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Abstract. Neuro-Symbolic Artificial Intelligence (AI) focuses on integrating symbolic and sub-symbolic systems to enhance the
performance and explainability of predictive models. Symbolic and sub-symbolic approaches differ fundamentally in how they
represent data and make use of data features to reach conclusions. Neuro-symbolic systems have recently received significant
attention in the scientific community. However, despite efforts in neural-symbolic integration, symbolic processing can still be
better exploited, mainly when these hybrid approaches are defined on top of knowledge graphs. This work is built on the statement
that knowledge graphs can naturally represent the convergence between data and their contextual meaning (i.e., knowledge).
We propose a hybrid system that resorts to symbolic reasoning, expressed as a deductive database, to augment the contextual
meaning of entities in a knowledge graph, thus, improving the performance of link prediction implemented using knowledge
graph embedding (KGE) models. An entity context is defined as the ego network of the entity in a knowledge graph. Given a link
prediction task, the proposed approach deduces new RDF triples in the ego networks of the entities corresponding to the heads
and tails of the prediction task on the knowledge graph (KG). Since knowledge graphs may be incomplete and sparse, the facts
deduced by the symbolic system not only reduce sparsity but also make explicit meaningful relations among the entities that
compose an entity ego network. As a proof of concept, our approach is applied over a KG for lung cancer to predict treatment
effectiveness. The empirical results put the deduction power of deductive databases into perspective. They indicate that making
explicit deduced relationships in the ego networks empowers all the studied KGE models to generate more accurate links.
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1. Introduction

Neuro-Symbolic Artificial Intelligence is a research field that combines symbolic and sub-symbolic AI models [3,
8,35]. The symbolic models refer to AI approaches based on handling explicit symbols to conduct reasoning and
support explainability. On the other hand, AI sub-symbolic systems are based on statistical and probabilistic learning
from data mining and neural network models. Symbolic and sub-symbolic systems differ in how they represent
and manage data to perform reasoning and prediction. As a result, they aim at solving complementary tasks whose
integration has the potential to empower prediction with reasoning supported by symbolic formal frameworks [3,15].

Neuro-symbolic integration aims to bridge the gap between symbolic and sub-symbolic systems; it resorts to
translation algorithms to align symbolic to sub-symbolic representations and improve performance [3,8,38]. How-
ever, integrating neuro-symbolic into real-world applications is a challenging task. Even in controlled environments,
neuro-symbolic integration may not be completed performed [14]. For instance, Fernlund et al. [11] describe sys-
tems that use machine learning to learn relations from expert observations. While these systems are successful in
learning, they lack the expressive power of symbolic systems. Another example of neuro-symbolic systems com-
bining connectionist inductive learning and logic programming to solve the problems in the molecular biology and
power plant fault diagnosis [9]. Furthermore, Karpathy et al. [19] combine convolutional neural networks with bidi-
rectional recurrent neural networks over sentences to recognize and label image regions. Despite these advances in
neuro-symbolic AI integration, symbolic processing is not fully exploited, in particular, if reasoning methods are
implemented on top of knowledge graphs [38].

Problem Statement and Proposed Solution: We tackle the problem of link prediction over knowledge graphs
and propose an approach combining symbolic reasoning and sub-symbolic prediction. Our approach integrates a
domain-agnostic symbolic system with knowledge graph embedding models. It resorts to symbolic reasoning to
deduce relationships between entities that compose the ego network of the entities in a knowledge graph, where the
ego network of an entity v is the set of edges connected to v in the knowledge graph. Thus, contextual knowledge,
represented by ego networks, is enhanced, and the sparsity of knowledge graphs is reduced. Since the behavior of
knowledge graph embedding models can be affected in sparse graphs [45], training these models with these en-
hanced ego networks increases the chances of predicting accurate links between entities associated with these net-
works. We apply our hybrid approach in the context of lung cancer. The symbolic system implements a deductive
database to infer drug-drug interactions in lung cancer treatments. Complementary, the sub-symbolic system resorts
to knowledge graph embedding models to predict the effectiveness of a lung cancer treatment. These models trans-
form RDF triples representing treatments, their drugs, and interactions among these drugs into a low-dimensional
continuous vector space that preserves the knowledge graph structure. The integration of both systems enables the
prediction of a treatment’s response, taking into account the potential effect that drug-drug interactions have on the
effectiveness of the treatment.

Results: We assess the performance of the proposed neuro-symbolic system on a knowledge graph built from
clinical records of lung cancer patients; it comprises treatments prescribed to these patients, the responses of these
treatments, and the drugs that have been administrated. Additionally, this knowledge graph integrates information
about the drug-drug interactions between the oncological and non-oncological drugs composing a lung cancer treat-
ment. These drug-drug interactions have been extracted from DrugBank1 following the named entity recognition,
and linking techniques proposed by Sakor et al. [33]. The prediction task is defined in terms of predicting links
between treatments (i.e., heads) and instances of a class representing the different types of lung cancer responses
(i.e., tails). The link prediction task is implemented using eleven state-of-the-art KGE models. The experiments
are executed following different configurations and baselines, with the goal of assessing the accuracy of our pro-
posed neuro-symbolic system. Results of a 5-fold cross-validation process demonstrate that our integrated system
improves the prediction accuracy of studied state-of-the-art KGE models. Moreover, the outcomes of this experi-
mental study put the power of deductive databases into perspective, showing how they can empower the accuracy of
link prediction tasks. More importantly, these results provide evidence of the paramount role of deductive reasoning
and knowledge graph embedding models in predicting treatment response.

1https://go.drugbank.com

https://go.drugbank.com
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Contributions: This paper resorts to our previous work [29], where we propose a deductive system over knowl-
edge graphs to formalize the process of drug-drug interactions. Built on these results, we present a hybrid approach
combining symbolic reasoning expressed by deductive systems with the sub-symbolic expressiveness of KGE mod-
els to enhance prediction accuracy. In a nutshell, our novel contributions are:

1. A domain-agnostic approach able to empower the predictive performance of sub-symbolic systems with a de-
ductive database system. The deductive system reduces data sparsity issues by inferring implicit relationships
in a KG. Consequently, the sub-symbolic system, implemented by KGE models, better represents statements
described in the KG into a low-dimensional continuous vector space.

2. An extensive evaluation of our neuro-symbolic system with state-of-the-art KGE models demonstrates the
benefit of integrating deductive reasoning and sub-symbolic systems. The evaluation is performed on the prob-
lem of predicting the effectiveness of lung cancer treatments composed of multiple drugs, i.e., polypharmacy
treatments.

The rest of the paper is structured as follows: Section 2 presents the preliminaries and a motivating example. Sec-
tion 3 shows the proposed approach and illustrates its main features with a running example. Section 4 applies our
hybrid method in the context of predicting the effectiveness of polypharmacy lung cancer treatments. Results of the
empirical evaluation of our method are reported in Section 5. Section 6 analyses the state-of-the-art. Finally, we
close with the conclusion and future work in Section 7.

2. Preliminaries and motivation

Knowledge Graphs (KGs) are data structures converging data and knowledge as factual statements of a graph
data model [13,16]. Formally, a knowledge graph is a 10-tuple KG = (V ,E,L,C, I,D,R,N , ego, α), where:

– V is a set of nodes corresponding to concepts (e.g., classes and entities).
– E ⊆ V × L × V is a set of edges representing relationships, i.e., triples (s, p, o), between concepts.
– L is a set of properties.
– C is a set of classes C ⊆ V .
– I : V → C is a function that maps each entity in V to a class C.
– D : L → C maps a property to the class that corresponds to the domain of the property.
– R : L → C maps each property to a class that corresponds to the range of the property.
– N : V → 2V , where 2V represents the power set of nodes V . N (v) defines the neighbors of the entity v, i.e.,

N (v) = {vi |(v, r, vi) ∈ E ∨ (vi, r, v) ∈ E}.
– ego : V → 2V ×L×V , the function ego(.) represents ego networks in the knowledge graph. ego(v) as-

signs to each concept in V the set of labeled edges, where v is in the subject or object position. ego(v) =
{(u1, r, u2)|(u1, r, u2) ∈ E ∧ (u1 = v ∨ u2 = v)}. The ego(v) defines the ego network of the entity v.

