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Abstract. Knowledge Graphs are currently created using an assortment of techniques and tools: ad hoc code in a programming
language, database export scripts, OpenRefine transformations, mapping languages, etc. Focusing on the latter, the wide variety
of use cases, data peculiarities, and potential uses has had a substantial impact in how mappings have been created, extended,
and applied. As a result, a large number of languages and their associated tools have been created. In this paper, we present
the Conceptual Mapping ontology, that is designed to represent the features and characteristics of existing declarative mapping
languages to construct Knowledge Graphs. This ontology is built upon the requirements extracted from experts experience, a
thorough analysis of the features and capabilities of current mapping languages presented as a comparative framework; and the
languages’ limitations discussed by the community and denoted as Mapping Challenges. The ontology is evaluated to ensure
that it meets these requirements and has no inconsistencies, pitfalls or modelling errors, and is publicly available online along
with its documentation and related resources.
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1. Introduction

Data on the Web has steadily grown in the last decades. However, the heterogeneity of the data published on the
Web has hindered its consumption and usage [59]. This scenario has fostered data transformation and publication of
data as Knowledge Graphs in both academic and industrial environments [35]. These Knowledge Graphs normally
expose Web data expressed in RDF and modeled according to an ontology.

A large number of techniques that query or translate data into RDF have been proposed, and follow two ap-
proaches, namely, (1) RDF materialization, that consists of translating data from one or more heterogeneous sources
into RDF [5,49]; or (2) Virtualization, (Ontology Based Data Access) [51,68] that comprises translating a SPARQL
query into one or more equivalent queries which are distributed and executed on the original data source(s), and
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where its results are transformed back to the SPARQL results format [11]. Both types of approaches rely on an
essential element, a mapping document, which is the key-enabler for performing the required translation.

Mapping languages allow representing the relationships between the data model in heterogenous sources, and an
RDF version that follows the schema of an ontology, i.e., they define the rules on how to translate from non-RDF
data into RDF. The original data can be expressed in a variety of formats such as tabular, JSON, or XML. Due to
the heterogeneous nature of data, the wide variety of techniques, and specific requirements that some scenarios may
impose, an increasing number of mapping languages have been proposed [24,29,46]. The differences among them
are usually based on three aspects: (a) the focus on one or more data formats, e.g., the W3C Recommendations
R2RML focuses on SQL tabular data [19]; (b) a specific requirement they address, e.g., SPARQL-Generate [44]
allows the definition of functions in a mapping for cleaning or linking the generated RDF data; or (c) if they are
designed for a scenario that has special requirements, e.g., the WoT-mappings [15] were designed as an extension
of the WoT standard [40] and used as part of the Thing Descriptions [39].

As a result, the diversity of mapping languages provides a rich variety of options for tools to translate data
from heterogeneous formats into RDF, in many different scenarios [21,41,48,55]. However, these tools are mostly
tied to one mapping language, and sometimes they do not even implement the entire language specification [5,9].
Deciding which language and technique should be used in each scenario becomes a costly task, since the choice of
one language may not cover all the needed requirements [20]. Some scenarios require a combination of mapping
languages due to their different features, which requires the use of different techniques. In many cases, this diversity
leads to ad hoc solutions that reduce reproducibility, maintainability, and reusability [36].

Mapping languages for KG construction maintain the same bottom-line idea and purpose: to describe and estab-
lish the relationships between data sources and the schema provided by an ontology. Therefore, it can be assumed
that mapping languages share common inherent characteristics that can be modeled.

This paper presents the Conceptual Mapping ontology, which aims to gather the expressiveness of existing declar-
ative mapping languages and represent their shared characteristics. The Conceptual Mapping ontology has been
developed based on the requirements extracted from the Mapping Challenges proposed by the community1 and the
analysis of the features of state-of-the-art mapping languages. This analysis, presented as a comparative framework,
studies how languages describe access to data sources, how they represent triples creation, and their distinctive
features.

The Conceptual Mapping ontology has been developed following the LOT Methodology [53]. It reuses existing
standards such as DCAT [1] and WoT Security.2 The full mapping language specification is publicly available
under the CC BY-SA 4.0 license. Several examples of usage, comparisons with other languages, extensions, and
requirements are also available in the ontology portal.3

The rest of this article is structured as follows. Section 2 provides an overview of relevant works centered on
mapping languages. Section 3 describes the methodology used to develop the ontology. Section 4 presents the
purpose and scope of the ontology, its requirements, and how they are extracted. Section 5 shows details about the
ontology conceptualization and evaluation, and some examples. Section 6 illustrates how the ontology is published
and maintained. Finally, Section 7 summarizes the work presented and draws some conclusions and future steps.

2. Related work

In this section, the current scene of mapping languages is described first, regardless of the approach they follow,
i.e., RDF materialization or virtualization. Then, previous works comparing mapping languages are surveyed.

2.1. Mapping languages

The different scenarios in which mapping languages are used and their specific requirements have led to the cre-
ation of several mapping languages and tailored to specific domain extensions. This section presents and describes

1https://w3id.org/kg-construct/workshop/2021/challenges.html
2https://www.w3.org/2019/wot/security
3https://w3id.org/conceptual-mapping/portal
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Table 1

Analyzed mapping languages and their corresponding references

Classification Language Reference(s)

RDF-based D2RQ [8,17]

R2O [6]

R2RML [19]

xR2RML [46,47]

RML [24,25]

KR2RML [60]

FunUL [38]

R2RML-f [22]

D2RML [12]

WoT mappings [15]

XLWrap [42,43]

CSVW [66]

SPARQL-based SPARQL-Generate [44,45]

XSPARQL [7,52]

TARQL [65]

Facade-X [18,61]

SMS2 [63]

Others Helio mappings [14]

D-REPR [67]

ShExML [27–29]

XRM [69]

existing mapping languages, listed in Table 1. Depending on their syntax, they can be classified into the follow-
ing: RDF-based, SPARQL-based, and based on other schema. It is worth mentioning that some mapping languages
have become W3C recommendations, namely R2RML [19] and CSVW [66]. The surveyed languages include the
ones considered relevant because of their widespread use, unique features, and current maintenance. Deprecated or
obsolete languages are not included.

RDF-based mapping languages Similarly to Conceptual Mappings, these are mapping languages specified as
ontologies. They are used as RDF documents that are processed by compliant tools for performing the translations.
The evolution, extensions and influences on one another are depicted in Fig. 1. The most well-known language in
this category is R2RML [19], which allows mapping of data stored in relational databases to RDF. This language
is heavily influenced by previous languages (R2O [6] and D2RQ [8]). Some serializations (e.g. SML [62], OBDA
mappings from Ontop [58]) and several extensions of R2RML were developed in the following years after its
release: R2RML-f [22] extends R2RML to include functions to be applied over the data; RML [24] and its user-
friendly compact syntax YARRRML [34] provide the possibility of covering additional data formats (CSV, XML
and JSON); this language also considers the use of functions for data transformation (e.g. lowercase, replace, trim)
by using the Function Ontology (FnO)4 [21]; FunUL [38] proposes an extension to also incorporate functions, but
focusing on the CSV format; KR2RML [60] is also an extension for CSV, XML and JSON, with the addition of
representing all sources with the Nested Relational Model as an intermediate model and the possibility of cleaning
data with Python functions; xR2RML [46] extends R2RML and RML to include NoSQL databases and incorporates
more features to handle tree-like data; D2RML [12], also based on R2RML and RML, is able to transform data from
XML, JSON, CSVs and REST/SPARQL endpoints, and enables functions and conditions to create triples.

