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Abstract. In the past decade, trustworthy Artificial Intelligence (AI) has emerged as a focus for the AI community to ensure
better adoption of AI models, and explainable AI is a cornerstone in this area. Over the years, the focus has shifted from building
transparent AI methods to making recommendations on how to make black-box or opaque machine learning models and their
results more understandable by experts and non-expert users. In our previous work, to address the goal of supporting user-
centered explanations that make model recommendations more explainable, we developed an Explanation Ontology (EO). The
EO is a general-purpose representation that was designed to help system designers connect explanations to their underlying data
and knowledge. This paper addresses the apparent need for improved interoperability to support a wider range of use cases.
We expand the EO, mainly in the system attributes contributing to explanations, by introducing new classes and properties to
support a broader range of state-of-the-art explainer models. We present the expanded ontology model, highlighting the classes
and properties that are important to model a larger set of fifteen literature-backed explanation types that are supported within the
expanded EO. We build on these explanation type descriptions to show how to utilize the EO model to represent explanations in
five use cases spanning the domains of finance, food, and healthcare. We include competency questions that evaluate the EO’s
capabilities to provide guidance for system designers on how to apply our ontology to their own use cases. This guidance includes
allowing system designers to query the EO directly and providing them exemplar queries to explore content in the EO represented
use cases. We have released this significantly expanded version of the Explanation Ontology at https://purl.org/heals/eo and
updated our resource website, https://tetherless-world.github.io/explanation-ontology, with supporting documentation. Overall,
through the EO model, we aim to help system designers be better informed about explanations and support these explanations
that can be composed, given their systems’ outputs from various AI models, including a mix of machine learning, logical and
explainer models, and different types of data and knowledge available to their systems.
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1. Introduction

The uptake in the use of Artificial Intelligence (AI) models, and machine learning (ML) models in particular, has
driven a rise in awareness and focus in explainable and interpretable AI models [21,27]. The diverse requirements
around explainability point to the need for computational solutions to connect different components of AI systems,
including method outputs, user requirements, data, and knowledge, to compose user-centered explanations, both for
system designers and the consumers of the system, or, end-users or users in general. These requirements present
opportunities that align well with the strengths of semantic technologies, particularly ontologies and knowledge
graphs (KGs), that can represent entities and relationships between them for either reasoning or querying to support
upstream tasks. A semantic structuring of the explanation space and its contributing attributes can help system de-
signers support the requirements for explanations more efficiently (see Section 2 and Section 4 for some examples).

Previously, we proposed and developed an Explanation Ontology (EO) [13] that provides a semantic structuring
for the entities that contribute to explanations from a user, interface, and system perspective. However, with the
ever evolving explainable AI research landscape, we found value in expanding the EO model to include additional
requirements and support a broader range of use cases. The additional requirements were partially motivated by
papers from several researchers [18,34] who posit that different classes of users have different requirements for as-
sistance from AI systems. These translate to further questions that users want answered. Examples include additional
evidence over model explanations and decisions that provide scores for domain experts and more data-centric ex-
planations of the dataset and method capabilities for data scientists. Further, several taxonomies of machine learning
explainability methods [2,3,64] offer guides for how different classes of methods can support model-centric classi-
fications of explanations. However, what is lacking is a tool for system designers, who build and design explainable
interfaces from the method outputs, to develop these method outputs to explanations that can address their user
questions. Hence, within additions to the EO, we capture the capabilities of various AI methods including explana-
tion methods and their ability to support literature-derived explanation types. We aim to support system designers
who through the use of the EO can determine what explanations can be supported from the method outputs, datasets
and knowledge stores at their disposal and plan for explanations that their use case participants would require.

In this paper, we describe the expanded EO model,1 a general-purpose semantic representation for explanations,
in detail. We first outline the core EO model that includes the main classes and properties that users need to model
their explanations. Then we demonstrate how the EO model can be used to represent fifteen literature-derived
explanation types (six of these fifteen types are introduced in the expanded EO model). We then describe how
the ontology can be used to represent and infer different explanation types in various AI use cases where model
outputs are already present. With these goals, we divide the paper as follows. First, in Section 2, we motivate the
need for the expanded EO model to represent user-centered explanation types and introduce a running example
that illustrates the need for a unified semantic representation for explanations and their dependencies. Then, in
Section 3, we present the expanded EO model, with an emphasis on the main classes and properties, a deeper-
dive into the AI method and explanation branches, and a description of how the EO model is used to represent
sufficiency conditions for the literature-derived explanation types that we support. With this background of the
EO model, in Section 4, we show that the EO can represent outputs in five different use cases spanning domains
including food, healthcare, and finance, and also show how these representations allow explanations to be classified
into the EO’s literature-derived explanation types. Finally, in Section 6, we evaluate the EO using two approaches.
First, a task-based approach, that evaluates the EO’s ability to answer a representative set of competency questions
that a system designer would want addressed to familiarize themselves with the EO before they apply it to their
use cases. Second, we evaluate from a coverage perspective, the types and breadth of content about explanations
that can be queried from our EO represented use cases. Finally, in Section 7, we present an overview of the related
work where semantic representations of explanations have been attempted, and describe how they either do not
use standard formats, or do not capture all the components that explanations are dependent on. Overall, we expect
this paper and its associated website resource (https://tetherless-world.github.io/explanation-ontology) to serve as a
primer for system designers and other interested individuals from two perspectives. First when system designers are

1In the rest of the paper, we refer to the expanded EO model as EO. When we compare the current model to the previous version, we make an
explicit reference to the previous EO version, v1.0, via a citation [13] or previous EO phrasing.

https://tetherless-world.github.io/explanation-ontology
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considering types of explanations to support, they may review our explanation types and the motivating needs for
those types. Second, when system designers decide to apply the EO directly to address their needs for user-centered
explanations in settings that require the combination of different model outputs and content from diverse data and
knowledge sources.

2. Background

2.1. Motivation: Why are user-centered explanations necessary?

In recent years, with principles introduced in global policy around AI such as in Europe’s General Data Protec-
tion Regulation (GDPR) act2 and the White House’s National AI Research Resource (NAIRR) Task Force,3 there
has been a growing focus on trustworthy AI. This focus has reflected the need for transparency and trust around
the vast amounts of data collected by parties in multiple domains and has brought to light potential concerns with
the AI models increasingly used on such data to affect important decisions and policy. In the trustworthy AI age,
several position statements [21,27,40,41] focused on directions to move towards explainable, fair, and causal AI.
These papers inspired computational efforts to improve trust in AI models. For example, to enable explainability in
composition to provide confidence in model usage, IBM released the AIX-360 toolkit [2,3], with multiple explainer
methods capable of providing different types of model explanations, including local, global, and post-hoc expla-
nations. At the same time, there have been user studies [13,27,36,63] on the explanation types that users require
and the questions that they want to be addressed, illustrating that user-centered explainability is question-driven,
conversational and contextual.

Inspired by these studies, we reviewed the social sciences and computer science literature [11] regarding ex-
planations and cataloged several user-centered explanation types that address different types of user questions and
the associated informational needs. We conducted expert panel studies with clinicians [28] to understand which of
these explanation types were most helpful in guideline-based care. We found that clinicians prefer a combination of
holistic, scientific, and question-driven explanations connected to broader medical knowledge and their implications
in context, beyond typical model explanations which focus only on the specific data and AI mechanisms used. In
line with our findings, Dey et al. [19] recently illustrated a spectrum of clinical personas and their diverse needs
for AI explainability. Also, recent papers point out that current model explainability [25] does not align with the
human-comprehensible explanations that different domain experts expect when using AI aids in their practice. This
reinforces the idea that explanations in real-world applications need to involve domain knowledge and be sensitive
to the prior knowledge, usage situations, and resulting informational needs of the users to whom they are delivered.

These studies point to still unmet needs in bridging the gap between explanations that AI models can generate
and what users want. This gap motivated us to design the EO to represent user-centered explanation types and their
dependencies. We aimed to provide system designers with a single resource that could be used to identify critical
user-centered explanation requirements, and further to provide building blocks for them to use in their designs.
In our modeling of the EO (Section 3), we take into account our learnings from our literature review for various
explanation types and include terminology that is typically associated with explanations both from the perspective
of end-users (e.g., from the clinicians we interviewed) that consume them, and the AI methods that generate them.