– α : 2V → 2V ×L×V . The function α(.) returns a set of triples between the pairs of elements in the input.If F is
a set of entities in V , α(F ) = {(v1, r, v2)|(v1, r, v2) ∈ E ∧ v1 ∈ F ∧ v2 ∈ F }. The function α(.) returns the
edges between pairs of entities in the input set F .

Figure 1(a) depicts a knowledge graph KG, where the set of classes are represented by C = {Drug, Treatment,
Response}. The class for each entity is represented by the function I (.), e.g., the entity T 1 belongs to the class
Treatment and I (T 1) = Treatment. For the property has_response ∈ L, the domain is defined by the function
D(has_response) = Treatment, while the range is R(has_response) = Response. Figure 1(b) illustrates the ego net-
work of the entity T 1, where the neighbors of the entity T 1 are defined by N (T 1) = {D1,D2,D3,D4, low_effect}.
Furthermore, the set of edges between pairs of entities in the set of neighbors of entity T 1 is defined by
α(N (T 1)) = {(D1, interacts_with,D2), (D2, interacts_with,D4), (D3, interacts_with,D2)}, where we can ob-
serve the three triples in Fig. 1(a). Note that although low_effect is in the ego network of the entity T 1, this entity is
not related to any other entity in this ego network.

An ideal knowledge graph. An ideal knowledge graph is a knowledge graph KG′ = (V ,E′, L,C, I,D,R,N ,

ego, α) that contains all the true existing relations between entities in V . The Closed World Assumption (CWA) is
assumed on KG′, i.e., what is unknown to be true in KG′ it is false.
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Fig. 1. Example knowledge graph. Fig. 1(a) shows a KG with three classes, five green entities belonging to class Drug, two gray entities
belonging to class Treatment, and two red entities belonging to class Response. Figure 1(b) illustrates the ego network for the entity T 1, where
the entities D1, D2,D3, D4, and low_effect are the neighbors of T 1. Figure 1(c) shows the KG resulting from DS (deductive system). The red
arrows represent the new deduced links in the ego network ego(.).

An actual knowledge graph. An actual knowledge graph KG = (V ,E,L,C, I,D,R,N , ego, α) is a knowl-
edge graph that follows the assumption Open World Assumption (OWA), i.e., what is not known to be true is just
unknown and may be true.

A complete knowledge graph. A complete knowledge graph KGcomp = (V ,Ecomp, L,C, I,D,RN , ego, α) is a
knowledge graph, which includes a relation for each possible combination of entities in V . Note that all relationships
in KGcomp are not necessarily declared as true (w.r.t. domain knowledge).

A knowledge graph KG may only contain a portion of the edges represented in KG′, i.e., E ⊆ E′. KG represents
those relations that are known but it is not necessarily complete. On the other hand, since KGcomp is a complete
knowledge graph, E ⊆ E′ ⊆ Ecomp. The set of missing edges in KG is defined as �(E′, E) = E′ − E, i.e., it is
the set of relations existing in the ideal knowledge graph KG′ that are not represented in KG. Figure 2 illustrates
three knowledge graphs. Figure 2(a) is an ideal knowledge graph that states that only three relationships are true.
The actual knowledge graph, presented in Fig. 2(b), is incomplete and only includes two relationships; (C, p2, B)

is unknown and is not part of the current knowledge graph. Figure 2(c) illustrates a complete knowledge graph, with
a relation for each combination of entities in V and properties in L. All the possible relationships are included in
this graph.

An abstract target prediction over a knowledge graph KG is defined in terms of a tuple τ = 〈KG, r, prediction,

DS, KGE〉:
– KG is a knowledge graph KG = (V ,E,L,C, I,D,R, ego,N , α).
– r represents a prediction property, r ∈ L.
– prediction indicates the head or the tail of triples to predict. A tail prediction of triples 〈h, r, t〉 is the process of

finding t for the incomplete triple 〈h, r, ?〉, head predictions can be defined analogously.
– DS is a deductive database system over KG.
– KGE is a knowledge graph embedding model over KG.

The deductive system DS derives new facts from inference rules and facts stored in a database [26]; it is ex-
pressed as a set of extensional and intensional rules in Datalog. A Datalog rule corresponds to a Horn clause [7],
L1, . . . , Ln ⇒ L0, where each Li is a literal of the form pi(t1, . . . , tki). Pi is a predicate symbol and tj are terms.
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Fig. 2. Example of actual, ideal, and complete knowledge graph.

A term is either a constant or a variable. The right-hand side of a Datalog clause is the head, and the left-hand side
is its body. Clauses with an empty body represent facts. A Datalog program P must satisfy the following safety
conditions; each fact of P is ground, and each variable that occurs in the head of a rule of P must also occur in the
body of the same rule. A rule is safe if all its variables are bounded, where any variable appearing as an argument
in a body predicate is bounded. Datalog considers two sets of clauses: a set of ground facts called the Extensional
Database (EDB) and a Datalog program P called the Intensional Database (IDB). The predicates in the EDB and
IDB are divided into two disjoint sets, EDB predicates, which occur in the EDB, and the IDB predicates, which
occur in IDB. The head predicate of each clause in P is an IDB predicate, and the EDB predicate can occur in the
body of the rule. If C1 and C2 are the domain and range of r respectively, then EDB comprises ground facts of the
form: p(s, o) where the triple (s, p, o) ∈ ego(v) ∪ α(N (v)), and I (v) ∈ {C1, C2}. The EDB in our DS contains
ground facts from the ego networks and their neighbors. Given a prediction property, r = has_response we know
the domain D(has_response) = Treatment and range R(has_response) = Response. Figure 1(a) shows entities
of type Treatment and entities of type Response for the domain and range of the property has_response, respec-
tively. The EDB comprises all the ground facts defined by the ego networks: ego(T 1), ego(T 2), ego(low_effect),
and ego(effective), and their neighbors α(N (T 1)), α(N (T 2)), α(N (T low_effect)), and α(N (effective)), where en-
tities T 1 and T 2 belong to class Treatment, and low_effect and effective belong to the class Response.

An example of EDB is the set of facts {interacts_with(D1,D2), interacts_with(D2,D4)}, where the property
interacts_with ∈ L and the entities {D1,D2,D4} ⊆ V . The predicate interacts_with represents interactions be-
tween two drugs. Let P (1) be a Datalog program (IDB) containing the following clauses:

rule1 interactsWith(A,X) ⇒ inferredInteraction(A,X).

rule2 inferredInteraction(B,X), interactsWith(A,B) ⇒ inferredInteraction(A,X).
(1)

The predicate inferredInteraction(A,X) is an IDB predicate, and interactsWith(A,X) is an EDB predicate. Rule
rule2 states that exist an inferred_interaction between drug A and X, if there is another drug B which interacts
with A with the predicate interacts_with, and there is an inferred_interaction from B to X. The evaluation results
of rule2 is {inferred_interaction(D1,D4)}, shown in Fig. 1(c) with a red arrow.

KGE model learns vector representation (i.e., KG embeddings) in a low dimensional continuous vector space
for entities v ∈ V and relations e ∈ E in a KG. KGE model exploits the KG structure to predict new relations
in E. The KGE model resorts to a scoring function φ to estimate the plausibility of the vector representation of
a triple, where higher φ values yield higher plausibility [31]. Link prediction is performed by identifying which
vector representation of an entity provides the best values of the scoring function φ. These entities are added to the
incomplete triples as heads or tails. If prediction = tail, then the link prediction task is the process of finding t as
the best scoring tail for the incomplete triple 〈h, r, ?〉:

argmax
t∈V

φ(h, r, t).
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If prediction = head, it can be defined analogously. The state of the art of KGE methods may be negatively impacted
by the data sparsity issue, i.e., ground facts that can be used as positive samples to guide KGE training represent only
a minor portion. The proposed deductive database system for abstract target prediction alleviates the data sparsity
issue by enhancing links in the ego network ego(v), which are managed as new ground facts.

