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Abstract. Knowledge graphs are often constructed from heterogeneous data sources, using declarative rules that map them to a
target ontology and materializing them into RDF. When these data sources are large, the materialization of the entire knowledge
graph may be computationally expensive and not suitable for those cases where a rapid materialization is required. In this work,
we propose an approach to overcome this limitation, based on the novel concept of mapping partitions. Mapping partitions are
defined as groups of mapping rules that generate disjoint subsets of the knowledge graph. Each of these groups can be processed
separately, reducing the total amount of memory and execution time required by the materialization process. We have included
this optimization in our materialization engine Morph-KGC, and we have evaluated it over three different benchmarks. Our
experimental results show that, compared with state-of-the-art techniques, the use of mapping partitions in Morph-KGC presents
the following advantages: (i) it decreases significantly the time required for materialization, (ii) it reduces the maximum peak of
memory used, and (iii) it scales to data sizes that other engines are not capable of processing currently.
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1. Introduction

The amount of data that is being published in RDF has been steadily increasing in recent years. The generalized
acceptance and use of knowledge graphs (KGs) [21] in a wide range of domains and organizations has contributed
to this increase. Given that most of the data available inside organizations are structured in heterogeneous data
formats, data integration techniques are often used in the data transformation and homogenization process required
for knowledge graph construction (KGC).

KGC engines can be considered as data integration systems DIS = 〈O, S,M〉 where O is the global schema
expressed in terms of an ontology (or network of ontologies), S is a set of input data sources and M are the map-
ping rules describing the relationships between O and S [30]. Mappings are usually expressed as declarative rules,
using standard specifications such as the W3C Recommendation R2RML [9] and its well-known extension for data
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sources beyond relational databases (RDBs), RML [14]. The construction of KGs can be done using a material-
ization process or by virtualization [34]. Materialization (also known as semantic extract-transform-load) uses the
rules in M to transform all data into RDF. Virtualization uses M to translate SPARQL queries into the native query
language of S, i.e., data integration is performed on-the-fly during query processing [41].

There are many techniques and associated implementations that can be used to create knowledge graphs inte-
grating heterogeneous data sources using declarative mapping rules [3,12,15,26,31,33,38,39]. In the specific case
of materialization, different optimizations have been proposed to speed up the materialization process in complex
data integration scenarios (e.g., high rate of duplicates, large data sources, or transformation functions). Approaches
such as SDM-RDFizer [22], RMLStreamer [17] and FunMap [23] propose optimizations to enhance the perfor-
mance of the materialization process. In our previous work [1], in which we analyzed several KGC engines, the
experimental evaluation suggests that more efficient solutions are still needed, especially when the volume of data
is large.

Problem and objectives We address the problem of scalability in knowledge graph construction from heteroge-
neous data sources using declarative mapping rules. Our main objective is to propose the theoretical background
and a set of techniques that can enhance the process of KGC in complex data integration systems, increasing the
performance in both time and memory consumption.

Proposed approach We present the novel concept of mapping partitions, which can be used to reduce the time
required for the materialization of a knowledge graph and the peak amount of memory required in the process.
Mapping partitions group rules in the input mapping documents ensuring the generation of disjoint sets of RDF
triples by each of them. The experimental evaluation reveals that our proposal outperforms state-of-the-art engines
significantly in terms of execution time and memory consumption, as well as our own implementation in the absence
of this optimization.

Contributions (i) The novel concept of mapping partition, which allows the identification of rules that produce
disjoint sets of RDF triples; (ii) algorithms to find a partition of a mapping document and to remove redundant self-
joins within mapping documents; (iii) Morph-KGC, a scalable interpreter of R2RML and RML that implements
mapping partition-based construction of the knowledge graph; (iv) an empirical evaluation of our approach and
a comparison against four well-known KGC engines using three different benchmarks (GTFS-Madrid-Bench [6],
SDM-Genomic-Datasets [22], and NPD [27]).

The remainder of the article is structured as follows. Section 2 introduces R2RML and RML, and presents a set
of concepts, notations, and conventions that will be used throughout the rest of the paper. In Section 3 we delve
into the foundations of mapping partitions. Section 4 presents the experimental evaluation comparing Morph-KGC
with other R2RML and RML engines. Finally, Section 5 summarizes the related work and Section 6 wraps up and
outlines future work.

2. Preliminaries

In this section, we first provide some background by introducing R2RML and RML, the mapping languages that
this work focuses on. Then, we present some concepts, notations, and conventions that will be used in the following
sections.

2.1. R2RML and RML

R2RML [9] is the W3C Recommendation declarative mapping language that links relational databases to the
RDF data model. RML [14] is a well-known extension of R2RML that supports input data formats beyond RDBs
(e.g., CSV, JSON, or XML). As RML is a superset of R2RML, in this section we present the main notions of these
mapping languages focusing solely on RML.

An RML mapping is represented as an RDF graph. An RML mapping document is an RDF document that encodes
an RML mapping, and it consists of one or more triples maps. A triples map has one logical source and contains the
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rules to generate the RDF triples. A triples map consists of one subject map and zero or more predicate-object maps.
Each predicate-object map has in turn, one or more predicate maps and object maps. Subject, predicate, and object
maps are term maps specifying how to generate the RDF terms in the homonymous positions of the triples. Term
maps can be constant-valued (always generate the same value), reference-valued (the values are obtained directly
from the logical source, e.g., a column in a table of an RDB), or template-valued (which generate RDF terms with
some parts given by constants and others given by references). A template-valued term map comprises a string
template, that defines how RDF terms are generated from one or more references (enclosed in curly braces) over
the logical source. Constant shortcut properties are a compact method of expressing constant-valued term maps.
A referencing object map allows to generate triples in which the object map is given by the subject map of another
triples map, known as the parent triples map. A join condition is used when the logical sources of both triples maps
are different. The evaluation of a triples map1 produces an RDF graph whose triples consist of the generated RDF
terms that result from applying its subject, predicate and object maps to the input logical source.

