,
2. all triple patterns have different predicates, and
3. it consists of either

(a) a single triple pattern with no join vertex, i.e. a triple pattern whose subject and object are distinct variables,
or

(b) multiple triple patterns with a single join vertex, which appears once and only once in every triple pattern

Example 3.1 (Star BGP). The three stars employed to identify the different entities in our running example (Fig. 1)
are (modulo variable renaming):

= {
(?c1, livesIn, ?o1), (?c1, phone, ?o2), (?s2, member, ?c1)

}
= {

(?c2, employs, ?o3), (?c2, headquarter, ?o4)
}

= {
(?c3, area, ?o5), (?c3, dailyRobberies, ?o6)

}

Note that in each Si , the vertex denoted by ?ci plays the role of the star center, joining all the triple patterns in Si .
Furthermore, there are no common predicates across , and . Formally, we define the center of a star as the
join vertex if the star contains multiple patterns, or the variable appearing in the subject of the triple pattern in case
it consists of a single triple pattern.3 We say that a set of stars is pairwise predicate-disjoint (or simply pairwise
disjoint when no ambiguity arises), if no pair of stars in the collection share a common predicate. They thus define
what we call a differential privacy schema:

Definition 5 (Dp-schema). A differential privacy schema (dp-schema, for short) P is a finite pairwise predicate-
disjoint set of stars.

The set { , , } is a dp-schema. as well as its sub-set { , }. However, this second schema falls short of
describing the whole graph G, as it leaves out the information related to cities. To formally capture this completeness
condition, we require the notion of induced sub-graph, whose formal definition is based on (solution) mappings. In
SPARQL, a (solution) mapping is a partial mapping from variables to URI references or blank nodes, μ : V →
U ∪B. For a triple pattern tp, μ(tp) denotes the triple obtained after replacing the variables in tp according to μ. If μ

is defined for all variables in tp, μ(tp) is an RDF triple. Given a graph G, the solution mappings of a triple pattern tp
over G, denoted by [[tp]]G , is defined by the set {μ|μ(tp) ∈ G}. Now, we are ready to define the concept of induced
sub-graph:

1Calculation of query sensitivity will depend on the domain of blank nodes which can change under different contexts and implementations.
This is a topic of future research.

2The more general definition of triple patterns allows also for variables in the predicate component of triple patterns.
3The notion of star BGP that we use here is similar to that of star query from [1], except that in a star query the center of the star must always

appear as subject.

CORRECTED P
ROOF

8 C. Buil-Aranda et al. / Differential privacy and SPARQL

Definition 6 (Induced sub-graphs). Let G be an RDF graph and ?x the center of a star BGP S. Given some y ∈ U ,
let μy denote the mapping {?x → y}. The subgraph of G induced by S and y, denoted by ind(S)

y

G , is defined by the
set of RDF triples {μ(μy(tp))|μ ∈ [[μy(tp)]]G ∧ tp ∈ S}, and the subgraphs of G induced by S, denoted by S(|G|), is
the set of RDF sub-graphs {ind(S)

y

G |y ∈ voc(G)}.
Example 3.2 (Induced sub-graph). The star induces two sub-graphs and over G, i.e. (|G|) = { , }.
These correspond to the blue sub-graphs in Fig. 1, which are formally defined as:

= {
(Alice, livesIn, Burbank), (Alice, phone,+132562846), (Skull and Bones, member, Alice)

}
= {

(Bob, livesIn, Seattle), (Bob, phone,+141555526), (Bob, phone,+141568782)
}

Likewise, (|G|) = { , }, where

= {
(Walt Disney, employs, Alice), (Walt Disney, headquarter, Burbank)

}
= {

(Starbucks, employs, Alice), (Starbucks, employs, Bob), (Starbucks, headquarter, Seattle)
}

Intuitively, the set of induced sub-graphs S (| G|) can be recovered by evaluating S over G, but assuming that
the triple patterns in S are optional. This assumption is already exposed by the example, where the triple pattern
(?s2, member, ?c1) belongs to , but it is not materialized in . From the privacy point of view, the values of the
star center are the unique identifiers of the entities contributing the data in each sub-graph, and their values must be
kept confidential.

The notion of induced sub-graphs naturally extends from single stars, to dp-schemas, i.e. sets of stars. Concretely,
we let P(|G|) = ⋃

S∈P S(|G|) be the set of sub-graphs of G induced by dp-schema P . In our example, { , }(|G|) =
{ , , , }.

Now we have all the prerequisites to define the core concept of this section:

Definition 7 (Dp-schema compliance). We say that an RDF graph G complies with a dp-schema P iff G coincides
with the graph induced by P in G, i.e. if G = ⋃

g∈P(|G|) g.

Example 3.3 (Dp-schema compliance). Our running example G complies with dp-schema { , , }. In contrast,
it does not comply with dp-schema { , }.

In summary, if a graph G complies with a dp-schema P , the schema partitions the graph into a finite set P(|G|)
of sub-graphs, which intuitively model the different individuals in the graph. The fact that sub-graphs are disjoint
follows from the definition of dp-schema, which requires stars in the schema to be pairwise predicate disjoint, and
that all the occurrences of variables in a star are different except for the center of the star. The fact that the set of
sub-graphs cover the entire graph follows from the definition of compliance.

3.1.3. Discussion
We now address a few key points about dp-schemas.

No shared attribute between entities At first sight, the requirement that stars in a dp-schema be predicate pairwise
disjoint might seem a limitation, as it requires that each attribute belong to a single entity type. For instance, it might
seem natural to consider that predicate employs should be part of both the employer and the employee, and it should
be thus present in both (which identifies companies) and (which identifies people). However, for the sake of
protection it makes no difference to which star it belongs, since our application of differential privacy will protect
the contribution of all individuals, regardless of its type.

Existence of dp-schemas RDF graphs always admit compliant dp-schemas. In particular, every graph complies
with a trivial dp-schema comprising the union of all singleton BGP’s of the form {(?x, p, ?y)}, where p ranges over
the set of predicates appearing in G. Intuitively, this schema indicates that each RDF triple is the contribution of a
different individual. Even though this is a valid dp-schema, it will yield very weak privacy guarantees. In general,
database administrators should aim to provide dp-schemes with a maximal number of triple patterns per star since, as
we will see later, it will allow better approximations of queries’ local sensitivity, and thus, better privacy guarantees.

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 9

Compliance verification Checking whether an RDF graph complies with a given schema P is algorithmically
straightforward as it amounts to verifying that all predicates in the graph appear also in (some star of) the schema
(which, using a hashing algorithm, can be done in O(n) steps, n being the number of predicates in the graph).

Dp-schema provision For practical purposes, we assume that the database administrator of the RDF graph at stake
is responsible for designing the dp-schema the graph shall comply with, and for ensuring the compliance as the graph
evolves. In this latter regard, observe that removing an RDF triple from the graph always preserves the dp-schema
compliance, and adding a triple also preserves compliance provided the predicate in the triple already appears in
the dp-schema. We believe this is a natural assumption, as in the relational data model this would correspond to
changing the schema of the database by adding a new attribute to a relation if the new predicate is incorporated into
an existing star of the dp-schema or creating a new table if the predicate is added to the dp-schema as a new star.

3.2. Predicate multiplicity

Automatic approaches to answer dataset queries in a differentially private manner are typically obtained by adding
noise to the query results, calibrated according to their sensitivity. Thus, a prerequisite to apply differential privacy
to counting queries over RDF graphs is that they have bounded sensitivity. Unfortunately, this does not occur in the
general case.

To see this, consider graph G of our running example and query “How many phone numbers are currently in
use?”. If we evaluate the query over G, the answer is 3. Now assume we consider a neighboring graph G′, where
Bob’s contribution (i.e. sub-graph) is replaced by somebody else’s contribution. The query answer over this
neighboring graph can certainly be any integer n � 1, since a priori we do not know how many phone numbers this
new individual might have. Therefore, the sensitivity of the query becomes unbounded.

This problem arises because of the presence of predicates that are not one-to-one. To recover bounded sensitivi-
ties, we have to restrict ourselves to predicates that have bounded multiplicity. For instance, if the administrator of
graph G requires that individuals declare at most 5 phone numbers, then the above query will have a local sensitivity
of at most 5 (recall that if n1, n2 � α, then |n1 − n2| � α). This approach was already taken by other authors
[2,3] to bound the sensitivity of counting queries (in the presence of joins), and is the price one has to pay to apply
differential privacy over RDF graphs.

On the formal level, we associate such bounds to triple patterns rather than to predicates. This is because in the
presence of compliant dp-schemas, predicates are identified with triple patterns (every predicate within a dp-schema
occurs in a single triple pattern, in a single star).

Definition 8 (Triple-pattern multiplicity). Let G be an RDF graph that complies with a dp-schema P . A multiplicity
bound κ associates to each triple pattern tp in a star Sof P an integer κ(tp) that upper-bounds the number of solution
mappings μ ∈ [[tp]]G with the same image for the center of S.

