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Abstract. Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning with symbolic rea-
soning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted
that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to
language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for
NeSy. We conduct a structured review of studies implementing NeSy for NLP, with the aim of answering the question of whether
NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from
small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic
networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to higher promise
scores. We find that systems where logic is compiled into the neural network lead to the most NeSy goals being satisfied, while
other factors such as knowledge representation, or type of neural architecture do not exhibit a clear correlation with goals being
met. We find many discrepancies in how reasoning is defined, specifically in relation to human level reasoning, which impact
decisions about model architectures and drive conclusions which are not always consistent across studies. Hence we advocate
for a more methodical approach to the application of theories of human reasoning as well as the development of appropriate
benchmarks, which we hope can lead to a better understanding of progress in the field. We make our data and code available on
github for further analysis.1
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Fig. 1. Symbolic vs sub-symbolic strengths and weaknesses. Based on the work of Garcez et al. [50].

1. Introduction

At its core, Neuro-Symbolic AI (NeSy) is “the combination of deep learning and symbolic reasoning” [51]. The
goal of NeSy is to address the weaknesses of each of symbolic and sub-symbolic (neural, connectionist) approaches
while preserving their strengths (see Fig. 1). Thus NeSy promises to deliver a best-of-both-worlds approach which
embodies the “two most fundamental aspects of intelligent cognitive behavior: the ability to learn from experience,
and the ability to reason from what has been learned” [51,145].

Remarkable progress has been made on the learning side, especially in the area of Natural Language Processing
(NLP) and in particular with deep learning architectures such as the Transformer [37,147]. However, these systems
display certain intrinsic weaknesses which some researchers [104,113] argue cannot be addressed by deep learning
alone and that in order to do even the most basic reasoning, we need rich representations which enable precise,
human interpretable inference via mathematical logic.2

Recently, a discussion between Gary Marcus and Yoshua Bengio at the 2019 Montreal AI Debate prompted some
passionate exchanges in AI circles, with Marcus arguing that “expecting a monolithic architecture to handle abstrac-
tion and reasoning is unrealistic”, while Bengio defended the stance that “sequential reasoning can be performed
while staying in a deep learning framework” [11]. Spurred by this discussion, and almost ironically, by the success of
deep learning (and ergo, the clarity into its limitations), research into hybrid solutions has seen a dramatic increase –
Fig. 2. At the same time, discussion in the AI community has culminated in “violent agreement” [80] that the next
phase of AI research will be about “combining neural and symbolic approaches in the sense of NeSy AI [which] is
at least a path forward to much stronger AI systems” [123]. Much of this discussion centers around the ability (or
inability) of deep learning to reason, and in particular, to reason outside of the training distribution. Indeed, at IJCAI
2021, Yoshua Bengio affirms that “we need a new learning theory to deal with Out-of-Distribution generalization”
[9]. Bengio’s talk is titled “System 2 Deep Learning: Higher-Level Cognition, Agency, Out-of-Distribution Gener-
alization and Causality.” Here, System 2 refers to the System 1/System 2 dual process theory of human reasoning
explicated by psychologist and Nobel laureate Daniel Kahneman in his 2011 book “Thinking, Fast and Slow” [77].
AI researchers [6,51,87,96,104,152,164] have drawn many parallels between the characteristics of sub-symbolic
and symbolic AI systems and human reasoning with System 1/System 2. Broadly speaking, sub-symbolic (neural,
deep-learning) architectures are said to be akin to the fast, intuitive, often biased and/or logically flawed System 1.
And the more deliberative, slow, sequential System 2 can be thought of as symbolic or logical. But this is not the
only theory of human reasoning as we will discuss later in this paper. It should also be noted that Kahneman himself
has cautioned against the over reliance on the System 1/System 2 analogy in a followup discussion at the Montreal
AI Debate 2 the following year, stating, “I think that this idea of two systems may have been adopted more than it
should have been.”3

2See also Besold et al. [12], p.17-18 for additional context.
3https://youtu.be/2zNd69ZGZ8o?t=161

https://youtu.be/2zNd69ZGZ8o?t=161
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Fig. 2. Number of neuro symbolic articles published since 2010, normalized by the total number of all computer science articles published each
year. The figure represents the unfiltered results from scopus given the search keywords described in Section 5.2.

1.1. Reasoning & language

“Language understanding in the broadest sense of the term, including question answering that requires common-
sense reasoning, offers probably the most complete application area of neurosymbolic AI” [51]. This makes a lot of
intuitive sense from a linguistic perspective. If we accept that language is compositional, with rules and structure,
then it should be possible to obtain its meaning via logical reasoning. Compositionality in language was formalized
by Richard Montague in the 1970s, in what is now referred to as Montague grammar: “The key idea is that com-
positionality requires the existence of a homomorphism between the expressions of a language and the meanings of
those expressions.”4 In other words, there is a direct relationship between syntax and semantics (meaning). This is
in line with Noam Chomsky’s Universal grammar5 which states that there is a structure to natural language which is
innate and universal to all humans, and is governed by precise mathematical rules. While an analysis of the study of
linguistics is beyond the scope of this paper, the key takeaway is this: what makes such theories so attractive to com-
putational linguists is that meaning can be derived from syntactic structures which can be translated into computer
programs. Today, industrial strength tools for extracting these structures (e.g., part-of-speech tagging, constituency
parsing, dependency parsing) are readily available, such as for example NLTK6 or SpaCy.7 The challenge lies in
representing and utilizing these structures in a way that both captures the semantics and is computationally efficient.

On the one hand, distributed representations are desirable because they can be efficiently processed by gradient
descent (the backbone of deep learning). The downside is that the meaning embedded in a distributed representation
is difficult if not impossible to decompose. So while a Large Language Model (LLM), a deep learning language
model based on the principle of distributional semantics, may be very good at making certain types of predictions, it
cannot be queried for answers not present in the training data by way of analogy or logic. We have also seen that even
as these models get infeasibly large – the larger the model, the better the predictions [131] – they still fail on tasks
requiring basic commonsense. The example in Fig. 3, given by Marcus and Davis in [105] is a case in point. In their
now seminal paper On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?, Bender et al. point to
a wide variety of costs and risks associated with the rush for ever larger language models, including: environmental
costs, financial costs, which in turn erect barriers to entry and limit who can contribute to this research area and
which languages can benefit from the most advanced techniques; opportunity cost, as researchers pour effort away
from directions requiring less resources; and the risk of substantial social harms due to the training data encoding

4https://plato.stanford.edu/entries/compositionality/#FormStat
5https://www.britannica.com/topic/universal-grammar
6https://www.nltk.org/
7https://spacy.io/

https://plato.stanford.edu/entries/compositionality/#FormStat
https://www.britannica.com/topic/universal-grammar
https://www.nltk.org/
https://spacy.io/
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Fig. 3. Third generation generative pre-trained transformer (GPT3) [20] text completion example. The prompt is rendered in regular font, while
the GPT3 response is shown in bold. It is clear that GPT3 is incapable of commonsense.

hegemonic views that are harmful to marginalized populations, resulting in the amplification of existing biases, and
the reinforcement of sexist, racist, ableist, etc. ideologies [8].

On the other hand, traditional symbolic approaches have also failed to capture the essence of human reason-
ing. While we may not yet understand exactly how people reason, it is generally accepted that human reasoning is
nothing like the rigorous mathematical logic where the goal is validity. Though not for lack of ambition – Socrates
got himself killed trying to get people to reason with logic [46]. In the Dictionary of Cognitive Science [43], Pas-
cal Engel describes reasoning in a natural setting as “ridden with errors and paralogisms.” Engel refers to Daniel
Kahneman, Amos Tversky, Philip Wason, among others, who have conducted numerous experiments and written
extensively showing how logical fallacies and “noise” can lead to those errors [77,78]. But even when the objective
is not to emulate human thinking, but rather the execution of tasks which require precise, deterministic answers
such as expert reasoning or planning, traditional symbolic reasoners are slow, cumbersome, and computationally
intractable at scale, “typically subject to combinatorial explosions that limit both the number of axioms, the number
of individuals and relations described by these axioms, and the depth of reasoning that is possible” [6]. For example,
Description Logics (DLs) such as OWL8 are used to reason over ontologies and knowledge graphs (KGs). However,
one must accept a harsh trade-off between expressivity and complexity when choosing a DL flavor. Improving the
performance of reasoning over ontologies and knowledge graphs that power search and information retrieval across
the web is particularly relevant to the Semantic Web community. Hitzler et al. [65] report on recent research on
neuro-symbolic integration in relation to the Semantic Web field, with a focus on the promises and possible benefits
for both.

The remainder of this manuscript is structured as follows. Section 2 offers a brief history of NLP in the context of
reasoning. Several recent surveys and their contributions to NeSy are discussed in Section 3, and are intended as an
introduction to the field. Our contribution is given in Section 4, which also details the goals of NeSy selected for this
survey. Section 5 describes the research methods employed for searching and analysing relevant studies. In Section 6
we analyze the results of the data extraction, how the studies reviewed fit into Henry Kautz’s NeSy taxonomy
[80], and we propose a simplified nomenclature for describing Kautz’s NeSy categories. Section 7 discusses the
limitations and challenges of the reviewed implementations. Section 8 presents limitations of this work and future
directions for NeSy in NLP, followed by the conclusions in Section 9.

2. A brief history of NLP

The study of language and reasoning goes back thousands of years, but it was not until the 1960’s that the
first computational models were realized. The Association for Computational Linguistics (ACL)9 was founded in
1962 for people working on computational problems involving human language, a field often referred to as either
computational linguistics or Natural Language Processing (NLP). Common NLP tasks are illustrated in Fig. 4.