2.2. Assumptions, notation and conventions

In our work, we rely on the normalization of mapping rules as defined in [36]. A normalized mapping does not
contain shortcuts, it uses predicate-object maps to type resources, and all its triples maps contain a single predicate-
object map with one predicate map and one object map. This is not restrictive as any R2RML or RML document
can be normalized [36].

We target KGC where the resulting RDF graph does not contain duplicated triples, as assumed by most engines
[3,12,22]. Given that an RDF graph is a set of triples [8], the presence of duplicated triples in the serialization of
the RDF graph does not affect the final result. We add this restriction as it has an impact on memory and time
consumption, as well as on the size of the resulting files.

We use [R2]RML to refer to R2RML and RML. Our proposal may be easily extended to other R2RML-based
mapping languages. We refer to R2RML columns and RML references indistinctly as references. We refer to RDF
triples and quads indistinctly. TM, SM, POM and OM denote triples map, subject map, predicate-object map and
object map respectively.

Let T be a term map, T the set of all possible term maps, and P the set of positions that the RDF terms gen-
erated by the term map T can occupy in a quad, i.e., {subject, predicate, object, graph}. We define position as a
function mapping T to P. Assume T to be the set of possible types of term maps, i.e., {IRI, Literal, BlankNode},
then type is a function mapping T to T. Assume V to be the set of possible values that a term map can have,
i.e., {constant, reference, template}, then value is a function that maps T to V. Assume C to be the set of possi-
ble constant values that a constant-valued term map can take, then we define const as a function mapping T′ to
C where T′ = {T ∈ T | value(T ) = constant}. Let I be the set of all possible values of the specified language
tags or specified datatypes (as defined in [9]), then we define literaltype as a function mapping T′′ to I where
T′′ = {T ∈ T | type(T ) = Literal}.

3. The Morph-KGC approach

In this section, we introduce the foundations of Morph-KGC, an [R2]RML engine for constructing knowledge
graphs at scale. First, we introduce self-join elimination at the mapping level. Next, we formalize the novel concept
of mapping partitions. After that, we propose two algorithms to generate mapping partitions of [R2]RML documents
and tackle KGC based on them. Finally, we validate the feasibility of this approach over different benchmarks and
real use cases.

1https://www.w3.org/TR/r2rml/#generated-triples

https://www.w3.org/TR/r2rml/#generated-triples
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3.1. Self-join elimination at the mapping level

Most virtualization engines in the state of the art (e.g., [3,35]) remove redundant self-joins in the SQL queries that
they generate, with the objective of making query evaluation more efficient. However, most materialization engines
do not address self-joins that can occur in a mapping, which in most cases are executed locally by the engine.

Definition 1 (Redundant self-join in an [R2]RML document). A redundant self-join in an [R2]RML document
appears when a referencing object map joins two triples maps with the same logical source and it has join conditions
with the same unique references.

Redundant self-joins in an [R2]RML document can be removed by replacing the referencing object maps with
object maps given by the subject map of the parent triples map, producing the same set of RDF triples.

Example 1. Consider the R2RML mapping rules with a self-join taken from GTFS-Madrid-Bench [6]:

<#shapesTM>
rr:logicalTable [ rr:tableName "SHAPES" ];
rr:subjectMap [

rr:template "metro:shape/{shape_id}"
];
rr:predicateObjectMap [

rr:predicate gtfs:shapePoint;
# referencing object map (self-join)
rr:objectMap [

rr:parentTriplesMap <#shapePoints> ;
rr:joinCondition [

rr:child "shape_id";
rr:parent "shape_id";

];
];
# object map (no join)
rr:objectMap [

rr:template "metro:shape_point/
{shape_id}-{shape_pt_sequence}"

]
].

<#shapePointsTM>
rr:logicalTable [ rr:tableName "SHAPES" ];
rr:subjectMap [

rr:template "metro:shape_point/
{shape_id}-{shape_pt_sequence}"

].

Both triples maps use the same database table, and the referencing object map uses the same unique column to
join both triples maps. This can be transformed into an object map without a join condition (the second object map
in the triples map #shapesTM).

As defined in the R2RML Recommendation [9], the effective SQL query of the referencing object map in the
triples map #shapesTM of Example 1 is:

SELECT * FROM
( SELECT * FROM SHAPES ) AS child,
( SELECT * FROM SHAPES ) AS parent

WHERE child.shape_id=parent.shape_id

Removing this kind of SQL joins is widely studied in the literature, known as semantic query optimization [4,39].
Under the assumption that the join references in a mapping are unique, self-joins can be eliminated in mapping
documents for any data format.
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Algorithm 1: Canonicalization of an [R2]RML document, M
Result: Canonical M

1 M = normalize(M) // see [36]
2 for TM ∈ M do
3 for OM ∈ TM do
4 if isRefOM(OM) then
5 parentTM = OM.parentTM
6 if TM.source == parentTM.source then
7 removeJoin = True
8 for joinCond ∈ OM do
9 if joinCond.child �= joinCond.parent then

10 removeJoin = false
11 end
12 if removeJoin then
13 OM = parentTM.SM
14 end
15 end

The impact of redundant self-joins in materialization engines has been previously reported by us in [1]. We
propose to remove redundant self-joins within the mapping documents to improve the performance of KGC engines
without the need to modify their current materialization procedures. In this way, an [R2]RML document without
redundant self-joins does not contain referencing object maps involving two triples maps with the same logical
source and with the same unique references in the join conditions. This redundant self-join elimination approach
is independent from the underlying data format, as opposed to the previous techniques (e.g., [3,35] address RDBs
only).

Definition 2 (Canonical [R2]RML document w.r.t. joins). A canonical [R2]RML document is a normalized
[R2]RML document without redundant self-joins.