2.2. Illustrative example

We are developing methods to support user-centered explanations that provide context around entities of interest
in risk prediction settings, involving the chances of individual patients developing comorbidities of a chronic disease
such as type-2 diabetes [10]. In a risk-prediction use case, clinicians and researchers such as data scientists consult

2GDPR: https://gdpr.eu
3White House AI Task Force: https://www.whitehouse.gov/ostp/news-updates/2022/05/25/bridging-the-resource-divide-for-artificial-

intelligence-research/.

https://gdpr.eu
https://www.whitehouse.gov/ostp/news-updates/2022/05/25/bridging-the-resource-divide-for-artificial-intelligence-research/
https://www.whitehouse.gov/ostp/news-updates/2022/05/25/bridging-the-resource-divide-for-artificial-intelligence-research/
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Fig. 1. Illustrative examples of explanations clinicians were looking for in our risk prediction setting and how these explanations need to be
supported from different data sources and AI methods [10]. Seen here is also a template of a contrastive explanation, a type of user-centered
explanation supported within the Explanation Ontology, and how the configuration of this class can allow system designers to plan for how to
support facts that contrastive explanations are based on.

different data and knowledge sources and use insights from multiple reasoning methods during their decision-
making. In this section, we will focus on findings from our work to support the explainability needs of our target
users and use these findings to inform the kinds of explanations the EO should support and illustrate how a semantic
approach such as ours would be helpful to system designers who build applications in similar evolving ecosystems.

In their decision-making, clinicians interact with multiple information sources and views, involving reasoning and
data associated with different explanations types. These include contrastive explanations as they choose between
alternative treatments, contextual ones to understand more deeply the implications of a treatment given the patient’s
risk and history, and scientific explanations that situate results in terms of current literature. As has been identified in
explainable AI literature [36], each of these user-centered explanation types can be seen to address a certain kind of
question. These questions are each capable of being supported by different AI method(s) in interaction with data and
knowledge sources. For example, in our risk prediction setting, we identified three dimensions of context (Fig. 1)
around which to provide answers. The identification of these dimensions let us devise a set of five question types
that clinicians would require to be addressed by explanations [10].

In summary, when developing AI-enabled tools to assist their end-users in real world use cases, system designers
can benefit from an infrastructure that helps them identify potential explanations their end-users may need, and
map them to the technological methods and data needed to provide those explanations. The EO is a semantic
representation that can help system designers understand the various kinds of explanations that may be desired, and
determine what capabilities their systems would need to include to support those explanations. The EO can also
serve as the basis of a registry system that maps between explanation needs and an evolving set of computational
services and methods that can provide such explanations, enabling systems to be constructed that will provide the
best currently available explanations without the need for significant rewriting.

An example of an explanation built from its dependencies is seen in the user-centered explanation examples
portion of Fig. 1, wherein a scientific explanation is populated from the output of an AI-enabled question-answering
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Table 1

List of ontology prefixes used in the paper and its images, tables and listings

Ontology Prefix Ontology URI

sio SemanticScience Integrated Ontology http://semanticscience.org/resource/

prov Provenance Ontology http://www.w3.org/ns/prov-o#

eo Explanation Ontology https://purl.org/heals/eo#

ep Explanation Patterns Ontology http://linkedu.eu/dedalo/explanationPattern.owl#

method that is run on type-2 diabetes guideline literature. In such a case, the EO signals to the system designer that
scientific explanations would require a literature source, and if such content is not readily accessible, they would
need to determine how to extract this content. Hence, the EO can be a useful tool for system designers to plan for
and structure support for explanations in their systems. These ideas will become more apparent when we go through
the EO model in Section 3 and provide examples of how it is applied to structure explanations in various use cases
in Section 4.

3. Explanation Ontology

We designed the Explanation Ontology (EO) (both the original [13] and the current expanded version) to model
attributes related to explanations that are built upon records available to AI systems such as datasets, knowledge
stores, user requirements, and outputs of AI methods. In the EO, we capture attributes that would allow for the
generation of such user-centered explanations from various components that the system has at its disposal. We
also provide templates that utilize the EO model to structure different literature-derived explanation types that each
address various prototypical question types that users might have [36]. Here, we describe the details of the EO’s
core class and property model (Section 3.1) and the requirements and modeling of the fifteen different user-centered
explanation types that we support (Section 3.2). The EO model is general-purpose and can be extended at its core
structure to represent explanations in use cases spanning different domains (Section 4).

3.1. Ontology composition

For the core EO model, we adopted a bottom-up approach to narrow down the classes about the central ‘explana-
tion’4 concept by analyzing what terms are most often associated with explanations in explanation method papers
and position statements that describe a need for various explanation types. We found that the terms that most of-
ten described explanations included attributes that they directly interact with or are generated by, including the ‘AI
method’ generating the explanation, the ‘user’ consuming it, and other interface attributes such as the user ‘ques-
tion’ that the explanation addresses. We crystallized our understanding of the relationships between these terms in
the core EO model as shown in Fig. 2. We adopted a top-down approach to expand beyond the core EO model by re-
fining, editing, and adding to this model when representing explanation types and more specific sub-categorizations
to certain classes, such as the ‘AI method.’

In the EO, we capture the attributes that explanations build upon, such as a ‘system recommendation’ and ‘knowl-
edge,’ and model their interactions with the ‘question’ (s) they address. We can broadly categorize explanation de-
pendencies into the system, user, and interface attributes as seen in Fig. 2. These categorizations help us cover a
broad space of attributes that explanations directly or indirectly interact with.

User Attributes: User attributes are the concepts that are related to a ‘user’ who is consuming an explanation.
These include the ‘question’ that the user is asking, ‘user characteristic’s that describe the user, and the user’s
‘situation’. Explanations that the user is consuming are modeled to address the user’s ‘question,’ and may also take
into account factors such as the user’s ‘situation’ or their ‘user characteristic’ such as their education and location.

4In this section, we refer to ontology classes by their labels in single quotes. The labels also correspond to the ontology class identifiers
themselves (IRIs).

http://semanticscience.org/resource/
http://www.w3.org/ns/prov-o#
https://purl.org/heals/eo#
http://linkedu.eu/dedalo/explanationPattern.owl#
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Fig. 2. Explanation ontology overview with key classes separated into three overlapping attribute categories (depicted as colored rectangles).

System Attributes: System attributes encapsulate the concepts surrounding the AI ‘system’ used to generate
recommendations and produce explanations. ‘Explanation’s are based on ‘system recommendation’s, which in turn
are generated by some ‘AI task.’‘AI task’s are analogous to the high-level operations that an AI system may per-
form (e.g., running a reasoning task to generate inferences or running an explanation task to generate explanations
about a result). The ‘AI task’ relates to user attributes as it addresses the ‘question’ that a user is asking. Another
important class we capture as part of system attributes, is that of the ‘AI method’, that ‘AI tasks’ use, to produce
the ‘system recommendation’ that an ‘explanation’ is dependent on. Further, from a data modeling perspective, the
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‘object record’ class helps us include contributing objects in the ‘system recommendation’ that could further have
‘knowledge’ and ‘object characteristic’ of their own, contributing to explanations. For example, in a patient’s risk
prediction (an instance of ‘system recommendation’), the patient is an object record linked to the prediction, and an
explanation about the patient’s risk refers to both the prediction and the patient. Also, within the system attributes,
various additional concepts such as ‘reasoning mode’ and ‘system characteristic’ are modeled to capture further
details about the AI system’s operations and how they relate to each other. Maintaining such system provenance
helps system designers debug explanations and their dependencies.

Interface Attributes: Lastly, interface attributes capture an intersection between user and system attributes that
can be directly interacted with on a user interface (UI). From an input perspective, these attributes consist of the
‘question’ that the user asks, the ‘explanation goal’ they want to be fulfilled by the explanation, and the ‘explanation
modality’ they prefer. From the content display perspective, we capture the system attributes that might be displayed
on the UI, such as the ‘explanation’ itself and the ‘system recommendation’ it is based on.

This mid-level model of the explanation space can be further extended by adding sub-class nodes to introduce
more specific extensions for the entities where they exist. For example, both the ‘Knowledge’ and ‘AI Method’
classes have several sub-classes to capture the different types of ‘knowledge’ and ‘AI methods’ that explanations
can be dependent on and are generated by, respectively. An example of the ‘AI Method’ hierarchy and its interactions
to support the generation of system recommendations upon which explanations are based can be seen in Fig. 3.

EO Modeling Summary and Intended Usage: In essence, modeling the explanation space, as we have in the
EO, can primarily serve two purposes. One to helps us, the EO developers, represent equivalent class restrictions
for different explanation types which would allowing explanations to be classified into any of these types (Sec-
tion 3.2). We introduce the supported explanation types within the EO and their equivalent class restrictions shortly
in Section 3.2. A second purpose of the EO modeling is to help system designers instantiate EO’s classes to com-
pose user-centered explanations whose provenance can be traced back to multiple dependencies spanning system,
interface, and user spaces. For a system designer who wants to use the EO model to represent explanations in their
domain-specific knowledge graphs (KG), they would only need to include an import statement for the EO in their
KG (<owl:imports rdf:resource=”https://purl.org/heals/eo/2.0.0”/>). Upon representing explanations using the EO
model (as seen in Fig. 2 and Fig. 3) and guidance which is presented in Section 5, they should be able to run a rea-
soner over their KG to infer explanations into one of our explanation types. A system designer could also root their
domain-specific concepts in the EO’s high-level concepts, e.g., for a food use-case, an ingredient could be defined
as a subclass of object characteristic, and in this way these concepts could also be considered for explanations. More
examples of these domain specific instantiations can be viewed in Section 4.