Many predicates (or equivalently, triple patterns) would have a natural multiplicity bound of 1. For instance, a
city has a unique area and a unique number of dailyRobberies. Likewise, we can assume that a person livesIn a
single city (at least for formal purposes). On the other hand, if a predicate does not admit a natural bound for its
multiplicity, think e.g. of predicate friend, we can either a) choose an upper bound that covers most of the cases in
practice or b) establish an upper bound in accordance with the size of the graph that the administrator is willing to
support.

Henceforth, in the remainder we assume the system administrator provides a dp-scheme P and that every graph
G is compliant with the dp-scheme P . Furthermore, we assume that the administrator establishes an upper bound
κ(tp) for each triple pattern tp in P . Hence, the graph space that we consider for the purposes of differential privacy
will be that of graphs that comply with both P and κ .

For bounding the local sensitivity of queries in Section 5, it will suffices a coarser notion of multiplicity, at the
level of stars rather than triple patterns. The required generalization is straightforward:

Definition 9 (Star multiplicity). Let G be an RDF graph that complies with a dp-schema P and has a multiplicity
bound κ . We call the multiplicity of a star S ∈ P , by notation convenience written κ(S), to the product of the
multiplicity bound of the triple patterns in S, i.e. κ(S) = ∏

tp∈Sκ(tp).

CORRECTED P
ROOF

10 C. Buil-Aranda et al. / Differential privacy and SPARQL

Example 3.4 (Star multiplicity). Assume that a graph administrator adopts dp-schema P = { , , } and re-
quires that each individual liveIn (at most) a single city, declare at most five phone numbers and be member of at
most 3 secret societies. Then the star will have multiplicity κ() = 1 ×5 ×3 = 15.

4. Queries

In this section we describe the subset of queries over RDF graphs for which we provide differential privacy, and
show how dp-schemes enable a decomposition result for the evaluation of such queries.

4.1. Supported queries

We develop differential privacy for counting queries over the SPARQL fragment of basic graph patterns with
filter expressions, also known as constrained basic graph pattern (CBGP) [1]. In this fragment, a query is denoted
by a pair

B̄ = 〈B,F 〉,

where B is a finite set of triple patterns, i.e. a BGP, and F = {f1, . . . , fn} is a finite (possibly empty) set of filter
expressions. B̄ represents the SPARQL graph pattern

P = ((
. . . (B FILTERf1) . . .

)
FILTERfn

)
,

and its meaning over an RDF graph G, denote by [[B̄]]G , is the multiset of solution mappings [[P]]G as defined by
the standard semantics of SPARQL queries [16].

For simplicity, we consider only CBGPs that are semantically valid. We also assume that in a graph G that
complies with a dp-schema P , all predicates appearing in triple patterns of a CBGP also appear in P .

Example 4.1. Take RDF graph G, which complies with dp-schema P = { , , }. Now assume we want to
know how many people have a coworker in a company with headquarters in a city with over 20 daily robberies? The
query can be cast in terms of the CBGP B̄ = 〈B,F 〉, where

B = {
(?x, employs, ?p1), (?x, employs, ?p2), (?p2, livesIn, ?c), (?c, dailyRobberies, ?n)

}
F = {?n � 20}

Triple patterns in an RDF graph compliant with a dp-schema P naturally inherit the notion of center from the star
they “belong to”. Specifically, for a star S ∈ P and a triple pattern tp = (s, p, o) such that (X, p, Y) belongs to S,
for some variables X, Y , we let center(tp,P) = s if X is the center of S; otherwise center(tp,P) = o. For instance,
in the above example we have

center
(
(?x, employs, ?p1),P

) = ?x

center
(
(?x, employs, ?p2),P

) = ?x,

since star which contains the triple pattern

(?c2, employs, ?o3)

has center ?c2. Note that center is a well-defined function because the predicate of any triple pattern can only appear
in single star of the dp-schema. In the remainder, we write center(tp) for center(tp,P) when P is understood from
the context (e.g. when referring to the dp-schema established by the administrator of the RDF graph at stake).

Finally, a user query is a CBGP B̄ wrapped by either of the two following aggregation operations:

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 11

1. COUNT?x(B̄), whose semantics [[COUNT?x(B̄)]]G is defined as the cardinality of the multiset [[B̄]]G .
2. COUNTDISTINCT ?x(B̄), whose semantics [[COUNTDISTINCT ?x(B̄)]]G is defined as the cardinality of the set

{μ(?x)|μ ∈ [[B̄]]G}.
3. COUNT?x

?x1...?xn
(B̄), where ?x, ?x1, . . . , ?xn are variables appearing in B̄, and whose semantics

[[COUNT?x
?x1,...,?xn

(B̄)]]G is defined by grouping the solution mappings from [[B̄]]G according to (the values
they assign to) variables ?x1 . . .?xn and returning the number of mappings within each of the resulting groups.
Loosely speaking, this corresponds to a histogram over tuples grouped by keys created by the different com-
binations of the values assigned to variables ?x1 . . .?xn by the solution mappings from [[B̄]]G .

Example 4.2. The query from the previous example can be expressed as COUNTDISTINCT ?p1(B̄) using the previous
CBGP.

4.2. Evaluation decomposition

Continuing with the previous example, assume we want to evaluate B (from Example 4.1) over G (from Fig. 1),
that is, to compute [[B]]G (observe that if we are interested in obtaining [[〈B,F 〉]]G instead, we simply add a FILTER
operation on top of the evaluation of [[B]]G). We can do this in a compositional fashion, leveraging the partition that
dp-schema P = { , , } induces on G. Concretely, we can split B as

B1 = {
(?x, employs, ?p1)

}
B2 = {

(?x, employs, ?p2)
}

B3 = {
(?p2, livesIn, ?c)

}
B4 = {

(?c, dailyRobberies, ?n)
}

(1)

Hence, for any query B̄ = 〈B,F 〉, we can formally define a split B÷P of B from a dp-schema P , as follows:
B÷P = {B1, . . . , Bn} iff the following two conditions hold

1. every Bi ∈ B÷P i) is a maximal subset of B for which there exists a star S ∈ P such that pred(Bi) ⊆ pred(S),
and ii) has no predicate repetitions;

2. for any two triple patterns tp, tp′ ∈ Bi , center(tp) = center(tp′).
Because the stars in P are predicate disjoint and the Bi’s in B÷P are maximal, the split B÷P is unique. In the context
of Condition 1 above, we call S the covering star of Bi . Moreover, we call a BGP B elementary if |B÷P | = 1, and,
by construction, all members of a split will be elementary.

Example 4.3. For the CBGP from Example 4.1, B is split into four elementary BGPs by dp-schema P =
{ , , }, i.e. B÷P = {B1, B2, B3, B4} as defined in Equation (1) above. Note that B1 and B2 have both the
same covering star , but they are consireded different elementary BGPs because they share predicate employs.
The covering stars of B3 and B4 are and , respectively.

If B were extended, e.g. , with triple pattern

tp = (Skull and Bones, member, ?p1),

the splitting B÷P would contain a fifth, member B5 = {tp}. In this case, B3 and B5 share the same covering star,
, but remain different members of B÷P because their triple patterns have different centers (?p2 is the center of

triple patterns in B3 and ?p1 the center of the triple pattern in B5). Alternatively, if B were extended, e.g., with triple
pattern

tp′ = (?x, headquarter, Burbank),

the number of elementary BGPs does not change but B1 and B2 should be both augmented with tp′ due to the
maximality condition of each Bi . (In this case, B1 and B2 remain being covered by star .)

CORRECTED P
ROOF

12 C. Buil-Aranda et al. / Differential privacy and SPARQL

Note also that the elementary BGP where a triple pattern belongs to is determined by the center of the triple
pattern, all triple patterns in the same split must share the same variable or RDF term as their center. The interest in
B÷P = {B1, . . . , Bn} resides in that it lets us isolate the fragment of the graph necessary to answer each Bi . Assume
we denote by GSi

the subgraph induced by star Si , i.e. GSi
= ⋃

g∈Si(|G|) g.

Lemma 2. If Si is the covering star of Bi then

[[Bi]]G = [[Bi]]GSi

Then, following the terminology defined in [29] for joins between multisets of solution mappings, we can extend
the lemma to B as follows:

Lemma 3.

[[B]]G = [[B1]]GS1

� ([[B2]]GS2

� · · ·
� ([[Bn−1]]GSn−1

� [[Bn]]GSn

)
)

We have already observed that B̄ is such that [[B]]G can be evaluated using only equi-joins. Therefore, there must
exist an ordering of the elements in B÷P such that [[Bi]]GSi

� [[Bi+1]]GSi+1
can also be done with equi-joins. In

other words, an ordering where |var(Bi) ∩ var(Bi+1)| = 1 for all 1 � i < n. We call this order a normal ordering
of B÷P , and without loss of generality denote by ?xi the variable in the equi-join [[Bi]]GSi

� [[Bi+1]]GSi+1
. For

convenience, in the remainder we assume that the indexing used for B÷P follows a normal order. Note that this is
already the case for the splitting from Example 4.3 (B1 and B2 share variable p2, and B2 and B3 share variable c).