An [R2]RML document and its canonicalization are equivalent, this entails that any transformation of a map-
ping document comprised in Definition 2 (i.e., normalization and redundant self-join elimination) also generates an
equivalent mapping document. Algorithm 1 obtains the canonicalization of any mapping document. First, it normal-
izes the document (see [36]). Next, it discards referencing object maps with different logical sources in the triples
map and the parent triples map (lines 4–6). After that, the algorithm checks that the fields in all join conditions
match (lines 7–11). When that happens, the self-join can be removed, and the object map is replaced by the subject
map of the parent triples map (lines 12–13).

3.2. Mapping partitions

Given an initial set of mapping rules, we aim at identifying those that produce disjoint sets of triples, i.e.,
the initial mapping rules will be grouped so that those in different groups generate sets of RDF triples that do
not overlap. In the following, when we refer to the sets of generated triples, we consider them to be composed
of all the triples that a mapping rule, group of mappings rules, or mapping document generate given a data
source.

Definition 3. (Mapping Partition of an [R2]RML document). Let M be a normalized [R2]RML document with a
set of mapping rules m1, m2, . . . , mn that generates the triple set T . Then, a mapping partition P of M is a set of
subsets of M, designated as mapping groups G1, G2, . . . , Gk , that generate the triple sets t1, t2, . . . , tk , satisfying the
following conditions:



6 J. Arenas-Guerrero et al. / Morph-KGC: Scalable knowledge graph materialization with mapping partitions

–
⋂k

i=1 ti = ∅, i.e., the triple sets generated by each mapping group are disjoint.
–

⋃k
i=1 ti = T , i.e., the union of the triple sets generated by all the mapping groups is equivalent to T .

Multiple mapping partitions can exist for M. The most trivial mapping partition is the one with only
one mapping group (i.e., the singleton set), and we denote it with P∅. Mind that this definition of map-
ping partition does not entail that a mapping group can be considered as a new mapping document. A map-
ping rule in a mapping group can still have a join condition involving a rule from a different group of map-
pings.

Example 2. Consider the mapping rules (taken from [9]):

<#TM1>
rr:logicalTable [ rr:tableName "DEPT" ];
rr:subjectMap [

rr:template "ex:department/{DEPTNO}";
];
rr:predicateObjectMap [

rr:predicate ex:name;
rr:objectMap [ rr:column "DNAME" ];

].
<#TM2>

rr:logicalTable [ rr:tableName "EMP" ];
rr:subjectMap [

rr:template "ex:employee/{EMPNO}";
];
rr:predicateObjectMap [

rr:predicate ex:department;
rr:objectMap [

rr:parentTriplesMap <#TM1> ;
rr:joinCondition [

rr:child "DEPTNO";
rr:parent "DEPTNO";

];
];

].

Both mapping rules can be assigned to different mapping groups as they do not generate common triples, given
that the predicates are constants and that they are different. Nonetheless, the mapping rule in #TM2 is dependent on
#TM1, since the object map of the former is given by the subject map of the latter, and this results in a join depen-
dency between those mapping groups. This prevents both mapping groups from becoming independent mapping
documents.

Figure 1 depicts an example of mapping partitioning that involves three initial mapping documents with eleven
normalized mapping rules in total. Six mapping groups are formed, which have between one and three mapping
rules. As can be seen, there are join dependencies between different groups of mappings, nonetheless, they are still
disjoint in terms of the set of triples that they generate.

We now delve into the rationale to obtain partitions of a mapping document M. This is done incrementally by
first examining the disjointness of term maps, next of mapping rules, and finally of mapping groups.

Definition 4 (Prefix of a template). We define the prefix of a template as the constant (or immutable) part of its
string template preceding the first reference in it. If a template starts with a reference, then its prefix is empty (∅).
Note that this is different to the notion of prefix declaration in RDF documents.

Example 3. Consider the following string templates along with their prefixes:

Template: ex:employee={EMPNO}/department={DEPTNO}
Prefix: ex:employee=



J. Arenas-Guerrero et al. / Morph-KGC: Scalable knowledge graph materialization with mapping partitions 7

Fig. 1. Mapping Partition. Mapping partition of three mapping documents with eleven normalized mapping rules in total. The mapping partition
is composed of six mapping groups, which have between one and three mapping rules. In addition, there are two join dependencies among
different groups of mappings.

Template: ex:roles/{ROLE}
Prefix: ex:roles/

Template: {EMPNO}-{DEPTNO}
Prefix: Ø

The prefixes are obtained by eliminating the first reference and what follows. The beginning of the latter string
template is data source-dependent and therefore its prefix is ∅.

Definition 5 (Invariant of an [R2]RML term map). The invariant I of a term map T is the longest common initial
part of all the RDF terms that can be generated by T . I is an intrinsic property of T and remains immutable
regardless of data coming from the input sources. I depends on V, and it is obtained as follows:

• If value(T ) = constant, then I = const(T ).
• If value(T ) = template, then I = prefix(T ).
• If value(T ) = reference, then I = ∅.

Notation 1 (Invariants). For simplicity and clarity, we define the following notation for invariants:

• I∅ denotes the empty invariant.
• I1 < I2, denotes that the length of I1 is shorter than I2, with the length given by the number of characters of

the invariants.
• I1 ⊂ I2, denotes that I1 matches the beginning of I2. This entails I1 < I2.

Example 4. Consider the three templates in Example 3 and their invariants I1, I2 and I3 respectively (given by
their prefixes). Then, the following applies:

• I3 = I∅.
• I3 < I2 < I1.
• I3 ⊂ I1, I3 ⊂ I2, I2 �⊂ I1 and I1 �⊂ I2.