In this category, we can also find more languages not related to R2RML. XLWrap [43] is focused on transforming
spreadsheets into different formats. CSVW [66] enables tabular data annotation on the Web with metadata, but also

4https://fno.io/rml/

https://fno.io/rml/
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Fig. 1. Existing mapping languages and their relationships.

supports the generation of RDF. Finally, WoT Mappings [15] are oriented to be used in the context of the Web of
Things.

SPARQL-based mapping languages The specification of this type of languages is usually based on, or is an
extension of, the SPARQL query language [32]. XSPARQL [7] merges SPARQL and XQuery to transform XML
into RDF. TARQL [65] uses the SPARQL syntax to generate RDF from CSV files. SPARQL-Generate [44] is
capable of generating RDF and document streams from a wide variety of data formats and access protocols. Most
recently, Facade-X has been developed, not as a new language, but as a “facade to wrap the original resource and
to make it queryable as if it was RDF” [18]. It does not extend the SPARQL language, instead it overrides the
SERVICE operator. Lastly, authors would like to highlight a loosely SPARQL-based language, Stardog Mapping
Syntax 2 (SMS2) [63], which represents virtual Stardog graphs and is able to support sources such as JSON, CSV,
RDB, MongoDB and Elasticsearch.

Other mapping languages This group gathers other mapping languages implemented without relying on ontolo-
gies or SPARQL extensions. ShExML [27,29] uses Shape Expressions (ShEx) [57] to map data sources in RDBs,
CSV, JSON, XML and RDF using SPARQL queries. The Helio mapping language [14] is based on JSON and
provides the capability of using functions for data transformation and data linking [13]. D-REPR [67] focuses on
describing heterogeneous data with JSONPath and allows the use of data transformation functions. XRM (Expres-
sive RDF Mapper) [69] is a commercial language that provides a unique user-friendly syntax to create mappings in
R2RML, CSVW and RML.

2.2. Language comparison

As the number of mapping languages increased and their adoption grew wider, comparisons between these lan-
guages inevitably occurred. This is the case of, for instance, SPARQL-Generate [44], which is compared to RML in
terms of query/mapping complexity; and ShExML [29], which is compared to SPARQL-Generate and YARRRML
from a usability perspective.

Some studies dig deeper, providing qualitative complex comparison frameworks. Hert et al. [33] provide a com-
parison framework for mapping languages focused on transforming relational databases to RDF. The framework is
composed of 15 features, and the languages are evaluated based on the presence or absence of these features.The
results lead authors to divide the mappings into four categories (direct mapping, read-only general-purpose map-
ping, read-write general-purpose mapping, and special-purpose mapping), and ponder on the heavy reliance of most
languages on SQL to implement the mapping, and the usefulness of read-write mappings (i.e., mappings able to
write data in the database). De Meester et al. [20] show an initial analysis of 5 similar languages (RML + FnO,
xR2RML, FunUL, SPARQL-Generate, YARRRML) discussing their characteristics, according to three categories:
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non-functional, functional and data source support. The study concludes by remarking on the need to build a more
complete and precise comparative framework and asking for a more active participation from the community to
build it. To the best of our knowledge, there is no comprehensive work in the literature comparing all existing
languages.

3. Methodology

This section presents the methodology followed for developing the Conceptual Mapping ontology. The ontology
was developed following the guidelines provided by the Linked Open Terms (LOT) methodology. LOT is a well-
known and mature lightweight methodology for the development of ontologies and vocabularies that has been
widely adopted in academic and industrial projects [53]. It is based on the previous NeOn methodology [64] and
includes four major stages: Requirements Specification, Implementation, Publication, and Maintenance (Fig. 2).
In this section, we describe these stages and how they have been applied and adapted to the development of the
Conceptual Mapping ontology.

3.1. Requirements specification

This stage refers to the activities carried out for defining the requirements that the ontology must meet. At the
beginning of the requirements identification stage, the goal and scope of the ontology are defined. Following, the
domain is analyzed in more detail by looking at the documentation, data that has been published, standards, for-
mats, etc. In addition, use cases and user stories are identified. Then, the requirements are specified in the form of
competency questions and statements.

In this case, the specification of requirements includes purpose, scope, and requirements. The requirements are
specified as facts rather than competency questions and validated with Themis [26], an ontology evaluation tool that
allows validating requirements expressed as tests rather than SPARQL queries. The authors consider this approach to
be adequate in this case since (1) there are no use cases as this ontology is a mechanism of representation of mapping
language’s features; and (2) there are no SPARQL queries because they result from Competency Questions which
are in turn extracted from use cases and user stories. Further details are shown in Section 4.

3.2. Implementation

The goal of the Implementation stage is to build the ontology using a formal language, based on the ontological
requirements identified in the previous stage. From the set of requirements a first version of the model is concep-

Fig. 2. Workflow proposed by the LOT methodology [53].
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tualized. The model is subsequently refined by running the corresponding evaluations. Thus, the implementation
process follows iterative sprints; once it passes all evaluations and meets the requirements, it is considered ready for
publication.

The conceptualization is carried out representing the ontology in a graphical language using the Chowlk no-
tation [10] (as shown in Fig. 4). The ontology is implemented in OWL 2 using Protégé. The evaluation checks
different aspects of the ontology: (1) requirements are validated using Themis [26], (2) inconsistencies are found
with the Pellet reasoner, (3) OOPS! [54] is used to identify modeling pitfalls, and (4) FOOPS! [31] is run to check
the FAIRness of the ontology. Further details are described in Section 5.

3.3. Publication

The publication stage addresses the tasks related to making the ontology and its documentation available. The
ontology documentation was generated with Widoco [30], a built-in documentation generator in OnToology [2],
and it is published with a W3ID URL.5 The ontology and related resources can be accessed in the ontology portal.
Further details are presented in Section 6.

3.4. Maintenance

Finally, the last stage of the development process, maintenance, refers to ontology updates as new requirements
are found and/or errors are fixed. The ontology presented in this work promotes the gathering of issues or new re-
quirements through the use of issues in the ontology GitHub repository. Additionally, it provides control of changes,
and the documentation enables access to previous versions. Further details are shown in Section 6.

4. Conceptual mapping requirements specification

This section presents the purpose, scope, and requirements of the Conceptual Mapping Ontology. In addition, it
also describes from where and how the requirements are extracted: analysing the mapping languages (presented as
a comparative framework) and the Mapping Challenges proposed by the community.

4.1. Purpose and scope

The Conceptual Mapping ontology aims at gathering the expressiveness of declarative mapping languages that
describe the transformation of heterogeneous data sources into RDF. This ontology-based language settles on the
assumption that all mapping languages used for the same basic purpose of describing data sources in terms of an
ontology to create RDF, must share some basic patterns and inherent characteristics. Inevitably, not all features are
common. As described in previous sections, some languages were developed for specific purposes, others extend
existing languages to cover additional use cases, and others are in turn based in languages that already provide
them with certain capabilities. The Conceptual Mapping ontology is designed to represent and articulate these core
features, which are extracted from two sources: (1) the analysis of current mapping languages, and (2) the limitations
of current languages identified by the community. These limitations, proposed by the W3C Knowledge Graph
Construction Community Group,6 are referred to as Mapping Challenges1 and have been partially implemented by
some languages. Both sources are described throughout this section.