Suppose the abstract target prediction is defined for the current knowledge graph KG presented in Fig. 1(a) where
the prediction property is r = has_response, and the prediction corresponds to the tail, i.e., prediction = tail. The
link prediction task predicts incomplete triples 〈h, r, ?〉, where the head h represents entities of class Treatment, i.e.,
entities h in V such that I (h) = Treatment, and the relation is r = has_response.

2.1. Motivating example

We motivate our work in healthcare, specifically for predicting polypharmacy treatment response. Polypharmacy
is the concurrent use of multiple drugs in treatments, and it is a standard procedure to treat severe diseases, e.g., lung
cancer. Polypharmacy is a topic of concern due to the increasing number of unknown drug-drug interactions (DDIs)
that may affect the response to medical treatment. Pharmacokinetics is a type of DDIs, i.e., the course of a drug in
the body. Pharmacokinetics DDIs alter a drug’s absorption, distribution, metabolism, or excretion. For example, an
increase in absorption will increase the object drug’s bioavailability and vice versa. If a DDI affects the object’s drug
distribution, the drug transport by plasma proteins is altered. Moreover, a drug’s therapeutic efficacy and toxicity
are affected when a pharmacokinetics DDI alters the object’s drug metabolism. Lastly, if the excretion of an object
drug is reduced, the drug’s elimination half-life will be increased. Notice that the pharmacokinetic interactions can
be encoded in a symbolic system.

Figure 3(a) shows two polypharmacy oncological treatments encoded in RDF. We extract the known DDIs be-
tween the drugs of these treatments from DrugBank. However, polypharmacy therapies produce unforeseen DDIs
due to drug interactions in the treatment. Since DDIs affect the effectiveness of a treatment, there is a great interest
in uncovering these DDIs. Figure 3(b) depicts an ideal RDF graph where all the existing relations are explicitly
represented. Dotted red arrows represent DDI between the drugs DB00193 and DB00958 that are generated as
the result of DDIs among drugs in the treatment. A Datalog program represents the rules that state when these
DDIs are produced between the drugs administrated in a treatment. The extensional database corresponds to facts
representing explicit relationships; in our case, these facts are extracted from DrugBank. The intensional database
corresponds to intensional rules that define all the combinations of DDIs that may produce new DDIs; they allow
for deducing implicit DDIs in a treatment. The DDI between DB00193 and DB00958 increases the information of
treatments T1 and T2, enabling both treatments to share more relationships. Then, a sub-symbolic system, e.g., a
knowledge graph embedding model, can explore these enhanced relationships and make a more accurate prediction
of the treatment response by employing the deduced DDIs. For example, the geometric model TransH places T1
and T2 nearby in the embedding space after deducing DDIs and predicts the therapeutic response of T2. As a result,
this neuro-symbolic system enhances treatment information by identifying drug combinations whose interactions
may affect treatment effectiveness. We propose an approach that resorts to symbolic reasoning implemented by a
Datalog database and stage-of-the-art KGE models; it deduces DDIs within a treatment. Then, the KGE model em-
beds all the knowledge in the graph and predicts treatment responses. Although we depict the method in the context
of treatment effectiveness, this approach is domain-agnostic and could be applied to any other link prediction task.

3. Proposed symbolic and sub-symbolic system

3.1. Problem statement

Given an actual knowledge graph KG = (V ,E,L,C, I,D,R, ego,N , α) and its corresponding ideal knowledge
graph KG′ = (V ,E′, L,C, I,D,R, ego,N , α). Given an abstract target prediction over an actual knowledge graph
KG, τ = 〈KG, r, prediction, DS, KGE〉, we tackle the problem of predicting relationships over KG.

Given a relation, e ∈ �(Ecomp, E) (i.e., the set of missing edges in KG), the problem of predicting relationships
consists of determining whether e ∈ E′, i.e., if a relation e corresponds to an existing relation in the ideal knowledge
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Fig. 3. Motivating example. Fig. 3(a) shows two polypharmacy oncological treatments, T1 and T2, represented in RDF. The drugs DB00193,
DB00642, and DB00958 are part of T1, and the drug-drug interactions are represented by the property InteractsWith. The therapeutic response
of T1 is annotated as low_effect by the property has_response, while the therapeutic response of T2 is unknown. Figure 3(b) depicts the ideal
RDF graph, where a symbolic system generates a new DDI between DB00193 and DB00958. Ideally, a sub-symbolic system detects that both
treatments are similar and predicts the effectiveness of T2 as low effective.

graph KG′. We are interested in finding the maximal set of relationships or edges Ea that belongs to the ideal KG′,
i.e., find a set Ea that corresponds to a solution of the following optimization problem:

argmax
Ea⊆Ecomp

∣
∣Ea ∩ E′∣∣.

3.2. Proposed solution

Our proposed solution resorts to a symbolic system implemented by a deductive database to enhance the predic-
tive precision of the link prediction task solved by knowledge graph embedding models. The approach assumes that
a link prediction problem is defined in terms of an abstract target prediction τ = 〈KG, r, prediction, DS, KGE〉 over
a knowledge graph KG = (V ,E,L,C, I,D,R, ego,N , α).

A Symbolic System: Deductive system DS corresponds to the deductive databases where the EDB comprises
ground facts of the form: p(s, o), where the triple 〈s, p, o〉 ∈ ego(v) ∪ α(N (v)), I (v) ∈ {C1, C2}, C1 = D(r),
and C2 = R(r). The variables C1 and C2 represent the domain and range of the property r , respectively. The IDB
contains rules that allow deducing new relationships in the ego network ego(v). The computational method executed
to empower the ego networks ego(v) is built on the results of deductive databases to compute the minimal model of
the deductive database [7]. The minimal model corresponds to the instantiations of IDB predicates. This minimal
model is defined in terms of the fixed-point assignment σ

ego(.)

MINFIX, that deduces relationships between entities vi and
vj in the neighbors N (.). The minimal model for DS can be computed in polynomial time in the overall size of
the ego network ego(v) and the neighbors α(N (v)) for all the entities v where I (v) ∈ {C1, C2}, C1 = D(r), and
C2 = R(r).
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Fig. 4. Approach. The input is a knowledge graph (KG), an abstract target prediction τ , and a deductive system, and returns a KGE model. The
symbolic system is implemented by a deductive system DS(EDB, IDB) that deduces new relationships in the ego network ego(v) and between
their neighbors α(N (v)). Then, the sub-symbolic system implemented by a KGE model employs the KG with the deduced new relationships to
predict incomplete triples. KGE solves the abstract target prediction τ for the relation r and the prediction head or tail.

A Sub-symbolic System: A model to learn Knowledge Graph Embeddings solves the abstract target prediction
τ over KG for the relation r and the prediction head or tail. The sub-symbolic system predicts incomplete triples of
the way 〈h, r, ?〉 if prediction = tail and 〈?, r, t〉 if prediction = head.

The Integration of Symbolic and Sub-symbolic Systems: The ego network ego(v) and the edges between their
neighbors α(N (v)) are extended with explicit relationships among entities in the neighbors N (v) by the deductive
system DS. As a result, the symbolic system implemented by DS alleviates the data sparsity issues in KG that may
negatively affect the learning of the KGE in the abstract target prediction τ .

3.3. The symbolic and sub-symbolic system architecture

Figure 4 depicts the architecture that implements the proposed approach. The architecture receives a knowledge
graph KG = (V ,E,L,C, I,D,R, ego,N , α) and an abstract target prediction τ = 〈KG, r, prediction, DS, KGE〉,
where KG is the knowledge graph, r is a property, prediction represents the head or tail of triples to predict, DS
is the deductive system, and KGE is the knowledge graph embedding. The architecture returns a learned model of
embeddings. These embeddings are used to solve the target prediction task defined by τ .