Definition 6 (Disjoint Term Maps). Let T1 and T2 be two term maps and I1, I2 their respective invariants. T1 and
T2 are disjoint iff the sets of RDF terms that they can generate are in turn disjoint, regardless of the input data. The
disjoint property for T1 and T2 applies iff at least one of the following conditions hold:

1. type(T1) �= type(T2).
2. I1 �= I2, I1 �⊂ I2 and I2 �⊂ I1.
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3. I1 < I2, type(T1) = constant, or vice versa.
4. type(T1) = type(T2) = Literal, and literaltype(T1) �= literaltype(T2).

Disjointness of term maps depends on: T, invariants, and I. Term maps with different T enforces the generation
of distinct (disjoint) RDF terms (first condition). We focus now on term maps with similar T. For term maps with
distinct invariants, the generated triple sets are disjoint if none of the invariants matches the beginning of the other
(second condition). The latter is necessary to not make any assumptions on data coming from the sources. Note that
in this case I∅ prevents term map disjointness to apply. When the value of the term map with the shortest invariant
is constant, the second condition can be relaxed, and it is only necessary that the invariant of this term is shorter than
the other invariant (third condition). This is because the term map with the shortest invariant is not dependent on
data and the RDF terms will always be shorter (and therefore distinct) than those generated by the other term map.
For the specific case that two term maps generate literals, they are disjoint if they have distinct I (fourth condition).
This is because RDF literals with different datatypes or language tags are different. This is also true for the empty
literal type, e.g., a typed literal will always be different from a non-typed literal. Abusing of notation, given two
term maps T1 and T2, we use T1 ∩ T2 = ∅ to denote that they are disjoint.

Definition 7 (Disjoint Mapping Rules). Two mapping rules m1, m2 that generate triple sets t1, t2 respectively, are
disjoint iff they do not generate common triples, i.e., t1 ∩ t2 = ∅, regardless of the input data sources. Disjointness
of m1 and m2 can be determined as follows:

∃T1 ∈ m1, ∃T2 ∈ m2 | T1 ∩ T2 = ∅,

position(T1) = position(T2)

For two mapping rules to be disjoint, it is required that at least two position-wise term maps are disjoint. This
is true because once two triples have a different subject, predicate, object or graph then the triples are immediately
distinct. Abusing of notation, given two mapping rules m1 and m2, we use m1 ∩ m2 = ∅ to denote that they are
disjoint.

Definition 8 (Disjoint Mapping Groups of an [R2]RML document). Two mapping groups G1 and G2 of M are
disjoint iff they generate disjoint sets of triples. This property holds when all the mapping rules in G1 are disjoint of
all the mapping rules in G2. As a consequence, a mapping rule cannot belong simultaneously to disjoint mapping
groups. Formally:

∀m1 ∈ G1,∀m2 ∈ G2 | m1 ∩ m2 = ∅

Definition 9 (Maximal Mapping Partition of an [R2]RML document). The maximal mapping partition of M (de-
noted with Pmax) is the one with the largest number of mapping groups.

Given a mapping document, its maximal mapping partition is not necessarily unique, i.e., there may be several
maximal mapping partitions for the original mapping document. When all the mapping rules in a mapping document
are disjoint, each mapping group in Pmax is a singleton set.

3.3. Mapping partition-based knowledge graph construction

Knowledge graph construction can leverage mapping partitions to reduce execution time and memory consump-
tion. Before this, a partition of the mapping needs to be performed. We propose Algorithm 2, which generates partial
mapping partitions by P, and aggregates them for further partitioning. The purpose of this algorithm is to find a good
partition (i.e., with a high number of mapping groups) while keeping it simple and with a low computational cost.

The outer for-loop (line 3) of Algorithm 2 iterates four times to retrieve partial mapping partitions by subject,
predicate, object and graph. The normalized mappings are sorted lexicographically by the T, I and invariants (line 5)
in the position being processed. Term maps for each P are then iterated (line 10). The first condition in Definition 6
is fulfilled with lines 12–15, that create a new G when a T with a different T is reached. The fourth condition in
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Algorithm 2: Partial-Aggregations Partitioning of an [R2]RML document, M
Result: P of M

1 M = normalize(M)

2 // Repeat for subj., pred., obj., and graph
3 for p ∈ P do
4 // Lexicographic sort
5 M = sortByTermTypeAndLitTypeAndInv(M, p)

6 curTermType = ∅
7 curLitType = ∅
8 curGroup = 0
9 // Iterate over TMs in M with a certain P

10 for T ∈ M[p] do
11 I = invariant(T )

12 if type(T ) �= curTermType then
13 curTermType = type(T )

14 curInv = ∅
15 curGroup + +
16 else if type(T ) = Literal ∧ literaltype(T ) �= curLitType then
17 curLitType = literaltype(T )

18 curInv = ∅
19 curGroup + +
20 else
21 if allTMsConstants(M, p) ∧ curInv < I then
22 curGroup + +
23 else if curInv �⊂ I then
24 curGroup + +
25 curInv = I
26 T .group = curGroup
27 end
28 end
29 P = aggregatePartialPartitions(M)

Definition 6 is satisfied with lines 16–19, which create a new a new G if I differs from that of the previous T . If it was
not possible to generate a new G with the former, we proceed to partition by invariant. When all the term maps in a
specific P have constant values (line 21), the third condition in Definition 6 can be applied. Otherwise, it is checked
if condition 2, which is more restrictive, is fulfilled (line 23). The final P is the result of aggregating the partial
mapping partitions by P (line 29), e.g., a mapping rule with partial mapping partitions subject(4), predicate(23),
object(11) and graph(1) would be assigned the final partition 4–23–11–1.

The time complexity of Algorithm 2 is O(n log n), where n is the number of mapping rules. This is because the
outer for-loop can be removed by repeating its inner code four times (once per each P). The complexity is then
determined by the lexicographic sorting of the mapping rules.