We are now in a position to establish differential privacy for SPARQL count and histogram queries.

5. Towards differential privacy for SPARQL

In this section we develop all the prerequisites to extend Lemma 1 from the relational model to the graph model,
in terms of the SPARQL queries over RDF graphs described in the previous section.

5.1. Preliminary notions

We begin defining the notion of size and distance between RDF graphs. These are straightforward adaptations
of the relational case, where the induced sub-graphs play the role of table rows. Concretely, the size of a graph
refers to the number of individuals present in it. Formally, given an RDF graph G that complies with a dp-schema
P = {Bi}i∈I , we define the size of G w.r.t. P as size(G)P = ∑

i∈I |Bi(|G|)|.
Moreover, we say that two graphs are k far apart if one can be obtained from the other by replacing k of its induced

sub-graphs. Formally, given a pair of RDF graphs G1, G2 that comply with a dp-schema P = {Bi}i∈I and such that
size(G1)P = size(G2)P , their distance is defined as the size of their difference, i.e. d(G1,G2)P = size(G1 \ G2)P .
Note that in the general case where the sizes of G1 and G2 need not coincide, their distance is defined as the size of
the their symmetrical difference (G1 \ G2) ∪ (G2 \ G1), but when the sizes coincide, this reduces to the size of either
their differences, making distance commutative as expected.

Finally, this notion of distance between RDF graphs readily induces a notion of local sensitivity (at distance k)
LSQ(G) (LS(k)

Q (G)) of SPARQL query Q over RDF graph G, as given by Definition 2.
In order not to clutter the presentation, we usually omit the underlying dp-schema when referring to the size

of an RDF graph, the distance between a pair of RDF graphs, and the local sensitivity of a SPARQL query if the
dp-schema is understood from the context.

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 13

5.2. Elastic sensitivity

Our next step is, given a user query Q and an RDF graph G that complies with a dp-schema P , to compute an
upper bound of the local sensitivity LS(k)

Q (G) (denoted by U (k)
Q (G) in Lemma 1).

To this end, observe that the naive approach of evaluating the query on every neighbor (at distance k) of G is not
a feasible solution, since the number of neighbors can be extremely large. To address this problem in the relational
setting, Johnson et al. [19] has introduced the notion of elastic sensitivity, which leverages (maximum) frequency
values of the join keys (that can be precomputed or statistically estimated) to provide more efficient upper bounds
for the local sensitivity of queries with joins.

In the remainder of the section we adapt Johnson et al.’s approach to the case of RDF graphs and SPARQL.
Intuitively, our notion of elastic sensitivity of a SPARQL query Q at distance k of a concrete graph G (that complies
with the dp-schema P) regards the evaluation of Q as the composition of successive transformations applied to G,
and is defined in terms of the stability properties of such transformations.

In our case, these transformations are given by the CBGP of user queries, more concretely, by their BGP part. We
thus introduce the auxiliary notion of BGP elastic stability. A key property of this notion is that it allows bounding
the local sensitivity of counting queries: Given a BGP B, its elastic stability at distance k with respect to a graph G
that complies with a dp-schema P , bounds the local stability for any graph G′ that also complies with P and is at
distance k of G. Hence, it bounds the local sensitivity at distance k of COUNT?x(B̄) (for any B̄ = 〈B,F 〉) over G′.

The formal definition of elastic stability relies on the frequency of most popular values. More precisely, if ?x is
a variable occurring in an elementary BGP B, we use mpv(?x, B,G) to denote the frequency of the most popular
value to which ?x is mapped to, when evaluating B over G. We can use SPARQL itself to determine mpv(?x, B,G)

through the query

SELECT
(
COUNT(?x) as ?c

)
WHERE B

GROUP_BY ?x ORDER_BY ?c DESC LIMIT 1

Loosely speaking, this corresponds to first evaluating COUNT?x(B), and then selecting the value with the largest
count. This is an upper bound for the frequency of the most popular value yielded by ?x within a CBGP query
B̄ = 〈B,F 〉, regardless of the filter F , since it can only reduce the size of the result. Alternatively, we could also
use the query

SELECT
(
COUNT(?x) as ?c

)
WHERE tp

GROUP_BY ?x ORDER_BY ?c DESC LIMIT 1,

where tp is obtained from a triple pattern in B that 1) has ?x as one of its non-predicate (i.e. subject or object)
components; 2) ?x is participating in a join of the full query B̄; and 3) it has the other non-predicate component
replaced by a fresh variable.4

The counting on the latter query will be greater than (or equal to) the one on the former query and, therefore,
a valid (possibly looser, though) upper bound for mpv(?x, B,G). Nevertheless, the benefit is that since the second
query is merely a variable renaming of a tp′ ∈ S, the values can be pre-computed for all tp′ ∈ Swithin a dp-schema,
and simply retrieved during (differentially private) query evaluation. This is possible because the dp-schema of an
RDF graph is defined with a set of predicates that includes all the predicates appearing the graph. In contrast, if
the former query is used to determine mpv, the sensitivity is likely to be more accurate (i.e. tighter approximations)
resulting in better privacy guarantees (smaller ε’s), but pre-computations cannot be done, possibly impacting system
performance.

To compute the elastic stability of BGP B at distance k of graph G, written S(k)
B (G), we start by applying Lemma 3

to decompose B as a sequence of elementary BGPs. Once we fix a normal ordering, we have B÷P = B1
� (B2
�

4Observe that there might be multiple such triple patterns in B, all of them yielding valid upper bounds for mpv(?x, B,G). If we are interested
in obtaining tighter privacy guarantees, we should choose the most precise bound.

CORRECTED P
ROOF

14 C. Buil-Aranda et al. / Differential privacy and SPARQL

(. . .
� Bn) . . .). This decomposition allows estimating the frequency of most popular values of graphs k far apart
from G. Formally, the frequency of the most popular values for variable ?x in a BGP B for graphs at distance k of
G, written mpv(k)(?x, B,G), is defined by induction on the length |B÷P | as follows:

Base case: If |B÷P | = 1, we let

mpv(k)(?x, B,G) = mpv(?x, B,G) + k × κ(S),

where S is the covering star of B1 (recall that, in this base case, B÷P = {B1}).
Inductive case: If |B÷P | > 1, we let

mpv(k)(?x, B,G) = mpv(k)
(
?x1, B÷P \ {B1},G

) × mpv(k)(?x, B1,G),

where ?x1 is the common variable shared by B1 and (B2
� (. . .
� Bn) . . .), used for their equi-join.
The intuition behind the base case is easy to grasp. For k = 1, we take a subgraph from P(|G|), induced by a star

BFP S in the schema, and replace it with a different one. The maximal difference between the new and the old value
on the count of the most popular mapping value of ?x is κ(S). This is an upper bound of all the mappings that can be
produced by the instance due to the triple-pattern multiplicity, if the instance removed didn’t have an instance of the
value and a new instance of the same value is added. Hence, k changes will at most increment the count by k ×κ(S).
For the inductive case, we need to worry about the most frequent mapping value of ?x1 in B÷P \ {B1} since for
every mapping of ?x obtained from B1, if this mapping maps ?x1 in B1 to the same value of the most frequent value
of x1 in B÷P \ {B1}, the value of ?x will be repeated as many times in the combined mapping of B. Hence, the most
frequent value of ?x in [[B1]]S1 can be duplicated, in the worst case, as many as mpv(k)(?x1, B÷P \ {B1},G) times
in the multiset of solution mappings [[B]]G , giving us a safe upper bound for the count. Importantly, observe that
because the multiplication operation is commutative, the frequency is not affected by the selected normal ordering.

We are now ready to define the elastic stability of a BGP B at distance k of graph G, denoted by S(k)
B (G). The

definition also proceeds by induction on the cardinality of a fixed normal ordering of B÷P = B1
� (B2
� (. . .
�
Bn) . . .):

Base case: If |B÷P | = 1, we let

S(k)
B (G) = κ(S),

where S is the covering star of B1.
Inductive case: If |B÷P | > 1, let B ′ = B÷P \ {B1}. We have two cases. If the covering star S of B1 is not the
covering star of any other Bj ∈ B ′, we let

S(k)
B (G) = max

{
mpv(k)(?x1, B1,G) × S(k)

B ′ (G), mpv(k)
(
?x1, B

′,G
) × S(k)

B1
(G)

}
(2)

If the covering star S of B1 is also the covering star of another Bj ∈ B ′, we let

S(k)
B (G) = mpv(k)(?x1, B1,G) × S(k)

B ′ (G) + mpv(k)
(
?x1, B

′,G
) × S(k)

B1
(G) + S(k)

B1
(G) × S(k)

B ′ (G)

Loosely speaking, this definition captures the amount of changes that the transformations (i.e. the joins) within the
query, add to the final result, when modifying a single element in the induced schema.

As so defined, the local stability bounds the local sensitivity of counting queries:

Lemma 4. For any CBGP query B̄ = 〈B,F 〉, any k ∈ N and any graph G compliant with dp-schema P:

S(k)
B (G) � LS(k)

COUNT?x (B̄)
(G).