One of the first NLP projects was a chat-bot named ELIZA [155], written by Joseph Weizenbaum around 1965.
Given a small hand crafted set of rules, ELIZA was able to hold an, albeit superficial, conversation, gaining tremen-
dous popularity. Curiously, despite the program’s simplicity those who interacted with it, attributed to it human-like
emotions. These early systems were based on pattern matching and small rule-sets, and were very limited for obvi-
ous reasons. In the 1970s and 80s linguistically rich, logic-driven, grounded systems, largely influenced by Noam

8https://www.w3.org/2007/OWL/wiki/Direct_Semantics
9https://www.aclweb.org/portal/

https://www.w3.org/2007/OWL/wiki/Direct_Semantics
https://www.aclweb.org/portal/


K. Hamilton et al. / NeSy for NLP: Review 1269

Fig. 4. Common natural language processing tasks [97].

Chomsky’s Universal Grammar10 were developed. The 1990s and early 2000s saw the ‘statistical revolution’ and
the rise of machine learning, and work on NLP tasks focused on semantics, such as Natural Language Understand-
ing (NLU), diminished for the next decade or so.11 NLU returns to center stage, mixing techniques from previous
years sometime around 2010. As a case in point, in 2011 IBM’s Watson DeepQA computer system won first place
on Jeopardy! for a prize of $1 million, competing against champions Brad Rutter and Ken Jennings.12 DeepQA
is a large ensemble of techniques and models, the vast majority of which was focused on general Information Re-
trieval (IR), NLP/NLU, Knowledge Representation & Reasoning (KRR), and Machine Learning (ML) [48]. Broadly
speaking, DeepQA is a large neuro-symbolic question answering software pipeline. In the last decade, and espe-
cially in the last few years, the emphasis on deep learning has somewhat overshadowed traditional NLP approaches.
The Long Short Term Memory (LSTM) [66] architecture paved the way for the Transformer, which has generated
a huge amount of optimism leading some people to believe that “deep learning is going to be able to do every-
thing.”13 However, as already mentioned, the success of the Transformer and Large Language Models (LLMs) has
also served to highlight their inherent shortcomings. This brings us to the present, or the “3rd Wave” [51], which
seeks to overcome those shortcomings by combining deep learning with symbolic reasoning and knowledge, and
by integrating and expanding on the work of previous decades.

Areas of NLP which are said to benefit from this approach are ones which require some form of reasoning or logic.
In particular, Natural Language Understanding (NLU), Natural Language Inference (NLI), and Natural Language
Generation (NLG).

Natural Language Understanding (NLU) is a large subset of NLP containing topics particularly focused on
semantics and meaning. The boundaries between NLP and NLU are not always clear and open to debate, and even
when they are agreed upon, they’re somewhat arbitrary, as it’s a matter of convention and a reflection of history
[97].

Natural Language Inference (NLI) enables tasks like semantic search, information retrieval, information extrac-
tion, machine translation, paraphrase acquisition, reading comprehension, and question answering. It is the problem
of determining whether a natural language hypothesis h can reasonably be inferred from a given premise p [99].
For example, the premise “Hazel is an Australian Cattle Dog”, entails the hypothesis “Hazel is a dog”, and can be
expressed in First Order Logic (FOL) by: p |= h.

Natural Language Generation (NLG) is the task of generating text or speech from non-linguistic (structured)
input [55]. It can be seen as orthogonal to NLU, where the input is natural language. An end-to-end system can be
made up of both NLU and NLG components. When that is the case, what happens in the middle is not always that

10https://www.cs.bham.ac.uk/~pjh/sem1a5/pt1/pt1_history.html
11https://nlp.stanford.edu/~wcmac/papers/20140716-UNLU.pdf
12https://www.youtube.com/watch?v=lI-M7O_bRNg
13https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-learning-will-do-everything/

https://www.cs.bham.ac.uk/~pjh/sem1a5/pt1/pt1_history.html
https://nlp.stanford.edu/~wcmac/papers/20140716-UNLU.pdf
https://www.youtube.com/watch?v=lI-M7O_bRNg
https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-learning-will-do-everything/
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clear-cut. A neural language model such as GPT3 [20] has no structured component, however, whether it performs
“understanding” is subject to debate – Fig. 5.

Fig. 5. NLU takes as input unstructured text and produces output which can be reasoned over. NLG takes as input structured data and outputs a
response in natural language.

3. Related work

Several recent surveys [6,12,50,51,87,123,152,163,164] cover neuro-symbolic architectures in detail. Our aim is
not to produce another NeSy survey, but rather to examine whether the promises of NeSy in NLP are materializing.
However, for completeness, and by way of introduction to the subject, we briefly summarize each of these surveys
and provide references for the architectures under review.

In response to recent discussions in the AI community and the resurgence of interest in NeSy AI, Garcez et al. [51]
synthesize the last 20 years of research in the field in the context of the aforementioned debate. The authors highlight
the need for trustworthiness, interpretability, and accountability in AI systems, which ostensibly, NeSy is most
suited to, in particular when it comes to natural language understanding. The authors also emphasize the distinction
between commonsense knowledge and expert knowledge, and suggest that these two goals may ultimately lead to
two distinct research directions: “those who seek to understand and model the brain, and those who seek to achieve
or improve AI.” Garcez at al. conclude that “Neurosymbolic AI is in need of standard benchmarks and associated
comprehensibility tests which could in a principled way offer a fair comparative evaluation with other approaches”
with a focus on the following goals: learning from fewer data, reasoning about extrapolation, reducing computational
complexity, and reducing energy consumption14 – Fig. 6.

Fig. 6. Neuro-symbolic artificial intelligence promise areas [51].

Sarker et al. [123] survey recent work in the proceedings of leading AI conferences. The authors review a total
of 43 papers and classify them according to Henry Kautz’s categories,15 as well as an earlier categorisation scheme

14Energy consumption is particularly significant when training Large Language Models which can cost in the thousands if not millions of
dollars in electricity [131].

15Henry Kautz introduced a taxonomy of NeSy types at the Third AAAI Conference on AI [80]. We rely on this taxonomy to classify the
studies under review, and discuss each type in detail in Section 6.2.3.
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from 2005 [5]. Comparing the earlier research to the current trends, the authors confirm advancements on both the
neural side, as well as the logic side, with a tendency towards more expressive logics being explored today than was
thought tractable in the past, and the influence of the success of neural networks on the rise in interest in NeSy in
general. Sarker et al. identify four areas of AI that can benefit from NeSy approaches: Learning from small data, out
of distribution handling, intepretability, and error recovery – Fig. 7.

Fig. 7. Neuro-symbolic artificial intelligence promise areas [123].

The authors conclude that “more emphasis is needed, in the immediate future, on deepening the logical aspects
in NeSy research even further, and to work towards a systematic understanding and toolbox for utilizing complex
logics in this context.” Based on the studies in our review, we come to a similar conclusion.

Garcez et al. [50] survey recent accomplishments for integrated machine learning and reasoning motivated by
the need for interpretability and accountability in AI systems. According to [50], there are three main important
features of a NeSy system: representation, extraction, and reasoning & learning. Symbolic knowledge can also be
categorized into three groups: rule-based, formula-based, and embedding-based. The authors categorize and describe
the following neuro-symbolic architectures.

Early systems such as KBANN [142] and CILP [53] embed propositional logic in a neural network by constrain-
ing the model parameters – Fig. 8.

Fig. 8. Knowledge representation of φ = {A ← B ∧ C,B ← C ∧ ¬D ∧ E,D ← E} using KBANN and CILP. [50].

Tensorization is a process that embeds First Order Logic (FOL) symbols into real-valued tensors. Reasoning is
performed through matrix computation. Examples include Logic Tensor Networks (LTNs) [129] and Neural Tensor
Networks (NTNs) [136] – Fig. 9.

In Neural-Symbolic Learning the primary goal is learning, with the assistance of rules and logic. Different
architectures are characterized by how the logic is incorporated into the network, and how it is translated into
differentiable form.

– Inductive Logic Programming (ILP) [109] is a set of techniques for learning logic programs from examples:

∗ Neural Logic Programming (NLP) [160]
∗ Differentiable Inductive Logic Programming (∂ILP) [45]
∗ Neural Theorem Prover (NTP) [120]
∗ Neural Logic Machines (NLMs) [39]
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Fig. 9. Logic tensor network (LTN) for P(x, y) → A(y) with G(x) = v and G(y) = u; G are grounding (vector representation) for symbols in
first-order language [129].

– Horizontal Hybrid Learning combines expert knowledge in the form of rules/logic with data, thus are suitable
to knowledge transfer learning (horizontally across domains).

– Vertical Hybrid Learning combines symbolic and sub-symbolic modules which take inspiration from neuro-
science in that certain areas of the brain are responsible for processing input signals, while other areas perform
logical thinking and reasoning (vertically for a single domain).

Neural-Symbolic Reasoning concerns itself with logical reasoning, as the name suggests, powered by neural
computation. These consist of model-based, and theorem proving approaches. In early theorem proving systems
such as SHRUTI [156] learning capability was limited. On the other hand, model-based approaches inside neural
networks have been shown to demonstrate nonmonotonic, intuitionistic, abductive, and other forms of human rea-
soning capability. Hence, rather than attempting to perform both learning and reasoning in a single architecture,
more recent designs tend to contain separate learning and reasoning modules which communicate with each other.
The authors conclude that combining symbolic and sub-symbolic modules, in other words, the compositionality of
neuro-symbolic systems, contributes to the development of explainable and accountable AI [150].

Yu et al. [163] divide neuro-symbolic systems into two types: heavy-reasoning light-learning and heavy-learning
light-reasoning – Fig. 10. These are similar to the neural-symbolic reasoning and neural-symbolic learning catego-
rization in [50] above. Heavy-reasoning light-learning mainly adopts the methods of the symbolic system to solve

Fig. 10. Two types of neuro-symbolic systems: heavy reasoning light learning, and heavy learning light reasoning [163].

the problem in machine reasoning, and introduces neural networks to assist in solving those problems, while heavy-
learning light-reasoning mainly applies methods of the neural system to solve the problem in machine learning, and
introduces symbolic knowledge in the training process.