This ontology has also some limitations. As presented in Section 2, mapping languages can be classified into
three categories according to the schema in which they are based: RDF-based, SPARQL-based and based on other
schemes. Conceptual Mapping is included in the first category and, as such, has the same inherent capabilities and
limitations as RDF-based languages regarding the representation of the language as an ontology. This implies that

5https://w3id.org/conceptual-mapping
6https://www.w3.org/community/kg-construct/

https://w3id.org/conceptual-mapping
https://www.w3.org/community/kg-construct/
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it is feasible to represent their expressiveness, whereas reusing classes and/or properties or creating equivalent con-
structs. Languages based on other approaches usually follow schemas that make them relatable to ontologies. This
can be seen in the correspondence between YARRRML and RML: RML is written in Turtle syntax. YARRRML [34]
is mainly used as a user-friendly syntax to facilitate the writing of RML rules. It is based on YAML, and can easily
be translated into RML.7

Lastly, SPARQL-based languages pose a challenge. SPARQL is a rich and powerful query language [50] to which
these mapping languages add more capabilities (e.g., SPARQL-Generate, Facade-X). It has an innate flexibility and
capabilities sometimes not comparable to the other languages. For this reason, representing every single capability
and feature of SPARQL-based languages is out of the scope of this article. Given the differences of representation
paradigm between RDF and SPARQL for creating mappings, it cannot be ensured that the Conceptual Mapping
covers all possibilities that a SPARQL-based language can.

4.2. Comparison framework

This subsection presents a comparison framework that collects and analyzes the main features included in map-
ping language descriptions. It aims to fill the aforementioned gap on language comparison. The diversity of the
languages that have been analyzed is crucial for extracting relevant features and requirements. For this reason, the
framework analyzes languages from the three categories identified in Section 2.

The selected languages fulfill the following requirements: (1) widely used, relevant and/or include novel or unique
features; (2) currently maintained, and not deprecated; (3) not a serialization or a user-friendly representation of
another language. For instance, D2RQ [8] and R2O [6] were superseded by R2RML, which is included in the
comparison. XRM [69] is not included either, due to the fact that it provides a syntax for CSVW, RML and R2RML,
which are also included.

The following RDF-based languages are included: R2RML [19], RML [24], KR2RML [60], xR2RML [46],
R2RML-F [22], FunUL [38], XLWrap [43], WoT mappings [15], CSVW [66], and D2RML [12]. The SPARQL-
based languages that were analyzed are: XSPARQL [7], TARQL [65], SPARQL-Generate [44], Facade-X [18]
and SMS2 [63]. Finally, we selected the following languages based on other formats: ShExML [29], Helio Map-
pings [14] and D-REPR [67].

These languages have been analyzed based on their official specification, documentation, or reference paper
(listed in Table 1). Specific implementations and extensions that are not included in the official documentation are
not considered in this framework. The cells (i.e. language feature) marked “*” in the framework tables indicate that
there are non-official implementations or extensions that include the feature.

The framework has been built as a result of analyzing the common features of the aforementioned mapping lan-
guages, and also the specific features that make them unique and suitable for some scenarios. It includes information
on data sources, general features for the construction of RDF graphs, and features related to the creation of subjects,
predicates, and objects. In the following subsections, the features of each part of the framework are explained in
detail. The language comparison for data sources is provided in Table 2, for triples creation in Table 3, and for
general features in Table 4. All these tables are presented in Appendix B.

Throughout the section, there are examples showing how different languages use the analyzed features. The
example is built upon two input sources: an online JSON file, “coordinates.json”, with geographical coordinates
(Fig. 3(b)); and a table from a MySQL database, “cities” (Fig. 3(c)). The reference ontology is depicted in Fig. 3(a).
It represents information about cities and their locations. The expected RDF output of the data transformation
is shown in Listing 1. Each mapping represents only the relevant rules that the subsection describes. The entire
mapping can be found in the examples section of the ontology documentation.5

4.2.1. Data sources description
Table 2 shows the ability of each mapping language to describe a data source in terms of retrieval, features,

security, data format and protocol.

7https://rml.io/yarrrml/matey/

https://rml.io/yarrrml/matey/
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Fig. 3. Input source data and reference ontology that represents information on cities and their location.

Data retrieval Data from data sources may be retrieved in a continuous manner (e.g., Streams), periodically (e.g.,
Asynchronous sources), or just once, when the mapping is executed (e.g., Synchronous sources). As shown in Ta-
ble 2, all mapping languages are able to represent synchronous data sources. Additionally, SPARQL-Generate and
Helio are able to represent periodical data sources, and SPARQL-Generate also represents continuous data sources
(e.g. it:WebSocket() in SPARQL-Generate). Other languages do not explicitly express that feature in the lan-
guage, but a compliant engine may implement it.

Representing data sources Extracting and retrieving heterogeneous data involves several elements that mapping
languages need to consider: Security terms to describe access (e.g., relational databases (RDB), API Key, OAuth2,
etc); Retrieval protocol such as local files, HTTP(S), JDBC, etc; Features that describe the data to define particular
characteristics of the source data (e.g. queries, regex, iterator, delimiter, etc); Data formats such as CSV, RDB, and
JSON; Encoding and content negotiation (i.e. MIME Type).

Half of the languages do not allow the definition of security terms. Some languages are specific for RDB terms
(R2RML and extensions, with rr:logicalTable), and only two, Helio and WoT, can define security terms.
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Listing 1. Expected RDF output for the data sources and the ontology in Fig. 3

These two languages are also the only ones that allow the specification of MIME Types, and can also specify the
encoding along with TARQL and CSVW (e.g. csvw:encoding attribute of csvw:Dialect in CSVW).

Regarding protocols, all languages consider local files, except WoT mappings, which are specific for HTTP(s).
It is highly usual to consider HTTP(s) and database access (especially with the ODBC and JDBC protocols). Only
XSPARQL, TARQL, D-REPR, and XLWrap describe exclusively local files.

The features provided by each language are closely related to the data formats that are covered. Queries are
usual for relational databases and NoSQL document stores and iterators for tree-like formats. Some languages also
enable the description of delimiters and separators for tabular formats (e.g., CSVW defines the class Dialect to
describe these features; this class is reused by RML), and finally, less common Regular Expressions can be defined
to match specific parts of the data in languages such as CSVW, SPARQL-Generate, Helio, D-REPR, and D2RML
(e.g., RegexHandler in Helio, format in CSVW).

The most used format is tabular (RDB and CSV). Some languages can also process RDF graphs such as SMS2,
ShExML, RML, SPARQL-Generate, Helio, and D2RML (e.g. QUERY in ShExML, SPARQL service description8

in RML), and the last three languages can also process plain text.

Data sources example This example shows how ShExML and R2RML describe heterogeneous data sources. The
sources are a table called “cities” (Fig. 3(c)) that belongs to a relational database that stores information about cities:
name, population, zipcode and year in which the data was updated; and a JSON file “coordinates.json” (Fig. 3(b))
available online that contains the latitude and longitude of the central point of each city. R2RML is only able to
describe the database table (Listing 2); instead ShExML is able to describe both the RDB and the online JSON file
(Listing 3).

4.2.2. Triples generation
Table 3 represents how different languages describe the generation of triples. We assess whether they generate

the Subject, Predicate, and Object: in (1) a Constant manner, i.e. non-dependant on the data field to be created;

8http://www.w3.org/ns/sparql-service-description#

http://www.w3.org/ns/sparql-service-description#
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Listing 2. R2RML mapping file describing Fig. 3(b) and Fig. 3(c)

Listing 3. ShExML mapping file describing Fig. 3(b) and Fig. 3(c)

or in (2) a Dynamic manner, i.e. changing its value with each data field iteration. For Objects, the possibility of
adding Datatype and Language tags is also considered; this feature assesses whether they can be added, and if
they are added in a dynamic (changes with the data) or static (constant) manner. This table also analyzes the use
and cardinality of transformation functions and the possibility of iterating over different nested level arrays (i.e., in
tree-like formats).