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 15

The main intuition behind the proof is that changes made to a graph to get a new graph at distance 1, are limited
to a sub-graph Gi , that must be covered by a single star pattern S in P . Then the maximum number of RDF tuples
that can change to get the graph at distance 1 is limited by the multiplicity of the predicates in S. Therefore, the
change in the number of mappings obtained from the new graph of an elementary BGP covered by S is bounded
by κ(S). If these RDF triples contribute in the result mappings of a join vertex, the number of new mappings can
increase by as much as the frequency of the most popular result mapping of the joining triple pattern. For example,
if B = {(?v0, p, ?u), (?u, p′, ?v1)}, and the triple (s, p, o) is part of G1 and o happens to be the most popular result
mapping for (?u, p′, ?v1), then there will be at most mpv(1)(?u, (?u, p′, ?v1),G) new mappings in the result.

Proof. The proof of this lemma follows the same strategy as the proof in [19, Lemma 2], and is by induction on the
length of B÷P .

– Case |B÷P | = 1. Let S be the covering star of B. Hence, its elastic stability is κ(S), a parameter given by the
DBA. Thus, we have

κ(S) = S(k)
B (G) � LS(k)

COUNT?x(B̄)
(G)

since the local sensitivity at distance k is calculated as the max of the sensitivities of all graphs at distance 1 of
all graphs at distance k or less of G, meaning the modification of a single star, which may change by at most
κ(S) tuples and the filter in B̄ doesn’t affect its local stability.

– Case |B÷P | = n + 1: we have a covering star S1 for partition B1 and a set with n covering stars for partitions
B ′ = {B2, . . . Bn+1}. We want to bound the number of RDF triples that can change in graphs G′ at distance k

of G to get a graph at distance 1, based on the star multiplicities. First, let’s assume S1 is not the covering star
of any other Bi in B ′. Hence, changes can happen in either G′

S1
or in a graph G′

S′ induced by a star S′ different
from S1 that covers some other Bi ∈ B ′, but not in both graphs since the new graph must be at distance 1 from
G′. Thus, either S(k)

B1
(G) = 0 or S(k)

B ′ (G) = 0:

1. When S(k)
B1

(G) = 0, the changes in G′
S′ , by induction hypothesis using Eq. (2), produce at most

mpv(k)(?x1, B1,G) × S(k)

B ′ (G) changed mappings since one change in G′
S′ might affect at most mpv(k)(?x1,

B1,G) triplets in the same join when applied to a graph at distance 1 of G′.
2. In the symmetric case, when S(k)

B ′ (G) = 0, G′
S1

may contain S(k)
B1

(G) = κ(S) changed triplets, producing at

most mpv(k)(?x1, B
′,G) × S(k)

B1
(G) changed mappings in the joined SPARQL pattern.

We chose the largest of the two values when calculating S(k)
B (G). On the other hand, if S1 also covers another

Bi ∈ B ′, a change in G′
S1

can also imply changes in G′
S′ . This can cause, in the worst case, mpv(k)(?x1, B1,G)×

S(k)

B ′ (G) changed mappings for the change happening in G′
S′ , plus mpv(k)(?x1, B

′,G) × S(k)
B1

(G) changed map-

pings caused by the change in GS1 , which may contain S(k)
B1

(G) = κ(S) changed triplets. We also need to
consider that the change may cause new joins between then new triplets in both G′

S1
and G′

S′ , for a total of

S(k)
B1

(G)×S(k)

B ′ (G) changed mappings in the joined SPARQL pattern. The sum of these three values is what the

definition of S(k)
B (G) uses.

Now we have all the prerequisite to define the elastic sensitivity of user queries (at fixed distances of a given
graph):

ES(k)

COUNT?x(B̄)
(G) = S(k)

B (G)

ES(k)

COUNTDISTINCT ?x(B̄)
(G) = S(k)

B (G)

ES(k)

COUNT
?x0
?x̄ (B̄)

(G) = 2S(k)
B (G)

CORRECTED P
ROOF

16 C. Buil-Aranda et al. / Differential privacy and SPARQL

And as in Johnson et al. [19], the above lemma readily leads us to the desired bound for (the three kind of) user
queries:

Lemma 5. For any user query Q, and any graph G compliant with schema P:

ES(k)
Q (G) � LS(k)

Q (G).

Proof. By case analysis on the type of user query Q:

– For plain counting queries (Q = COUNT?x(B̄)): the result follows directly from Lemma 4 since the result of
the counting query is given by the application of the sensitivity calculation for the CBGPs in the query.

– For plain unique counting queries (Q = COUNTDISTINCT ?x(B̄)): it can be noted that DISTINCT reduces the
elastic stability of the elementary BGP, B ′, containing ?x from κ(S′) to 1, where S′ is the star covering B ′.

– For counting queries after grouping (Q = COUNT?x0
?x̄ (B̄)): During the grouping, each changed triple can affect

two result mappings in the query since one modified triple may generate a mapping that will fall into a new
group, and at the same time the old mapping is dropped from another group.

Lemma 5 readily establishes our main result, which allows applying differential privacy to SPARQL queries over
RDF graphs:

Theorem 3. Assume that our universe of (valid) RDF graphs is composed by the graphs that comply with dp-schema
P and multiplicity bound κ and let G be any of those graphs. Let Q be a user query and let

UQ(G) = max
0�k�size(G)P

e−βkES(k)
Q (G),

where ε > 0, 0 < δ < 1, β � ε
2 ln(2/δ)

and the elastic sensitivity ES(k)
Q (G) of Q is computed, as previously described,

from multiplicity bound κ and the frequencies of most popular values mapped to the variables in Q as specified by
function mpv(k). Then, the randomized algorithm

A(G) = [[Q]]G + Lap

(
2UQ(G)

ε

)

is an (ε, δ)-differentially private version of Q.

The theorem follows immediately from Theorem 2 and Lemmas 1 and 5.

6. Evaluation

Having characterized formally how an algorithm can be implemented to enforce differential privacy on SPARQL
queries based on privacy schemes, in this section, we present an empirical evaluation of how the algorithm would
behave in real scenarios.

Setup We conducted our evaluation on a 2018 Macbook Pro with 16 GB of RAM memory having installed a
Fuseki instance on a 2 AMD Opteron server with an SSD drive and 64 GB of RAM memory. We used Java 1.17 to
implement our proof of concept. We also used the SecureRandom Java class to generate the random numbers to
calculate the Laplacian probability distribution since that class implements a well-tested random number generator,5

an essential component for ensuring the correctness of our privacy guarantees algorithm. The code and all the queries
used for this evaluation are available in GitHub.6

5https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
6Repository https://github.com/cbuil/DPSparql.

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://github.com/cbuil/DPSparql

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 17

Data In the evaluation we used real world data and queries from Wikidata [34]. Wikidata is a collaboratively edited
knowledge base hosted by the Wikimedia Foundation. It is a common source of data for Wikimedia projects such
as Wikipedia, and it has been made available to the general public under a public domain license. Wikidata stores
86,671,701 items (RDF resources), and 1,084,935,969 statements (triples7). We selected a subset of the Wikidata
Truthy from 2021-06-23, which has all but direct properties (i.e. http://www.wikidata.org/prop/direct/P*) removed
[18,35]. The data is available to download from Google Drive.8 We also provide the scripts to generate this Wikidata
version in our Github repository.9 We use the following prefixes from Wikidata along this section:

wdt: <http://www.wikidata.org/prop/direct> # prefix for referring to properties
wd: <http://www.wikidata.org/entity> # prefix for referring to data

6.1. Privacy schema

Our dp-schema is defined based on three pairwise disjoint stars, P1, P2, and P3, representing data from Humans,
Organizations, and Professions, built around Wikidata’s P31 property (the instance of property). We extracted URIs
from all the instances of the classes Human, Organization and Profession using queries like:

SELECT ?center WHERE {
?center wdt:P31 wd:Q5

wd:Q5 represents the Human class
}

This gathers the instances of the class Human. Star instances were formed by selecting a subset of properties of the
three classes using star queries centered in the URIs (each instance representing either a Human, an Organization or
a Profession) to define three sub-graphs covered by three stars, P1, P2, and P3. In other words, we used the mappings
of ?center from the initial queries as star centers and for each center we retrieved a few of their properties and
used the resulting RDF graph as the basis for our queries. Differential privacy is applied to protect the privacy of the
centers. We present the schema with all the properties we used for each star in the following example.