Design Choices: For the design of the EO, we followed the principle of ontology reuse by only introducing classes
and properties where they didn’t exist already. However, we used a policy of careful reuse in that we introduced
classes if they were not a part of well-used and accepted scientific ontologies, mainly the OBO Foundry ontolo-
gies [52] or explainable AI-specific ontologies such as the explanations pattern (EP) ontology [58]. We found that
we had to borrow from several ontologies, including The National Cancer Thesaurus Institute Ontology (NCIT) [7]
and the Computer Science Ontology (CSO) [51], to support the attributes that contribute to explanations. From a
first-principles reuse perspective, and because the EO is an ontology in the technical space, we build our ontology
upon and import widely-used and standard science ontologies, including the SemanticScience Integrated Ontology
(SIO) [22] and the Provenance Ontology (Prov-O). For the other ontologies that we reuse classes and properties
from, we use the Minimum Information to Reference a Term (MIREOT) method [15] to include only the minimum
information that we need to use the class or property within the EO. We report statistics on the overall composition
of the EO, including the number of classes, objects, and data properties, both from an active import closure and
introduced perspectives in Table 2.

Finally, we have tested the Pellet reasoner on the EO and our ontology can be browsed using the Protege 5.5
desktop tool [49].

3.2. Explanation types

We refer to explanation types in line with the different kinds of explanations that have been referred to in the
explanation sciences literature, arising in such fields as “law, cognitive science, philosophy, and the social sci-
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Table 2

Statistics on the composition of the Explanation Ontology. These counts are
taken by loading the EO into the ontology editing tool, Protege [49] and
choosing the active closure of the ontology with imported ontologies view op-
tion [50]. We calculated the counts of classes and properties we introduced
by commenting out the import statements in the ontology file. The introduced
classes and properties are indicated by a ∗ in the table

Metrics Count

Classes 1707

Classes Introduced∗ 135

Object Properties 283

Object Properties Introduced∗ 52

Data Properties 8

Data Properties Introduced∗ 2

Equivalent Class Axioms 85

Equivalent Class Axioms Introduced∗ 35

Instances 17

Instances Introduced∗ 13

ences” [41]. These include such things as contrastive, scientific, and counterfactual explanations. We found that
these explanations are well defined in adjacent fields of the explanation sciences and more rarely in computer sci-
ence. We performed a literature review looking for explanations that serve different purposes, address different
questions, and are populated by different components (such as ‘cases’ for case-based explanations and evidence for
‘scientific explanations’) in the hope of refining their definitions to make these explanation types easier to generate
by computational means. We previously released these explanation types and their definitions as a taxonomy [11],
and we now encode these explanation types, definitions, and sufficiency conditions in the EO. The explanation types
we support in the EO, their definitions, and sufficiency conditions can be browsed in Table 3, Table 4, Table 5 and
Table 6.

In the EO, against each explanation type, we encode the sufficiency conditions as equivalent class axioms, allow-
ing instances that fit these patterns to be automatically inferred as instances of the explanation types. An example
of this can be seen in Listing 1, where we express the equivalent class axiom for a ‘contextual explanation’ using
the core EO model and its high-level classes, such as ‘system recommendation’ and ‘object record’. We find
that defining the equivalent class restrictions using top-level classes allows the subsumption of sub-classes of these
top-level classes into the explanation type restrictions as well. Patterns of such subsumptions can be seen in our use
case descriptions (Section 4). Further, if system designers want to familiarize themselves with the components that
are necessary for each explanation type, we suggest that they browse the sufficiency conditions, unless they have
familiarity with the OWL ontology language. The equivalent class restrictions are a logical translation of the suffi-
ciency conditions, so the modeling of explanations based on an understanding of the sufficiency conditions should
prove sufficient. Against some explanation types, we also maintain what ‘AI methods’ can generate them or what
types of ‘knowledge’ they are dependent upon, so if a system designer were looking to support certain explanation
types in their systems, they can plan ahead to include these methods and/or knowledge types.

Also, in addition to the nine different explanation types that we previously supported in the EO (Table 3 and
Table 4), we have added six new explanation types mentioned in Zhou et al.’s recent paper [64] (Table 5 and Ta-
ble 6). The addition of these explanation types also prompted the support for explanation methods as subclasses
of ‘AI Method.’ Over the past decade, with the focus on trustworthy AI, there have been several developments in
explanation methods or model explainers [4,38,48,61,62]. Part of our goal for the expansion of the EO was to be of
use in explainability toolkits, so we reviewed a comprehensive set of explanation methods that are a part of the AI
Explainability 360 toolkit [32]. We encode the outputs of these explanation methods, i.e., model explanations and
their subtypes (e.g., local, global, static, and interactive explanations) as subclasses of ‘system recommendation.’
The modeling of model explanations and explanation methods can be seen in Fig. 3. We also capture the dependen-
cies on user-centered explanations we define in Table 3 on these ‘model explanations.’ Further, we observe that the
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Table 3

An overview of 5/9 previously supported explanation types, their simplified descriptions, example questions they can address (in bold, within
the description column), and their sufficiency conditions expressed in natural language

Explanation Type Description Sufficiency Conditions

Case Based Provides solutions that are based on actual prior cases
that can be presented to the user to provide compelling
support for the system’s conclusions, and may involve
analogical reasoning, relying on similarities between
features of the case and of the current situation.
“To what other situations has this recommendation
been applied?”

Is there at least one other prior case (‘object record’)
similar to this situation that had an ‘explanation’? Is
there a similarity between this case, and that other case?

Contextual Refers to information about items other than the explicit
inputs and output, such as information about the user,
situation, and broader environment that affected the
computation.
“What broader information about the current
situation prompted the suggestion of this
recommendation?”

Are there any other extra inputs that are not contained in
the ‘situation’ description itself? And by including
those, can better insights be included in the
‘explanation’?

Contrastive Answers the question “Why this output instead of that
output,” making a contrast between the given output and
the facts that led to it (inputs and other considerations),
and an alternate output of interest and the foil (facts that
would have led to it).
“Why choose option A over option B that I typically
choose?”

Is there a ‘system recommendation’ that was made (let’s
call it A)? What facts led to it? Is there another ‘system
recommendation’ that could have happened or did
occur, (let’s call it B)? What was the ‘foil’ that led to B?
Can A and B be compared?

Counterfactual Addresses the question of what solutions would have
been obtained with a different set of inputs than those
used.
“What if input A was over 1000?”

Is there a different set of inputs that can be considered?
If so what is the alternate ‘system recommendation’?

Everyday Uses accounts of the real world that appeal to the user,
given their general understanding and worldly and
expert knowledge.
“Why does option A make sense”

Can accounts of the real world be simplified to appeal to
the user based on their general understanding and
‘knowledge’?

user-centered explanation types can depend on more than one model explanation and users need more context and
knowledge to consume these model explanations.

4. Use cases

To demonstrate the utility of the EO as a general-purpose ontology to represent explanations, we show how the
EO’s model can be used to compose explanations in five different use cases spanning food, healthcare, and finance
domains (Table 7). All of these use cases involve data available in the open domain. The first use case is in the food
domain and based off of the FoodKG5 [30], and the rest of the use cases are from among those listed on the AIX-
360 website6 [32]. In AIX-360 usecases, a suite of ‘explanation methods’ belonging to the AIX-360 toolkit [2,3]
are run. Additionally, each of the AIX-360 use cases has a technical description or Jupyter notebook tutorial that
system designers can comprehend and utilize to build the instance KGs.

In each of our five use cases, we assume that AI methods, primarily ML methods, have already been run and
generated ‘system recommendations’. The output of the AI methods may include enough data or may need to
combined with content from a background KG (such as in the food use case) to generate the different explanation
types that we support in the EO. Each of the use case has a set of example questions for which different explanation
methods and/or ML methods are run. A listing of these example questions, as well as the explanation types inferred

5https://foodkg.github.io
6https://aix360.mybluemix.net

https://foodkg.github.io
https://aix360.mybluemix.net
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Table 4

An overview of 4/9 previously supported explanation types, their simplified descriptions, example questions they can address (in bold, within
the description column), and their sufficiency conditions expressed in natural language

Explanation Type Description Sufficiency Conditions

Scientific References the results of rigorous scientific methods,
observations, and measurements.
“What studies have backed this recommendation?”

Are there results of rigorous ‘scientific methods’ to
explain the situation? Is there ‘evidence’ from the
literature to explain this ‘system recommendation’,
‘situation’ or ‘object record’?

Simulation Based Uses an imagined or implemented imitation of a system
or process and the results that emerge from similar
inputs.
“What would happen if this recommendation is
followed?”

Is there an ‘implemented’ imitation of the ‘situation’ at
hand? Does that other scenario have inputs similar to
the current ‘situation’?

Statistical Presents an account of the outcome based on data about
the occurrence of events under specified (e.g.,
experimental) conditions. Statistical explanations refer
to numerical evidence on the likelihood of factors or
processes influencing the result.
“What percentage of people with this condition have
recovered?”