We also propose Algorithm 3 which generates the maximal mapping partition of an [R2]RML document, i.e., it
solves the problem of finding Pmax of a mapping document. The assumption here is that exploring every possible
mapping partition of an [R2]RML document guarantees obtaining the maximal one. To do so, it considers all or-
derings of P (line 3) and iterates over them (line 4). Partitioning is done independently by G (lines 6–7), thus the
aggregation of the partial partitions is done before (line 5) to generate these groups. Once the full partition has been
created for an order of P (line 10), it is checked whether it has more groups than any other previously created (lines
11–12). Finally, the partial mapping partitions are reset (line 13) to prepare them for the next order processing.
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Algorithm 3: Maximal Partitioning of an [R2]RML document, M
Result: Pmax of M

1 M = normalize(M)

2 Pmax = ∅
3 for order ∈ permutations(P) do
4 for p ∈ order do
5 P = aggregatePartialPartitions(M)

6 for G ∈ P do
7 Apply lines 4–27 of Algorithm 2 to mapping rules in G
8 end
9 end

10 P = aggregatePartialPartitions(M)

11 if size(P) > size(Pmax) then
12 Pmax = P
13 M = resetPartition(M)

14 end

The time complexity of Algorithm 3 is upper bounded by O(n log n), where n is the number of mapping rules.
The worst case for lines 6–7 happens when the mapping partition has only one mapping group and they all need
to be sorted (line 5 of Algorithm 2). It must be noted that lines 3–4 do not affect the time complexity since they
are fixed by P. Although the time complexity of Algorithms 2 and 3 are similar, the latter needs to perform more
operations, since it considers every permutation of P.

The construction of a knowledge graph based on a mapping partition can be done in two different ways. The first
one (Fig. 2a) processes each mapping group sequentially. Hence, only the triples of a single mapping group are kept

Fig. 2. Mapping partition-based KGC. Example of sequential and parallel processing of a mapping partition for constructing a knowledge
graph. While the former creates the KG by processing one mapping group at a time, reducing memory consumption, the latter generates triples
for several mapping groups simultaneously, reducing execution time.



J. Arenas-Guerrero et al. / Morph-KGC: Scalable knowledge graph materialization with mapping partitions 11

in memory simultaneously to remove duplicated triples. Memory usage is bounded by the largest group of mappings
(in terms of the number of triples that it generates). The second one (Fig. 2b) processes each group of mappings in
parallel. As a consequence, the execution time is reduced at the cost of increasing the maximum memory required,
as multiple triple sets of different groups of mappings are maintained in memory at the same time.

3.4. Significance of mapping partitions

The performance of partition-based KGC strongly depends on the ability to partition mapping documents. If
the conditions required to generate mapping partitions are not generally met, then mapping partitioning would
not be feasible in practice (for instance, I∅ prevents partitioning in the general case). In addition, the ability to
generate a high number of mapping groups affects the improvement in the performance. In general, a higher number
of mapping groups entails a higher parallelization capacity (bounded by the number of CPU cores), and a lower
number of mapping rules in each of the groups, and therefore less memory consumption in the case of sequential
processing.

We have compiled information on mapping partitioning for several well-known benchmarks (namely, NPD [27],
BSBM [2], GTFS-Madrid-Bench [6] and LSLOD [18]), the DevOps ICT knowledge graph [7], and other real uses
cases from the KGC W3C Community Group2 in Table 1. We have included whether all the predicate maps are
constant-valued, so that the third condition in Definition 6 applies. We select predicate maps for this purpose because
in real settings constant-valued term maps usually appear in this position (and in graph maps, but they are not used
in the selected cases). The number of mapping groups and the maximum number of mapping rules in a group have
been obtained using Algorithms 2 and 3. In all cases it has been possible to obtain a mapping partition beyond P∅.
In most of the cases the partitioning conditions are very advantageous, and low #mappingrules

#groups ratios as well as small
groups of mappings (with few mapping rules) are obtained. It can also be observed that both algorithms obtain a
similar number of mapping groups in many cases. The most significant difference is found in the case of Data Hub
– Ontopic, for which Algorithm 3 obtains a partition with a number of groups more than three times higher and
drastically reduces the number of mapping rules in the largest group.

Table 1

Mapping partitioning of benchmarks and real use cases

Benchmark or Real Use Case All pred. constants # mapping rules Partial-aggregations (Alg. 2) Maximal (Alg. 3)

# G max # rules in G # G max # rules in G
GTFS-Madrid-Bench Yes 86 83 2 84 2

LSLOD – Bio2RDF Yes 182 117 37 117 37

LSLOD – Linkedct Yes 143 126 14 126 14

LSLOD – TCGA Yes 2450 388 380 409 55

LSLOD – Dailymed Yes 261 212 18 212 18

NPD Yes 1177 477 116 745 14

BSBM Yes 75 57 4 62 3

Open Cities – UPM Yes 122 99 6 99 6

Btw Our Worlds – IDLab Yes 62 47 4 47 4

SDM-Genomics – TIB Yes 169 105 8 105 8

Drugs4Covid – UPM Yes 75 27 29 38 19

Data Hub – Ontopic Yes 270 69 83 232 6

DevOps ICT KG Yes 326 299 3 299 3

2https://github.com/kg-construct/use-cases

https://github.com/kg-construct/use-cases


12 J. Arenas-Guerrero et al. / Morph-KGC: Scalable knowledge graph materialization with mapping partitions

4. Empirical evaluation

In this section, we experimentally evaluate our proposal. The research questions that we aim to answer are:
RQ1: What is the impact of mapping partitions in the execution time and the memory consumption during the
materialization of KGs? RQ2: How does the number of groups in a mapping partition affect the materialization
process? RQ3: What are the benefits of this approach for constructing KGs at scale w.r.t. state-of-the-art techniques?
In the following, we describe the setup of the evaluation.