Evaluation privacy schema The three stars employed to identify the different entities in our evaluation schema are
(modulo variable renaming):

= {
(?c1, P569, ?o1), (?c1, P570, ?o2), (?c1, P106, ?c3),

(?c1, P108, ?c3), (?c1, P2002, ?o2), (?c1, P21, ?o3),

(?c1, P40, ?c3)
}

= {
(?c3, P1963, ?o5), (?c3, P101, ?o6), (?c3, P425, ?o6)

}
= {

(?c2, P106, ?o3), (?c2, P178, ?o4), (?c2, P112, ?o5)
}

These three stars shouldn’t be used directly as a privacy schema because S1 and S3 share a property, P106.
Nevertheless, the sets of instances of the property in the sub-graphs induced by S1 and S3 are disjoint because
instances of ?c1 (human UIRs) and ?c2 (organization URIs) are disjoint. Hence, for the purpose of our evaluation,
we consider this partition of P106 as two different properties that we refer to as P106 Profession in S1 and
P106 Occupation in S3, keep S3 as it is, and rename them P1, P2, and P3 respectively.10

7https://tools.wmflabs.org/wikidata-todo/stats.php
8https://drive.google.com/u/0/uc?id=1oDkrHT68_v7wfzTxjaRg40F7itb7tVEZ
9https://github.com/MillenniumDB/benchmark/blob/master/src/database_generation/filter_direct_properties.py
10Note that this observation suggests a more subtle definition of privacy scheme would be useful.

http://www.wikidata.org/prop/direct/P*
https://tools.wmflabs.org/wikidata-todo/stats.php
https://drive.google.com/u/0/uc?id=1oDkrHT68_v7wfzTxjaRg40F7itb7tVEZ
https://github.com/MillenniumDB/benchmark/blob/master/src/database_generation/filter_direct_properties.py

CORRECTED P
ROOF

18 C. Buil-Aranda et al. / Differential privacy and SPARQL

Fig. 2. Star-shaped query Q16 accessing the Humans privacy star.

Fig. 3. Linear query Q15 accessing the Humans privacy star.

The Wikidata properties that allow joining data from two different stars are P108 Employer from Humans to
Organizations, P106 Profession from Humans to Professions, P106 Occupation from Organizations to
Professions and P112 Founded by from Organizations to Humans. Table 1 shows statistics about the instances
of the stars in our data, including star size (on top of the table).

6.2. Queries

We selected 26 queries from the query logs in [18,35] containing the predicates used in our dp-schema. Since the
amount of COUNT queries in the query logs is small [4] for each of these queries we added the COUNT keyword and
we removed the triples from the query that were not accessing our schema. In addition, these queries were modified
to get a diverse set of query results and types.

We consider star queries which are queries covered by a single star from the dp-schema. These queries can only
add filters and remove triple patterns from the star. Therefore, a star query is centered around a single join vertex
?x0, corresponding to the center of the star (Fig. 2). We also have linear queries describing a path that must include
a join variable that appears in a place that is not the center of any star from the dp-schema (Fig. 3), and snowflake
queries (Fig. 4), a concatenation through a join variable of a star query with other queries of different shapes, as
defined in [1]. The queries are listed in Appendix B and they can also be found in the companion Github repository
for this article. Table 3, also in Appendix A, summarizes their characteristics. We show Q3 in Fig. 4, which queries
the Humans star, accessing sex, birth and death dates for each human as well as their professions. We use the
?professions variable for connecting to the Professions star. From that star we retrieve each profession’s field
of work (property P425), obtaining a snowflake-shaped query.

6.3. Results

We report the results of our evaluation in Table 2, showing the actual count output by the queries and the average
result to these queries with added noise (calculated applying the method described in Section 5). We followed the
query schema introduced in Section 5.2, that uses the BGP part of each query to calculate the initial most popular
values (mpv). We report the results using two values for ε, 0.1 and 1.0. We also report the median error percentage
for ε = 1.0 in Fig. 5 between the real counts vs. the counts with added noise segregated by the type of query. To

Table 1

Table showing key statistics about the data in our privacy schema (the largest schema is by far the Humans star)

Humans: 9,181,487

P569 P570 P106 P108 P2002

5,109,648 2,511,719 6,446,811 1,085,617 159,194

P21 P40

7,223,891 707,747

Professions: 7,786

P1963 P101 P425

97 95 3,018

Organizations: 72,879

P106 P178 P112

50 16 2,789

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 19

Fig. 4. Snowflake query Q3 accessing the Humans and Organization privacy schemas.

calculate the error we used the following Equation:

median

(
(ActualCount − NoiseResulti) ∗ 100

ActualCount i=1...100

)

We use δ = n−ε ln n where n is the size of the dataset (i.e. the sum of all the different RDF resources in the schema
that the queries access) and β = ε/(2 × log(2/δ)) for the β parameter.

(Blue) squares in Fig. 5 represent star queries (typically accessing a single star within the dp-schema), have a
very low error (and thus a high utility) compared to the other two types of queries that involved at least one “join”
operation across stars.

However, the smaller the result from the COUNT, the larger the error introduced. (Red) triangles represent path
queries and thus queries with join operations. Only query Q9 is close to the 10% error threshold to be considered
a query with enough utility. That query is only two triple patterns that retrieve all data from the Professions and
Organizations stars. (Grey) circles represent Snowflake queries, which are queries that join two or more stars in the
schema, and also access several properties from each star pattern. Only those queries returning a result greater than
1,000,000 (queries Q3,6) have a high utility result.

The sensitivity and stability columns in Table 2 clearly show that the larger the degree in the stability polynomial
the greater the query sensitivity, and thus, the higher the error in the result. Note that in most cases the derived
queries produce smaller results than the simpler queries, thus the errors are larger. The only queries where this is
not the case are queries Q1,2. However, the errors in these queries are so small that much more data should be
collected to really establish if they are statistically different. A class of queries with large errors are queries with
small outputs and at least one join. See, for example, queries Q9,18,20. In general, the more joins in the query and
the smaller the result size, the worse results. Joins directly affect the stability polynomial, more joins imply larger
degree. The effect is exacerbated if the value representing the most popular mapping is large. Large amounts of noise
are introduced to results of the three queries associated with polynomials of degree 2, Q20,21,22, which access data
from 3 different stars. Even though the results of the original queries are not small (>2,000), the error introduced
is very high. Compare that to the single join query Q9 that produces a small result and high errors, but it is much
smaller than the errors of Q21 and Q22. Results from queries accessing a single star from the dp-schema are good
as expected, since without joins they have low query sensitivity and, hence, small errors.

7. Related work

The study of how to guarantee the privacy of individuals contributing personal data to datasets is a long studied
problem. In this work we have focused on how to guarantee this privacy in RDF data graphs accessed through
SPARQL queries using differential privacy. The related work can be roughly classified into those that provide some
privacy guarantees to accesses to data stored in (social) graphs and those that guarantee privacy over the results
returned by SPARQL queries. We briefly look over these works in this section.

CORRECTED P
ROOF

20 C. Buil-Aranda et al. / Differential privacy and SPARQL

Table 2

Results of the execution of Wikidata queries using our differential privacy method. Those queries with sensitivity “1.0” are star queries since
the sensitivity of a COUNT query over a single star schema is 1 (a COUNT query over a table), and their elastic stability is “x” as described in
Section 5.2 if there are joins between star BGPs, the sensitivity increases based on the stability polynomial, calculated according to Theorem 3

Query ID Actual result Average private Average private Sensitivity Stability S(k)(Qi, ?x)

result using result using

Epsilon = 0.1 Epsilon = 1.0

Q1 2,275,177 2,275,176 2,275,176 1.0 1

Q2 1,717,945 1,717,940 1,717,945 1.0 1

Q3 1,274,788 1,189,636 1,270,649 290,415 (x+290,863) * 1

Q4 17,440 17,464 17,319 245 (x+18) * 1

Q5 86 110.8 203.1 245 (x+18) * 1

Q6 1,170,315 3,860,469 1,137,687 400,363 (x+400,981) * 1

Q7 3,018 3019 3,017 1.0 1

Q8 50 57 50 1.0 1

Q9 31 1577 37 241.3 (x+8) * 1

Q10 14,477 14,472 14,477 1.0 1

Q11 2,789 2,792 2,789 1.0 1

Q12 221 1,144 89 1,162.2 (x+1,164) * 1

Q13 6,446,811 6,446,812 6,446,810 1.0 1

Q14 3,615 3,613 3,614 1.0 1

Q15 0 71 8 250.8 (x+33) * 1

Q16 21,683 21,682 21,682 1.0 1

Q17 2,789 2,788 2,788 1.0 1

Q18 25 465 34 248.5 (x+27) * 1

Q19 865 864 865 1.0 1

Q20 7 7,087,181 44,254 1,656,501 (x+6,189) * (x+8) * 1

Q21 3,213 1,739,549 31,357 1,651,883 (x+6) * (x+6,189) * 1

Q22 2,092 377,638,493 1,600,610 408,594,207 (x+7) * (x+1,694,747) * 1

Q23 23,450 23,449 23,449 1.0 1

Q24 2,626 1,071,418 231,278 628,018 (x+628,987) * 1

Q25 29,352 1,593,488 42,317 628,018 (x+628,987) * 1

Q26 29,352 29,350 29,351 1.0 1

7.1. Privacy over SPARQL

There have been several approaches to address privacy concerns related queries to RDF data. A good survey can
be found in [32]. There is a basic anonymization protection that a SPARQL engine must provide to queries that
directly return individuals, as opposed to aggregated data. Similar to the case of relational databases where attribute
values are anonymized using nulls, the work presented in [13] uses blank nodes to hide sensitive data. Delanoux
et al. [7] introduce a more general framework with formal soundness guarantees for privacy policies that describe
information that should be hidden as well as utility policies that describe information that should be available. The
framework checks whether policies are compatible with each other, and based on a set of basic update queries that
use blank nodes and deletions of triples, automatically derives from the policies candidate sets of anonymization
operations that guarantee to transform any input dataset into a dataset satisfying the required policies. However,
their soundness guarantees do not imply any formal privacy guarantees. Two early methods developed for privacy
protection when answering queries about classes in a dataset are k-anonymity and l-diversity. In particular, k-
anonymity is used in [17,31] to answer queries in RDF datasets. Unfortunately, it is well-known these methods, in
contrast to differential privacy, do not provide formal guarantees for privacy.