– Heavy-reasoning light-learning (based on Statistical Relational Learning (SRL) [84])

∗ Probabilistic Logic Programming (ProbLog) [34]
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∗ Markov Logic Network (MLN) [118]
∗ Inductive Logic Programming (ILP) [109]

– Heavy-learning light-reasoning

∗ Regularization models add symbols in the form of regular terms to the objective function as a kind of prior
knowledge to guide training.

∗ Knowledge transfer models integrate the knowledge graph that represents semantic information into the
neural network model, making up for the lack of data by transferring semantic knowledge. Knowledge
transfer models are mainly used to solve zero-shot learning and few-shot learning [154] tasks.

Besold et al. [12] examine neuro-symbolic learning and reasoning through the lens of cognitive science, cognitive
neuro-science, and human-level artificial intelligence. This is a much more theoretical approach. The authors first
describe some early systems such as CILP [53] and fibring, introduced by Garcez & Gabby [54]. Fibred networks
work on the principle of recursion, where multiple neural networks are connected together, such that a fibring
function in a network A, determines which neurons should be activated in a network B. A key characteristic of
neuro-symbolic systems is modularity, where each network in the ensemble is responsible for a specific logic or
task, increasing expressivity and allowing for non-classical logics to be represented such as connectionist modal,
intuitionistic, temporal, nonmonotonic, epistemic and relational logic. Neuro-symbolic computation encompasses
the integration of cognitive abilities – induction, deduction, abduction – and the study of mental models. The study
of mental models has a long history, and the authors reference research from the field of neuro science and cognitive
science, including the “binding” problem, dual process theory (e.g. System 1/System 2), and theories of affect; with
the goal of formulating these in a neuro-symbolic system. Of particular interest to our work are the two sections
on syntactic structures, and compositionality, as they both deal with modeling language. Psycho-linguists have
different theories of language morphology (the study of the internal construction of words16), with some arguing
for association based explanations (McClelland [76]), while others argue for a rule-based one (Pinker [115]) –
the question being whether it is better to model language through a connectionist approach, per McClelland, or a
symbolic one, as per Pinker. Whether to model language in a connectionist or symbolic manner hinges also on its
inherent compositionality.17

Von Rueden et al. [152] propose a taxonomy for integrating prior knowledge into learning systems. This is an ex-
tensive work covering types of knowledge and knowledge representations, neuro-symbolic integration approaches,
motivations for each approach, challenges and future directions. The authors categorize knowledge into three types:
scientific knowledge, world knowledge, and expert knowledge. Furthermore, knowledge representations are classi-
fied into eight types – Fig. 11.

Fig. 11. Types of knowledge representation [152]. Given that our work deals with natural language as input, we are only concerned with logic rules
(which we subdivide into rules and logic) and knowledge graphs (which we subdivide into frames and semantic networks) – see Section 6.2.2.

16https://www.britannica.com/topic/morphology-linguistics
17According to Noam Chomsky’s theory of language, language is compositional, in the sense that a sentence is composed of phrases, which are

in turn composed of sub-phrases, and so on, in a recursive manner. This idea enables the construction of infinite possibilities from finite means.
This seems particularly well suited to a symbolic system which, given a finite set of rules should be capable of constructing/deconstructing,
i.e., reasoning over, all possibilities. In contrast, a sub-symbolic, or distributional, system can never see the infinite amount of the data in the
universe to learn from. For learning in infinite domains, see also [6]. https://www.britannica.com/biography/Noam-Chomsky/Rule-systems-in-
Chomskyan-theories-of-language.

https://www.britannica.com/topic/morphology-linguistics
https://www.britannica.com/biography/Noam-Chomsky/Rule-systems-in-Chomskyan-theories-of-language
https://www.britannica.com/biography/Noam-Chomsky/Rule-systems-in-Chomskyan-theories-of-language
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Zhang et al. [164] survey the area of neuro-symbolic reasoning on Knowledge Graphs (KGs). The authors con-
tribute a unified reasoning framework for Knowledge Graph Completion (KGC) and Knowledge Graph Question
Answering (KGQA). Among future directions, the authors advocate for taking inspiration from human cognition for
neural-symbolic reasoning in KGs, alluding to the dual model of human reasoning (System 1/System 2). Additional
future directions include:

– Few-shot Reasoning which addresses the issue of few labeled examples.
– Reasoning upon Multi-sources which incorporates additional information from unstructured text.
– Dynamic Reasoning which deals with inferring new facts evolving over time.
– Analogical Reasoning (AR) which involves the use of past experiences to solve problems that are similar to

problems solved before. Case Based Reasoning (CBR) is an example of AR [138].
– Knowledge Graph Pre-training which enables transfer learning for domain adaptation.

Lamb et al. [87] review the state of the art on the use of Graph Neural Networks (GNNs) in NeSy – Fig. 12.

Fig. 12. Graph neural network (GNN) intuition: generate node embeddings based on local neighborhoods, where nodes aggregate information
from their neighbors using neural networks (a). The network neighborhood defines a computation graph such that every node corresponds to a
unique computation graph (b). The key distinctions are in how different approaches aggregate information across the layers [62].18.

Similar to [51] and our work, this survey is motivated by the AI Debate in Montreal. Henry Kautz’s NeSy taxonomy
is used as a foundation for describing NeSy systems. A high level overview of state of the art neural architectures
(convolutional layers, recurrent layers, and attention) is given, followed by a discussion of each of the following:

– Logic Tensor Networks (LTNs) [129] – Fig. 9.
– Pointer Networks [151]. Pointer networks are based on the encoder/decoder with attention (i.e. transformer)

architecture, with the modification that the input length can vary. This architecture lends itself to combinatorial
optimization problems such as the Traveling Salesperson Problem (TSP).

– Graph Convolutional Networks (GCNs) [81] can be thought of as a generalization of Convolutional Neural
Networks (CNNs) for non-grid topologies.

– Graph Neural Network Model [125] – early GNN architecture similar to GCN.
– Message-passing Neural Networks – similar to GNN with a slightly modified update function [87].
– Graph Attention Networks (GATs) [148] – implement an attention mechanism enabling vertices to weigh

neighbor representations during their aggregation. GATs are known to outperform typical GCN architectures
for graph classification tasks.

18Tutorial slides associated with [62]: http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf.

http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf
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According to the authors, GNNs endowed with attention mechanisms “are a promising direction of research towards
the provision of rich reasoning and learning in [Kautz’s] type 6 neuralsymbolic systems.” In NLP, GATs have
enabled substantial improvements in several tasks through transfer learning over pretrained transformer language
models,19 while GCNs have been shown to improve upon the state-of-the-art for seq2seq models [161]. GNN models
have also been successfully applied to relational tasks over knowledge bases, such as link prediction [126].20 The
authors posit that the application of GNNs in NeSy will bring the following benefits:

– Extrapolation of a learned classification of graphs as Hamiltonian, to graphs of arbitrary size.
– Reasoning about a learned graph structure to generalise beyond the distribution of the training data.
– Reasoning about the partOf (X; Y) relation (e.g., to make sense of handwritten MNIST digits and non-digits).
– Using an adequate self-attention mechanism to make combinatorial reasoning computationally efficient.

Belle [6] aims to disabuse the reader of the “common misconception that logic is for discrete properties, whereas
probability theory and machine learning, more generally, is for continuous properties.” The author advocates for
tackling problems that symbolic logic and machine learning might struggle to address individually such as time,
space, abstraction, causality, quantified generalizations, relational abstractions, unknown domains, and unforeseen
examples.

Harmelen & Teije [146] present a conceptual framework to categorize the techniques for combining learning
and reasoning via a set of design patterns. “Broadly recognized advantages of such design patterns are they distill
previous experience in a reusable form for future design activities, they encourage re-use of code, they allow com-
position of such patterns into more complex systems, and they provide a common language in a community.” A
graphical notation is introduced where boxes with labels represent symbolic, and sub-symbolic modules, connected
with arrows. Harmelen & Teije’s boxology representation of AlphaGo is given in Fig. 13.

Fig. 13. Schematic diagram using the boxology graphical notation of the AlphaGo system. Ovals denote algorithmic components (i.e. objects
that perform some computation), and boxes denote their input and output (i.e. data structures) [146].

Earlier surveys [5,13,49,52,63] tend to focus more on logic and logic programming, and less on learning, which
is not surprising given that the ground breaking successes in deep learning are relatively recent. Several themes
run through the above listed works, namely, the inherent strengths and weaknesses of symbolic and sub-symbolic
techniques when taken in isolation, the types of problems which NeSy promises to solve, and the development of
approaches over time.

Two future directions of particular interest to our work emerge: building systems which take inspiration from
human cognition and reasoning, and the integration of unstructured data. To our knowledge there is no survey
specifically covering the application of NeSy for Natural Language Processing (NLP) where the input data is both
unstructured and replete with the ambiguities and inconsistencies of human reasoning.

4. Contributions

Our aim is to analyze recent work implementing NeSy in the language domain, to verify if the goals of NeSy are
being realized, and to identify the challenges and future directions. We briefly describe each of the goals illustrated
in Fig. 14, which we have identified based on our synthesis of the related work outlined above.

19The authors do not provide references to relevant works.
20While a detailed review of GNNs in NLP is beyond the scope of this work, we point the interested reader to an online resource dedicated to

this topic: https://github.com/naganandy/graph-based-deep-learning-literature#computational-linguistics-conferences.

https://github.com/naganandy/graph-based-deep-learning-literature#computational-linguistics-conferences
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Fig. 14. Neuro-symbolic artificial intelligence goals.

4.1. Out-of-distribution (OOD) generalization

OOD generalization [132] refers to the ability of a model to extrapolate to phenomena not previously seen in the
training data. The lack of OOD generalization in LLMs is often demonstrated by their inability perform common-
sense reasoning, as in the example in Fig. 3.

4.2. Interpretability

As Machine Learning (ML) and AI become increasingly embedded in daily life, the need to hold ML/AI ac-
countable is also growing. This is particularly true in sensitive domains such as healthcare, legal, and some business
applications such as lending, where bias mitigation and fairness are critical. “An interpretable model is constrained,
following a domain-specific set of constraints that make reasoning processes understandable” [121].