Is there ‘numerical evidence’/likelihood account of the
‘system recommendation’ based on data about the
occurrence of the outcome described in the
recommendation?

Trace Based Provides the underlying sequence of steps used by the
system to arrive at a specific result, containing the line
of reasoning per case and addressing the question of
why and how the application did something.
“What steps were taken by the system to generate
this recommendation?”

Is there a record of the underlying sequence of steps
(‘system trace’) used by the ‘system’ to arrive at a
specific ‘recommendation’?

from running the reasoner on each use case’s knowledge graph, is provided in Table 7. Here, we describe each of the
five use cases in a depth sufficient enough so that a system designer who wants to use the EO to instantiate outputs
from their own use cases can seek guidance on building their use case KGs from the patterns that we use for these
five exemplar KGs. Our use case KG files can also be downloaded from our resource website (Section 5.1).

4.1. Food recommendation

In the food recommendation use case, aimed at recommending foods that fit a person’s preferences, dietary con-
straints, and health goals, we have previously published a customized version of the EO specifically for the food
domain, the Food Explanation Ontology [45]. With the updates to the EO, we are now able to support the model-
ing of contextual and contrastive examples natively in the EO, whose capabilities were previously only in FEO as
depicted in [45]. In the food use case, a knowledge base question-answering (QA) system [14] has been run and
outputs answers to questions like “What should I eat if I am on a keto diet?” However, a standard QA system can-
not directly address more complex questions that require a reasoner to be run on the underlying knowledge graph
to generate inferred content. For example, questions such as whether or not one can eat a particular recipe, like
“spiced cauliflower soup”, might not be easily addressable by the QA system because it doesn’t know to specifically
look for inferred information such as the seasonal context and availability of ingredients. The EO becomes useful
here because the restrictions defined against the ‘environmental context’ class can classify any seasonal character-
istics defined against food as environmental context concerning that food ‘object record.’ Hence, when we define
an explanation for “Why one should eat spiced cauliflower soup” to be based on a seasonal characteristic, our EO
reasoner can then classify the season instance to be an ‘environmental context’ and therefore classify the explana-
tion to be a ‘contextual explanation.’ The contextual explanation instance and its dependencies can be viewed in
Fig. 4. Similarly, to address another question, “Why is creamed broccoli soup recommended over tomato soup”,
we extract ‘facts’ supporting creamed broccoli soup and ‘foils’ or ‘facts’ not in support of tomato soup. Then from
this representation, our EO reasoner can infer that an ‘explanation’ depending on the ‘system recommendation’ and
that encapsulates reasons in support of creamed broccoli soup over tomato soup, to be a contrastive explanation.
More broadly, if a system designer can define explanations dependent on food system recommendations and link
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Table 5

An overview of 3/6 new explanation types described in Zhou et al. [64] that we encode in the Explanation Ontology version 2.0

Explanation Type Description Sufficiency Conditions

Data Focuses on what the data is and how it has been used in
a particular decision, as well as what data and how it
has been used to train and test the ML model. This type
of explanation can help users understand the influence
of data on decisions.
“What the data is?”, “How it has been used in a
particular decision?”, “How has the data been used
to train the ML model?”

Is there a ‘system recommendation’ from an ‘AI
method’ that has as input, a ‘dataset’ or part of it?
Is there a ‘system recommendation’ that includes
‘object records’ that are used to train / test the ‘AI
method’?

Rationale About the “why” of an ML decision and provides
reasons that led to a decision, and is delivered in an
accessible and understandable way, especially for lay
users. If the ML decision was not what users expected,
rationale explanations allows users to assess whether
they believe the reasoning of the decision is flawed.
While, if so, the explanation supports them to formulate
reasonable arguments for why they think this is the case.
“Why was this ML decision made and provide
reasons that led to a decision?”

Is there a ‘system recommendation’ from an ‘AI
method’ that has a ‘system trace’?
Is there a ‘local explanation’ output that an
‘explanation’ is based on?

Safety and Performance Deals with steps taken across the design and
implementation of an ML system to maximise the
accuracy, reliability, security, and robustness of its
decisions and behaviours. Safety and performance
explanations help to assure individuals that an ML
system is safe and reliable by explanation to test and
monitor the accuracy, reliability, security, and
robustness of the ML model.
“What steps were taken to ensure robustness and
reliability of system?”, “How has the data been used
to train the ML model?”, “What steps were taken to
ensure robustness and reliability of AI method?”,
“What were the plans for the system development?”

Is there a ‘system recommendation’ from an ‘AI
method’ that is part of a ‘system’ that exposes its design
‘plans’?
Is there a ‘system recommendation’ that includes
‘object records’ that are used to train / test the ‘AI
method’?

the characteristics related to an ‘object record’ contained in the recommendations. Then, when a reasoner is run on
the EO, it could look for patterns that can match the user-centered explanation types we support and populate the
explanation types whose patterns match the KG content.

4.2. Proactive retention

In the proactive retention use case,7 the objective is to learn the rules for employee retention that could signal
to an employing organization whether or not employees are likely to have retention potential. Since these rules
involve a deep understanding of the contributing attributes of the employee dataset, a domain expert is best adept
at providing these rules. Potentially, a supervised ML method could be run to learn the rules for other unlabeled
instances. The AIX-360 toolkit supports a TED Cartesian Explainer algorithm [31] that can learn from rules that are
defined against a few cases and predict the rules for others. More specifically, in the proactive retention use case KG,
the TED Cartesian Explainer method is defined as an instance of ‘Providing rationale method’ in the EO by virtue
of the definition for this ‘explanation method’ subclass, and that the TED Explainer provides local explanations
for each instance. Additionally, since the TED Explainer provides ‘system recommendations’ for every employee
retention output pair, we save this dependency of explanations on local instance-level system recommendations in
the KG and define explanations based on these retention rule explanations. As can be seen from the ‘explanation
types supported’ column of the proactive retention row, a reasoner infers rationale explanations, see Fig. 5, from

7Proactive retention use case: https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/retention.ipynb.

https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/retention.ipynb
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Table 6

An overview of 3/6 new explanation types described in Zhou et al. [64] that we encode in the Explanation Ontology version 2.0

Explanation Type Description Sufficiency Conditions

Impact Concerns the impact that the use of a system and its
decisions has or may have on an individual and on a
wider society. Impact explanations give individuals
some power and control over their involvement in
ML-assisted decisions. By understanding the possible
consequences of the decision, an individual can better
assess their participation in the process and how the
outcomes of the decision may affect them.
“What is the impact of a system recommendation?”,
“How will the recommendation affect me?”

Is there a ‘system recommendation’ from an ‘AI
method’ that has a ‘statement of consequence’?

Fairness Provides steps taken across the design and
implementation of an ML system to ensure that the
decisions it assists are generally unbiased, and whether
or not an individual has been treated equitably. Fairness
explanations are key to increasing individuals’
confidence in an AI system. It can foster meaningful
trust by explaining to an individual how bias and
discrimination in decisions are avoided.
“Is there a bias consequence of this system
recommendation?”, “What data was used to arrive
at this decision?”

Is there a ‘system recommendation’ from an ‘AI
method’ that has a ‘statement of consequence’?
Is there a ‘dataset’ in the ‘system recommendation’ the
explanation is based on?

Responsibility Concerns “who” is involved in the development,
management, and implementation of an ML system,
and “who” to contact for a human review of a decision.
Responsibility explanations help by directing the
individual to the person or team responsible for a
decision. It also makes accountability traceable.
“Who is involved in the development, management,
and implementation of an ML system?”, “Who to
contact for a human review of a decision?”

Is there a ‘system recommendation’ from an ‘AI
method’ that was part of a ‘system’, whose ‘system
developer’ is known?

Listing 1. OWL expression of the representation of a ‘contextual explanation’ in Manchester syntax



CORRECTED  P
ROOF

S. Chari et al. / A general-purpose, semantic representation for supporting user-centered explanations 13

Fig. 3. Ontograf [44] visualization of the explanation methods we support in the explanation ontology (Part A and B). The ontology includes
terms that can be used to map the outputs of these methods to support population of user-centered explanation types (Part B and C).

the proactive retention KG. These rationale explanations are inferred that way because they match the equivalent

class restriction of the ‘rationale explanation’ class in the EO, wherein we look for rationales or traces supporting a

system recommendation, which in this case are the rules providing rationales for the employee retention output.
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Table 7

A listing of example questions and inferred explanation types supported by each use case

Use case Example Questions Explanation Types Inferred

Food Recommendation Why should I eat spiced cauliflower soup? Why creamed broccoli soup
over tomato soup?

Contextual and Contrastive

Proactive Retention What is the retention action outcome for this employee? Rationale

Health Survey Analysis Who are the most representative patients in this questionnaire? Which
questionnaires have the highest number of most representative patients?

Case based and Contextual

Medical Expenditure What are the rules for expenditure prediction? What are patterns for
high-cost patients?