Benchmarks We evaluate our proposal on three different testbeds. First, we use GTFS-Madrid-Bench [6], a bench-
mark in the transport domain, for testing the performance and scalability of our proposal over different tabular data
formats and sizes. After that, we use the SDM-Genomic-Datasets [22] from the biomedical domain to evaluate our
proposal over different mapping configurations. Finally, we use the Norwegian Petroleum Directorate (NPD) bench-
mark [27], from the energy domain, to compare different configurations of Morph-KGC. We have used MySQL 8.0
as DBMS for RDB. The NPD benchmark provides the mappings in R2RML, the SDM-Genomic-Datasets in RML,
and GTFS-Madrid-Bench provides the mappings in both languages.

Engines We use Morph-KGC v1.1.03 and consider five configurations of it: (i) Morph-KGC as the baseline (with-
out mapping partitioning); (ii) Morph-KGCp, which uses partial-aggregations for mapping partitioning and sequen-
tial processing; (iii) Morph-KGCp

+, which uses partial-aggregations for mapping partitioning and parallel process-
ing, (iv) Morph-KGCm which uses maximal partitioning and sequential processing; and (v) Morph-KGCm+ which
uses maximal partitioning and parallel processing. We also compare our proposal against state-of-the-art KGC en-
gines. Based on the results reported in [1], we select two R2RML engines, Ontop v4.1.0 and R2RML-F v1.2.3, and
two RML interpreters, SDM-RDFizer v4.1.1 and Chimera v2.1. In our evaluation, we consider relational databases
and CSV files, SDM-RDFizer and R2RML-F can process both of them, Ontop only processes the former and
Chimera only the latter. It is important to mention that both selected RML processors parallelize the execution of
the mappings.

Metrics Execution time: Elapsed time spent by an engine to complete the construction of a KG; it is measured
as the absolute wall-clock system time as reported by the time command of the Linux operating system. Memory
consumption: The memory used by an engine to construct the KG measured in time slots of 0.1 seconds. In addition,
we have verified that the generated RDF are the same for all engines in terms of the number of triples and its
correctness. All experiments were executed three times and the average execution time and memory consumption
are reported. A timeout of 24 hours is used. The experiments are run on a CPU Intel(R) Xeon(R) Silver 4216 CPU
@ 2.10GHz, 20 cores, 128 GB RAM, and a SSD SAS Read-Intensive 12 GB/s. The absolute values obtained for
these metrics are available online4 and we use a logarithmic scale for the figures in this section.

4.1. GTFS-Madrid-Bench

We consider two distributions of the GTFS-Madrid-Bench based on the data format: GTFScsv and GTFSrdb.
We have also generated different data sizes of these distributions considering the scaling factors: 1, 10, 100, and
1000. As reported in Table 1, the partial-aggregations and maximal partitioning algorithms return very similar
mapping partitions (differing only in one mapping group). Thus, in this experiment, we only take into account
partial-aggregations for mapping partitioning, avoiding the extra computational cost of maximal partitioning. While
the performance of Morph-KGC and Ontop are not impacted by self-joins because they remove them, the rest of
the considered engines are extraordinarily affected by them. For this reason, we have manually removed self-joins
from the original mappings. Mind that Ontop is only able to process GTFSrdb and Chimera GTFScsv.

The impact of mapping partitions on the materialization of large input data sources can be observed in Fig. 3.
Regarding memory consumption, we can observe that the baseline, Morph-KGC, follows a growing trend over time.
The reason is that it keeps the entire KG in memory to avoid the generation of duplicate triples. Indeed, Fig. 3b shows

3https://github.com/oeg-upm/morph-kgc
4https://doi.org/10.5281/zenodo.6542009

https://github.com/oeg-upm/morph-kgc
https://doi.org/10.5281/zenodo.6542009


J. Arenas-Guerrero et al. / Morph-KGC: Scalable knowledge graph materialization with mapping partitions 13

Fig. 3. Morph-KGC over GTFS-Madrid-Bench. Memory over time in the materialization of GTFSrdb for three different configurations of the
Morph-KGC engine: without mapping partitions (Morph-KGC), with mapping partitions and sequential processing (Morph-KGCp), and with
mapping partitions and parallel processing (Morph-KGCp

+).

that this approach produces an out-of-memory issue due to the size of the final KG. In the case of Morph-KGCp,
it is observed how the memory is freed every time a group of mappings is materialized. In this configuration, the
maximum peak of memory is given by the largest group of mapping rules (in terms of the total number of triples
generated), and it is significantly lower than the other two configurations. However, this comes at the cost of a
small overhead in the execution time w.r.t. the baseline. Morph-KGCp

+ demonstrates a great improvement w.r.t. the
baseline regarding execution time, although the maximum peak of memory used is similar due to Morph-KGCp

+
maintaining multiple groups of mappings in memory at the same time, as they are being processed concurrently.
Note that mapping partition-based KGC is bounded by the parallelization capacity of the processor and by the
mapping partition itself (e.g., the number of mapping groups or the differences in size among them).

Figure 4a shows the total execution time of Morph-KGC compared to the rest of the selected engines.
Morph-KGCp

+ clearly outperforms the rest of the engines for all data formats and data scaling factors. The opti-
mizations implemented by SDM-RDFizer make them the only competitor able to scale to GTFS1000. Figure 4b
depicts the maximum peak of memory used by each engine. It is observed that the operators compressing data
in the data structures of SDM-RDFizer achieve the lowest memory usage for GTFS1 and GTFS10. In the case of
larger distributions of GTFS, Morph-KGCp outperforms SDM-RDFizer given that it reduces the maximum peak of
memory used to that of the largest mapping group.

4.2. SDM-Genomic-Datasets

The SDM-Genomic-Datasets5 provide a set of configurations taking into account different parameters that are
relevant for constructing knowledge graphs [5] such as the type of mappings, the number of duplicates, and data
size. More in detail, regarding the latter, four different datasets are provided with different number of rows: 10K,

5https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342/1

https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342/1
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Fig. 4. Total execution time and memory consumption peak in GTFS-Madrid-Bench. KGC time in seconds and memory consumption time
in kB (logarithmic scale) of the tabular datasets from GTFS-Madrid-Bench with data scaling factors 1, 10, 100 and 1000.