The categories Constant and RDF Resource (the latter within Dynamic) show which kind of resources can be gen-
erated by the language (i.e., IRI, Blank Node, Literal, List and/or Container). The Dynamic category also considers:
the Data References (i.e. fields from the data source) that can appear with single of mixed formats; from how many
Data Sources (e.g. “1:1” when only data from one file can be used) the term is generated; if Hierarchy Iteration
over different nested levels in tree-like formats is allowed; and if Functions can be used to perform transformations
on the data to create the term (e.g. lowercase, toDate, etc.).

Subject generation Subjects can be IRIs or Blank Nodes (BN). This is well reflected in the languages, since,
with a few exceptions that do not consider Blank Nodes, all languages are able to generate these two types of
RDF resources, both constant and dynamically. The WoT mappings can only generate constant subjects, so the
dynamic dimensions do not apply to this language. The rest of the languages can generate a subject with one
or more data references (e.g., in RML rr:template "http://ex.org/{id}{name}"), ShExML, xR2R-
ML, SPARQL-Generate, Facade-X, and Helio with different formats. For example, in xR2RML a CSV field that
contains an array can be expressed as: xrr:reference "Column(Movies)/JSONPath($.*). Part of the
languages even allow generating subjects with more than one data source, this is the case of ShExML, XSPARQL,
KR2RML, SPARQL-Generate, Facade-X, Helio and xR2RML. About a third of the languages allow hierarchy
iterations (ShExML, XSPARQL, KR2RML, SPARQL-Generate, D-REPR, Facade-X, SMS2, and D2RML), and
more than a half use functions with N:1 cardinality. Additionally, some of them even allow functions that can output
more than one parameter (i.e., 1:N or N:M), but it is less usual.

Predicate generation All languages can generate constant predicates as IRIs. Only four languages do not allow
dynamic predicates (WoT mappings, SMS2, ShExML, and XLWrap). For those that do, they also allow more than
one data reference. The languages that allow subject generation using multiple formats, data sources, functions, and
hierarchy iterations, provide the same features for predicate generation.

Object generation Generally, languages can generate a wider range of resources for objects, since they can be IRIs,
blank nodes, literals, lists, or containers. All of them can generate constant and dynamic literals and IRIs. Those
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Listing 4. xR2RML mapping rules to describe the ontology depicted in Fig. 3(a)

languages that allow blank nodes in the subject also allow them in the object. Additionally, ShExML, KR2RML,
SPARQL-Generate, Facade-X, xR2RML, and WoT mappings consider lists, and the last two languages also consider
containers (e.g. rr:termType xrr:RdfBag in xR2RML). Data references, sources, hierarchy iterations, and
functions remain the same as in subject generation, with the addition of WoT mappings that allow dynamic objects.
Lastly, datatype and language tags are not allowed in KR2RML and XLWrap; they are defined as constants in the rest
of the languages, and dynamically in ShExML, XSPARQL, TARQL, RML, and Helio (e.g., rml:languageMap
for dynamic language tags in RML).

Triples generation example Assuming the description of the data sources shown in Fig. 3(b) and Fig. 3(c), this
example illustrates how xR2RML and RML + FnO describe the rules to generate triples according to the ontology
depicted in Fig. 3(a). Instances of the classes eg:City and eg:Location have to be created, along with values
for the attributes eg:lat, eg:long and eg:zipcode. A function is required to remove the spaces in the field
“city” from the database table (Fig. 3(c)) in order to create the URI of the instances correctly. In addition, the field
“zipcodes” has to be separated to retrieve each of its values (see expected output in Listing 1). xR2RML is capable of
correctly generating zip codes (Listing 4), but it lacks the ability to correctly generate URI without spaces. RML +
FnO is capable of doing the opposite (Listing 5).

4.2.3. General features for graph construction
Table 4 shows the features of mapping languages regarding the construction of RDF graphs such as linking

rules, metadata or conditions, assignment to named graphs, and declaration of transformation functions within the
mapping.

Statements General features that apply to statements are described in this section: the capability of a language to
assign statements to named graphs, to retrieve data from only one source or more than one source, and to apply
conditions that have to be met in order to create the statement (e.g. if the value of a field called “required” is TRUE,
the triple is generated).

Most RDF-based languages allow static assignment to named graphs. R2RML, RML, R2RML-F, FunUL, and
D2RML enable also dynamic definitions (e.g., rr:graphMap in R2RML and in its extensions mentioned above).
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Listing 5. RML + FnO mapping rules (written in YARRRML) to describe the ontology depicted in Fig. 3(a)

Theoretically, the rest of R2RML extensions should also implement this feature; however, to the best of our knowl-
edge, it is not mentioned in their respective specifications.

Allowing conditional statements is not usual; it is only considered in the SPARQL-based languages (with the
exception of SMS2), XLWrap and D2RML (e.g. xl:breakCondition in XLWrap). Regarding data sources, all
languages allow data retrieval from at least one source; ShExML, XSPARQL, CSVW, SPARQL-Generate, Facade-
X, Helio, D-REPR and D2RML enable more sources. That is, using data in the same statement from, e.g., one CSV
file and one JSON file.

Linking rules Linking rules refer to linking resources that are being created in the mapping. For instance, having
as object of a statement a resource that is the subject of another statement. These links are implemented in most
languages by joining one or more data fields. Six languages do not allow these links: TARQL, CSVW, KR2RML,
WoT, SMS2, and XLWrap. The rest is able to perform linking with at least one data reference and one or no
condition. Fewer enable more data references and more conditions (e.g. in R2RML and most extensions allow the
application of a rr:joinCondition over several fields).

Linking rules using join conditions imply evaluating if the fields selected are equal. Since the join condition is
the most common, applying the equal logical operator is the preferred choice. Only a few languages consider other
similarity functions to perform link discovery, such as the Levenshtein distance and Jaro-Winkler, e.g., Helio.

Transformation functions Applying functions in mappings allows practitioners transforming data before it is
translated. For instance, to generate a label with an initial capital letter (ex:ID001 rdfs:label "Emily")
that was originally in lower case (“emily”), a function may be applied (e.g. GREL function toTitleCase()).
Only four of the analyzed languages do not allow the use of these functions: CSVW, R2RML, xR2RML, and
WoT mappings. Of those that do, some use functions that belong to a specification (e.g. RML + FnO uses GREL
functions9). All of them consider functions with cardinalities 1:1 and N:1; and half of them also include 1:N and
N:M (i.e., output more than one value), for instance, a regular expression that matches and returns more than one
value. Nesting functions (i.e. calling a function inside another function) is not unusual; this is the case of SPARQL-

9https://docs.openrefine.org/manual/grelfunctions

https://docs.openrefine.org/manual/grelfunctions
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based languages, the R2RML extensions that implement functions (except K2RML), Helio, D-REPR, and XLWrap.
Finally, some languages even enable extending functions depending on specific user needs, such as XSPARQL,
RML + FnO, SPARQL-Generate, Facade-X, R2RML-F, FunUL, XLWrap and D2RML.