Data

Credit Approval What are the rules for credit approval? What are some representative
customers for credit? What factors if present and if absent contribute
most to credit approval?

Data, Case based and Contrastive

Fig. 4. Annotated snippet of a contextual explanation instance from the food recommendation use case knowledge graph. Ontology prefixes used
in the figure are presented in Table 1 and upper-level classes used from the Explanation Ontology model are introduced in Fig. 2 and Fig. 3.
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Fig. 5. Annotated snippet of a rationale explanation instance from the proactive retention use case knowledge graph. Ontology prefixes used in
the figure are presented in Table 1 and upper-level classes used from the Explanation Ontology model are introduced in Fig. 2 and Fig. 3.

4.3. Health survey analysis

The health survey analysis use case8 utilizes the National Health and Nutritional Exam Survey (NHANES)
dataset [8]. The objective in this use case entails two ‘explanation tasks’: (1) find the most representative patients
for the income questionnaire, and (2) find the responses that are most indicative/representative of the income ques-
tionnaire. The Protodash method [29], an ‘Exemplar explanation method,’ that finds representative examples from
datasets, is run for both these tasks. However, in the second task, an additional data interpretation or summarization
method is run to evaluate the prototype patient cases of questionnaires for how well they correlate to responses in
the income questionnaire. Hence, when we instantiate the outputs of these two tasks, we use different chains of
representations to indicate the dependencies of the explanations of the two questions that are addressed by these
tasks. More specifically, this chaining would mean that we define that the ‘system recommendation’ of the ‘sum-
marization’ method instance to be dependent on or use as input the ‘system recommendations’ of ‘Protodash’
instances.

Additionally, as can be seen from the ‘explanation types’ supported column of Table 7 against the health survey
analysis, there are two explanation types inferred upon running a reasoner against the NHANES KG: case-based and
contextual. The explanation finding for the most representative patients of the income questionnaire is case-based
since it contains patient case records. Further, the trail of outputs that contributed to the explanation to be classified
as a case-based explanation can be seen in Fig. 6.

Still, the classification of the explanations of the most representative questionnaire as a contextual explanation
is less obvious. However, upon closer investigation of the equivalent condition defined against the ‘environmental
context‘class in the EO from Listing 2, we can see how the patients’ questionnaires, a type of ‘file,’ are inferred to
be the ‘environmental context’ for the patient, an ‘object record’, since the patients participate in those question-

8NHANES use case documentation: https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/CDC.ipynb.

https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/CDC.ipynb
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Fig. 6. A screenshot from the Protege ontology editing tool identifying the rules that were satisfied for a particular explanation to be classified as
a case based explanation.

Listing 2. OWL expression of the ‘environmental context’ and its sufficiency conditions in Manchester syntax

naires. Hence, an explanation, such as finding the most representative questionnaire that is dependent on both the
questionnaire and the representative patient cases, would be classified as a contextual explanation (see Fig. 7). Such
contextual explanations can help identify which parts of the larger context were impactful in the system recommen-
dation and help system designers and developers better explain their system workings to end-users.

4.4. Medical expenditure

In the medical expenditure use case,9 the objective is to learn the rules for the demographic and socio-economic
factors that impact the medical expenditure patterns of individuals. Hence, from the description itself, we can infer
that in this use case the rules are attempting to understand the patterns in the Medical Expenditure Panel Survey
(MEPS) dataset or the general behavior of the prediction models being applied on the dataset, as opposed to at-
tempting to understand why a particular decision was made. This use case involves the use of global explanation
methods from the AIX-360 toolkit [2,3], including the Boolean Rule Column Generator and Linear Rule Regres-
sion (LRR) methods. The ‘explanation method’ instances, in this case, produce explanations that are dependent on
‘system recommendations,’ which rely on the entire dataset itself. Therefore, system designers should link the ‘sys-
tem recommendations’ to the dataset. We achieve this association in our MEPS KG by representing the ‘dataset’
instance as an input of the LRR and BRCG methods. Finally, as can be seen from Table 7, the reasoner can only
infer data explanations (refer to Fig. 8) from the MEPS KG instances, as the explanations are dependent on the
rules identified for patterns in the dataset. Hence, in a use case such as this, wherein the explanations are mainly
dependent on the dataset and the patterns within them, if a system designer were to appropriately link the system
recommendation that the explanation is based on to the entire dataset or a component of the same (i.e., a column,

9Medical expenditure use case: https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/MEPS.ipynb.

https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/MEPS.ipynb
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Fig. 7. Annotated snippet of a contextual explanation instance from the health survey analysis use case knowledge graph. Ontology prefixes used
in the figure are presented in Table 1 and upper-level classes used from the Explanation Ontology model are introduced in Fig. 2 and Fig. 3.

row or cell), a reasoner run on the use case KG can populate data explanations of the explanation representations.
Such data explanations can be helpful to understand aspects of bias and coverage in the data, which can signal to
system designers and users whether their dataset is serving its intended purpose.

4.5. Credit approval

In the credit approval use case,10 there are several objectives depending on the ‘user’ persona, including to enable
data scientists to familiarize themselves with the factors that impact the credit approval outcome, for loan officers to
identify prototypical cases of credit approved owners, and for customers to understand what patterns in their profile
contribute the most towards their credit approval. The analyses are conducted on the FICO HELOC dataset,11

which contains “anonymized information about Home Equity Line Of Credit (HELOC) applications made by real
homeowners” [23]. We run three explanation methods: (1) BRCG and LRR to provide data scientists with the rules
for credit approval ratings, (2) Protodash to provide loan officers prototypical customer cases, and (3) Contrastive
Explanation Method (CEM) to provide customers with explanations to what the minimally sufficient factors in
achieving good credit (‘fact’) are and the factors which, if changed, would change their credit (‘foil’). In the medical
expenditure use case, we have already shown that a system designer dealing with outputs of rule-based methods,
such as BRCG and LRR, can represent the explanations dependent on ‘system recommendations’ generated by the
methods and, particularly in this use case, define the FICO HELOC dataset as input for these methods. In the case

10Credit Approval use case: https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/HELOC.ipynb.
11FICO HELOC Dataset: https://aix360.readthedocs.io/en/latest/datasets.html#id16.

https://nbviewer.org/github/IBM/AIX360/blob/master/examples/tutorials/HELOC.ipynb
https://aix360.readthedocs.io/en/latest/datasets.html#id16
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Fig. 8. Annotated snippet of a data explanation instance from the Medical Expenditure use case knowledge graph. Ontology prefixes used in the
figure are presented in Table 1 and upper-level classes used from the Explanation Ontology model are introduced in Fig. 2 and Fig. 3.

of representing the identified prototypical credit approval customers, system designers can seek inspiration from the
health survey analysis case and similarly represent the customer cases as instances of ‘system recommendations’
and as inputs to an ‘explanation task.’ Finally, for the outputs of CEM (see Fig. 9), we represent the factors that need
to be minimally present for credit approval as ‘facts’ in support of an explanation, and the factors which, if present,
flip the decision as ‘foils’ of an explanation. Such a representation would align with our definition of restrictions
against the contrastive explanation class. In addition, we create three different user instances for the data scientist,
loan officer, and customer, respectively, and further associate the questions (see credit approval row of Table 7) that
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Fig. 9. Annotated snippet of contrastive explanation instances from the credit approval use case knowledge graph. Ontology prefixes used in the
figure are presented in Table 1 and upper-level classes used from the Explanation Ontology model are introduced in Fig. 2 and Fig. 3.
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each of them asks via the properties supported in the EO (Fig. 2). When a reasoner is run upon the credit approval
KG, we can see instances of data explanations for a data science user, case based explanations for a loan officer, and
contrastive explanations for a customer.

5. Usage guidance for system designers

From the exemplar use case KGs that we have described, we aim to show how the EO can support system
designers who are looking to include user-centered explanations by following the process below.

– At a high-level, given the ‘system recommendations’/outputs in each of these use cases, a system designer
could define them as ‘system recommendation’ class instances.

– Details of the specific ‘AI method’ and ‘AI task’ that generated the ‘system recommendation’ can be made into
instances of these two classes, respectively.

– Further associations to the ‘system recommendations’, such as linked ‘object records,’ datasets, or ‘character-
istics’ of these records, can also be represented via the EO model.

– System designers would need to define the larger ‘question’ addressed by the ‘system recommendation(s)’
upon which the ‘explanations’ are based. In use cases where the details of the user are present, the system
designers should represent them as instances of the ‘user’ class and their ‘user characteristics.’

– If system designers were looking to support particular user-centered explanation types, they should familiarize
themselves with the sufficiency conditions for different explanation types (Table 3) in the EO. They should be
able to populate the slots required for different explanation types by doing so. These equivalent restrictions
can be browsed through querying our ontology using the competency questions released on our website and
described in Section 6.2. After, familiarizing themselves with the EO supported explanation types, system
designers should create an ‘explanation’ instance and link this instance to its dependencies such as the ‘system
recommendation’ it is based on, the ‘question’ it addresses and in some cases to the additional ‘knowledge’ the
explanation uses.