The only work known to us that directly applies differential privacy to SPARQL queries is [32]. But surprisingly,
differential privacy is realized through local sensitivity alone without the use of a smoothing function necessary

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 21

Fig. 5. This plot shows that star-shaped queries (blue squares) have the greatest utility, since they are likely not to have joins between stars in the
schema. It also shows that queries accessing large amounts of data have high utility. Notice that Q15 does not appear in the plot since its result
is 0.

for correctness [12]. A privacy-preserving query language for RDF streams is introduced in [8]. Limiting queries to
that language servers can continuously release privacy-preserving histograms (or distributions) from online streams.
Han et al. [15] provide differentially-private variants of the algorithms TransE and RESCAL, aimed at constructing
knowledge graph embeddings in the form of real-valued vectors. While the authors show that these encodings allow
performing some analyses with a reasonable privacy-utility tradeoff, inlcuding clustering and link prediction, it is
an open question whether this generalizes to further analyses or counting queries as addressed in the current article.

7.2. Privacy in social graphs

A central task to the development of any practical differentially private analysis tool is finding appropriate ap-
proximations and alternatives to global sensitivity: it should be easy to calculate, and, at the same time, close enough
to the real sensitivity to allow the computation of statistically useful results. A well-known approach is to rely on the
concept of restricted sensitivity [3]. Restricted sensitivity is tailored to provide privacy guarantees assuming datasets
come from a specific subgroup of the universe of all possible datasets, and it was introduced in the context of social-
graph data analysis. There are two natural notions from which one can define adjacency of graphs: differences on
edges and differences on vertices. The distance between two graphs, G1 and G2, can be then given by the smallest
number of changes (either on edges or vertices) needed to transform G1 and G2 into the same graph, giving rise to
two definitions of restricted sensitivity. Blocki et al. [3] provide efficient algorithms to calculate approximations of
these sensitivities for a class of social graph queries that involve only one type of join: aggregations over properties
of a node and its neighbors (the specific subgroup of interest). Proserpio, Goldberg and McSherry extended the
edge-based definition of restricted sensitivity to include weighted datasets [30]. Briefly, the intent was to increase
the utility of the answer by considering weights associated with edges during the calculation of noise. Our notion of
dp-schema sensitivity can be seen as a vertex-based sensitivity if each induced subgraph gi ∈ P(|G|) is interpreted as
a single node with its attributes. Our proposed elastic sensitivity can be then interpreted as a generalization to handle

CORRECTED P
ROOF

22 C. Buil-Aranda et al. / Differential privacy and SPARQL

multiple joins. The polynomial to calculate the selectivity of a query with a single join is always of degree 1. Fur-
thermore, social graphs are essentially defined using a single relationship type. Using our terminology, this implies
that the dp-schema would consist of a single star BGP. Hence, Blocki et al. [3] argue that, in practice, the value of x

in the degree-1 polynomial (i.e. the frequency of the most popular value) can be bounded by a constant (which would
be provided by the RDF data administrator). This is closely akin to our predicate multiplicity. Elastic sensitivity, on
the other hand, uses a variable selectivity (the values of x are obtained directly from the dataset), and generalizes to
multiple joins. Other works such as [5] proposed differential privacy methods for subgraph counting queries with
unrestricted joins (through node differential privacy), however, answering this type of queries is computationally
difficult (NP-hard). The result is then more of theoretical interest and limited for general application.

8. Conclusions

In this paper we have introduced a framework to develop differential privacy tools for RDF data repositories.
We have used the framework to develop an (ε, δ)-Differential Privacy SPARQL query engine for COUNT queries.
A crucial component of our framework is the concept of differential privacy schema or dp-schema. Without it, we
would have not been able to develop a differential privacy preserving algorithm to publish data of acceptable quality.
The concept is independent of the sensitivity approximation used and we hope that others can build on the concept
to get better query answering algorithms. In our algorithm, we adapt the concept of elastic sensitivity of SQL queries
from [19] to SPARQL.

We have implemented our algorithm and tested it using the Wikidata RDF database, queries from its log files
and other example queries found at the Wikidata endpoint. The simulations show the approach to be effective for
queries over large repositories, such as Wikidata, and in many cases for queries within the 10 of thousands answers
to aggregate. However, even though elastic sensitivity has been designed to bind the stability of joins, the sensitivity
of a query with joins can still be very high. As in the case of SQL queries in relational databases, in order to keep
the noise in SPARQL queries under a single percentage digit, query results should have over 1M tuples and ε = 1.
The evaluation shows though that we can safely evaluate star queries.

There are many pending issues to address. We can still apply several optimizations to our framework. For example,
public graphs can be treated as public tables. If they participate in joins, we can directly use their most popular result
mappings during calculation of the query sensitivity. From the more practical point of view, more operations need to
be implemented. We can consider the approaches described in [19] for SQL to add aggregation functions like sum
and averages to our framework. There are also issues to consider about the impact that such algorithms will have on
SPARQL query engines. From the more formal side, it is still important to keep searching for better approximations
of local and global sensitivities as well as alternative definitions that are less onerous than differential privacy.
One possibility is to find a way to apply restricted sensitivity to more types of queries by adding more semantic
information to a dp-schema. It might also be possible to find a more accurate approximation for the elastic sensitivity
of DIST INCT queries to make them independent or partially independent of predicate multiplicity. We should
point out that most queries that will require privacy protection will be DIST INCT (e.g. how many human exists
with properties A and B that work in company C?).

Acknowledgements

We thank the reviewers for their thorough work revising this paper, which improved the overall quality of the
paper. Carlos Buil-Aranda was supported by Fondecyt Iniciacion 11170714 and by ANID – Millennium Science
Initiative Program – Code ICN17_002. Jorge Lobo was partially supported by the Spanish Ministry of Economy and
Competitiveness under Grant Numbers: TIN-2016-81032-P, MDM-2015-052, and the U.S. Army Research Office
under Agreement Number W911NF1910432. Federico Olmedo was also supported by ANID – Millennium Science
Initiative Program – Code ICN17_002.

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 23

Appendix A. Query characteristics

In this Section we present the characteristics of the queries we used in Section 6. The table presents the query
ID (which refer to queries Section B in this Appendix), the stars within the Privacy Schema we defined in 6, the
query shape, the amount of tripe patterns in the queries as well as the number of variables, the join variables when
applicable, including the amount of mappings for each join variable, and data about the Privacy Schema stars in the
query.

CORRECTED P
ROOF

24 C. Buil-Aranda et al. / Differential privacy and SPARQL

Table 3

Table showing the main characteristics of each query to the privacy schema

Query ID Schemes Shape Triple patterns Join variables Star info

Q1 Humans Star 3 tp, 4 vars No join variables 1,717,255 Humans with Professions,
10,337 Professions at Humans star,
2,991 distinct Professions at
Professions star

Q2 Humans Star 4 tp, 5 vars No join variables

Q3 Humans and
profs

Snowflake 5 tp, 6 vars COUNT(?professions) = 3018 (from
profs star)

Q4 Humans Path 1 tp, 2 vars COUNT(?humans) = 3615 (from
Professions star) COUNT(?humans) =
1,648,629 (from Humans Star)

1,648,629 distinct humans educated at
(P69), and 3,615 Humans have
Organizations (Q2b), 2,789
professions (Q2c 6 developer field)Q5 Humans and

Orgs
Snowflake 2 tp, 3 vars COUNT(?humans) = 3,615 from

Professions Star

Q6 Humans and
Profs

Snowflake 3 tp, 4 vars COUNT(?professions) = 7,764 from
Humans, COUNT(?professions) = 3,018
from professions

Q7 Profs Star 1 triple, 2 vars No join variables 3018 distinct profs 50 distinct
organizations with professions, 3018
distinct professions

Q8 Orgs Star 1 triple, 2 vars No join variables

Q9 Orgs and Profs Path 2 tp 4 vars COUNT(?professions) = 54 from
organizations, ?professions = 3,356
Professions

Q10 Humans Star 1 triple 2 vars No join variables 14,382 distinct Humans, 2,789 distinct
OrganizationsQ11 Orgs Star 1 triple 2 vars No join variables

Q12 Humans and
Orgs

Snowflake 3 tp 6 vars COUNT(?organizations) = 33,423 from
humans star, COUNT(?organizations) =
3,814 form Organizations star