4.3. Reduced size of training data

State-of-the-art (SOTA) language models utilize massive amounts of data for training. This can cost in the thou-
sands or even millions of dollars [131], take a very long time, and is neither environmentally friendly nor accessible
to most researchers or businesses. The ability to learn from less data brings obvious benefits. But apart from the
practical implications, there is something innately disappointing in LLMs’ ‘bigger hammer’ approach. Science re-
wards parsimony and elegance, and NeSy promises to deliver results without the need for such massive scale. While
this issue can be partially solved by fine tuning a pre-trained LLM using only a small amount labeled data, these
techniques come with their own limitations. For example, Jiang et al. [74] discuss issues such as over-fitting the data
of downstream tasks and forgetting the knowledge of the pre-trained model.

4.4. Transferability

Transferability is the ability of a model which was trained on one domain, to perform similarly well in a different
domain. This can be particularly valuable, when the new domain has very few examples available for training. In
such cases we might rely on knowledge transfer similar to the way a person might rely on abstract reasoning when
faced with an unfamiliar situation [168].

4.5. Reasoning

According to Encyclopedia Britannica, “To reason is to draw inferences appropriate to the situation” [117]. Rea-
soning is not only a goal in its own right, but also the means by which the other above mentioned goals can be
achieved. Not only is it one of the most difficult problems in AI,21 it is one of the most contested. Also, a distinction
must be made between human-level reasoning, or what is sometimes referred to as commonsense reasoning, and
formal reasoning. While human-level reasoning can be ambiguous, error-prone, and difficult to specify, formal rea-
soning, or logic, follows strict rules and aims to be as precise as possible. The challenge lies in determining when it
is appropriate to deploy one or the other or both, and how. In Section 7.1 we examine the uses of the term reasoning
in more depth.

21As expressed by Luis Lamb at https://video.ibm.com/recorded/131288165.

https://video.ibm.com/recorded/131288165
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5. Methods

Our review methodology is guided by the principles described in [82,111,112]. The data, queries, code, and
additional details can be found in our github repository.22

5.1. Research questions

– Is Neuro-symbolic AI meeting its promises in NLP?

1. What are the existing studies on neurosymbolic AI (NeSy) in natural language processing (NLP)?
2. What are the current applications of NeSy in NLP?
3. How are symbolic and sub-symbolic techniques integrated and what are the advantages/disadvantages?

5.2. Search process

We chose Scopus to perform our initial search, as Scopus indexes most of the top journals and conferences we
were interested in. In addition to Scopus, we searched the ACL Anthology database and the proceedings from
conferences specific to Neuro-symbolic AI. It is possible we missed some relevant studies, but as our aim is to
shed light on the field generally, our assumption is that these journals and proceedings are a good representation
of the area as a whole. The included sources are listed in Appendix C. Since we were looking for studies which
combine neural and symbolic approaches, our query consists of combinations of neural and symbolic terms as well
as variations thereof, listed in Table 1. The keywords are deliberately broad, as it would be impossible to come up
with a complete list of all possible keywords relevant to NeSy in NLP. More importantly, the focus of the work is
not on specific subfields, each of which may warrant a review of its own, but rather on the explicit use of neuro-
symbolic approaches regardless of subfield. Strictly speaking the only keywords that would cover this would be
neuro-symbolic and its syntactic variants, but we relaxed this slightly on the basis that works which explore both
symbolic reasoning and deep learning in combination (as per the definition in Section 1) may not necessarily have
used the term neuro-symbolic.

Table 1

Search keywords

Neural terms Symbolic terms Neuro-symbolic terms

sub-symbolic symbolic neuro-symbolic

machine learning reasoning neural-symbolic

deep learning logic neuro symbolic

neural symbolic

neurosymbolic

The initial query was restricted to peer-reviewed English language journal articles and conference papers from
the last 3 years, which produced a total of 21,462 results.

5.3. Study selection process

We further limit the Scopus articles to those published by the top 20 publishers as ranked by Scopus’s CiteScore,
which is based on number of citations normalized by the document count over a 4 year window,23 and SJR (SCImago
Journal Rank), a measure of prestige inspired by the PageRank algorithm over the citation network,24 the union of
which resulted in 29 publishers, and eliminated 19,560 studies, for a total of 1,519 journal articles and 383 confer-
ence papers for screening. Two researchers independently screened a sample of each of the 1,902 studies (articles
and conference papers), based on the inclusion/exclusion criteria in Table 2. The selection process is illustrated in
Fig. 15.

22https://github.com/kyleiwaniec/neuro-symbolic-ai-systematic-review
23https://service.elsevier.com/app/answers/detail/a_id/14880/kw/citescore/supporthub/scopus/
24https://service.elsevier.com/app/answers/detail/a_id/14883/supporthub/scopus/related/1/

https://github.com/kyleiwaniec/neuro-symbolic-ai-systematic-review
https://service.elsevier.com/app/answers/detail/a_id/14880/kw/citescore/supporthub/scopus/
https://service.elsevier.com/app/answers/detail/a_id/14883/supporthub/scopus/related/1/
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Table 2

Inclusion/exclusion criteria

Inclusion Exclusion

Input format: unstructured or
semi structured text

Input format: structured query, images, speech, tabular data, categorical data, or any other
data type which is not natural language text.

Output format: Any Application: Theoretical Papers, Position Papers, Surveys, implementations of software
pipelines from existing models

Application: Implementation
of a novel architecture

The search keywords match, but the actual content does not

Language: English Full text not available (Authors were contacted in these cases)

Fig. 15. Selection process diagram.

The inclusion criteria at this stage was intentionally broad, as the process itself was meant to be exploratory,
and to inform the researchers of relevant topics within NeSy. As per best practices, this first round is also designed
to understand and address inter-annotator disagreement. This unsurprisingly led to some researcher disagreement
on inclusion, especially since studies need not have been explicitly labeled as neuro-symbolic to be classified as
such. Agreement between researchers can be measured using the Cohen Kappa statistic, with values ranging from
[−1,1], where 0 represents the expected kappa score had the labels been assigned randomly, −1 indicates complete
disagreement, and 1 indicates perfect agreement. Our score at this stage came to a modest 0.33. We observed that it
was not always clear from the abstract alone whether the sub-symbolic and symbolic methods were integrated in a
way that met the inclusion criteria.

To attain inter-annotator agreement and facilitate the next round of review, we kept a shared glossary of symbolic
and sub-symbolic concepts as they presented themselves in the literature. We each reviewed all of the 1,902 studies,
this time by way of a shallow reading of the full text of each study. Any disagreement at this stage was discussed in
person with respect to the shared glossary. This process led to 75 journal articles and 106 conference papers marked
for the final round of inclusion/exclusion.

5.4. Quality assessment

During the final round of inclusion/exclusion, the quality of each study was determined through the use of a
nine-item questionnaire. Each of the following questions was answered with a binary value, and the study’s quality
was determined by calculating the ratio of positive answers. Less than a handful of studies were excluded due to a
quality score of less than 50%.

1. Is there a clear and measurable research question?
2. Is the study put into context of other studies and research, and design decisions justified accordingly (number

of references in the literature review/ introduction)?
3. Is it clearly stated in the study which other algorithms the study’s algorithm(s) have been compared with?
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4. Are the performance metrics used in the study explained and justified?
5. Is the analysis of the results relevant to the research question?
6. Does the test evidence support the findings presented?
7. Is the study algorithm sufficiently documented to be reproducible (independent researchers arriving at the

same results using their own data and methods)?
8. Is code provided?
9. Are performance metrics provided (hardware, training time, inference time)?

Fig. 16. Study quality.

More than 85% of the studies satisfy the requirements listed from Q1 to Q6. However, over 80% of the studies fail to
provide source code or details related to the computing environment which makes the system difficult to reproduce.
This leads to an overall reduction of the average quality score to 76.5% – Fig. 16.

Finally, a deep reading of each of the eligible studies led to 59 studies selected for inclusion. Data extraction was
performed for each of the features outlined in Table 3. For acceptable values of individual features see Appendix B.
The lists of neural and symbolic terms referenced in the table constitute the glossary items learned from conducting
the selection process. Figure 17(a) shows the breakdown of conference papers vs journal articles, while Fig. 17(b)
shows the number of studies published each year.

Fig. 17. Publications selected for inclusion.

6. Results, data analysis, taxonomies

We perform quantitative data analysis based on the extracted features in Table 3. Each study was labeled with
terms from the aforementioned glossary, and each term in the glossary was classified as either symbolic, or neural.
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Table 3

Data extraction features

Feature Description

Business application The stated objective or application of the proposed study. Often this is an NLP task, but this is
not a requirement (e.g., “Medical decision support”)

Technical application Type of model output

Type of learning Indicates learning method (supervised, unsupervised, etc.)

Knowledge representation One of four categories: Rules, Logic, Frames, and Semantic networks

Type of reasoning Indicates whether knowledge is represented implicitly (embedded) or explicitly (symbolic)

Language structure Indicates whether linguistic structure is leveraged to facilitate reasoning

Relational structure Indicates whether relational structure is leveraged to facilitate reasoning (e.g., part-of-speech
tags, named entities, etc.)