– Finally, when a reasoner is run on the KG, the equivalent class restrictions defined in the EO against explanation
types can pick out patterns in the KG that match these restrictions and classify the system-designer-defined
explanations as instances of matched explanation types. System designers can view the inferred explanation
types against their explanation instances, such as the explanation snippets shown in Section 4.

Hence, to support user-centered explanations in their use cases, a system designer would often need to identify
and create instances of the system outputs, their interacting attributes, and their system provenance regarding what
methods generate them and the user attributes, if present, as instances of the EO classes. Additionally, supposing
documentation of the use cases exists, such as in the AIX-360 use cases, system designers could fairly quickly use
this documentation along with representation patterns in our exemplar use case KGs to build their use case KGs
using the EO.

Currently, system designers would need to apply this guidance to build their use case KGs using an ontology
editing tool like Protege. We are investigating and planning on programmatic approaches like APIs to make the
creation process more automated.

5.1. Resource contributions

We contribute the following publicly available artifacts: our expanded Explanation Ontology with the logical
formalizations of the different explanation types and SPARQL queries to evaluate the competency questions, along
with the applicable documentation, all available on our resource website. On our open-source Github repository, we
also release our KG files (and the inferred versions too), for the five new use cases described in this paper. These
resources, listed in Table 8, are useful for anyone interested in building explanation facilities into their systems.

The ontology has been made available as an open-source artifact under the Apache 2.0 license [56] and we
maintain all our artifacts on our Github repository. We also maintain a persistent URL for our ontology, hosted on
the PURL service. All the relevant links are listed below in Table 8.
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Table 8

Links to resources we have released and refer to in the paper

Resource Link to Resource

Resource Website http://tetherless-world.github.io/explanation-ontology

EO PURL URL https://purl.org/heals/eo

Github Repository https://github.com/tetherless-world/explanation-ontology

6. Evaluation

Our evaluation is inspired by ontology evaluation techniques proposed in Muhammad et al.’s comprehensive
ontology evaluation techniques review paper [1]. They introduce an ontology evaluation taxonomy that combines
evaluation techniques that each reveal different perspectives of the ontology, such as application-based, metric-
based, user-based, and logic/rule-based evaluation techniques. These evaluation techniques in Muhammad et al.’s
taxonomy are a collection of techniques proposed by four different well-cited papers, including Obrst et al. [43],
Duque-Ramos et al., Tartir et al. [54] and Brank et al. [6]. From this taxonomy, we evaluate our ontology by address-
ing a representative range of competency questions that illustrate the task-based and application-based capabilities
of the EO. We also evaluate the EO by applying the evolution-based technique proposed by Tartir et al. [54] and
analyzing the capabilities introduced by version 2.0 of our ontology.

We evaluate the task-based and application-based abilities of the EO to assist system designers in providing
support and include user requirements, address explanation dependent questions across the illustrated use cases.
In Table 9 and 10, we present the competency questions that we have developed to evaluate the task-based and
application-based capabilities of the EO, respectively. In each of these tables, we show the setting for the competency
question related to the question and its answer. These competency questions are realized via SPARQL queries that
are run on the EO or its companion use case KGs (Section 4). These SPARQL queries can be browsed through
our resource website (Section 5.1). Additionally, as part of the answers, we also include additional metrics in both
Table 9 and 10, to help assess the complexity of addressing the competency questions and we borrow these metrics
from Kendall and McGuinness’s recent Ontology Engineering [33] book. These metrics include the overall query
length for addressing the competency question, were any property restrictions accessed in retrieving the answer, did
a reasoner need to be run for the result and finally were there any filter clauses required to narrow down the result.

6.1. Evolution-based evaluation

We also evaluate the additions to the EO model since its first iteration described in Chari et al. [13] using
the evolution-based evaluation method mentioned in Muhammad et al.’s taxonomy [1]. However, as analyzed by
Muhammad et al., it is hard to quantify the evolution-based evaluation technique of Tartir et al. [54] for knowledge
gain provided by the updates to the ontology model. From a qualitative assessment, we find that the additions to the
EO model helped us better represent capabilities including:

– Capture more granular representations of ‘AI methods’ and their interactions with the explanation types, and
support more ways to generate explanations.

– Introduce characteristics at various strategic attributes that contribute to explanations (e.g., at the system, user,
and object classes), which provide the flexibility to define characteristics at multiple levels and allow for better
considering explanation types through the restriction of equivalent classes. For example, we could better repre-
sent restrictions against the ‘contextual knowledge’ class with the broader characteristic scope, and therefore,
more patterns can be considered as matches for this class, which is a primary contributor to the ‘contextual
explanation’ type.

– Include more of the contributing attributes of the explanation ecosystem itself (such as capturing the ‘system’
in which the ‘AI methods’ are run), which helps maintain better provenance of the infrastructure contributing
to the explanations.

http://tetherless-world.github.io/explanation-ontology
https://purl.org/heals/eo
https://github.com/tetherless-world/explanation-ontology
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Table 9

A catalog of competency questions and candidate answers produced by our EO

Setting Competency Question Answer SPARQL
Query
length

Property
Restrictions
accessed?

Inference
Required?

Filter
Statements

System Design Q1. Which AI model(s) is/are
capable of generating this
explanation type (e.g.
trace-based)?

Knowledge-based systems,
Machine learning model:
decision trees

8 Yes No No

System Design Q2. What example questions
have been identified for
counterfactual explanations?

What other factors about the
patient does the system know
of? What if the major problem
was a fasting plasma glucose?

4 No No No

System Design Q3. What are the components
of a scientific explanation?

Generated by an AI Task,
Based on recommendation,
and based on evidence from
study or basis from scientific
method

2 Yes No No

System Analysis Q4. Given the system has
ranked specific
recommendations by
comparing different
medications, what
explanations can be provided
for that recommendation?

Contrastive explanation 8 Yes No No

System Analysis Q5. Which explanation type
best suits the user question
asking about numerical
evidence, and how does a
system generate such an
answer?

Explanation type: statistical;
System: run ‘Inductive’ AI
task with ‘Clustering’ method
to generate numerical evidence

18 Yes No No

System Analysis Q6. What is the context for
data collection and application
of the contextual explanation,
say for example from the
health survey analysis use
case?

Explanation type: contextual
Environmental context: ‘Early
childhood questionnaire’ in a
US location

5 No Yes No

6.2. Task-based evaluation

With the increasing demand to support explainability as a feature of user-facing applications, thus improving
uptake and usability of AI and ML-enabled applications [11,18,20,27], it is crucial for system designers to under-
stand how to support the kinds of explanations needed to address end user needs. An evolving landscape of the
explanations, goals, and methods that support them, complicates the task, but querying the EO can help answer such
questions in a standalone format. For the task-based abilities, we aim to showcase how the EO can provide “human
ability to formulate queries using the query language provided by the ontology” [43] and “the degree of explanation
capability offered by the system, the coverage of the ontology in terms of the degree of reuse across domains” [43].

We detail some of the support that the EO can provide to help system designers understand the main entities
interacting with explanations in Table 9. The support that we illustrate includes querying the ‘AI Method’ and ‘AI
Task’ that generates the explanation, the example questions that different explanation types can address, and the
more nuanced parts of explanation types, such as their components and when they can be generated. The table also
shows a set of competency questions and answers that are retrieved from the EO. For answers in this table, we use,
for better understanding, simpler descriptions than the results returned by the SPARQL query. The full set of results
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Table 10

Example questions that can be asked of our use case knowledge graphs that are modeled using our EO

Use Case Competency Question Answer SPARQL
Query
Length

Property
Restrictions
Accessed?

Inference
Required?

Filter
Statements

Food Recommendation Q1. What explanation types
are supported?

Contextual and Contrastive 2 No Yes No

Food Recommendation Q2. Why should I eat spiced
cauliflower soup?

Cauliflower is in season. 5 No Yes Yes

Proactive Retention Q2. What is the retention
action outcome for employee
1?

Employee 1 is likely to remain
in the same organization.

4 No No Yes

Health Survey Analysis Q3. Who are the most
representative patients in the
income questionnaire?

Patient 1 and 2. 3 No Yes No

Health Survey Analysis Q5. Which questionnaire did
patient 1 answer?

Income, early childhood and
social determiners.

3 No Yes Yes

Medical Expenditure Q6.What are the rules for
high-cost expenditure?

Individuals are in poor health,
have limitations in physical
functioning and are on health
insurance coverage.

4 No Yes Yes

Credit Approval Q7. What factors contribute
most to a loan applicants credit
approval?

Facts: Number of satisfactory
trades and risk estimate value

7 No Yes No

can be browsed through our resource website.12

We split the questions across two settings, including during system design (questions 1–3 in Table 9) when a
system designer is planning for what explanation methods and types of support are needed, based on the user and
business requirements. The other setting, during system analysis (questions 4–6 in Table 9), when they are trying to
understand what explanation types can be supported given system outputs at their disposal and/or the dependencies
of the explanation type instances in their use case KGs on its attributes, such as the system state and context.