100K, 1M, and 10M. Although simpler configurations are also provided in terms of the number of duplicates, for
this experimental evaluation we select the most complex one, i.e., 75% of duplicates with each duplicated value
repeated 20 times. In addition, three mapping files with different types of predicate-object maps are considered:
simple object map (POM), referencing object map with self-reference (REF), and referencing object map (JOIN).
A number is used together with the name of each mapping type to specify the number of rules (e.g., 4-POM indicates
4 object maps). The testbeds provide the mappings in RML and data is in the form of CSV files. For this reason,
we do not consider the R2RML processors in this experiment. In the same manner as for GTFS-Madrid-Bench,
we only report the time and memory consumption for the case of partial-aggregations partitioning as the maximal
partitioning algorithm generates the same mapping partition.

The total execution times for SDM-Genomic-Datasets are reported in Fig. 5a. As Morph-KGCp
+ and Morph-KGC

perform a self-join elimination over the REF mappings, they obtain similar results as in the POM ones, which is not
the case of SDM-RDFizer and Chimera. While Morph-KGCp

+ obtains the best results for the former configurations,
SDM-RDFizer clearly outperforms it for JOIN mappings. The main reason is that SDM-RDFizer implements the
Predicate Join Tuple Table as a specific physical data structure for improving the join conditions during the construc-
tion of the KG, and Morph-KGC does not implement any join optimization beyond redundant self-join elimination.
Figure 5b shows that Morph-KGCp outperforms its baseline and state-of-the-art engines regarding memory con-
sumption for POM and REF mappings. In the case of JOIN mappings, SDM-RDFizer obtains the best results given
the data compression techniques of its structures.

4.3. Norwegian Petroleum Directorate Benchmark

The NPD benchmark [27] presents a comprehensive evaluation system for virtual KGC engines. It provides a set
of SPARQL queries, a scalable instance of an RDB from the energy domain, and the corresponding mapping rules in
R2RML. Although it has not been previously used for testing the performance of materialization engines, we notice
that it is the only benchmark among those considered in Table 1 in which the difference in the number of mapping
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Fig. 5. Total execution time and memory consumption peak in SDM-Genomic-Datasets. KGC time in seconds and memory consumption
time in kB (logarithmic scale) of the SDM-Genomic-Datasets with data scale factors 10K, 100K, 1M and 10M rows.

groups obtained by the partial-aggregations and the maximal partitioning algorithms is significant. This will allow
us to compare the impact of maximal partitioning when it achieves a mapping partition with more groups than
partial-aggregations. To further evaluate mapping partitions with different number of groups, we also include the
configurations Morph-KGCm+-s and Morph-KGCm+-p which means that only subject and predicate, respectively, are
taken into account to perform mapping partitioning (instead of every P). We use the data generator of the benchmark
[28] to obtain three different distributions with data scaling factors: 1, 10 and 100. Apart from our proposal, the only
engine able to parse the R2RML mappings and generate the correct KG is R2RML-F.

The results obtained are shown in Fig. 6. We observe that the best performance regarding execution time is
obtained by Morph-KGCp

+. Surprisingly, the partition generated by Morph-KGCp
+ reports better results than the

Morph-KGCm+ one, showing that a higher number of mapping groups does not always entail a better execution
time in the construction of the KG. A possible reason for this could be that the parallel processing is bounded
by the number of cores of the machine (20 in our case), and increasing the number of mapping groups (477 for
Morph-KGCp while there are 745 for Morph-KGCm) does not result in a higher parallelization rate. Moreover, a
higher number of mapping groups introduces an overhead as we saw previously in Fig. 3, and maximal partitioning
is computationally more expensive. However, we observe that the materialization time of Morph-KGCm+ is very
close to Morph-KGCp

+, and that these two perform significantly better than Morph-KGCm-s and Morph-KGCm-p,
with a lower number of mapping groups (17 and 327 respectively). This indicates that in general, it is desirable to
have a high number of mapping groups to increase the parallelization rate. Regarding memory consumption, we
see that Morph-KGCp and Morph-KGCm obtain similar results. Note that in sequential processing, the peak in the
amount of memory used is determined by the largest mapping group. If maximal partitioning is not able to further
partition that specific mapping group, then a reduction in the peak of memory consumption is not expected.

4.4. Discussion

The experiments with SDM-Genomic-Datasets show that redundant self-join elimination is an effective tech-
nique and that it reduces the execution time of materialization. The same behaviour was also reported by us in [1]
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Fig. 6. Total execution time and memory consumption peak in NPD. KGC time in seconds and memory consumption time in kB (logarithmic
scale) of the NPD benchmark with data scaling factors 1, 10, 100.

for GTFS-Madrid-Bench. Since our technique applies directly to mappings, it is engine independent and can also
be applied to any data format, as opposed to other proposals such as [3], that only work for RDBs. Any engine
can benefit from this technique by preprocessing the mapping rules using Algorithm 1. However, this only applies
to redundant self-joins, and the experiments with SDM-Genomics-Datasets also show that Morph-KGC is outper-
formed by SDM-RDFizer in complex joins, given that it implements the Predicate Join Tuple Table. Morph-KGC
could implement this data structure to speed up other kinds of joins. The impact of high join selectivity in KG
materialization has been shown in [5].

In general, our empirical evaluation shows that mapping partitioning is an effective technique for knowledge
graph materialization that avoids the generation of duplicate triples. Concurrent processing of mapping partitions
has achieved the best execution times in many of the evaluation configurations, except for those involving complex
joins as previously mentioned. We have seen that in scenarios with several types of mappings (POM+REF+JOIN)
(e.g., GTFS-Madrid-Bench or NPD), Morph-KGCp

+ obtains better results than the rest of the engines included in our
evaluation. Moreover, sequential processing has obtained the lowest peak of memory used in most of the experiment
configurations, reducing the amount of memory used to that of the largest mapping group. It has also been observed
that sequential processing adds a small overhead in the execution time. Overall, parallel processing is suitable for
those cases in which knowledge graph materialization needs to be rapidly executed, and sequential processing for
those cases in which it is necessary to keep memory usage low. Mapping partitioning can be implemented by other
engines, in particular, those that still report performance issues such as Chimera, could benefit from this technique.