Neural terms List of neural architectures used by the models

Datasets List of all datasets used for training and evaluation

Model description Describes model architecture schematically

Evaluation Metrics Evaluation metrics reported by the authors

Reported score Model performance reported by the authors

Contribution Novel contribution reported by the authors

Key-intake Short description of the study

isNeSy Indicates whether the authors label their study as Neuro-Symbolic

NeSy goals For each of the goals listed in Section 1, indicates whether the goal is met as reported by the
authors

Kautz category List of categories from Kautz’s taxonomy

NeSy category List of categories from the proposed nomenclature

Study quality Percentage of positive answers in the quality assessment questionnaire

A bi-product of this process are two taxonomies built bottom-up of concepts relevant to the set of studies under
review. The two taxonomies are a reflection of the definition of NeSy provided earlier: “the combination of deep
learning and symbolic reasoning.” To make this definition more precise, we limit the type of combination that
qualifies as neuro-symbolic. Specifically, the sub-symbolic and symbolic components must be integrated in a way
such that one informs the other. By way of counter example, a system which is made up of two independent symbolic
and sub-symbolic components would not be considered NeSy if there is no interaction between them. For example,
while a system where one component is used to process one type of data, and the other is used to process another
type of data may be an effective software pipeline design, we do not consider this type of solution neuro-symbolic
as the two components do not interact in any way. Thus the definition becomes “the integration of deep learning
and symbolic reasoning.” It should be noted, that these terms are not always consistently defined in the literature.
For example, in a much earlier survey, [5] split the interrelation (type of combination) of neuro-symbolic systems
into hybrid and integrated, whereas we use the term integrated to cover both.

On the learning side, we have neural architectures (described in Section 6.2.1), and on the symbolic reasoning
side we have knowledge representation (described in Section 6.2.2). These results are rendered in Table 4, with the
addition of color representing a simple metric, or promise score, for each study. The promise score is simply the
number of goals reported to have been satisfied by the solution in the study.

6.1. Exploratory data analysis

We plot the relationships between the features extracted from the studies, and the goals from Section 4 in an effort
to identify any correlations between them, and ultimately to identify patterns leading to higher promise scores.

6.1.1. Business and technical applications
The business application is the stated application, or objective, of a given study. It is often but not always an NLP

task, such as text classification, or sentiment analysis. It should be noted that in this example, sentiment analysis is
a type of text classification, but while one author’s stated objective is specific to sentiment, another author may be
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interested in solving for text classification in general. As such there is no particular hierarchy or taxonomy associated
with business applications. The relationship between all tasks, or business applications, and NeSy goals is shown in
Fig. 18.

Fig. 18. Relationship between business applications and NeSy goals. Question answering is the most frequently occurring task, and is associated
mainly with reasoning, reduced data, and to a lesser degree, interpretability.

The business application largely determines the type of model output, or what we term technical application.
Most business applications are associated with a single (or at most two) technical applications. The exceptions
being question answering and reading comprehension, which have been tackled as both inference and classification
problems, or with the goal of information extraction or text generation. Question answering is the most frequently
occurring task, and is associated mainly with reasoning, reduced data, and to a lesser degree, interpretability. On a
philosophical level this seems somewhat disappointing, as one would hope that in receiving an answer, one could
expect to understand why such an answer was given.

For completeness, the number of studies representing the technical applications and most frequently occurring
business application is given in Fig. 19, while Fig. 20 illustrates the relationship between business applications,
technical applications, and goals.

Fig. 19. Number of studies in each application category.

6.1.2. Type of learning
Machine learning algorithms are classified as supervised, unsupervised, semi-supervised, curriculum or rein-

forcement learning, depending on the amount and type of supervision required during training [10,16,79]. Figure 21
demonstrates that the supervised method outnumbers all other approaches.
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Fig. 20. Relationship between business applications, technical applications, and NeSy goals.

Fig. 21. Relationship between learning type, technical application, and NeSy goals. It is clear that supervised approaches dominate the field, are
applied across a variety of technical applications, and there is no clear winner when it comes to goals.

6.1.3. Implicit vs explicit reasoning
The subset of tasks belonging to Natural Language Understanding (NLU) and Natural Language Generation

(NLG) are often regarded as more difficult, and presumed to require reasoning. Given that reasoning was one of the
keywords used for search, it is not surprising that many studies report reasoning as a characteristic of their model(s).

How reasoning is performed often depends on the underlying representation and what it facilitates. Sometimes
the representations are obtained via explicit rules or logic, but are subsequently transformed into non-decomposable
embeddings for learning. As such, we can say that any reasoning during the learning process is done implicitly.
Studies utilizing Graph Neural Networks (GNNs) [26,59,70,91,124,165,167] would also be considered to be do-
ing reasoning implicitly. The majority of the studies doing implicit reasoning leverage linguistic and/or relational
structure to generate those internal representations. These studies meet 53 out of a possible 180 NeSy goals, where
180 = #goals * #studies, or 29.4%. For reasoning to be considered explicit, rules or logic must be applied during or
after training. Studies which implement explicit reasoning perform slightly better, meeting 51 out of 135 goals, or
37.8% and generally require less training data. Additionally, 4 studies implement both implicit and explicit reason-
ing, at a NeSy promise rate of 40%. Of particular interest in this grouping is Bianchi et al. [14]’s implementation
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of Logic Tensor Networks (LTNs), originally proposed by Serafini and Garcez in [130]. “LTNs can be used to do
after-training reasoning over combinations of axioms which it was not trained on. Since LTNs are based on Neu-
ral Networks, they reach similar results while also achieving high explainability due to the fact that they ground
first-order logic” [14]. Also in this grouping, Jiang et al. [75] propose a model where embeddings are learned by
following the logic expressions encoded in huffman trees to represent deep first-order logic knowledge. Each node
of the tree is a logic expression, thus hidden layers are interpretable.

Figure 22 shows the relationship between implicit & explicit reasoning and goals, while the relationship between
knowledge representation, type of reasoning, and goals is shown in Fig. 23.

Fig. 22. Type of reasoning and goals. Around half, 48%, of studies where reasoning is performed explicitly mention interpretability as a feature.
While nearly a third of studies performing reasoning implicitly do not meet any of the NeSy promises identified for this review.

Fig. 23. Knowledge representation, type of reasoning, and goals. What is noteworthy, is that when semantic networks are utilized, reasoning is
almost always done implicitly. The two exception are [14], and [165]. However, [14] utilizes FOL for explicit reasoning rather than its network
component. On the other hand, [165] generate a novel interpretable reasoning graph as the output of their model.

6.1.4. Linguistic and relational structure
In the previous section we described how linguistic and relational structures can be leveraged to generate internal

representations for the purpose of implicit reasoning. Here we plot the relationships between these structures and
other extracted features and their interactions – Fig. 24.
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Fig. 24. Relationships between leveraged structures and extracted features. As can be seen in a), e), and f), studies leveraging linguistic structures
often do not meet any NeSy goals, which runs counter to our original hypothesis. Further investigation into this phenomenon may be warranted.
note: studies which do no leverage either structure are not shown.
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Perhaps the most telling chart is the mapping between structures and goals, where many the studies leveraging lin-
guistic structure do not meet any of the goals. This runs counter to the intuition that language is a natural fit for NeSy.

6.1.5. Datasets and benchmarks
Each study in our survey is based on a unique dataset, and a variety of metrics. Given that there are nearly as

many business applications, or tasks, as there are studies, this is not surprising. As such it is not possible to compare
the performance of the models reviewed. However, this brings up an interesting question, and that is how one
might design a benchmark for NeSy in the first place. A discussion about benchmarks at the IBM Neuro-Symbolic
AI Workshop 202225 resulted in general agreement that the most important characteristic of a good benchmark
for NeSy is in the diversity of tasks tackled. Gary Marcus pointed out that current benchmarks can be solved
extensionally, meaning they can be “gamed”.26 In other words, with enough attempts, a model can become very
good at a specific task without solving the fundamental reasoning challenge. In essence, this is akin to over-fitting
on the test set. The phenomenon can be exposed when adversarial examples are introduced such as described in
[72], or through the observation that spurious correlations can be introduced in the annotation process as per [61].
This leads to models which are not able to generalize out of the training distribution. In contrast, to solve a task
intensionally is to demonstrate “understanding” which is transferable to different tasks. This view is controversial
with advocates of purely connectionist approaches arguing that “understanding” is not only ill defined, but also a
moving target [51] – every time we solve for the current definition of understanding, the definition is revised to have
to meet a higher bar. So instead of worrying about the semantics of “understanding”, the panelists agreed that to
make the benchmarks robust to gaming is to build in enormous variance in the types of tasks they tackle. Taking
this a step further, Luis Lamb27 proposed that instead of designing benchmarks for testing models, we should be
designing challenges which encourage people to work on important real world problems. For a deeper dive, see
the ACL-2021 Workshop on Benchmarking: Past, Present and Future (BPPF),28 where some of the same issues
pertaining specifically to NLP and NLU were discussed, as well as the challenges in interpreting performances
across datasets, models, and with the evolution of language and context over time.

6.2. Taxonomies: Neural, symbolic, & neuro-symbolic

6.2.1. Neural
In the main, the extracted neural terms refer to the neural architecture implemented in a given study. We group

these into higher level categories such as linear models, early generation (which includes CNNs), graphical models,
sequence-to-sequence, and transformers. We include one study [134] which does not implement gradient descent,
but rather Neuroevolution (NE). Neuroevolution involves genetic algorithms for learning neural network weights,
topologies, or ensembles of networks by taking inspiration from biological nervous systems [90,108]. Neuroevo-
lution is often employed in the service of Reinforcement Learning (RL). Studies which do not specify a particular
architecture are categorised as Multilayer Perceptron (MLP) – Fig. 25.

We also include here neuro-symbolic architectures such as Logic Tensor Networks (LTN) [130], Recursive Neural
Knowledge Networks (RNKN) [75], Tensor Product Representations (TPRs) [135], and Logical Neural Networks
(LNN) [119] because they are suitable to optimization via gradient descent – Fig. 26.

6.2.2. Symbolic
The definition we adopted states that NeSy is the integration of deep learning and symbolic reasoning. Our neural

taxonomy described above reflects the deep learning component. For the symbolic reasoning component we utilize
four common Knowledge Representation (KR) categories: 1) production rules, 2) logical representation, 3) frames,
and 4) semantic networks [7,18,33,92,137,143]. The following definitions are merely a glimpse at each of these
topics, in order to provide a basic intuition.