The architecture is composed of two main steps. First, the relationships implicitly defined by the deductive system
are deduced by means of a Datalog program. Second, once KG is augmented with new deduced relationships,
KGE learns a latent representation of entities and properties of KG in a low-dimensional space. The architecture is
agnostic of the method to learn the embeddings. Moreover, our approach is domain-agnostic. For example, it can be
applied in the context of Industry 4.0 to discover relations between standards and thus solve interoperability issues
between standardization frameworks [27,28].

3.4. Abstract target prediction task. Running example

Albeit illustrated in the context of treatment response, the proposed method is domain-agnostic. It only requires
the definition of the deductive system to enhance the relationships in the ego network of the entities v where I (v) ∈
{C1, C2}, C1 = D(r), and C2 = R(r). The variables C1 and C2 represent the domain and range of the property
r , respectively. Figure 5 illustrates the proposed steps to enhance the predictive performance by knowledge graph
embedding models. The KG shown in Fig. 5(A) is the same as in Fig. 1(a). Assuming we receive as input the
abstract target prediction τ = 〈KG, r, prediction, DS, KGE〉, where the KG is represented in Fig. 5(A), the property
is r = has_response, the prediction = tail, DS is the deductive system, and KGE is the KGE algorithm. The
EDB of the DS comprises all the ground facts of the form: p(s, o), where the triple (s, p, o) ∈ ego(v) ∪ α(N (v)),
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Fig. 5. Running example. Figure 5 illustrates the proposed steps to enhance the predictive performance of KGE models. Step A: given a KG
and an abstract target prediction τ = 〈Treatment, has_response, Response〉 the ego network EgoG(v) is defined. Step B: illustrates the neighbors
of the ego network EgoG(T 1) and EgoG (T 2) and a deductive system based on the head and tail of τ deduces new relationships to enhances the
neighbors NG(EgoG (v)). Step C: depicts a KGE model in which predictive performance is enhanced by symbolic reasoning. The relationships
in NG(EgoG (v)) improving the link prediction task in G|τ .

Listing 1. SPARQL query to ground the extensional predicate interacts_with(A,B)

I (v) ∈ {C1, C2}, C1 = D(has_response), and C2 = R(has_response). Then, the domain and range of the property
r = has_response are Treatment and Response, respectively. In addition, the entity type for v in ego network ego(v)

is Treatment or Response. The entities low_effect and effective are of type Response, and T 1 and T 2 are entities of
type Treatment.

The EDB comprises all the ground facts defined by the ego networks: ego(T 1), ego(T 2), ego(low_effect), and
ego(effective), and their neighbors α(N (T 1)), α(N (T 2)), α(N (low_effect)), and α(N (effective)). Figure 5(B)
shows the ego networks ego(T 1) and ego(T 2) with the set of edges between pairs of entities in the set of neigh-
bors of entity T 1 and T 2 defined by α(N (T 1)) and α(N (T 2)), respectively. Then, DS deduces new relationships
enhancing the links in the ego(T 1) and ego(T 2); red arrows represent the deduced relationships. Considering the
Datalog program P (1) as the IDB for DS, the facts inferred_interaction(D1,D4), inferred_interaction(D3,D4),
inferred_interaction(D5,D4), and inferred_interaction(D5,D2) are deduced enhancing the ego network.

The SPARQL query in Listing 1 extracts the ego network ego(T 1) and the set of edges between pairs of entities
in the set of neighbors of entity T 1 defined as α(N (T 1)). Listing 1 illustrates a CONSTRUCT query that returns
RDF triples in the form of subject, predicate, and object and represents the ground facts of the EDB. The predicate
represents the ground predicated in the EDB, the subject represents the first term of the ground predicated, and the
object represents the second term.
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Listing 2. SPARQL query to insert the deduced relationships from the intensional predicate inferred_interaction(A,X)

The IDB described by the Datalog program P (1) allows deducing new relationships and increasing the ego
networks ego(T 1) and ego(T 2). The deduced relations are inserted into the KG through the SPARQL query in
Listing 2. The deduced relationship e belongs to E′, i.e., e ∈ E′.

Figure 5(C) illustrates a KGE model in which the symbolic system enhances predictive precision. The DS in-
creases the relationships E in KG, alleviating the data sparsity issues in KG. Thus, the KG that contains new
facts deduced by DS guides the KGE model, improving the link prediction task for r = has_response and
prediction = tail. Figure 5(C) shows the link prediction task of finding t as the best scoring tail for the incom-
plete triple (T 2, has_response, ?): argmaxt∈V φ(T 2, has_response, t). Treatment T 2 is predicted to have a response
low_effect(T2, has_response, low_effect), i.e., T 1 and T 2 are nearby in the embedding space after enhancing the
ego(T 1) and ego(T 2) in KG.

4. Use case: Prediction of polypharmacy treatment effectiveness

As a proof concept, we apply our neuro-symbolic approach to address the problem of predicting polypharmacy
treatment effectiveness. We have implemented a deductive system on top of a Treatment Knowledge Graph (KG).
The technique aims to identify the combination of drugs whose interactions may affect the treatment’s effective-
ness. Then, the problem of predicting treatment effectiveness is modeled as a problem of link prediction between
treatments and the responses: low-effect or effective.

4.1. Treatment knowledge graph creation

The P4-LUCAT consortium2 collected heterogeneous data sources that comprise clinical records, drugs, and
scientific publications and built a knowledge graph that provides an integrated view of these data. The KG is built
with the aim of personalized medicine for Lung Cancer treatments. The treatments are extracted from Electronic
Health Records (EHRs) from the Hospital Universitario Puerta del Hierro of Majadahonda of Madrid (HUPHM).
Furthermore, the DDIs are extracted from DrugBank, in the approved category. The interactions’ type and effect are
extracted using named entity and linking methods implemented by Sakor et al. [34]. These methods have also been
used to extract DDIs in covid-19 and lung cancer treatments [1,33,39]. Table 1 contains a summary of the number
of annotations by classes in the Lung Cancer Knowledge Graph.

Figure 6 describes a Lung Cancer patient in the Lung Cancer Knowledge Graph. The patient P1 is in stage II and
has surgery. Also, P1 received treatment on 10.07.2020 with an effective therapeutic response. In that treatment, P1
was treated with a combination of chemotherapy drugs and one non-oncological drug. Drug-Drug Interactions with
the effect and the impact are reported.

The input KG in our use case contains 548 polypharmacy cancer treatments T extracted from lung cancer clinical
records, with the therapeutic response from each of them and the known Drug-Drug Interactions. The therapeutic
response is the target class and can be set to the value low-effect or effective treatment. The meaning of an effective
treatment is because of a complete therapeutic response or stable disease. A low-effect treatment means a partial
therapeutic response or disease progression. Figure 7 depicts a descriptive analysis of the treatment response ac-
cording to the data extracted from the clinical records. Figure 7(a) shows the treatment response distribution, where
there are 149 effective treatments and 399 low-effect treatments. Figure 7(b) and 7(c) present the histogram for
the class effective and low-effect, respectively. We can observe that there are treatments with nine and ten drugs

2https://p4-lucat.eu/

https://p4-lucat.eu/
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Table 1

Summary of the lung cancer knowledge graph

Knowledge graph for lung cancer Records

Lung Cancer Patients 1’242

Lung Cancer Drug 45

Chemotherapy Drug 7

Immunotherapy Drug 3

Antiangiogenic Drug 2

Tki Drug 5

Non Oncological Drug 41

Oncological Surgery 9

Tumor Stage 6

Publications 178’265

Drugs 8’453

Drug-Drug Interactions 1’550’586

Fig. 6. Representation of a patient in the lung cancer knowledge graph.

in both treatments’ response classes. Also, the most low-effect treatments are composed of more drugs than effec-
tive treatments. The rate of drugs between five and ten can be explained by the fact that in patients with multiple
comorbidities, multiple drugs are prescribed to treat the disease.