Q13 Humans Star 1 triple 2 vars No join variables 6,446,811 distinct Humans, 2,789
distinct OrganizationsQ14 Orgs Star 1 triple 2 vars No join variables

Q15 Humans and
Orgs

Path 2 tp 4 vars COUNT(?organizations) = 8,501,245 at
Humans star, COUNT(?organizations) =
3,814 at Organizations star

Q16 Humans Star 2 tp 4 vars No join variables 21,651 Humans with Twitter accounts
and a employer, 13,814 distinct
Organizations

Q17 Orgs Star 1 triple 2 vars No join variables

Q18 Humans and
Orgs

Snowflake 3 tp 4 vars COUNT(?organizations) = 35,419 from
Humans Star, COUNT(?humans=3814)
from Organizations star

Q19 Organizations Star 2 tp No join variables 5 distinct organizations

Q20 Profs, Humans
and Orgs

Snowflake 3 tp 6 vars No join variables 3,018 distinct profs, 90,341
Organizations at Humans star, 31
distinct Organizations at Organizations
star

Q21 Humans,
Occupations,
Professions

Path 3 tp, 4 vars COUNT(?occupationsStar) = 90,341
(humans side),
COUNT(?opccupationsStar) = 15,524
(occupationsStar side), 3,018 professions
(Professions side)

6,446,860 occupationsStar, 3,018
Professions, 1,448,232 Humans with
occupations at Humans Star

Q22 Organizations,
Occupations,
Professions

Path 3 tp, 4 vars COUNT(?occupationsStar) = 3,615
(organizations side), 15524
(occupationsStar side), 3018 professions
(professions side)

6,446,860 occupationsStar, 2,789
Organizations Star, 3,018 Professions
Star

Q23 Humans Star 2 tp, 3 vars 23,450 Humans with Athlete
profession.Q24 Humans and

Profs
Snowflake 2 tp, 3 vars ?COUNT(?professions) = 23,451 form

Humans Star, ?COUNT(?professions) =
4 form Professions Star,

Q25 Profs, Humans Snowflake 5 tp, 3 different vars ?COUNT(?professions) = 15,359 1 profession, 4,969,877 humans

Q26 Humans Star 2 tp, 2 vars ?COUNT(?humans) = 29,352 humans
(distinct)

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 25

Appendix B. Queries

In this Section we present the queries we used in Section 6. There are 11 base queries with several variations,
totaling 26 SPARQL COUNT queries.

Query Q1:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P21 ? v1 .
? humans wdt : P569 ? v4 .
? humans wdt : P570 ? v2 .
}

Query Q2:

SELECT (COUNT(DISTINCT ? humans) as ? count) where {
? humans wdt : P21 ? v1 .
? humans wdt : P569 ? v4 .
? humans wdt : P570 ? v2 .
? humans wdt : P106 ? o c c u p a t i o n .
}

Query Q3:

SELECT (COUNT(DISTINCT ? humans) as ? count) where {
? humans wdt : P31 wd : Q5 .
? humans wdt : P21 ? v1 .
? humans wdt : P569 ? v4 .
? humans wdt : P570 ? v2 .
? humans wdt : P106 ? p r o f e s s i o n s .
? p r o f e s s i o n s wdt : P31 wd : Q28640 .
? p r o f e s s i o n s wdt : P425 ? f i e l d _ o c c u p a t i o n

}

Query Q4:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P69 ? v2 .
? o r g a n i z a t i o n s wdt : P112 ? humans .

}

Query Q5:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P69 ? v2 .
? o r g a n i z a t i o n s wdt : P178 ? d e v e l o p e r .
? o r g a n i z a t i o n s wdt : P112 ? humans

}

Query Q6:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P69 ? v2 .
? humans wdt : P106 ? p r o f e s s i o n s .
? p r o f e s s i o n s wdt : P425 ? f i e l d

}

CORRECTED P
ROOF

26 C. Buil-Aranda et al. / Differential privacy and SPARQL

Query Q7:

SELECT (COUNT(DISTINCT ? p r o f e s s i o n s) as ? count) WHERE {
? p r o f e s s i o n s wdt : P425 ? va r6 .

}

Query Q8:

SELECT (COUNT(DISTINCT ? o r g a n i z a t i o n s) as ? count) WHERE {
? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s .

}

Query Q9:

SELECT (COUNT(DISTINCT ? o r g a n i z a t i o n s) as ? count) WHERE {
? p r o f e s s i o n s wdt : P425 ? va r6 .
? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s .

}

Query Q10:

S e l e c t (COUNT (DISTINCT ? humans) as ? count) where {
? humans wdt : P40 ? c h i l d .
? humans wdt : P108 ? o r g a n i z a t i o n s .

}

Query Q11:

S e l e c t (COUNT (DISTINCT ? o r g a n i z a t i o n s) as ? count) where {
? o r g a n i z a t i o n s wdt : P112 ? founded_by

}

Query Q12:

SELECT (COUNT (DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P40 ? c h i l d . # w i th at l e a s t one P40 (c h i l d) s t a t e m e n t
? humans wdt : P108 ? o r g a n i z a t i o n s .
? o r g a n i z a t i o n s wdt : P112 ? founded_by

}

Query Q13:

SELECT (COUNT(DISTINCT ? humans) as ? count) where {
? humans wdt : P106 ? o r g a n i z a t i o n s .
}

Query Q14:

SELECT (COUNT(DISTINCT ? humans) as ? count) where {
? o r g a n i z a t i o n s wdt : P112 ? humans
}

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 27

Query Q15:

SELECT (COUNT(DISTINCT ? humans) as ? count) where {
? humans wdt : P106 ? o r g a n i z a t i o n s .
? o r g a n i z a t i o n s wdt : P112 ? founded_by
}

Query Q16:

SELECT (COUNT (DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P2002 ? t w i t t t e r . # w i th at l e a s t one P40 (c h i l d) s t a t e m e n t
? humans wdt : P108 ? o r g a n i z a t i o n s .

}

Query Q17:

SELECT (COUNT (DISTINCT ? o r g a n i z a t i o n s) as ? count) WHERE {
? o r g a n i z a t i o n s wdt : P31 wd : Q43229 .
? o r g a n i z a t i o n s wdt : P112 ? founded_by

}

Query Q18:

SELECT (COUNT (DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P2002 ? t w i t t t e r . # w i th at l e a s t one P40 (c h i l d) s t a t e m e n t
? humans wdt : P108 ? o r g a n i z a t i o n s .
? o r g a n i z a t i o n s wdt : P112 ? founded_by

}

Query Q19:

SELECT (COUNT (DISTINCT ? o r g a n i z a t i o n s) as ? count) WHERE {
? o r g a n i z a t i o n s wdt : P31 wd : Q43229 .

? o r g a n i z a t i o n s wdt : P112 ? founded_by .
? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s .

}

Query Q20:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? p r o f e s s i o n s wdt : P425 ? va r6 .
? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s .
? o r g a n i z a t i o n s wdt : P31 wd : Q43229 .
? humans wdt : P108 ? o r g a n i z a t i o n s .
? humans wdt : P31 wd : Q5 .

}

Query Q21:

SELECT (COUNT (DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P108 ? o c c u p a t i o n s S t a r .
? o c c u p a t i o n s S t a r wdt : P106 ? p r o f e s s i o n s .
? p r o f e s s i o n s wdt : P425 ? va r6 .

}

CORRECTED P
ROOF

28 C. Buil-Aranda et al. / Differential privacy and SPARQL

Query Q22:

SELECT (COUNT (DISTINCT ? o r g a n i z a t i o n s) as ? count) WHERE {
? o r g a n i z a t i o n s wdt : P112 ? o c c u p a t i o n s S t a r . # humans l i n k
? o c c u p a t i o n s S t a r wdt : P106 ? p r o f e s s i o n s .
? p r o f e s s i o n s wdt : P425 ? va r6 .

}

Query Q23:

SELECT (COUNT(DISTINCT ? humans) as ? c n t) WHERE {
? humans wdt : P106 wd : Q2066131 .
? humans wdt : P21 ? v2 .

}

Query Q24:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P106 ? p r o f e s s i o n s .
? humans wdt : P21 ? v2 .
? p r o f e s s i o n s wdt : P425 wd : Q349 .

}

Query Q25:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P106 wd : Q901 .
? humans wdt : P21 ? v2 .

}

Query Q26:

SELECT (COUNT(DISTINCT ? humans) as ? count) WHERE {
? humans wdt : P106 ? p r o f e s s i o n s .
? humans wdt : P21 ? v2 .
? p r o f e s s i o n s wdt : P425 wd : Q336 .

}

References

[1] G. Aluç, O. Hartig, M.T. Özsu and K. Daudjee, Diversified stress testing of RDF data management systems, in: International Semantic Web
Conference, Springer, 2014, pp. 197–212.

[2] M. Arapinis, D. Figueira and M. Gaboardi, Sensitivity of counting queries, in: 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11–15, 2016, Rome, Italy, I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani and D. Sangiorgi, eds,
LIPIcs, Vol. 55, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016, pp. 120–112013.