25https://video.ibm.com/recorded/131288165.
26https://video.ibm.com/recorded/131288165 time-marker 43:00.
27https://video.ibm.com/recorded/131288165 time-marker 50:00.
28https://github.com/kwchurch/Benchmarking_past_present_future#S1

https://video.ibm.com/recorded/131288165
https://video.ibm.com/recorded/131288165
https://video.ibm.com/recorded/131288165
https://github.com/kwchurch/Benchmarking_past_present_future#S1
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Fig. 25. Neural architectures represented in Table 4.

Fig. 26. Neuro-symbolic architectures represented in Table 4.

1. Production rules – A production rule is a two-part structure comprising an antecedent set of conditions and a
consequent set of actions [18]. We usually write a rule in this form:

IF conditions THEN actions ex) IF Bird THEN fly
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2. Logical representation – Logic is the study of entailment relations – languages, truth conditions, and rules of
inference. [18,41]. A logic includes:

– Syntax: specifies the symbols in the language and how they can be combined to form sentences. Hence
facts about the world are represented as sentences in logic.

– Semantics: specifies what facts in the world a sentence refers to. Hence, also specifies how you assign a
truth value to a sentence based on its meaning in the world. A fact is a claim about the world, and may be
true or false.

– Inference Procedure (reasoning): mechanical method for computing (deriving) new (true) sentences from
existing sentences.

The sentence “Not all birds can fly” in First Order Logic (FOL) looks like:

¬(∀xBird(x) → Fly(x)
)

FOL is by no means the only choice, but as per [18] it is a simple and convenient one for the sake of illustration.
Natural Logic (NL) for example, is a formal proof theory built on the syntax of human language, which can be
traced to the syllogisms of Aristotle [21]. “For better or worse, most of the reasoning that is done in the world
is done in natural language. And correspondingly, most uses of natural language involve reasoning of some
sort. Thus it should not be too surprising to find that the logical structure that is necessary for natural language
to be used as a tool for reasoning should correspond in some deep way to the grammatical structure of natural
language” [86]. Implementations and extensions include [3,98,99,102]. Real-valued logics are often utilized in
machine learning because they can be made differentiable and/or probabilistic [129] and were first introduced
by Łukasiewicz at the turn of the 20th century [64,106]. Other, logic-based cognitive modelling approaches
such as non-monotonic logic, attempt to deal with the complexities of human reasoning, epistemology, and
defeasible inference [139].

3. Frames – Frames are objects which hold entities, their properties and methods. An individual frame schema
looks like:

(
Frame − name

〈slot − name1 filler1〉
〈slot − name2 filler2〉
...

)

(
Penguin

canFly : 0

isA : “Bird′′

...
)

The frame and slot names are atomic symbols; the fillers are either atomic values (like numbers or strings) or
the names of other individual frames [18]. This is similar to Object Oriented Programming (OOP), where the
frame is analogous to the object, and slots and fillers are properties and values respectively.

4. Semantic networks – A semantic network is a structure for representing knowledge as a pattern of intercon-
nected nodes and edges [137]. A frame network is a kind of semantic network where nodes are frames, and
edges are the relationships between nodes. An example of a semantic network often used in NLU systems is
WordNet29 – a lexical database of English – Fig. 27. Today semantic networks are more often referred to as
Knowledge Graphs (KGs).30

Table 4 shows which studies combine which of the above neural (6.2.1) and symbolic (6.2.2) categories as well
as the number of NeSy goals satisfied.

29https://wordnet.princeton.edu/
30This term was popularized after Google introduced contextual information to search results from their semantic network under the brand

name Knowledge Graph https://blog.google/products/search/introducing-knowledge-graph-things-not/.

https://wordnet.princeton.edu/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
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Fig. 27. English WordNet subgraph [107].

Table 4

Neural & symbolic combinations 1 2 3 4 5 number of NeSy goals satisfied out of the 5 described in
Section 4. Note: some studies use multiple techniques

Knowledge representation

Frames Logic Rules Semantic net.

Linear Models SVM [40] [71] [134]

Early
Generation

MLP [31]
[30,158]

[17,44]

[94]

[27]

[162]

[167]

CNN [141] [44] [23] [4] [56]

Graphical
Models

DBN [23]

GNN [91] [124] [70] [26,167]

[59] [165]

Sequence-
to-Sequence

RNN [19,141]
[68] [25]

[58,60,89]
[47] [23,127]

[110]

[2] [1] [140]

[36] [166] [116]

[128] [103]

[56,85]
[114] [95]

[100]

RcNN [75] [69]

w/Attn. [93] [67] [85]

Transformer [29,83] [157]
[133,153]

[67,110]

[159], [166]

[32] [73]

[85] [35]

[26,149]

[167]

Neuro-
Symbolic

LTN [14]

RNKN [75]

LNN [24] [73]

TPR [25] [69]

Neuroevolution [134]

6.2.3. Neuro-symbolic
NeSy systems can be categorized according to the nature of the combination of neural and symbolic techniques.

At AAAI-20, Henry Kautz presented a taxonomy of 6 types of Neuro-Symbolic architectures with a brief example of
each [80]. While Kautz has not provided any additional information beyond his talk at AAAI-20, several researchers
have formed their own interpretations [51,87,123]. We have categorized all the reviewed studies according to Kautz’s
taxonomy as well as our proposed nomenclature – Fig. 28. Table 7 in Appendix A lists all the studies by category.

Type 1 symbolic Neuro symbolic is a special case where symbolic knowledge (such as words) is transformed into
continuous vector space and thus encoded in the feature embeddings of an otherwise “standard” ML model. We
opted to include these studies if the derived input features belong to the set of symbolic knowledge representations
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Fig. 28. Proposed neuro-symbolic artificial intelligence categories. Adapted from Henry Kautz.

Fig. 29. Type 1 sequential. A symbolic knowledge representation module is used to generate rich embeddings for downstream machine learning
[85].

described in Section 6.2 – Fig. 29. One could still argue that this is simply a case of good old fashioned feature
engineering, and not particularly special, but we want to explore the idea that deep learning can perform reasoning,
albeit implicitly, if provided with a rich knowledge representation in the pre-processing phase. We classify these
studies as Sequential. Evaluating these studies as a group was particularly challenging as they have very little in
common including different datasets, benchmarks and business applications. Half of the studies do not mention
reasoning at all, and the ones that do are mainly executing rules on candidate solutions output by the neural models
post hoc. In aggregate, only 26 out of a total of 115 (23 studies * 5 goals), or 22.6%, possible NeSy goals were met.

Type 2 Symbolic[Neuro] is what we describe as a Nested architecture, where a symbolic reasoning system is the
primary system with neural components driving certain internal decisions. AlphaGo is the example given by Kautz,
where the symbolic system is a Monte Carlo Tree Search with neural state estimators nominating next states. We
found four studies that fit this architecture. We use [27] for the purposes of illustration – Fig. 30.

Type 3 Neuro; Symbolic is what we call Cooperative. Here, a neural network focuses on one task (e.g. object
detection) and interacts via input/output with a symbolic reasoner specializing in a complementary task (e.g. query
answering). Unstructured input is converted into symbolic representations which can be solved by a symbolic rea-
soner, which in turn informs the neural component which learns from the errors of the symbolic component. This
process is iterated until convergence or a satisfactory output is produced. There are nine studies in this category,
all but one of which utilize rules and/or logic for knowledge representation. A common theme among the coopera-
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Fig. 30. Type 2 nested. Given a natural language query and a set of web pages, the system outputs answers for each page. A symbolic reasoner,
which uses a custom domain specific language (DSL) to traverse the HTML, interacts with internal neural modules such as BERT which perform
a number of natural language processing tasks. What is learned is a DSL program, using only a few labeled examples, which can generalize to
a large number of heterogeneous web pages. The authors report large improvements in precision and recall scores over state-of-the art, in some
cases over 50 points [27].

tive architectures is the business application of question answering. The Neuro-Symbolic Concept Learner (NS-CL)
[103] – Fig. 31 – is an example of Type 3, meeting 4 out of the 5 NeSy goals. Its ability to perform well with reduced
data is particularly impressive: “Using only 10% of the training images, our model is able to achieve comparable
results with the baselines trained on the full dataset.” Similarly, [162] report perfect performance on small datasets
which they also attribute to the use of explicit and precise reasoning. Both studies display similar limitations, the use
of synthetic datasets, and the need for handcrafted logic, a Domain Specific Language (DSL) in the case of [103],
and Image Schemas in [162]. Six out of the nine studies leverage linguistic structures in some fashion, and in partic-
ular, [133] utilize natural logic, for a model which is both interpretable, and achieves state-of-the-art performance
on two QA datasets. This work builds on [3,99].

Fig. 31. Type 3 cooperative. The neuro-symbolic concept learner (NS-CL) jointly learns visual concepts, words, and semantic parsing of sen-
tences without any explicit annotations. Given an input image, the visual perception module detects objects in the scene and extracts a deep,
latent representation for each of them. The semantic parsing module translates an input question in natural language into an executable program
given a domain specific language (DSL). The generated programs have a hierarchical structure of symbolic, functional modules, each fulfilling
a specific operation over the scene representation. The explicit program semantics enjoys compositionality, interpretability, and generalizability
[103].

Types 4 and 5, Neuro: Symbolic → Neuro and Neuro_Symbolic respectively, were originally presented by Kautz
under one heading. After his presentation, Kautz modified the slide deck31 separating these two types into systems
where knowledge is compiled into the network weights, and where knowledge is compiled into the loss function. In
Types 4 and 5, reasoning can be performed both implicitly and explicitly, in that it is calculated via gradient descent,

31https://henrykautz.com/talks/index.html.

https://henrykautz.com/talks/index.html
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but can also be performed post hoc. We have grouped studies belonging to these two categories under the moniker
of Compiled systems, of which there are sixteen and seven respectively.