Delving further into answers for system design questions from Table 9 such as ‘What particular explanation type
addresses a prototypical question?’ can signal to system designers what explanation types can best address the user
questions in their use case. Additionally, knowledge of what components populate certain explanation types (Q1.
and Q3.) can help system designers plan for what inputs they would need to support these explanation types in their
use case.

Similarly, in system analysis settings, which could include, once the system designer knows what system outputs
they can build explanations of (Q4–5.), or once a reasoner has been run on the use case KG, or once the explanations
inferred via the EO have been displayed (Q6.), a system designer might need to be ready for additional questions that
users or system developers might have. These include questions such as ‘What is the context for the data populating
the explanation?’ or ‘In what system setting did this explanation get populated?’ Upon querying the EO or use
case KGs, we can support answers to such system analysis questions, giving system designers more insights around
explanations supported in or to support in their use cases. Besides the general questions about the explanations,
a system designer might need to assist interface designers or users with more domain-specific questions about the
explanation instances. We can support these through the domain-level instantiations that we allow for in the use case
KGs. Examples of these application-based evaluations can be seen in Table 10 and are described in the next section.

In summary, the competency questions we address in Table 9 provide examples for a task-based evaluation of the
EO as a model to support user-centered explanations and we checked the utility of these questions against a small
expert panel of system designers from our lab. We report their insights in the discussion section (Section 8). We are

12SPARQL query results: https://tetherless-world.github.io/explanation-ontology/competencyquestions/.

https://tetherless-world.github.io/explanation-ontology/competencyquestions/
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1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX eo: <https://purl.org/heals/eo#>
4 PREFIX ep: <http://linkedu.eu/dedalo/explanationPattern.owl#>
5 PREFIX sio: <http://semanticscience.org/resource/>
6
7 SELECT ?subject ?data
8 WHERE {
9 ?subject a eo:DataExplanation .

10 ?subject rdfs:label ?sl .
11 ?subject ep:isBasedOn ?o .
12 ?o sio:SIO_001277 ?data .
13 filter( regex(str(?sl), "high-cost", "i" ))
14
15 }

Listing 3. A SPARQL query run on the medical expenditure knowledge graph, that retrieves the rules associated with a data explanation for
high-cost expenditure to answer a competency question of the kind, “What are the rules for high-cost expenditure?

soliciting additional suggestions for more types of questions that showcase a broader range of the EO’s capabilities
and suggestions can be submitted via recommendations on our website.13

6.3. Application-based evaluation

When system designers represent use case specific content, they often need to communicate these representations
to other teams, including interface designers who support these use case KGs on UIs, or system developers who
want to ensure that they correctly capture system outputs. Hence, in such scenarios, the system designers would
need to provide results concerning the domain-specific content in their use case KGs, which could span questions
like “What entities are contained in the contrastive explanation?” to more specific questions about particular objects
in the use case, such as “What is the outcome for employee 1?” Through the EO, we enable the system designer to
provide application-specific details about the explanations supported in their use cases, that improve the presentation
of the “output of the applications” [6].

Some examples of questions that we can handle for the use cases we support from Section 4, are shown in
Table 10. In these instances from Table 10, we query the use case KGs for domain-specific content by leveraging
the properties of the EO model, as defined between the entities that contribute to explanation instances in these KGs.

Some examples of domain-specific content that can be queried (see Table 10) include questions like, ‘what are
the facts contributing to a contrastive explanation (Q7)’, ‘what is the ‘system recommendation’ linked to employee
1 (Q3)’, and ‘what are some rules for trace-based explanations in the KG (Q6)?’ Answers to such questions can pro-
vide insights on the entities contributing to explanations. More specifically, the answers to questions in Table 10, can
help system designers convey to interface designers what entities can be shown on the UI concerning these expla-
nations (Q1, Q3–Q4) or even help application users and system developers navigate the explanation dependencies
to understand the interactions between the entities contributing to these user-centered explanations (Q2, Q5–Q7).
An example of a SPARQL query that implements “Q6. What are the rules for high-cost patient expenditure?” from
Table 10, can be viewed in Listing 3 and the results can be seen in Table 11.

In summary, representing explanations via the EO model allows the content supporting the explanations to be
queried easily and through multiple depths of supporting provenance. This is also a step toward supporting an
interactive design for explanations, such as the one mentioned in Lakkaraju et al. [34]. We aim for these example
questions addressed through our use case KGs, to provide guidance to system designers on the types of questions
that they could support in their own use case KGs.

13Call for Participation: https://tetherless-world.github.io/explanation-ontology/competencyquestions/#call.

https://tetherless-world.github.io/explanation-ontology/competencyquestions/#call
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Table 11

Results of the SPARQL query to retrieve the higher-degree rules associated with a data explanation instance
from the medical expenditure use case

Explanation Rule

Explanation based on high-cost patient pattern 2. Self-reported poor health – true

Explanation based on high-cost patient pattern 2. Limitations in physical functioning – present

Explanation based on high-cost patient pattern 2. Health insurance coverage – present

7. Related work

The increased awareness on AI explainability in the recent years has resulted in the publication of several papers.
Some provide solutions to explain decisions and behavior of ML methods [2,3,42]. Others are position statements
and survey papers pointing to the need for user-driven and user-centered explainability that takes into account
the requirements of the system designers and end-users during the explanation composition and generation pro-
cess [11,21,27,34]. Furthermore, several publications find that model explanations alone, which are often either
scores or model outputs that are not comprehensible to users who lack the knowledge of system and methods
development [60], cannot answer the diverse set of questions that users have for the explainability needs of AI
models [28,34,36]. Hence, for user consumption, explanations need to be grounded in additional supporting data,
context, and knowledge [11,12]. Some of the reasons why we posit and others find that model explanations or a
single set of explanations are insufficient are that when humans are looking to trust an AI system, they are seeking
support that they are familiar with [28,34] that could include explanations that answer questions that appeal to their
reasoning process, are expressed in the domain knowledge that they are accustomed to, and provide additional infor-
mation to understand the AI system and its workings. Hence, these requirements for user-centered explanations can
often not be satisfied by a single explainability method or question type and require different explanation types to
be presented to humans that can help them reason through the AI model’s decision and its explanations via different
paths.

Ontologies and KGs capture an encoding of associations between entities and relationships in domains, and
hence, can be used to inform upstream tasks [24,47], guide/constrain ML models [5], and structure content for the
purpose of organization [39,58]. User-centered explanations are composed of different components, such as outputs
of AI/ML methods and prior knowledge, and are also populated by content annotated by different domain ontologies
and KGs (of which there are many). The former proposition of composing explanations from components has been
attempted less frequently [13,16,57,58] and at different degrees of content abstraction, hence providing open chal-
lenges to represent explanations semantically. Additionally, there have been two multidisciplinary, comprehensive,
and promising reviews [35,59] highlighting the applications of KGs to explainable AI, either solely as the data store
to populate explanations, or as aids to explain AI decisions from the knowledge captured by the KG encodings.
Efforts to use ontologies and KGs to improve the explainability of AI models will become increasingly popular
since several publications point out that single scores from ML models are hard for subject matter experts (SMEs)
to interpret directly [9,26,46]. Here, we review semantic efforts to represent explanations and highlight how the EO
is different in terms of its overall goal and representation.

One of the early efforts of an ontology to represent explanations was by Tiddi et al. [58], who designed the Expla-
nation Patterns (EP) ontology to model attributes of explanations from a philosophy perspective of explanation and
its dependencies on what phenomenon generated the explanation and what events they are based on. They based
their ontology design on ontological realism [53], i.e., building their ontology to be as close to how it is defined in
theory. The primary use of the EP ontology was to define explanations in multi-disciplinary domains, such as cog-
nitive science, neuroscience, philosophy, and computer science, with a simple general model. The authors mention
how the EP model can be applied in conjunction with a graph traversal algorithm like Dedalo [57] to find three com-
ponents of an explanation, including the Antecedent event (A), the Theory they are based on (T), and the Context
in which they are occurring (C), in KGs. However, we found that for the user-centered explanation types (Table 3),
the (A, T, C) is often not sufficient when some explanations either do not need all the (A, T, C) components or when
other explanations require more than these components. For example, (A, T, C) components are not sufficient in
case-based explanations, where what cases the explanation is dependent upon needs to be modeled. Additionally,
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we found that this simplicity was insufficient to support explanations generated by AI methods. Therefore, we added
additional classes to support the dependencies of explanations on the methods that produce them and the users that
consume them. However, in the spirit of reusing existing ontologies, we leverage certain classes and properties of
the EP ontology in our EO ontology model as described in Section 3.1.