Graph construction example Assuming the description of data sources shown in Fig. 3(b) and Fig. 3(c) and the
regular triples, this example shows how Helio and SPARQL-Generate describe conditional statements and linking
rules. To generate the eg:population attribute (Fig. 3(a)), the record must have been updated after 2020. In
addition, instances of the classes eg:City and eg:Location can be joined using the city name, present in
both data sources. However, the names do not exactly match (“Almería” and “Almeria”; “A Coruña” and “La Coru-
ña”), which is why a distance metric is required to match the cities with a threshold of 0.75. The Helio mapping
is not capable of describing the condition of the population, but instead it is able to use the Levenshtein distance
function and link the sources (Listing 6). SPARQL-Generate can describe the condition statement thanks to the
SPARQL construct FILTER, but does not implement the distance metric function (Listing 7). However, both Helio
and SPARQL-Generate allow the removal of spaces in the subject URIs.

Listing 6. Helio mapping with linking rules to describe the ontology depicted in Fig. 3(a)

Listing 7. SPARQL-Generate query with conditional rules to describe the ontology depicted in Fig. 3(a)
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4.3. Mapping challenges

Following its inception, the W3C Knowledge Graph Construction Community Group6 defined a series of chal-
lenges for mapping languages based on the experience of members in using declarative mappings.1 These challenges
are a summary of the limitations of current languages. They have been partially addressed independently in some of
the analyzed languages, such as RML [23] and ShExML [27]. These challenges are summarized as follows:

– [C1] Language Tags and Datatype. It refers to dynamically building language tags ([C1a]) and datatypes
([C1b]), that is, from data rather than as constant values.

– [C2] Iterators. This challenge addresses the need to access data values ‘outside’ the iteration pattern ([C2a]),
especially in some tree-like data sources such as JSON; and iterating over multi-value references ([C2b]).

– [C3] Multi-value References. It discusses how languages handle data fields that contain multiple values
([C3a]), their datatypes and associated language tags ([C3b]).

– [C4] RDF Collections and Containers. This challenge addresses the need to handle RDF collections and
containers.

– [C5] Joins. It refers to joining resources with zero join conditions ([C5a]) and joining literals instead of IRIs
([C5b]).

4.4. Conceptual mapping requirements

In order to extract the requirements that serve as the basis for the development of the Conceptual Mapping on-
tology, we take as input the analysis from the comparison framework and the Mapping Challenges described in
previous sections. From a combination of their features, we extract 30 requirements. These requirements are ex-
pressed as facts, and are available in the ontology repository and portal.10 Each requirement has a unique identifier,
its provenance (comparison framework or mapping challenge id) and the corresponding constructs in the ontology.
The constructs are written in Turtle, and lack cardinality restrictions for the sake of understandability. These require-
ments are tested with Themis, and its corresponding tests include these restrictions. More details on the evaluation
of the requirements are provided in Section 5.3.

The requirements gathered range from general-purpose to fine-grained details. The general-purpose requirements
refer to the basic fundamental capabilities of mappings, e.g., to create the rules to generate RDF triples (cm-r8) from
reference data sources (cm-r7). The requirements with the next level of detail involve some specific restrictions and
functionalities, e.g. to indicate the specific type (whether they are IRIs, Blank nodes, etc.) of subjects (cm-r16),
predicates (cm-r17), objects (cm-r18), named graphs (cm-r19), datatypes (cm-r20) and language tags (cm-r21); the
possibility of using linking conditions (cm-r23) and functions (cm-r15). Finally, some requirements refer to specific
details or features regarding the description of data sources (e.g. cm-r4, cm-r6) and transformation rules (e.g. cm-
r14, cm-r22, cm-r25).

Not all the observed features in the comparison framework have been added to the set of requirements. Some
features are really specific, and supported by a minority of languages, sometimes only one language. As a result,
we selected the (really) detailed features in these requirements to build the core specification of the Conceptual
Mapping when they tackled the basic functionalities of the language. The rest of the details are left to be included
as extensions. This differentiation and the modeling criteria is explained further in Section 5.

5. Conceptual mapping implementation

This section describes in detail the activities and tasks carried out to implement the ontology, that consists in the
conceptualization of the model, the encoding in a formal language, and the evaluation to fix errors, inconsistencies,
and ensure that it meets the requirements. Additionally, an example of the ontology’s use is presented at the end of
the section.

10https://oeg-upm.github.io/Conceptual-Mapping/requirements/requirements-core.html

https://oeg-upm.github.io/Conceptual-Mapping/requirements/requirements-core.html
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5.1. Ontology conceptualization

The ontology’s conceptualization is built upon the requirements extracted from experts experience, a thorough
analysis of the features and capabilities of current mapping languages presented as a comparative framework; and
the languages’ limitations discussed by the community and denoted as Mapping Challenges. The resulting ontology
model is depicted in Fig. 4. This model represents the core specification of the Conceptual Mapping ontology that
contains the essential features to cover the requirements. Some detailed features are also included when considered
important to the language expressiveness, or needed for the language main functionality. Other detailed features
are considered as extensions, as explained further in this section. For description purposes, we divide the ontology
into two parts, Statements and Data Sources, that compose the core model. These two parts, when not used in
combination, cannot describe a complete mapping. For that reason they are not separated into single modules.

Data sources A data source (DataSource) describes the source data that will be translated. For this section, the
Data Catalog (DCAT) vocabulary [1] has been reused. DataSource is a subclass of dcat:Distribution,
which is a specific representation of a dataset (dcat:Dataset), defined as “data encoded in a certain structure
such as lists, tables and databases”. A source can be a streaming source (StreamSource) that continuously gener-
ates data, a synchronous source (SynchronousSource) or an asynchronous source (AsynchronousSource).
Asynchronous sources, in turn, can be event sources (EventSource) or periodic sources (PeriodicSource).
The details of the data source access are represented with the data access service class (DataAccessService),
which in turn is a subclass of dcat:DataService. This class represents a collection of operations that pro-
vides access to one or more datasets or data processing functions, i.e., a description of how the data is accessed
and retrieved. The data access service optionally has a security scheme (e.g., OAuth2, API Key, etc.) and an access
protocol (e.g., HTTP(s), FTP, etc.).

Data properties in the dcat:Dataset, dcat:Distribution and dcat:DataService classes may
be reused according to the features that may be represented in each mapping language, e.g. dcat:endpoint
Description, dcat:endpointURL and dcat:accessURL. A data access service is related to a security
scheme. The class wot:SecurityScheme (from the Web of Things (WoT) Security ontology2) has been reused.
This class has different types of security schemes as subclasses and includes properties to specify the information on
the scheme (e.g. the encryption algorithm, the format of the authentication information, the location of the authenti-
cation information). The security protocol hasProtocol has as set of predefined values that have been organized
as a SKOS concept scheme. It contains almost 200 security protocols, e.g., HTTP(s), JDBC, FTP, GEO, among
others. This SKOS list can be extended according to the users’ needs by adding new concepts.

In order to represent the fragments of data that are referenced in a statement map, the class Frame has
been defined. They are connected with the property hasFrame. A frame can be a SourceFrame (base
case) or a CombinedFrame, the latter representing two source frames or combined frames that are com-
bined by means of a join (JoinCombination), a union (UnionCombination) or a cartessian product
(CartessianProductCombination).

A source frame corresponds to a data source (with hasDataSource) and defines which data is retrieved from
the source and how it is fragmented (with expression). Among others, JSONPaths, XPaths, queries, or regular
expressions can be expressed with this feature. The language of the expression is defined with language, which
domain is the reused class from RML rml:ReferenceFormulation. A source frame may be related to another
source frame with hasNestedFrame, e.g. a frame is accessed firstly with a SPARQL query, and their results as a
CSV file with this property. A source fragment may refer to many data fields (with hasField, which is the inverse
property of belongsToFrame).