Deep Learning For Mathematics [88] is the canonical example of Type 4, where the input and output to the
model are mathematical expressions. The model performs symbolic differentiation or integration, for example,
given x2 as input, the model outputs 2x. The model exploits the tree structure of mathematical expressions, which
are fed into a sequence-to-sequence architecture. This seems like a particularly fitting paradigm for natural language
applications on the basis that structures such as parse trees can be similarly leveraged to output other meaningful
structures such as for example: cause and effect relationships as exemplified in [166] and [159], or the generation
of argument schemes as per [124]. The downside of many of these types of systems is the need for hand-crafted
rules and logic [36,60,73,159]. In contrast, [24] learn rules from data (rule induction) by combining Logical Neural
Networks (LNN)32 with text-based Reinforcement Learning (RL). One could argue that this is a combination of
Type 4, compiled (logic embedded in the network), and Type 3, cooperative (symbolic and sub-symbolic modules
learning from each other in an iterative fashion). [24] is the only work we found which meets all five promises, and,
it outperforms previous SOTA approaches – Fig. 32. Another example of a Type 4 system in our set of studies is

Fig. 32. Type 4 compiled. SymboLic Action policy for Textual Environments (SLATE) learns interpretable action policy for each action verb,
go and take, from first-order symbolic states. The goal is to learn symbolic rules as logical connectives for generating action commands by
gradient-based training [24].

proposed by [75]. Here, knowledge is encoded in the form of huffman trees made of triples and logic expressions,
in order to jointly learn embeddings and model weights – Fig. 33. The model is intended for medical diagnosis
decision support, where a requisite characteristic is interpretability, and this model meets that goal.

Type 5 comprises Tensor Product Representations (TPRs) [135], Logic Tensor Networks (LTNs) [129], Neural
Tensor Networks (NTN) [136] and more broadly is referred to as tensorization, where logic acts as a constraint.
LTNEE [14] is an example of a compiled Type 5 system – Fig. 34.

Type 6 Neuro[Symbolic] is the most tightly integrated but perhaps the most elusive as there do not appear to be
any recent implementations in existence. According to Kautz, this is the ultimate NeSy system which should be
capable of efficient combinatorial reasoning at the level of super-intelligence, if not human intelligence.

Figure 35 shows the number of studies per category, and Fig. 36 illustrates the relationship between categories
and goals. Table 5 shows the number of studies in each category per goal.

32It should be noted that the authors of the LNN classify their architecture as Type 7, which is explicitly outside of Kautz’s 6 types. See Day
2, Session 2 of https://ibm.github.io/neuro-symbolic-ai/events/ns-summerschool2022/.

https://ibm.github.io/neuro-symbolic-ai/events/ns-summerschool2022/
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Fig. 33. Type 4 compiled. Huffman tree of the recursive neural knowledge network (RNKN), representing deep first-order logic knowledge. The
first layer of the tree consists of entities, the second layer consists of relations (x → y). Higher layers compute logic rules. The root node is
the final embedding representing a document (in this case a single health record). Back propagation is used for optimization with softmax for
calculating class probabilities [75].

Fig. 34. Type 5 compiled. LTNEE – using logic tensor networks (LTNs) it is possible to integrate axioms and facts (using first-order fuzzy logic
to represent terms, functions, and predicates in a vector space) with commonsense knowledge represented in a sub-symbolic form (based on
the principle of distributional semantics and implemented with Word2Vec) in one single model performing well in reasoning tasks. The major
contribution of this work is to show that combining commonsense knowledge under the form of text-based entity embeddings with LTNs is not
only simple, but it is also promising. LTNs can also be used to do after-training reasoning over combinations of axioms on which it was not
trained [14].

Fig. 35. Number of studies per category.
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Fig. 36. NeSy categories to NeSy goals. There is no obvious pattern with respect to what types of goals are met within each of the NeSy
categories.

Table 5

Number of studies meeting each goal. The promise ratio represents the per-
centage of goals reported to have been met out of the total number of possible
goals (# of studies * 5 goals) in each category

Compiled Cooperative Nested Sequential

Reasoning 12 5 3 14

OOD 9 3 1 2

Interpretability 8 4 2 6

Reduced data 6 4 2 3

Transferability 7 2 1 2

Promise Ratio 29.5% 40% 45% 21.6%

7. Discussion

All studies report performance either on par or above benchmarks, but we cannot compare studies based on per-
formance as nearly every study uses a different dataset and benchmark as discussed in Section 6.1.5. Our focus is
instead on whether the goals of NeSy are being met. Our Promise Score metric is not necessarily what the studies’
authors were optimizing for or even reporting, especially studies which have not labeled themselves as NeSy per
se. So we want to make it very clear that our analysis is not a judgement of the success of any particular study, but
rather we seek to understand if the hypotheses about NeSy are materializing, namely that the combination of sym-
bolic and sub-symbolic techniques will fulfill the goals described in Section 4: Out-of-distribution generalization,
interpretability, tranferability, reduced data, and reasoning. The short answer is we are not there yet, as can be seen
in Fig. 37. For a detailed breakdown of each goal and study see Table 6.

In Section 4.5 we put forward the hypothesis that reasoning is the means by which the other goals can be achieved.
This is not evidenced in the studies we reviewed. Some possible explanations for this finding are: 1) The kind of
reasoning required to fulfill the other goals is not the kind being implemented; 2) The approaches are theoretically
promising, but the technical solutions need further development. Next we look at each of these possibilities.

7.1. Reasoning challenges

Thirty four out of the fifty nine studies mention reasoning as a characteristic of their solution. But there is a lot
of variation in how reasoning is described and implemented. Given the overwhelming evidence of the fallibility of
human reasoning, to understand language, AI researchers have sought guidance from disciplines such as psychology,
cognitive linguistics, neuroscience, and philosophy. The challenge is that there are multiple competing theories of
human reasoning and logic both across and within these disciplines. What we have discovered in our review, is
a blurring of the lines between various types of logic, human reasoning, and mathematical reasoning, as well as
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Fig. 37. Proportion of studies which have met one or more of the 5 goals.

counter-productive assumptions about which theory to adopt. For example, drawing inspiration from “how people
think”, accepting that how people think is flawed, and subsequently attempting to build a model with a logical
component, which by definition, is rooted in validity, seems counter productive to us. Although this does depend
somewhat on the business application. For problems like MWP (Math Word Problems) [25,116,165], where answers
are precise and unambiguous, less assumptions are needed. Additionally, the justification of “because that’s how
people think” is inconsistent. Some examples from the studies we reviewed include:

– [14] describe human reasoning in terms of a dual process of “subsymbolic commonsense” (strongly correlated
with associative learning), and “axiomatic” knowledge (predicates and logic formulas) for structured inference.

– In [71] humans reason by way of analogy, and commonsense knowledge is represented in ConceptNet, a graph-
ical representation of common concepts and their relationships.

– For [162] human reasoning can be modeled by Image Schemas (IS). Schemas are made up of logical rules on
(Entity1, Relation, Entity2) tuples, such as transitivity, or inversion.

– [44] explain their choice of fuzzy logic for “its resemblance to human reasoning and natural language.” This is
a probabilistic approach which attempts to deal with uncertainty.

– [4] propose that human thought constructs can be modelled as cause-effect pairs. Commonsense is often de-
scribed as the ability to draw causal conclusions from basic knowledge, for example: If I drop the glass, it will
break.

– And [25] state that “when people perform explicit reasoning, they can typically describe the way to the con-
clusion step by step via relational descriptions.”

But the most plausible hypothesis in our view is that of Schon et al. [127]: in order to emulate human reasoning,
systems need to be flexible, be able to deal with contradicting evidence, evolving evidence, have access to enormous
amounts of background knowledge, and include a combination of different techniques and logics. Most notably, no
particular theory of reasoning is given. The argument put forward by Leslie Kaelbling at IBM Neuro-Symbolic AI
Workshop 202233 is similarly appealing. Kaelbling points to the over-reliance on the System1/System2 analogy,
and advocates for a much more diverse and dynamic approach. We posit that the type of reasoning employed should
not be based solely on how we think people think, but on the attendant objective. This is in line with the “goal
oriented” theory from neuroscience, in that reasoning involves many sub-systems: perception, information retrieval,
decision making, planning, controlling, and executing, utilizing working memory, calculation, and pragmatics. But
here the irony is not lost on us, and we acknowledge that by resorting to neuroscience for inspiration, we have
just committed the same mischief for which we have been decrying our peers! But if we must resort to analogies
with human reasoning then it is imperative to be as rigorous as possible. In their recent book, A Formal Theory of
Commonsense Psychology, How People Think People Think [57], Gordon and Hobbs present a “large-scale logical

33https://researcher.watson.ibm.com/researcher/view_group.php?id=10897

https://researcher.watson.ibm.com/researcher/view_group.php?id=10897
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Table 6

NeSy promises reported as having been met ( y = yes, n = no)

Ref. Score Reasoning OOD
generalization

Interpretability Reduced
data

Transferability isNeSy

[24] 5 y y y y y y

[29,103] 4 y y y y n y

[83] 4 y y y n y y

[165] 4 y n y y y n

[73,134] 4 n y y y y y

[14,128] 3 y y y n n y

[162] 3 y n y y n n

[25] 3 y n y n y n

[70] 3 n y n y y n

[36] 2 y y n n n y

[110,140] 2 y n y n n y

[59,75,94,127] 2 y n y n n n

[2,100] 2 y n n y n n

[116,166] 2 y n n n y y

[23] 2 y n n n y n

[1] 2 n y n y n y

[32,67] 2 n y n y n n

[30] 2 n y n n y n

[158] 2 n n y n y n

[91,153] 1 y n n n n y

[4,17,26,40,44,47,68,
71,95,124,167]

1 y n n n n n

[149] 1 n y n n n y

[133] 1 n n y n n y

[35] 1 n n y n n n

[27,93] 1 n n n y n y

[60,114,157,159] 0 n n n n n y

[19,31,56,58,69,85,
89,141]

0 n n n n n n

formalization of commonsense psychology in support of humanlike artificial intelligence” to act as a baseline for
researchers building intelligent AI systems. Santos et al. [122] take this a step in the direction we are advocating,
by testing whether there is human annotator agreement when categorizing texts into Gordon and Hobbs’ theories.
“Our end-goal is to advocate for better design of commonsense benchmarks [and to] support the development of a
formal logic for commonsense reasoning” [122]. It is difficult to imagine a single formal logic which would afford
all of Gordon and Hobbs’ 48 categories of reasoning tasks. Besold et al. [12] dedicate several pages to this topic
under the heading of Neural-Symbolic Integration in and for Cognitive Science: Building Mental Models. In short,
computational modelling of cognitive tasks and especially language processing is still considered a hard challenge.