In a recent paper, Dalvi and Jansen et al. [16] released an ENTAILMENTBANK for explanations and applied
natural-language processing methods to identify trees for the facts that are most relevant to a Question-Answer
(QA) pair. While they are trying to identify entailments, or the facts that are most pertinent to an answer in a QA
setting, several publications [18,28,34] find that domain experts are often aware of the base knowledge that sup-
port explanations and do not always appreciate the additional theory. In the EO, we model a comprehensive set of
literature-derived explanation types that can address various questions by system designers. These explanation types
can provide users the varied support [28,34] they seek in terms of information to help them better understand the
AI methods output. For example, contextual explanations situate answers and scientific explanations provide evi-
dence to reason about the supporting literature. As for composing the explanations, we describe how the description
of sufficiency conditions on these explanation types allows them to be built from KGs (Section 3.2). In a similar
vein, Teze et al. [55] present style templates to combine assertional, terminological and ontology terms to sup-
port seven different user-centered explanation types including statistical, contextual, data-driven, simulation-based,
justification-based, contrastive and counterfactual. However, their work doesn’t use traditional ontology languages
like RDF and OWL and is therefore less interoperable with standard semantic frameworks. Additionally, they focus
more on integrating the outputs of logical reasoners to populate explanation types, instead of a wider breadth of AI
explanation methods, such as those listed in Zhou et al. [64] and Arya et al. [2,3]. In the EO, we design a simple,
yet comprehensive, model to represent user-centered explanation types that account for their generational needs and
impact on the user.

8. Discussion

Here we discuss different aspects of the EO, including desired features and design choices, the relevance of results
and limitations, and future outlook.

How is EO considered to be general-purpose? We have described a general-purpose and mid-level ontology, the
EO, that can be leveraged to represent user-centered explanations in domain applications. In the EO, we encode the
attributes that contribute to explanations in a semantic representation as an ontology, and by doing so, the EO can
be used to structure explanations based on linkages to the needs the explanations support and the method chains that
generate them (Section 3). The ability to support different explanation types enables the EO to be a tool that can
provide users with different views required to reason over the recommendations provided by AI-enabled systems.
In addition to explainability being diverse in terms of the different types of needs that users seek from explanations
(Fig. 10), explanations are also domain-specific and are driven by the system outputs and domain knowledge in
the application domain or use case [10,34]. Hence, although the EO is a mid-level ontology, it needs to be broad
enough to support the representation of explanations across domains. Through our use case KGs (Section 4), we
have demonstrated how system designers, as our intended users of the EO, can root the domain-specific concepts
in our EO model and, upon running a reasoner on their KGs, classify their representations into the user-centered
explanation types we support in the EO.

What features were introduced in EO 2.0 and why? This paper is a significantly expanded version of an earlier
conference paper on the EO [13], and here we also introduce new use cases and explanation types. With the intro-
duction of the six new explanation types from Zhou et al. [64], we can now infer a broader range of user-centered
explanation types in use cases. For example, we describe here how to infer data and rational explanations in the
proactive retention, credit approval, and medical expenditure use cases. Also, without expanding the explanation
method trees in the EO, we would not have been able to adequately capture the outputs from explanation methods
in the AIX-360 use cases. Hence, our additions to the EO model introduced in this paper can provide expanded
expressivity, leading to better applicability with the current explainable AI landscape.

What are design choices made during EO development and how do they apply? The EO itself is lightweight,
and we have imported two standard scientific ontologies, SIO-O and Prov-O. We reuse a lot of classes and we only
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Fig. 10. Illustrating the varying preferences that users have for explanations in a credit approval use case. This illustration shows that explanations
can be populated differently for user groups, such as the customer (A).) and compliance officer (B.). The Explanation Ontology (EO) can be
used in both user scenarios A). and B). to support the composition of explanations from individual data sources and methods. Further, structuring
explanations across user groups using common templates provided in the EO, can help them be rendered flexibly on an interface such as the
example in C).
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introduce classes and properties that do not exist currently to represent explanations. This design choice of reuse is
reflected in the ontology metrics reported in Table 2 and is a feature which can ensure interoperability of the EO with
other ontologies that also use the standard scientific ontologies that we reuse. From a modeling perspective, in the
EO, we are aiming for expressivity in that we capture multiple paths to compose explanation types which contribute
to a somewhat slow reasoner performance. Since the reasoner is typically run only once in a use case, or it is a
process that is not run in real-time, the speed limitation might not be an issue when displaying such pre-computed
results.

What is the coverage of the EO and how can the ontology be adapted? The EO provides an approximate rep-
resentation of content in the evolving literature surrounding XAI. From a modeling perspective, we have modeled
attributes of explanations that we deemed essential to represent explanations that address the standard set of ques-
tion templates identified in Vera et al. [36] (e.g., Why, Why not, What, How, etc.), depending on a set of models,
knowledge, and data resources, as described in computer science and explanation sciences literature [20,27,40].
We also modeled attributes required to represent the system interface user attributes, as described in the human-
interaction literature [17,37,63]. Interested users can also extend EO with additional classes as they deem necessary,
by referring to the descriptions of the EO model available in this paper and on our resource website. Additionally,
we update the EO model often, ensuring that it is current. In terms of adding more granular and indirectly connected
attributes to explanations, we are also investigating how to represent system attributes, such as error traces, metrics
and method parameters, and to link such details in user-centered explanation types that would provide value to a
large range of domain and non-domain users.

Discussion of Results: We have evaluated the capabilities of the EO in assisting system designers, our intended
users, both from a task perspective of the planning process in supporting explanations in their use cases and ad-
dressing domain-specific questions that might arise around their use cases. Hence, we use the task-based and
application-based evaluation techniques presented in Muhammad et al.’s well-curated taxonomy of ontology eval-
uation methods [1]. We crafted these competency questions borrowing from our expertise in the explainable AI
domain, i.e., from our previous experiences of interactions with end-users where they have alluded to specific needs
for explainability [10,13,28], and from literature reviews of the kinds of questions that users want addressed from
explanations [36] and what explanation taxonomies cover [2,3]. We also walked a small expert panel of two system
designers in our lab through our evaluation approach and presented them with probing questions like do the com-
petency questions serve their needs when they are trying to use the EO and what other questions they would like to
see addressed. They made some suggestions around rewording some task-based questions 9 to be more clear and
expressed interest in seeing the domain capabilities of the EO (Table 10). We have made changes to the evaluation
to reflect the expert panel suggestions. While our evaluation was not designed to be exhaustive, it is representative
of capabilities that the EO can enable around making explanations composable from its dependencies and allowing
explanations to be probed to support further user-driven questions around them.

Further, the values for different metrics, including query length, property restriction, and whether or not additional
mechanisms like inference are required and filter statements need to be applied, that are reported against queries
for each competency question in Table 9 and Table 10, reflect the design choices that we have made in the EO.
To elaborate, queries in the task-based evaluation have longer query lengths since they access property restrictions
defined against explanation types supported in the EO to answer questions around the components of these expla-
nation types. On the other hand, since the EO provides capabilities of explanations to be classified into explanation
types, queries around domain-specific content of inferred explanations in the exemplar use case KGs have shorter
query lengths. While interested system designers could use the queries we have provided in this paper (Section 6)
as a reference for other queries they might have around the EO or want addressed by the EO, we also have an active
developer community that can assist in crafting these queries. We have a call for participation on our website for
interested users.14

Future Outlook: Overall, the EO can be thought of as a semantic representation that allows for easy slot-filling
of user-centered explanation types in terms familiar to most system designers. In the future, we hope to develop a
natural-language processing method that would interface with the explanation slots in the EO’s use case KGs to build

14Competency question support: https://tetherless-world.github.io/explanation-ontology/competencyquestions/#call.
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natural-language explanations. We continue to provide and update our open-source documentation for using the EO
model to support user-centered explanation types in use cases that span various domains. The EO is a solution to
combine data, knowledge and model-capabilities to compose user-centered explanations that can address a wide
range of user questions and provide multiple views and thus support human reasoning of AI outputs [28,34] (as
illustrated in the example in Fig. 10).

9. Conclusion

We have presented a significantly expanded explanation ontology that can serve as a resource for composing
explanations from contributing components of the system, interface, and user- attributes. We have modeled the mid-
level ontology to be used as a cross-domain resource to represent user-centered explanations in various use cases.
In addition, within the ontology, we model fifteen literature-derived, user-centered explanation types and define
equivalent class restrictions against these types that allow for explanations to be classified into these patterns. In this
paper, we have provided guidance for a system designer, our intended user, to apply our ontology in their use cases.
This guidance includes descriptions of five open-source use cases that use our ontology, and answers to competency
questions that demonstrate the EO’s task and application-based capabilities. We aim for the competency questions
to serve as a means for system designers to familiarize themselves with the capabilities of our ontology, to support
explanations and understand what types of content-specific questions can be asked around explanations in their use
cases. Finally, we hope for this open-sourced ontology to serve as a resource to represent user-centered explanations
in various use cases and allow for these explanations to be supported by a broad range of AI methods and knowledge
sources while accounting for user requirements.
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