Statements The central class of this section is the StatementMap, which represents a rule that defines for a triple
its subject (hasSubject), predicate (hasPredicate), and object (hasObject). Optionally, it can also specify
the object datatype (hasDatatype), language (hasLanguage) and assigned named graph (hasNamedGraph).
Therefore, statement maps are similar to RDF statements as both of them are comprised by a subject, predicate and
object. In statement maps, objects are resources (ResourceMap), and subjects and predicates are more specific,
certain subclasses of the resource map: predicates are reference node maps (ReferenceNodeMap) that represent
resources with an IRI, i.e., ontology properties. Subjects are node maps (NodeMap) that may be blank nodes
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Fig. 4. Visual representation of the conceptual mapping ontology created using the Chowlk diagram notation [10].
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(BlankNode) or also reference node maps. An object may be a literal (LiteralMap), a blank node, a container
(ContainerMap) or a collection that defines a list (ListMap). The language is expressed as a literal, and the
datatype is also a resource with an IRI, i.e. a reference node map.

Resource maps are expressed with an evaluable expression (EvaluableExpression) that may be a con-
stant value (Constant), a function expression (FunctionExpression), or a data field (DataField)
that belongs to some data source fragment (belongsToFrame). For function expressions, the function name
(hasFuntionName) is taken from a set of predefined names organized in a SKOS concept scheme. This SKOS
list can be extended according to the users’ needs by adding new concepts for functions that have not been de-
fined. Recursion in this function expression is represented through its input (hasInput) as an expression list
(ExpressionList). Expression lists have been represented as a subclass of RDF lists (rdf:List), and the
properties (rdf:first) and (rdf:rest) have been reused. Expression lists may have nested expression lists
inside.

A special case of a statement map is a conditional statement map (ConditionalStatementMap), a statement
map that must satisfy a condition for the triples to be generated. The condition (hasBooleanCondition) is a
function expression (e.g. if a value from a field called “present” is set to “False”, the statement is not generated).
Another relevant class is the linking map (LinkingMap), that enables linking subjects from a source (source)
and a target (target) statement maps, i.e., two resources are linked and triples are generated if a linking condition
is satisfied. Similarly to the conditional statement map, this condition is represented as a function expression.

5.2. Ontology design patterns

The following ontology design patterns have been applied in the conceptualization as they are common solutions
to the problem of representing taxonomies and linked lists:

– The SKOS vocabulary has been reused to represent some coding schemes such as the protocol taxonomy and
the function taxonomy. The design pattern consists on having an instance of skos:ConceptScheme for
each taxonomy, then each concept or term in the taxonomy, skos:Concept, is related to the correspond-
ing concept scheme through the property skos:inScheme. The class that uses the taxonomy is then re-
lated to skos:Concept through an object property, e.g., class DataAccessService and object property
hasProtocol.

– The class ExpressionList uses the design pattern for lists developed in RDF where the properties
rdf:first and rdf:rest are used to represent a linked list. The base case (first) is an evaluable expression
whereas the rest of the list is (recursively) an ExpressionList.

5.3. Ontology evaluation

The ontology, once implemented, has been evaluated in different ways to ensure that it is correctly implemented,
it has no errors or pitfalls, and meets the requirements.

Reasoner We used the reasoner Pellet in Protégé to look for inconsistencies in the model, and the results showed
no errors.

OOPS! This tool was used to identify modeling pitfalls in the ontology. We executed the tool several times to
fix the pitfalls, until there were no important ones. Currently, the results of OOPS! show pitfalls from the reused
ontologies, but none important for the newly created terms and axioms. One minor pitfall is returned, P13, regarding
the lack of inverse relationships, which we consider that are not needed in the ontology. The rest of the pitfalls are as
follows: P08 (missing annotations) from DCTERMS; P11 (missing domain or range in properties) for DCTERMS,
DCAT and SKOS; and P20 (misusing ontology annotations) for DCAT.

Themis Themis is able to evaluate whether the requirements are implemented in the ontology. To that end, the
requirements must be provided in a specific syntax or described with the Verification Test Case (VTC) ontology.11

The requirements of the Conceptual Mapping were translated to create the corresponding tests, and were tested in

11https://albaizq.github.io/test-verification-ontology/OnToology/ontology/verification-test-description.ttl/documentation/index-en.html

https://albaizq.github.io/test-verification-ontology/OnToology/ontology/verification-test-description.ttl/documentation/index-en.html
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the tool with success. The requirements and associated test along with the complete set of tests annotated with the
VTC ontology are available in the GitHub repository.12

FOOPS! Additionally, we tried running FOOPS! to check the FAIRness of the ontology, resulting in 73%, which
is acceptable. To improve the score, the ontology should be added to a registry and have more metadata describing
it, and use a persistent base IRI.

With these evaluations, we can conclude that the ontology is correctly encoded and implemented, and that it meets
the requirements specified in Section 4.

5.4. Extensibility

The Conceptual Mapping ontology has been designed as a core ontology. However, as time passes, new require-
ments may emerge. In order to include these new requirements, new modules of the Conceptual Mapping ontology
shall be developed. It is worth mentioning that this is a common practice for ontologies, which is highly suitable for
adapting an existing ontology to new scenarios, by ontology modules specialized for a specific set of requirements.
A clear example of this is the SAREF ontology,13 that has a core module14 and then specific extensions15 for certain
domains, such as energy (SAREF4ENER), buildings (SAREF4BLDG), etc.

In the case of the Conceptual Mappings a sample extension16 is provided to showcase this feature. The extension
focuses on describing CSV, a detailed feature present in some languages but not included in the core specification
presented in previous sections. To this end, the CSVW proposal has been blended as an ontology module linked to
the core Conceptual Mapping ontology. This module is depicted in Fig. 5.

Fig. 5. CSV extension conceptualization.

12https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
13https://saref.etsi.org/
14https://saref.etsi.org/core/v3.1.1/
15https://saref.etsi.org/extensions.html
16http://vocab.linkeddata.es/def/conceptual-mapping-csv

https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
https://saref.etsi.org/
https://saref.etsi.org/core/v3.1.1/
https://saref.etsi.org/extensions.html
http://vocab.linkeddata.es/def/conceptual-mapping-csv
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5.5. Ontology usage example

This section builds a mapping in three steps (data sources in Listing 8, triples in Listing 9 and special statements
in Listing 10) to represent how the proposed language can describe data with different features. The mapping uses
the data sources “coordinates.json” (Fig. 3(b)) and “cities”(Fig. 3(c)) as input and the ontology depicted in Fig. 3(a)
as reference, to create the output RDF shown in Listing 1. Additionally, Appendix A contains a second example to
illustrate different features than the ones represented in the example of this section, to provide more insights about
the expressiveness of this language.

Data sources Listing 8 shows the description of the json file “coordinates.json” indicating the protocol from the
SKOS concept scheme (cmp:https), media type (“application/json”), JSONPath to extract data, access URL
“https://ex.com/geodata/coordinates.json”, and fields that are going to be used in the transformation. There is no
security scheme. The MySQL table “cities” also has no security scheme, the protocol needed is cmp:jdbc, the
database access is specified in the endpoint URL, and the table as an SQL query. The fields are also specified, with
the special case of “zipcodes” that needs a cm:hasNestedFrame to extract multiple values inside the field.