For each treatment, ti ∈ T , the DDIs and their effect are known from DrugBank [42]. Then, the treatments, the
treatment response, the drugs, DDIs, and DDI effects for each treatment are managed in KG. Figure 8 shows a por-
tion of KG. The node colors correspond to the type of entity, and the edges represent relationships amount the drugs
grouped in a treatment. The polypharmacy treatment knowledge graph KG = (V ,E,L,C, I,D,R, ego,N , α) is
defined as follows:

• The types Drug, Treatment, DDI, Effect of DDI, and Treatment Response belong to Classes.
• Drugs, Treatments, DDIs, Effect of DDI, and Treatment Response are represented as instances of V .
• Edges in E that belong to V × V represent relations about drugs into a treatment.
• Properties ex:has_response, part_of, ex:precipitant_drug, ex:object_drug, ex:effect, ex:impact, and ex:hasIn-

teraction correspond to labels in L.
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Fig. 7. Descriptive analysis of the treatment responses.

Fig. 8. Portion of treatment knowledge graph KG. The treatment1 is composed by three drugs represented by the nodes, drug:DB00642,
drug:DB00193, and drug:DB00958. The treatment2 also contains three drugs and shares drug:DB00958 with treatment1. The blue node
ddi:DB00958DB06186 represents a DDI in the treatment2 where the drug:DB00958 is the precipitant, and drug:DB06186 is the object drug.
The effect of this DDI is represented by the yellow node ex:excretion and the impact by the node ex:decrease. Then, the treatment treatment2
has a low effective response represented by the property ex:has_response.

4.2. Symbolic system. Deductive database

Let τ = 〈KG, r, prediction, DS, KGE〉 be the input abstract target prediction, where KG is the polypharmacy
treatment knowledge graph, r = has_response, prediction = tail, DS the deductive database system, and KGE
the knowledge graph embedding algorithm. The IDB of the DS comprises a set of rules to deduce new DDIs in
treatments. A DDI is deduced when a set of drugs are taken together and is represented as a relation in the minimal
model of the deductive database DS. The extensional database corresponds to statements about interactions between
drugs stated in KG. The ground predicates included in the EDB are the following; they are extracted from the KG
by executing SPARQL queries:
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rule1(serum, increase). rule2(serum, decrease). precipitant(DB00958DB06186, DB00958).
rule1(metabolism, decrease). rule2(metabolism, increase). object(DB00958DB06186, DB06186).
rule1(absorption, increase). rule2(absorption, decrease). effect(DB00958DB06186, excretion).
rule1(excretion, decrease). rule2(excretion, increase). impact(DB00958DB06186, decrease).

SPARQL queries in Listing 3 and Listing 4 declaratively define the ground rule1 and rule2 in the EDB. Both
queries are executed on top of the KG; the CONSTRUCT query returns RDF triples in the form of subject, predicate
and object. The predicate in the RDF triples represents the ground predicate in the EDB.

Listing 3. SPARQL query to ground the extensional predicate rule1(E, I )

Listing 4. SPARQL query to ground the extensional predicate rule2(E, I )

The facts included in the ground predicates precipitant, object, effect, and impact from the EDB are extracted
using the CONSTRUCT query of Listing 5. The EDB contains thousands of facts for those predicates; therefore,
only a few ground facts are presented.

Listing 5. SPARQL query to extract the ground the extensional predicates precipitant(ddi,A), object(ddi,B), effect(ddi,E), and impact(ddi,I)

The above-mentioned rule1 identifies the combinations of effect and impact that alter the toxicity of an object
drug, while rule2 determines the combinations of effect and impact that alter the effectiveness of an object drug.
The predicates rule1 and rule2 represent the effect and impact of pharmacokinetic DDIs. The intensional database
(a.k.a. IDB) comprises Horn rules that state when a new DDI can be deduced as a result of the combination of the
treatment’s drug. These rules are negation free; thus, the interpretation of the deductive database corresponds to the
minimal model of the EDB and IDB. The intensional database relies on the fact that pharmacokinetic DDIs cause
the concentration of one of the interacting drugs (a.k.a. object) to be altered when combined with the other drug
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(a.k.a. precipitant). Thus, the absorption, distribution, metabolism, or excretion rate of the object drug is affected.
Whenever the object drug absorption is decreased (resp. increased), the bioavailability of the drug is also affected.
Furthermore, any alteration in the metabolism or excretion of the object drug has consequences on the therapeutic
efficacy and toxicity of the drug. The following Datalog rules state the effect of pharmacokinetic DDIs:

precipitant(ID, A), object(ID, B), effect(ID, E), impact(ID, I)

⇒ ddi(A,E, I, B). (2)

ddi(A,E, I, B)

⇒ inferred_ddi(A,E, I, B). (3)

inferred_ddi(A,E2, I2, B), ddi(B,E, I, C), rule1(E, I), rule1(E2, I2), (A! = C)

⇒ inferred_ddi(A,E, I, C). (4)

inferred_ddi(A,E2, I2, B), ddi(B,E, I, C), rule2(E, I), rule2(E2, I2), (A! = C)

⇒ inferred_ddi(A,E, I, C). (5)

Rule (3) states the base case of the IDB. The predicate symbol ddi represents the DDIs with their effect and
impact in KG. Precipitant drug A generates effect E (e.g., absorption, excretion, metabolism, serum concentration)
with impact I (e.g., increase or decrease) in object drug B. The predicate symbol inferred_ddi expresses a deduced
DDI, where the first term is the precipitant drug, the second and third terms represent the value of the property
effect and impact of the DDIs deduced, and the last term is the object drug. Rule (4) and (5) define the effects
of combining drugs that interact in a polypharmacy treatment and comprises the clauses to deduce relationships
encoded in KG. The head predicate inferred_ddi becomes valid when the predicate symbols in the body of the
rule are also valid. The DDIs deduced from the Rule (4) increase the toxicity of the object drug, and the DDIs
deduced from Rule (5) alter the effectiveness of the object drug. Those deduced DDIs are aggregated to the KG;
they represent valuable insights into each treatment. Each DDI deduced, which is part of the minimal model of the
IDB predicate inferred_ddi(A,E,I,C), is inserted into the KG using the query shown in Listing 6. From the motivating
example, we can observe that by applying the DDI deductive system to the treatment T1 in Fig. 3(a), a new DDI is
deduced in Fig. 3(b); it represents a new triple enhancing the treatment information, reducing thus, data sparsity.

Listing 6. SPARQL query to insert the deduced DDI from the intensional predicate inferred_ddi(A,E,I,C)

4.3. Sub-symbolic system. Knowledge graph embedding model

Once the deductive system DS deduces new DDIs, the Knowledge Graph Embedding algorithm KGE is applied
to learn a latent representation of the entities in a low-dimensional space. The DS increases the relationships in
the ego networks ego(v) such as I (v) ∈ {C1, C2}, C1 = D(has_response), and C2 = R(has_response). The DS
minimizes the data sparsity issues by augmenting the description of the treatments with newly deduced DDIs. Then,
KGE is able to improve the entities’ representation in the embedding space. Thus, the scoring function φ(h, r, t)

of the KGE is improved, and the link prediction task infers missing links that correspond to triples 〈h, r, ?〉, where
I (h) = D(r) and r = has_response. Thus, h are entities of class Treatment, and entities in the object position t are
of class Response. Symbolic and sub-symbolic systems are highly complementary to each other. Sub-symbolic AI
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Fig. 9. Benchmarks to evaluate. Fig. 9(a) represents the KGbasic, and it includes treatments from clinical records and pharmacokinetic DDI
extracted from Drugbank. Figure 9(b) represents the KG and it includes treatments from clinical records, pharmacokinetic DDI extracted from
Drugbank, and a new set of pharmacokinetic DDI deduced by the DDI Deductive System. Figure 9(c) represents the KGrandom and includes
treatments from clinical records, pharmacokinetic DDI extracted from Drugbank, and the same number of new links deduced in KG is generated
randomly.

systems are able to solve complex problems that humans cannot analyze to draw conclusions or make predictions.
Sub-symbolic methods are generally robust to data noise, while symbolic systems are vulnerable to data noise,
which contrasts with the strength of sub-symbolic approaches.