7.2. Technical challenges

There is strong agreement that a successful NeSy system will be characterized by compositionality [6,12,15,
22,28,50,51,144]. Compositionality allows for the construction of new meaning from learned building blocks thus
enabling extrapolation beyond the training data distribution. To paraphrase Garcez et al., one should be able to query
the trained network using a rich description language at an adequate level of abstraction [51]. The challenge is to
come up with dense/compact differentialble representations while preserving the ability to decompose, or unbind,
the learned representations for downstream reasoning tasks.
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One such system, proposed by Bianchi et al. [14] is the LTNEE – Fig. 34 – an extention of Logic Tensor Networks
(LTNs), in which pre-trained embeddings are fed into the LTN. They show promising results on small datasets which
have the important characteristic of being capable of after-training logical inferences. However, LTNEE is limited
by heavy computational requirements as the logic becomes more expressive, for example by the use of quantifiers.

Other studies [103,162] introduce logical inference within their solutions, but all require manually designed rules,
and are limited by the domain expertise of the designer. Learning rules from data, or structure learning [42] is an
ongoing research topic as pointed out by [152]. In [23] Chaturvedi et al. use fuzzy logic for emotion classification
where explicit membership functions are learned. However, as stated by the authors, the classifier becomes very
slow with the number of functions.

Compiled approaches involve translating logic into differentialble functions, which are either directly included as
network nodes as in [75], or added as a constraint to the loss function, as in [38]. To achieve this, First Order Logic
(FOL) can be operationalized using t-norms for example. To address the many types of reasoning as discussed in
the previous section, we need to be able to incorporate other types of logic, such as temporal, modal, epistemic,
non-monotonic, probabilistic, and more, which, presumably, are better able to model human reasoning.

In summary, formulating logic, or more broadly reasoning, in a differentiable fashion remains challenging.

8. Limitations & future work

We organized our analysis according to the characteristics extracted from the studies to test whether there were
any patterns leading to NeSy goals. Another approach would be to reverse this perspective, and look at each goal
separately to understand the characteristics leading to its fulfillment. However, each goal is really an entire field of
study in and of itself, and we do not think we could have done justice to any of them by taking this approach. We
spent a lot of time looking for signal in a very noisy environment where the studies we reviewed had very little in
common. More can be said about what we did not find, than what we did. Another approach might be to narrow
the criteria for the type of NLP task, while expanding the technical domain. In particular, a subset of tasks from the
NLU domain could be a good starting point, as these tasks are often said to require reasoning.

We tried to be comprehensive in respect to the selected studies which led to the trade-off of less space dedicated
to technical details or additional context from the neuro-symbolic discussion. There are a lot of ideas and con-
cepts which we did not cover, such as, and in no particular order, Relational Statistical Learning (RSL), Inductive
Logic Programming (ILP), DeepProbLog [101], Connectionist Modal Logics (CML), Extreme Learning Machines
(ELM), Genetic Programming, grounding and proposinalization, Case Based Reasoning (CBR), Abstract Meaning
Representation (AMR), to name but a few, some of which are covered in detail in other surveys [12,50].

Furthermore, we argued that we need differentiable forms of different types of logic, but we did not discuss how
they might be implemented. A comprehensive point of reference such as this would be a very valuable contribution
to the NeSy community, especially if the implementations were anchored in cognitive science and linguistics as
discussed in 7.1.

Finally, the need for common datasets and benchmarks cannot be overstated.

9. Conclusion

We analyzed recent studies implementing NeSy for NLP in order to test whether the promises of NeSy are
materializing in NLP. We attempted to find a pattern in a small and widely variable set of studies, and ultimately
we do not believe there are enough results to draw definitive conclusions. Only 59 studies met the criteria for our
review, and many of them (in the Sequential category) we would not consider truly integrated NeSy systems. The
one thing studies which meet the most goals [24,29,73,83,103,134,165] have in common is that they all belong to
the tightly integrated set of NeSy categories, Cooperative and Compiled which is good news for NeSy. Two out
of these seven report lower computational cost than baselines, and performance on par or slightly above baselines,
though we must reiterate that performance comparisons are not possible as discussed in Section 6.1.5. On the down
side, we have seen that some studies suffer from high computational cost, and that explicit reasoning still often
requires hand crafted domain specific rules and logic which makes them difficult to scale or generalize to other
applications. Indeed, of the five goals, transferability to new domains was the least frequently satisfied.
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Our view is that the lack of consensus around theories of reasoning and appropriate benchmarks is hindering
our ability to evaluate progress. Hence we advocate for the development of robust reasoning theories and formal
logics as well as the development of challenging benchmarks which not only measure the performance of specific
implementations, but have the potential to address real world problems. Systems capable of capturing the nuances
of natural language (i.e., ones that “understand” human reasoning) while returning sound conclusions (i.e., perform
logical reasoning) could help combat some of the most consequential issues of our times such as mis- and dis-
information, corporate propaganda such as climate change denialism, divisive political speech, and other harmful
rhetoric in the social discourse.
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Appendix A. NeSy and Kautz categories

Table 7

NeSy and Kautz categories

NeSy (ours) Kautz Refs.

Sequential 1. symbolic Neuro symbolic [2,4,17,19,26,30,31,35,40,44,47,56,59,67,68,85,89,94,100,114,127,140,141,158,167]

Nested 2. Symbolic[Neuro] [23,27,29,110]

Cooperative 3. Neuro; Symbolic [32,91,103,116,133,134,153,157,162]

Compiled 4. Neuro: Symbolic → Neuro [24,36,60,70,73,75,83,95,124,128,149,159,165,166]

5. Neuro_Symbolic [1,14,25,58,69,71,93]

Appendix B. Allowed values

Table 8

Allowed values

Feature Allowed values

Business application Annotation, Argumentation mining, Causal Reasoning, Decision support, Dialog system, Emotion recognition,
Entity Linking, Entity Resolution, Image captioning, Information extraction, KG Completion / link prediction,
Language modeling, N2F, Opinion extraction, Question answering, Reading comprehension, Relation extraction,
Sentiment analysis, Text classification, Text games, Text summarization

Technical application Clustering, Generative, Inference, Classification, Information extraction, Similarity

Type of learning Supervised, Unsupervised, Semi-supervised, Reinforcement, Curriculum

Type of reasoning Implicit, Explicit, Both

Language structure Yes, No

Relational structure Yes, No

NeSy goals Reasoning, OOD Generalization, Interpretability, Reduced data, Transferability

Kautz category 1. symbolic Neuro symbolic, 2. Symbolic[Neuro], 3. Neuro; Symbolic, 4. Neuro: Symbolic → Neuro,
5. Neuro_Symbolic, 6. Neuro[Symbolic]

NeSy category Sequential, Nested, Cooperative, Compiled
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Appendix C. Publishers

Table 9

Publishers included in the search

American Association for the Advancement of Science

American Chemical Society

American Institute of Physics

American Society for Microbiology

Association for Computing Machinery (ACM)

Association for Computational Linguistics (ACL)

Cairo University

Chongqing University of Posts and Telecommunications

Elsevier

Emerald

IEEE

IOS Press

Institute for Operations Research and the Management Sciences

King Saud University

MIT Press

Mary Ann Liebert

Morgan & Claypool Publishers

Now Publishers Inc

Optical Society of America

Oxford University Press

Public Library of Science

SAGE

Society for Industrial and Applied Mathematics

Springer Nature

Taylor & Francis

University of California Press

University of Minnesota

Wiley-Blackwell

Appendix D. Acronyms

Table 10

Acronyms and abbreviations

AAAI Association for the Advancement of Artificial Intelligence

ACL Association for Computational Linguistics

AI Artificial Intelligence

AR Analogical Reasoning

CBR Case based reasoning

CNN Convolutional Neural Network

DBN Deep Belief Network

DL Deep Learning
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Table 10

(Continued)

DLs Description Logic

GAT Graph Attention Network

GCN Graph Convolutional Network

GNN Graph Neural Network

GPT3 Third generation Generative Pre-trained Transformer

IJCAI International Joint Conference on Artificial Intelligence

ILP Inductive Logic Programming

KG Knowledge Graphs

KGC Knowledge Graph Completion

KGQA Knowledge Graph Question Answering

KR Knowledge Representation

KRR Knowledge Representation & Reasoning

LNN Logical Neural Networks

LLM Large Language Models

LSTM Long Short Term Memory

LTN Logic Tenson Network

ML Machine Learning

MLN Markov Logic Network

MLP Multilayer Perceptron

MWP Math Word Problem

NE Neuroevolution

NeSy Neuro-Symbolic AI

NL Natural Logic

NLI Natural Language Inference

NLG Natural Language Generation

NLM Neural Logic Machine

NLP Natural Language Processing

NLU Natural Language Understanding

NN Neural Network

NS-CL Neuro-Symbolic Concept Learner

NTN Neural Tensor Network

NTP Neural Theorem Prover

OOD Out-of-distribution

OOP Object-oriented programming(paradigm)

OWL Web Ontology Language

ProbLog Probabilistic Logic Programming

RcNN Recursive Neural Network

RL Reinforcement Learning

RNKN Recursive Neural Knowledge Network

RNN Recurrent Neural Network

SOTA State of the Art

SVM Support Vector Machine

TPR Tensor Product Representation

TSP Traveling Salesperson Problem

(∂ILP) Differentiable Inductive Logic Programming
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