[3] J. Blocki, A. Blum, A. Datta and O. Sheffet, Differentially private data analysis of social networks via restricted sensitivity, in: Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science, ITCS’13, ACM, New York, NY, USA, 2013, pp. 87–96. ISBN
978-1-4503-1859-4. doi:10.1145/2422436.2422449.

[4] A. Bonifati, W. Martens and T. Timm, Navigating the maze of Wikidata query logs, in: The World Wide Web Conference, 2019, pp. 127–138.
doi:10.1145/3308558.3313472.

[5] S. Chen and S. Zhou, Recursive mechanism: Towards node differential privacy and unrestricted joins, in: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, ACM, 2013, pp. 653–664. doi:10.1145/2463676.2465304.

[6] R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1 Concepts and Abstract Syntax, 2014.

https://doi.org/10.1145/2422436.2422449
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/2463676.2465304

CORRECTED P
ROOF

C. Buil-Aranda et al. / Differential privacy and SPARQL 29

[7] R. Delanaux, A. Bonifati, M.-C. Rousset and R. Thion, Query-based linked data anonymization, in: International Semantic Web Conference,
Springer, 2018, pp. 530–546.

[8] D. Dell’Aglio and A. Bernstein, Differentially private stream processing for the semantic web, in: Proceedings of the Web Conference
2020, WWW’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 1977–1987. ISBN 9781450370233. doi:10.1145/
3366423.3380265.

[9] C. Dwork, Differential privacy, in: 33rd International Colloquium on Automata, Languages and Programming, Part II (ICALP 2006),
Lecture Notes in Computer Science, Vol. 4052, Springer Verlag, 2006, pp. 1–12, https://www.microsoft.com/en-us/research/publication/
differential-privacy/. ISBN 3-540-35907-9.

[10] C. Dwork, Differential privacy: A survey of results, in: International Conference on Theory and Applications of Models of Computation,
Springer, 2008, pp. 1–19.

[11] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov and M. Naor, Our data, ourselves: Privacy via distributed noise generation, in: Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2006, pp. 486–503.

[12] C. Dwork, A. Roth et al., The algorithmic foundations of differential privacy, Foundations and Trends® in Theoretical Computer Science
9(3–4) (2014), 211–407.

[13] B.C. Grau and E.V. Kostylev, Logical foundations of privacy-preserving publishing of linked data, in: Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[14] C. Gutierrez, C. Hurtado and A.O. Mendelzon, Foundations of semantic web databases, in: Proceedings of the Twenty-Third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2004, pp. 95–106. doi:10.1145/1055558.1055573.

[15] X. Han, D. Dell’Aglio, T. Grubenmann, R. Cheng and A. Bernstein, A framework for differentially-private knowledge graph embeddings,
J. Web Semant. 72 (2022), 100696. doi:10.1016/j.websem.2021.100696.

[16] S. Harris and A. Seaborne, 2012, SPARQL 1.1 Query language, W3C recommendation, http://www.w3.org/TR/2010/WD-sparql11-query-
20101014/.

[17] B. Heitmann, F. Hermsen and S. Decker, k – RDF-neighbourhood anonymity: Combining structural and attribute-based anonymisation for
linked data, in: PrivOn ISWC, 2017.

[18] A. Hogan, C. Riveros, C. Rojas and A. Soto, A worst-case optimal join algorithm for SPARQL, in: The Semantic Web – ISWC 2019 –
18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part I, C. Ghidini, O. Hartig,
M. Maleshkova, V. Svátek, I.F. Cruz, A. Hogan, J. Song, M. Lefrançois and F. Gandon, eds, Lecture Notes in Computer Science, Vol. 11778,
Springer, Auckland, New Zealand, 2019, pp. 258–275. doi:10.1007/978-3-030-30793-6_15.

[19] N. Johnson, J.P. Near and D. Song, Towards practical differential privacy for SQL queries, Proceedings of the VLDB Endowment 11(5)
(2018), 526–539. doi:10.1145/3187009.3177733.

[20] D. Kifer and A. Machanavajjhala, No free lunch in data privacy, in: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, SIGMOD’11, ACM, New York, NY, USA, 2011, pp. 193–204. ISBN 978-1-4503-0661-4. doi:10.1145/1989323.
1989345.

[21] N. Li, T. Li and S. Venkatasubramanian, t-Closeness: Privacy beyond k-anonymity and l-diversity, in: Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on, IEEE, 2007, pp. 106–115.

[22] N. Li, W. Qardaji, D. Su, Y. Wu and W. Yang, Membership privacy: A unifying framework for privacy definitions, in: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, ACM, 2013, pp. 889–900.

[23] A. Machanavajjhala, J. Gehrke, D. Kifer and M. Venkitasubramaniam, l-Diversity: Privacy beyond k-anonymity, in: 22nd International
Conference on Data Engineering (ICDE’06), IEEE, 2006, pp. 24–24. doi:10.1109/ICDE.2006.1.

[24] F.D. McSherry, Privacy integrated queries: An extensible platform for privacy-preserving data analysis, in: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, ACM, 2009, pp. 19–30. doi:10.1145/1559845.1559850.

[25] L. Menand, Why do we care so much about privacy?, The New Yorker XCIV(17) (2018), 24–29.
[26] R. Motwani and P. Raghavan, Randomized algorithms, ACM Computing Surveys (CSUR) 28(1) (1996), 33–37. doi:10.1145/234313.234327.
[27] K. Nissim, S. Raskhodnikova and A. Smith, Smooth sensitivity and sampling in private data analysis, in: Proceedings of the Thirty-Ninth

Annual ACM Symposium on Theory of Computing, STOC’07, ACM, New York, NY, USA, 2007, pp. 75–84. ISBN 978-1-59593-631-8.
doi:10.1145/1250790.1250803.

[28] K. Nissim, S. Raskhodnikova and A. Smith, Smooth sensitivity and sampling in private data analysis, 2011, Draft full version v1.0, http://
www.cse.psu.edu/~ads22/pubs/NRS07/NRS07-full-draft-v1.pdf.

[29] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complexity of SPARQL, TODS 34(3) (2009), 16.
[30] D. Proserpio, S. Goldberg and F. McSherry, Calibrating data to sensitivity in private data analysis: A platform for differentially-private

analysis of weighted datasets, Proceedings of the VLDB Endowment 7(8) (2014), 637–648. doi:10.14778/2732296.2732300.
[31] F. Radulovic, R. García Castro and A. Gómez-Pérez, Towards the Anonymisation of RDF Data, 2015.
[32] R.R.C. Silva, B.C. Leal, F.T. Brito, V.M. Vidal and J.C. Machado, A differentially private approach for querying RDF data of social

networks, in: Proceedings of the 21st International Database Engineering & Applications Symposium, ACM, 2017, pp. 74–81. doi:10.
1145/3105831.3105838.

[33] L. Sweeney, k-Anonymity: A model for protecting privacy, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
10(05) (2002), 557–570. doi:10.1142/S0218488502001648.

[34] D. Vrandečić and M. Krötzsch, Wikidata: A free collaborative knowledgebase, Communications of the ACM 57(10) (2014), 78–85. doi:10.
1145/2629489.

[35] D. Vrgoc, C. Rojas, R. Angles, M. Arenas, D. Arroyuelo, C.B. Aranda, A. Hogan, G. Navarro, C. Riveros and J. Romero, MillenniumDB:
A persistent, open-source, graph database, CoRR (2021), arXiv:2111.01540.

https://doi.org/10.1145/3366423.3380265
https://doi.org/10.1145/3366423.3380265
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://doi.org/10.1145/1055558.1055573
https://doi.org/10.1016/j.websem.2021.100696
http://www.w3.org/TR/2010/WD-sparql11-query-20101014/
http://www.w3.org/TR/2010/WD-sparql11-query-20101014/
https://doi.org/10.1007/978-3-030-30793-6_15
https://doi.org/10.1145/3187009.3177733
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1109/ICDE.2006.1
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/234313.234327
https://doi.org/10.1145/1250790.1250803
http://www.cse.psu.edu/~ads22/pubs/NRS07/NRS07-full-draft-v1.pdf
http://www.cse.psu.edu/~ads22/pubs/NRS07/NRS07-full-draft-v1.pdf
https://doi.org/10.14778/2732296.2732300
https://doi.org/10.1145/3105831.3105838
https://doi.org/10.1145/3105831.3105838
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
http://arxiv.org/abs/arXiv:2111.01540

	Introduction
	Preliminaries about differential privacy
	Definition
	Realization via global sensibility
	Realization via local sensibility

	Toward differential privacy over RDF graphs
	Privacy schema
	Motivation
	Formal definition
	Discussion

	Predicate multiplicity

	Queries
	Supported queries
	Evaluation decomposition

	Towards differential privacy for SPARQL
	Preliminary notions
	Elastic sensitivity

	Evaluation
	Privacy schema
	Queries
	Results

	Related work
	Privacy over SPARQL
	Privacy in social graphs

	Conclusions
	Acknowledgements
	Appendix A. Query characteristics
	Appendix B. Queries
	References