5. Experimental study

We empirically assess the impact of the DDIs encoded in KG on our approach’s behavior. In particular, this work
explores the following research questions: RQ1 Can the problem of predicting treatment effectiveness be effectively
modeled as a problem of link prediction? RQ2 Can the symbolic system for an abstract target prediction improve the
link prediction performance of the KGE models? RQ3 Can knowledge encoded in drug-drug interactions enhance
the accuracy of the predictive task?

5.1. Experiment setup

We empirically evaluate the effectiveness of our approach to capture knowledge encoded in KG and predict
polypharmacy treatment response.

5.1.1. Benchmarks
We conduct our evaluation over three Knowledge Graphs represented in Fig. 9. KGbasic is the Knowledge Graph

which only contains for each polypharmacy treatment the DDIs and their effect extracted from Drugbank. The sec-
ond Knowledge Graph, KG, includes not only the DDIs extracted from DrugBank, but also the ones deduced by
Deductive Database DS, i.e., it contains new deduced DDIs and their effects. Lastly, the third Knowledge Graph,
KGrandom is created from KGbasic; it also includes the same number of links included in KG but these links are ran-
domly generated, i.e., they correspond to false or true relationships. We aim to validate whether the links discovered
by our DDI Deductive System improve the prediction of treatment responses.

5.1.2. Knowledge graph embedding models
We utilize eleven models to compute latent representations, e.g., vectors, of entities and relations in the three KGs

and then employ them to infer new facts. In particular, we utilize three main families of models:

• Tensor Decomposition models such as HolE and RESCAL.
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Table 2

Scoring function and complexity of embedding models. Adapted from [31]

Embedding model Scoring function Complexity

HolE r(h � t) O(|E|d + |R|d)

RESCAL hT Wr t = ∑d
i=1

∑d
i=1 w

(r)
ij

hi tj O(|E|d + |R|d2)

RotatE −‖h ◦ r − t‖ O(|E|d + |R|d)

QuatE t (h ⊗ r) O(|E|d + |R|d)

TransE ‖h + r − t‖ O(|E|d + |R|d)

TransH ‖h⊥ + dr − t⊥‖ O(|E|d + 2|R|d)

TransD ‖h⊥ + r − t⊥‖ O(2|E |d + 2|R|d)

TransR ‖hr + r − tr‖ O(|E|d + |R|d2)

UM ‖h − t‖ O(|E|d)

SE ‖Mr,1h − Mr,2t‖ O(|E|d + 2|R|d2)

ERMLP wT g(W [h; r; t]) O(|E|d + |R|d + k(3d + 2) + 1

• Geometric models such as RotatE, QuatE, and the Trans* family models TransE, TransH, TransD, TransR.
• Deep Learning models such as UM, SE and ERMLP.

The symbolic-sub-symbolic system proposed is implemented in eleven embedding models from different fami-
lies [31]. Holographic embeddings (HolE) [23] computes circular correlation, denoted by � in Table 2, between the
embeddings of head and tail entities. RESCAL [24] is an algorithm of relational learning based on tensor factor-
ization, where it models entities as vectors and relations as matrices. In RESCAL, the relation matrices Wr contain
weights wi,j between the i-th factor of h and j -th factor of t . RotatE [37] represents each relation as a rotation from
the head entity to the tail entity in the complex latent space. The rotation r is applied to h by operating a Hadamard
product (denoted by ◦ in Table 2). QuatE [44] operates on the quaternion space and learns hypercomplex valued
embeddings (quaternion embeddings) to represent entities and relations, and ⊗ represents the Hamilton product.
TransE [5] proposes a geometric interpretation of the latent space and interprets relation vectors as translations in
vector space, h + r ≈ t . TransE can not naturally model 1-n, n-1 and n-m relationships. Suppose a relation r with
cardinality 1-n, (h, r, t1), (h, r, t2) then the model fits the embeddings in order to ensure h + r ≈ t1 and h + r ≈ t2,
i.e. t1 ≈ t2. Translation on hyperplanes (TransH) [41] is an extension of TransE that aims to overcome the limita-
tions of TransE. TransH interprets a relation as a translating operation on a hyperplane. Furthermore, each relation r

is represented by the hyperplane’s norm vector (wr ) and the translation vector (dr ) on the hyperplane. The variables
h⊥ and t⊥ denote a projection of head vector h and tail vector t to the hyperplane wr . TransR [21] represents entities
and relations in distinct vector spaces and learns embeddings by translation between projected entities. hr = h∗Mr

where Mr corresponds to a projection matrix Mr ∈ R
dxk that projects entities from the entity space to the relation

space; further r ∈ R
k . TransD [17] employs separate projection vectors for each entity and relation. In the score

function of TransD, the variables h⊥ and t⊥ are defined as, h⊥ = Mrhh and t⊥ = Mrt t , where Mrh, Mrt ∈ R
m×n

are two mapping matrices defined as follows: Mrh = rphp + Im×n and Mrt = rptp + Im×n. The subscript p means
the projection vectors, and Im×n denotes the identity matrix of size m × n. The Unstructured Model (UM) [4] is a
simplified version of TransE where it does not consider differences in relations and only models entities as embed-
dings. This model can be beneficial in KGs containing only a single relationship type. The Structured Embedding
(SE) [6] model defines two matrices Mr,1 and Mr,2 to project head and tail entities for each relation. SE can discern
between the subject and object roles of an entity since it employs different projections for the embeddings of the
head and tail entities. ERMLP [10] is a model based on a multi-layer perceptron and uses a single hidden layer. In
the score function, the variable W ∈ R

k×3d represents the weight matrix of the hidden layer, the variable w ∈ R
k

represents the weights of the output layer, and g is the activation function. In Table 2, the variable k corresponds to
the number of neurons in the hidden layer.

The PyKEEN (Python KnowlEdge EmbeddiNgs) framework [2] is used to learn the embeddings. The hyper-
parameters utilized to train the model are epoch number 200 and training loops: stochastic local closed world
assumption (sLCWA). The negative sampling techniques used are Uniform negative sampling and Bernoulli neg-
ative sampling. The embedding dimensions and the rest of the parameters are set by default. To assure statistical



CORRECTED  P
ROOF

A. Rivas et al. / A neuro-symbolic system over knowledge graphs for link prediction 17

Table 3

Statistics of knowledge graph. Metrics to measure size, diversity, and sparsity
in knowledge graph

KG T E R RE EE RD ED

KGbasic 5630 1069 7 1.615 10.846 804.286 10.533

KG 6675 1069 7 1.726 10.989 953.571 12.488

KGrandom 6675 1069 7 1.710 11.291 953.571 12.488

robustness, we apply 5-fold cross-validation. For evaluating the performance of embeddings methods, we measure
the metrics: Precision = TP

TP+FP , Recall = TP
TP+FN , F1-Score = 2∗(precision∗recall)

(precision+recall) .

5.1.3. Implementations
The pipeline for predicting polypharmacy treatment response has been implemented in Python 3.9. Experiments

were executed using 12 CPUs Intel® Xeon(R) W-2133 at 3.60 GHz, 64 GB RAM, and 1 GPU GeForce GTX 1080
Ti/PCIe/SSE2 with 12 GB VRAM. We used the library pyDatalog3 to develop the Deductive System and the library
PyKEEN,4 to learn the embeddings.

5.2. Metrics to characterize the benchmarks

Table 3 shows the statistics of the three KGs. We considered the metrics, Number of Triples (T ), Entities (E), and
Relations (R), to measure the size in KG. The metrics Relation entropy (RE) and Entity entropy (EE) are considered
to measure diversity and Relational density (RD) and Entity density (ED) to measure sparsity in the KG.