Listing 8. Description with the conceptual mapping of two data sources (a JSON file and a relational database), their access and fields

https://ex.com/geodata/coordinates.json
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Statements Listing 9 contains the rules needed to create instances of the classes eg:Location and eg:City;
and their following attributes: eg:lat and eg:long for the former; eg:zipcode for the latter. To correctly
generate the URI for the instances of eg:City, a replace function inside a concatenate function is needed to
(1) remove the blank spaces in the field “city” and (2) add the field to the base URI “http://ex.com/city/”.

http://ex.com/city/
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Listing 9. Description with the conceptual mapping of the creation of regular statements from the data sources described in Listing 8

Listing 10. Conditional and linking rules described with the conceptual mapping that complement the data source description and regular
statements described in Listing 8 and Listing 9

Special statements Listing 10 describes how a conditional statement and a linking rule are generated. This de-
scription is represented by means of functions. With the property cm:hasBooleanCondition, the conditional
statement declares that the field :year has to be greater than 2020. The linking rule performs the link between
the instances of eg:City and eg:Location with the predicate eg:location, using a distance metric (leven-
shtein function) that has to be greater then a threshold of “0.75”.

6. Conceptual mapping publication and maintenance

The ontology is considered ready for publication when it passes all evaluations. This means that it is correctly
implemented in the formal language (OWL) and meets the requirements.

In order to publish the ontology, the first step required is to create the ontology documentation. We used
Widoco [30], integrated inside the OnToology [2] system, to automatically generate and update the HTML doc-
umentation every time there is a commit in the GitHub repository where the ontology is stored. This documentation
contains the ontology metadata, links to the previous version, a description of the ontology, the diagram, and de-
tailed examples of the capabilities of the language. It is published using a W3ID URL5 and under the CC BY-SA
4.0 license.

The HTML documentation is not the only documentation resource provided. An overview of all resources is
provided in the ontology portal.3 This portal shows in a table the ontologies associated with the Conceptual Mapping
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ontology. For now, the core (Conceptual Mapping) and an extension to describe CSV files in detail (Conceptual
Mapping – CSV Description) are available. For each ontology, links to the HTML documentation, the requirements,
the GitHub repository, the Issue Tracker, and the releases are provided.

The maintenance is supported by the Issue Tracker,17 where proposals for new requirements, additions, deletions
or modifications can be added as GitHub issues. This approach allows authors to review the proposals and discuss
their possible implementation.

7. Conclusion and future work

This paper presents the Conceptual Mapping, an ontology-based mapping language that aims to gather the expres-
siveness of current declarative mapping languages. In order to build this ontology, we first conducted an extensive
analysis of the state-of-the-art mapping specifications (presented as a comparison framework) and mapping chal-
lenges proposed by the community, improving the understanding of current mapping languages and expanding
previous studies on the comparison of language characteristics. Then, this analysis allowed us to develop a unique
model that aims to integrate the common features of existing languages, acknowledging the limitations of repre-
senting the full potential of SPARQL-based languages such as SPARQL-Generate or Facade-X. Next, the approach
was evaluated by validating that the constructs provided by this language can address the requirements extracted
from the two-fold analysis. Thus, we ensure that this language covers the required expressiveness. The language is
formalized as an ontology that is available along with a documentation online.

Our future work lines include exploring the limitations of the current scope and addressing the gap to be able to
represent the expressiveness of SPARQL-based languages. Similarly to a programming language, SPARQL-based
languages can specify “instructions” to describe and transform data that is not accessible by other languages, be-
cause of inner restrictions or simply because they lack the necessary constructs. At some point, modelling constructs
for each specific use case becomes unfeasible, unpractical and very likely, too verbose. Despite the difficulties, we
want to keep updating with modules our ontology with new issues and addressing the limitations to a reasonable
extent. We also want to explore the possibility of implementing this ontology as a common interchange language
for mapping translation purposes [16,37] that we believe can help build bridges toward mapping interoperability.
We also consider the integration of the mapping translation step into the common workflow for constructing vir-
tual and materialized Knowledge Graphs, using this conceptual model as the core resource for carrying out this
process. Furthermore, we want to integrate this ontology into previous work on mapping rules management, Map-
pingPedia [56], with the translation step between different specifications. In this manner, we aim to help users and
practitioners during the selection of mapping languages and engines, not forcing them to select the ones that are
only under their control, but being able to select the ones that best fit their own specific use cases. Finally, we want
to specify the correspondence of concepts between the considered mapping languages and the Conceptual Mapping,
and to formally define the semantics and operators required to perform the mapping translation, adapting previous
works on schema and data translations [3,4].
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Appendix A. Example – Routes

The following example (Listing 11) illustrates features of the ontology that do not appear in the example shown in
Section 5.5. Together, both examples shows the core features of the ontology, further possibilities can be achieved

17https://github.com/oeg-upm/Conceptual-Mapping/issues

https://github.com/oeg-upm/Conceptual-Mapping/issues
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Listing 11. Routes mapping example, uses as input the data sources and ontology in Fig. 6 and outputs Listing 12

by combining the shown constructs. This example shows how to describe a JSON file, “trips.json” (Fig. 6(a))
and CSV file (Fig. 6(b)) following the ontology described by Fig. 6(c). This ontology is composed of one class
trans:Route. The routes are described with the properties trans:lineIdentifier, trans:tripHead
sign, trans:startTime, trans:stopIdentifier and trans:tripIdentifier. The fields created
contain information from different levels of iteration from the JSON file and fields from the CSV file.

The mapping presented joins two sources (:FrameRouteStop). It uses a CombinedFrame, that joins two
SourceFrame, one that describes a json file, “trips.json” (:FrameRoute), and another that describes a csv file,
“route_stop.csv” (:FrameStop). The join is performed by joining the fields :s_route_id and :r_route_id.
The JSON file is retrieved from an API using wotsec:APIKeySecurityScheme, and is retrieved asyn-
chronously every 300000 ms (5 minutes).
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Fig. 6. Data sources (a, b) and reference ontology used for the example represented in Listing 11.

Listing 12. Result from routes mapping represented in Listing 11

Finally, the mapping rules create the values from the data properties of the class trans:Route from two
different sources joined as one frame, separately or in one single object, like :StatementRoute6. Additionally,
:StatementRoute5 creates a list of values for the stops ids using a split function to separate the original value.

Appendix B. Framework comparison of existing mapping languages
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Table 2

Data retrieval and data source expression for the analysed mapping languages from the references stated in Table 1. (*) indicates features not explicitly declared in the language, but that are
implemented by compliant tools

Feature ShExML XSPARQL TARQL CSVW R2RML RML KR2RML xR2RML SPARQL-
Generate

R2RML-F FunUL Helio WoT D-REPR XLWrap D2RML SPARQL-
Anything

SMS2

Retrieval
of data

Streams false false false false false true*a false false true false false false false false false false true false

Syn-
chronous
sources

true true true true true true true true true true true true true true true true true true

Asyn-
chronous
sources

– – – – – – – – Events,
Periodic

– – Periodic – – – – – –

Expressing
data
sources

Security
terms

– – – – Basic
(DB)

Basic
(DB)

Basic
(DB)

Basic
(DB)

– Basic
(DB)

– API Key,
OAuth2,
Bearer,
Basic

API Key,
OAuth2,
Bearer,
Basic

– – Basic
(DB)

– Basic
(DB)

Encoding false false true*b true false true false false false false false true true false false false true

MIME
Type

false false false false false false false false false false false true true false false false true false

Features
describing
data

Iterator,
Queries

– Delimiter,
Separator

Delimiter,
Separator,

Regex

Queries Delimiter,
Regex,
Iterator,
Queries,
Separator

Queries Regex,
Iterator,
Queries

Delimiter,
Regex,
Iterator,
Queries,
Separator

Iterator,
Queries

Iterator,
Queries

Delimiter,
Regex,
Iterator,
Queries,
Separator

Iterator Delimiter,
Regex,
Iterator

Separator Delimiter,
Regex,
Iterator,
Queries

Delimiter,
Regex,
Iterator,
Queries,
Separator

Delimiter,
Regex,
Iterator,
Queries,
Separator

Retrieval
protocol

file,
http(s),

odbc/jdbc

file file file, http(s) file,
http(s),

odbc/jdbc

file,
http(s),

odbc/jdbc

file,
odbc/jdbc

file,
odbc/jdbc

file,
http(s),

odbc/jdbc
Web-

Socket,
MQTT

file,
http(s),

odbc/jdbc

file, http(s) file, any
URI-based

http(s) file file file,
http(s),

odbc/jdbc

file, http(s) file,
odbc/jdbc

Data
formats

Tabular,
Tree,
Graph

Tree
(XML)

Tabular
(CSV)

Tabular Tabular Tabular,
Tree,
Graph

Tabular,
Tree

Tabular,
Tree

Tabular,
Tree, Plain

Text,
Graph

Tabular Tabular,
Graph

Tabular,
Tree, Plain

Text,
Graph

Tree
(JSON)

Tabular
(CSV),

Tree

Tabular
(CSV,
Excel)

Tabular,
Tree, Plain

Text,
Graph

Tabular,
Tree, Plain

Text,
Graph

Tabular,
Tree, Plain

Text,
Graph

aImplemented by RMLSreamer, available at https://github.com/RMLio/RMLStreamer.
bCommand line input option --encoding [65].

https://github.com/RMLio/RMLStreamer
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Table 3

Features for subject, predicate, and object generation of the studied mapping languages from the references stated in Table 1

Feature ShExML XSPARQL TARQL CSVW R2RML RML KR2RML xR2RML SPARQL-
Generate

R2RML-F FunUL Helio WoT D-REPR XLWrap D2RML SPARQL-
Anything

SMS2

Subject Constant IRI BN, IRI BN, IRI IRI BN, IRI BN, IRI – BN, IRI BN, IRI BN, IRI BN, IRI IRI IRI BN, IRI BN, IRI BN, IRI BN, IRI BN, IRI

Dynamic RDF
resource

IRI BN, IRI BN, IRI IRI BN, IRI BN, IRI IRI BN, IRI IRI BN, IRI BN, IRI IRI – BN, IRI BN, IRI BN, IRI IRI BN, IRI

Data
reference

1..* Ref
1..* Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

1..* Ref
1..* Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

– 1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

1..* Ref
1..1 Format

Data
sources

1..* 1..* 1..1 1..1 1..1 1..1 1..* 1..* 1..* 1..1 1..1 1..* – 1..1 1..1 1..1 1..* 1..1

Hierarchy
iteration

true true false false false true true false true false false false false true false true true true

Functions – 1..* 1..* – – 1..* 1..* – 1..* 1..* 1..* 1..* – 1..* 1..* 1..* 1..* 1..*

Predicate Constant IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI

Dynamic RDF
resource

– IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI IRI – IRI – IRI IRI IRI

Data
reference

– 1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

– 1..* Ref
1..1 Format

– 1..* Ref
1..1 Format

1..* Ref
1..* Format

–

Data
sources

– 1..1 1..1 1..1 1..1 1..1 1..* 1..1 1..* 1..1 1..1 1..* – 1..1 – 1..1 1..* –

Hierarchy
iteration

false false false false false true true false false false false false false true false true true false

Functions – 1..* 1..* – – 1..* 1..* – 1..* 1..* 1..* 1..* – 1..* – 1..* 1..* –

Object Constant IRI, Literal BN, IRI,
Literal

BN, IRI,
Literal

IRI, Literal IRI, Literal IRI, Literal IRI, Literal BN, IRI,
Literal, List,

Container

BN, IRI,
Literal, List

IRI, Literal IRI, Literal IRI, Literal BN, IRI,
Literal, List,

Container

BN, IRI,
Literal

IRI, Literal BN, IRI,
Literal

BN, IRI,
Literal, List

BN, IRI,
Literal

Dynamic RDF
resource

IRI, Literal,
Lists

BN, IRI,
Literal

BN, IRI,
Literal

IRI, Literal BN, IRI,
Literal

BN, IRI,
Literal

IRI, Literal,
List

BN, IRI,
Literal, List,

Container

BN, IRI,
Literal, List

BN, IRI,
Literal

BN, IRI,
Literal

IRI, Literal IRI, Literal BN, IRI,
Literal

IRI, Literal BN, IRI,
Literal

BN, IRI,
Literal, List

BN, IRI,
Literal

Data
reference

1..* Ref
1..* Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

1..* Ref
1..* Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

– 1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..1 Format

1..* Ref
1..* Format

1..* Ref
1..1 Format

Data
sources

1..* 1..* 1..1 1..1 1..1 1..1 1..* 1..* 1..* 1..1 1..1 1..* – 1..1 1..1 1..1 1..* 1..1

Hierarchy
iteration

true true false false false true true false true false false false false true false true true true

Functions 1 1..* 1..* – – 1..* 1..* – 1..* 1..* 1..* 1..* – 1..* 1..* 1..* 1..* 1..*

Datatype and language static,
dynamic

static,
dynamic

static,
dynamic

static static static,
dynamic

– static static static static static,
dynamic

static static – static static static
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Table 4

Statements, linking rules, and function properties of the studied mapping languages from the references stated in Table 1

Feature ShExML XSPARQL TARQL CSVW R2RML RML KR2RML xR2RML SPARQL-
Generate

R2RML-F FunUL Helio WoT D-REPR XLWrap D2RML SPARQL-
Anything

SMS2

Statements Assign to named
graphs

static – – – static,
dynamic

static,
dynamic

static static – static,
dynamic

static,
dynamic

– – – static static,
dynamic

– –

Retrieve data from one
source

true true true true true true true true true true true true true true true true true true

Retrieve data from one
or more sources

true true false true false false false false true false false true false true false true true false

Allow conditions to
form statements

true true true false false false false false true false false false false false true true true false

Linking rules Use one data reference true true false true true true false true true true true true true true false true true false

Use one or more data
reference

true false false false false true false true true false false true false true false false true false

No condition to link true true false false true true false true true true true true false false false true true false

Link with one
condition

true true false false true true false true true true true true false true false true true false

Link with one or more
conditions

false true false false true true false true true true true true false true false true true false

Use only equal
function in condition

true true false false true true false true true true true true false true false true true false

Use any similarity
function in condition

false true false false false true false false false false false true false false false true true false

Functions Cardinality 1:1, N:1 1:1, N:1,
1:N, N:M

1:1, N:1 – – 1:1,
N:1*a

1:1, N:1,
1:N, N:M

– 1:1, N:1,
1:N, N:M

1:1, N:1 1:1, N:1 1:1, N:1 – 1:1, N:1,
1:N, N:M

1:1, N:1,
1:N, N:M

1:1, N:1,
1:N, N:M

1:1, N:1,
1:N, N:M

1:1, N:1,
1:N, N:M

Nested functions false true true false false true*a false false true true true true false true true true true true

Functions belong to a
specification

true false true false false true*a false false true false false true false false true false true true

Declare own functions true true false false false true*a false false true true true false false false true true true false

aWith the Function Ontology (FnO) [21].
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