The metrics RE and EE measure the distribution of relationships and entities in the KG, respectively. Higher
values of RE mean that all possible relations are equally probable, and lower values mean one or more relations have
a high probability. The values of the metric RE mean that all possible relations in KG are more equally probable
than all possible relations in KGbasic and KGrandom. The three KGs have a higher EE value than RE as they use
a small set of manually defined relations but contain many entities. The metrics RD and ED measure the sparsity
of entities and relationships in the KG, respectively. We measure sparsity as information density, where RD means
average triples per relation and ED is the average triples per entity. KGbasic has the lower average triples per relation
and entity, while KG and KGrandom have the higher average triples per entity. The metrics evaluated in Table 3 are
defined in the paper [25], implemented by us and available at the GitHub repository.5

5.3. Impact of capturing symbolic knowledge

Figure 10 shows the behavior of the scoring function for the entities predicted by TransH and RotatE embedding
models. For the purpose of brevity, we only show the score value results for two embedding models. The evaluation
material is available .6 We can notice how DS for the prediction property r = has_response is impacting the
KGE models. Figure 10(a) to 10(c) and Fig. 10(g) to 10(i) show the score values of the entities predicted on the
link prediction task given the predicate ex:has_response and object effective by the TransH and RotatE models,
respectively. Figure 10(d) to 10(f) and Fig. 10(j) to 10(l) report on the score values of the entities predicted given the
predicate ex:has_response and object low-effect by the TransH and RotatE models, respectively. We can observe
that the models have different behaviors for each KG. The vertical line in each plot represents the cut-off in a specific
percentile. The percentile used for each KG was based on the percentage of links to the entity effective and low-effect
in the KG, e.g., the percentile for the effective treatments is 27, because the amount of links to treatment response
(effective and low-effect) is 548 and 149 are effective treatments (100 ∗ 149/548). The portion of entities predicted,
delimited by the vertical line, is evaluated in terms of precision, recall, and f1-score.

3https://sites.google.com/site/pydatalog/home
4https://pykeen.readthedocs.io/en/stable/index.html
5https://github.com/SDM-TIB/Statistics_KnowledgeGraph
6https://github.com/arivasm/Neuro-Symbolic_Treatment-Response.git

https://sites.google.com/site/pydatalog/home
https://pykeen.readthedocs.io/en/stable/index.html
https://github.com/SDM-TIB/Statistics_KnowledgeGraph
https://github.com/arivasm/Neuro-Symbolic_Treatment-Response.git
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Fig. 10. Score value of the predicted entities. The green line represents the cut-off at the percentile 27 for effective treatments and 73 for
low-effect treatments for the three KGs.

5.4. Evaluating the performance of our integrated symbolic-sub-symbolic system

The selected portions of entities predicted are measured precision, recall, and f1-score on average because of
cross-validation. Figure 11 and Fig. 12 show the evaluation of the Link Prediction task through Uniform negative
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Fig. 11. Evaluation of the link prediction task in terms of precision, recall, and f-measure. Utilizing uniform negative sampling.

Fig. 12. Evaluation of the link prediction task in terms of precision, recall, and f-measure. Utilizing Bernoulli negative sampling.

sampling and Bernoulli negative sampling, respectively. Uniform sampling randomly chooses the candidate entity
based on a uniform probability between all possible entities. Bernoulli sampling corrupts the head with probability
p and the tail with 1 − p, where p is an average number of unique tail entities per unique head entities given a
relation r . The relation with cardinally 1-n has a higher probability of corrupting the head, and relations n-1 have
a higher probability of corrupting the tail. Figure 11 and 12 show the results of the three benchmarks. Each plot
depicts the results of a metric for each embedding model and KG. The best performing embedding model in the three
metrics is TransH. The KGE models have all better performance in KG regarding the three metrics evaluated in both
negative sampling techniques. In addition, the worst performance is observed in KGrandom. The DS minimizes the
data sparsity issue with meaningful relationships and enhances the predictive performance of KGE models. These
results suggest that the deduced DDIs by the Deductive System DS are meaningful to the treatment responses. More
importantly, they put the crucial role of the deduced relations into perspective.

5.5. Discussion

The techniques proposed in this paper rely on known relations between entities to predict novel links in the
KG. During the experimental study, we observed that these techniques could improve the prediction of treatment
effectiveness. Figure 13 shows a box plot of cosine similarity. Considering the KGE model with better performance
TransH, we computed the cosine similarity between the embedding entities of type treatment. Five treatments with
a low-effect response are selected, and TransH in KGbasic misclassifies them, but TransH in KG predicts them
correctly. Next, all the treatments with a low-effect response are selected. Thus, the cosine similarity is computed
between the selected treatment and the list of treatments with the same response. The first box represents the result
of TransH in KGbasic; this box contains the similarity values between the treatment treatment355 y the list of
treatment with the same response that treatment355. The second box depicts the result of TransH in KG for the
same treatment in the first box. We can observe that the five treatments are more similar to the list of treatments
in KG than in KGbasic. The first quartile, median, and third quartile values in the boxplot are higher in KG than in
KGbasic. Therefore, these outcomes put in evidence the quality of the deduced links in KG and their impact on the
accuracy of the KGE models in the resolution of the task of predicting treatment effectiveness.



CORRECTED  P
ROOF

20 A. Rivas et al. / A neuro-symbolic system over knowledge graphs for link prediction

Fig. 13. Boxplot of cosine similarity. The boxplot illustrates the distribution of cosine similarity values between treatments in x-axe with a list
of treatments. We observe the five treatments in the x-axe are more similar to the treatments in KG than in KGbasic.

Fig. 14. The distribution of DDIs by treatment for each KG. Figure 14(a) shows the density of treatments by DDIs for the treatment response
effective in KGbasic, KG, and KGrandom. Figure 14(b) shows the density of treatments by DDIs for the treatment response low-effect.

Figure 14 shows the distribution of DDIs by treatment in KGbasic, KG, and KGrandom. The x-axis represents
the count of DDIs in treatment, and the y-axis represents the density of treatments in the KG with a specific x

value. We utilized the Kernel Density Estimation (KDE) function to compute the probability density of the count of
DDIs in each KG. We can observe for both treatment response effective and low-effect that KG have less density for
treatments with five or fewer DDIs than the other two KGs and more density for treatments with more than five DDIs
than the rest of the KGs. Furthermore, most treatments with effective response contain less than five DDIs while
treatments with low-effect response contain more than five DDIs. These outcomes put into evidence the crucial role
that implicit DDIs have on a treatment’s response and the need to deduce them using symbolic systems.

Analysis of deduced DDI by Treatment classes: Fig. 15 exhibits the distribution of DDIs by treatment response
in both KGbasic and KG. The DDI Deductive System deduces new DDIs in 23.1% of treatments with low-effect
responses, while only 10.7% of treatments with effective responses deduce new DDIs. This analysis indicates that
the DDI Deductive System deduces more than twice the number of DDIs in low-effect response treatments than in
effective response treatments.
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Fig. 15. Distribution of DDIs by treatment response.

6. Related work

6.1. Neuro-symbolic artificial intelligence

Neuro-Symbolic Artificial Intelligence is a highly active area that has been studied for decades [8]. Neuro-
symbolic AI focuses on integrating symbolic and sub-symbolic systems. Several approaches employ translation
algorithms from a symbolic representation to a sub-symbolic representation and vice versa [3]. The aim is to pro-
vide a neuro-symbolic implementation of logic, a logical characterization of a neuro-system, or a hybrid learning
system that contributes features of symbolic and sub-symbolic systems [8,38]. Real applications are possible in
areas with social relevance and high economic impacts, such as bioinformatics, robotics, fraud prevention, and the
semantic web [3]. Methods utilized in neuro-symbolic integration in some of the aforementioned applications in-
clude translation algorithms between logic and networks. Also, the community has focused on studying the systems
empirically through case studies and real-world applications. An example of a neuro-symbolic system in the field of
bioinformatics is the Connectionist Inductive Learning and Logic Programming (CILP) [9]. In the field of vision-
based tasks, such as semantic image labeling, high-performance systems have been produced. Karpathy et al. [19]
propose an approach introduced for the recognition and labeling tasks for the content of different regions of the
images; it combines Convolutional Neural Networks over the image regions together with bidirectional Recurrent
Neural Networks over sentences. Once this mapping of images and sentences in the embedding space has been
established, a structured objective is introduced that aligns the two modalities through multimodal embedding. The
emerging system performs better than classical approaches, where tasks involving semantic descriptions are associ-
ated with databases that contain background knowledge, and computer image processing approaches are based on
rule-based techniques.

Despite the progress of Neuro-Symbolic Artificial Intelligence, the scope and applicability of symbol processing
are limited. Furthermore, these systems do not examine polynomial overload when integrating both paradigms. Our
work leverages the symbolic system, independent of the application domain, and improves the predictive precision
of KGE models. Moreover, in our approach, the deductive database is addressed to an abstract target prediction
which renders the computational complexity polynomial-time. Thus, we show the positive impact on the overall
performance of a predictive model implemented using KGEs considering a deductive system.

6.2. Knowledge graph embedding in biomedical field

Knowledge graphs are becoming increasingly important in the biomedical field. Discovering new and reliable
facts from existing knowledge using KGE is a cutting-edge method. KG allows a variety of additional information
to be added to aid reasoning and obtain better predictions.

Zhu et al. [46] develop a process for constructing and reasoning multimodal Specific Disease Knowledge Graphs
(SDKG). SDKG is based on five cancers and six non-cancer diseases. The principal purpose is to discover reliable
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knowledge and provide a pre-trained universal model in that specific disease field. The model is built in three parts:
structure embedding (S) with TransE, TransD, and ConvKB, category embedding (C), and description embedding
(D) with BioBERT to convert description annotations into vectors. The best results are obtained when description
embedding is combined with structure embedding, specifically with the ConvKB embedding model. Karim et al.
[18] propose a new machine-learning approach for predicting DDIs based on multiple data sources. They integrated
drug-related information such as diseases, pathways, proteins, enzymes, and chemical structures from different
sources into a KG. Then different embedding techniques are used to create a dense vector representation for each
entity in the KG. These representations are introduced in traditional machine learning classifiers and a neural net-
work architecture based on a convolutional LSTM (Conv-LSTM), which was modified to predict DDIs. The results
show that the combination of KGE and Conv-LSTM performs state-of-the-art results.

The above-mentioned research aims to discover reliable knowledge based on knowledge graphs using KGE mod-
els. However, they are limited by the data sparsity issue of the KGE models and the lack of symbolic reasoning.
We overcome this limitation by integrating a Neuro-Symbolic AI system, enabling expressive reasoning and robust
learning to improve the predictive performance of KGE models.

6.3. Polypharmacy side effect prediction and drug-drug interactions prediction

In recent years, there has been a growing interest in Pharmacovigilance. Extensive research has been conducted
to predict potential DDI. One approach to predicting potential DDI is based on similarity [12,36,40,43], with the
core idea of predicting the existence of a DDI by comparing candidate drug pairs with known interacting drug pairs.
These approaches define a wide variety of drug similarity measures for comparison. The known DDIs that are very
similar to a candidate pair provide evidence for the presence of a DDI between the candidate pair drugs. Sridhar
et al. [36] propose a probabilistic approach for inferring unknown DDIs from a network of multiple drug-based
similarities and known DDIs. They used the probabilistic programming framework Probabilistic Soft Logic. This
symbolic approach predicts three types of interactions [36], CYP-related interactions (CRDs), where both drugs are
metabolized by the same CYP enzyme, NCRDs, where no CYP is shared between the drugs and general DDI from
Drugbank. Furthermore, they considered seven drug-drug similarities. Thus, they found five novel DDIs validated
by external sources. A framework to predict DDIs is presented in [12]; they exploit information from multiple
linked data sources to create various drug similarity measures. Then, they build a large-scale and distributed linear
regression learning model to predict DDIs. They evaluate their model to predict the existence of drug interactions,
considering the DDIs as symmetric. A neural network-based method for drug-drug interaction prediction is proposed
in [30]. They use various drug data sources in order to compute multiple drug similarities. They computed drug
similarity based on drug substructure, target, side effect, off-label side effect, pathway, transporter, and indication
data. The proposed method first performs similarity selection and then integrates the selected similarities with a
nonlinear similarity fusion method to obtain high-level features. Thus, they represent each drug by a feature vector
and are used as input to the neural network to predict DDIs.

Other approaches focus on predicting DDIs and their effects [20,22,32,47]. Beyond knowing that a pair of drugs
interact, it is essential to know the effect of DDI in polypharmacy treatments. In [20], propose a novel deep learning
model to predict DDIs and their effects. They use additional features based on structural similarity profiles (SSP),
Gene Ontology term similarity profiles (GSP), and target gene similarity profiles (TSP) to increase the classifica-
tion accuracy. The proposed model uses an auto-encoder to reduce the dimension of the resulting vector from the
combination of SSP, TSP, and GSP. The benchmark used has 1597 drugs and 188’258 DDIs with 106 different
types. The model works as a multi-label classification model where the deep feed-forward network has an output
layer of size 106, representing the number of DDI types. The results show that the model obtains equal or better
results in 101 out of 106 DDI types than baseline methods. Also, they demonstrate how adding the features GSP
and TSP increases the accuracy of DDIs prediction. Marinka Zitnik et al. [47] present Decagon, an approach for
predicting the side effects of drug pairs. The approach develops a new convolutional graph neural network for link
prediction. They construct a multi-modal graph of protein-protein interactions, drug-protein target interactions, and
the DDI side effects. The graph encoder model produces embeddings for each node in the graph. They proposed a
new model that assigns separate processing channels for each relation type and returns an embedding for each node
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in the graph. Then, the Decagon decoder for polypharmacy side effects relation types takes pairs of embeddings and
produces a score. Thus, Decagon can predict the side effect of a pair of drugs.

All the approaches mentioned above are limited to predicting DDIs and their effects between pairs of drugs. How-
ever, in our view, the interactions and their effects need to be considered as a whole and not in pairs in polypharmacy
treatments. Our symbolic system resorts to a set of rules that state the implicit definition of new DDIs generated as
a result of the combination of multiple drugs in treatment. Since cancer treatment schemes are usually composed
of more than one drug, and patients may have several co-existing diseases requiring additional medications, it is of
significant relevance to the deduction of DDIs holistically in a given treatment.

7. Conclusions and future work

This paper addresses the problem of Neuro-Symbolic AI integration, enabling expressive reasoning and robust
learning to discover relationships over knowledge graphs. We have presented an approach that integrates symbolic-
sub-symbolic systems to enhance the predictive performance of abstract target prediction in KGE models. The
symbolic system is implemented by a deductive database defined for an abstract target prediction over a KG. The
proposed solution builds the ego networks of the head and tail of the abstract target prediction to deduce new
relationships in the ego network; it is able to enhance the ego networks of the abstract target prediction and effec-
tively predict treatment effectiveness. Further, the sub-symbolic system implemented by a KGE model enhances the
predictive performance of the abstract target prediction and completes the KG. The performance of the proposed
approach is assessed in a knowledge graph for lung cancer to discover treatment effectiveness. Predicting treatment
effectiveness is effectively modeled as a link prediction problem, and exploiting DDI Deductive System improves
existing embedding models by performing the treatment prediction task. Results of a 5-fold cross-validation process
demonstrate that our approach, integrating neuro-symbolic systems, improves the eleven KGE models evaluated.
The presented approach using the symbolic system’s reasoning can enhance the ego networks of the abstract target
prediction and effectively predict treatment effectiveness. Thus, our work broadens the repertoire of Neuro-Symbolic
AI systems for discovering relationships over a KG. As for future work, we envision having a more fine-grained
description of the DDIs and a descriptive profile of the patients and improving the model.
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