We have seen in the experiment with NPD benchmark that the number of mapping groups in a partition has an
impact on the performance of materialization. Regarding the execution time, a higher number of mapping groups
entail a faster execution in parallel processing. However, once the maximum parallelization capacity of the machine
is reached, a higher number of mapping groups does not reduce the execution time and can even slightly increase
it. In respect to memory consumption, sequential processing bounds the maximum peak of memory to that of the
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largest mapping group. A higher number of groups only reduces this peak in the case that the largest mapping group
has been further partitioned.

5. Related work

Ontology-based data integration [34,41] systems differentiate between the data layer, composed of the data
sources, and the conceptual layer, in which an ontology or network of ontologies are used to abstract the het-
erogeneity of the former. Mappings are used to specify how to populate entities and relationships in the ontology
with data from the underlying data sources, i.e., mappings are the link mechanism between both layers.

Several languages have been proposed to define mappings [16,19,29], but the one that stands out most notably is
R2RML [9], the W3C Recommendation to map relational databases to RDF. However, R2RML does not generalize
the underlying data model and cannot deal with heterogeneous data formats. RML [14] is a well-known superset
of R2RML that removes specific references to the relational data model and enables data formats beyond RDBs. In
addition, other R2RML-related proposals have addressed transformation functions [11,12], mixed content and RDF
collections [33], usability [20] or scalability [40].

There are two approaches to process the mappings: virtualization (or query translation) and materialization (or
data translation). Virtualization uses mappings to translate SPARQL queries into the native query languages of
the underlying data sources. Research around this technique has focused primarily on relational databases and on
efficiently processing the generated SQL queries. We refer the interested reader on virtualization to [3,15,35,39,42].
Materialization uses the mappings to transform all data in the underlying data sources to the corresponding RDF.

There are several solutions targeting the materialization of knowledge graphs [1]. For the specific case of RDBs,
Ontop [3,43] leverages the fact that predicate maps are generally constant-valued. It generates one SPARQL query
for each predicate with unbounded subject and object. These queries are then translated to SQL and optimized
by applying a set of structural optimizations (e.g., subqueries elimination) and semantic query optimizations (e.g.,
redundant self-joins removal). It also avoids to retrieve large query result sets at once by doing it in chunks.

The work presented in [25] exploits knowledge encoded in the mapping documents to project the attributes
appearing in a triples map, reducing the size of the data sources that need to be processed. Similarly, to diminish the
impact of duplicates in the evaluation of join conditions, it also pushes down projections into joins. SDM-RDFizer
[22] proposes physical data structures to store the knowledge graph in memory in a way that allows to efficiently
remove duplicates and avoid unnecessary operations. In particular, it uses one hash table for each predicate (called
Predicate Tuple Table, where the hash key combines the subject and the object of the triple, and the value is the
triple itself. It also proposes to speed up joins by creating the Predicate Join Tuple Table, a hash table using the
values matching the join condition as the hash key, and being the values of the hash the set of the generated values
by the parent triples map. These hash tables are checked every time a new triple is to be generated, in the case that
the triple already exists, it is discarded, otherwise it is added to the knowledge graph, and the corresponding hash
table is updated. Moreover, SDM-RDFizer considers data compression techniques that reduce the memory usage of
the data structures that store intermediate results during materialization.

Recently, triples map planning has been proposed in [24]. Here a bushy tree plan is created specifying an opti-
mized execution order for executing mapping assertions. These bushy tree plans are obtained heuristically by relying
on a greedy algorithm. Operating system commands are obtained from these execution plans that allow to efficiently
execute different knowledge graph materialization engines.

Karma [26] tackles the scalability of knowledge graph construction from large data sources using batch process-
ing. Instead of loading all data into memory, when operating in batch mode, the engine continuously loads fractions
of the data, transforming them to the nested relational model and then materializing the corresponding triples. In
this manner, memory usage is reduced, as it is not required to maintain the entire knowledge graph in memory.

Parallelization has also been proposed to speed up the materialization process. The work presented in [17] divides
this process in three tasks following the producer-consumer paradigm: ingestion of data from the sources, mapping
to RDF, and combination of the RDF. Parallelization is done up to the data record level. Nevertheless, the proposed
approach does not tackle duplicate elimination. [22,37] also parallelize at the triples map level.
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Regarding the efficient processing of transformation functions, FunMap [23] addresses the materialization of
these functions specified using FnO [10]. FunMap proposes a set of lossless rewriting rules so that the functions are
executed in the initial steps of the KG materialization process. This approach generates a set of mapping rules that
are function-free and that can be executed by any RML engine.

Mapping partitioning can be used together with existing techniques to further optimize the process of knowledge
graph materialization. For instance, the Predicate Join Tuple Table could be implemented along with mapping
partitioning to speed up joins in parallel and sequential processing. Moreover, redundant self-join elimination could
be implemented as a preprocessing step (similarly to other techniques such as the rewriting of rules in FunMap)
which generates mappings without redundant self-joins that can be executed by any engine.

6. Conclusions and future work

We address the problem of scalability in the materialization of knowledge graphs from heterogeneous data sources
using declarative mapping rules. We present the novel concept of mapping partitions, which consists in grouping
mapping rules that generate disjoints sets of RDF triples. Mapping partitions can be used to reduce memory con-
sumption in KG materialization by processing each mapping group in a partition sequentially, or to decrease the ex-
ecution time by processing multiple mapping groups in parallel. We implement this novel approach in an [R2]RML
engine, Morph-KGC, and we empirically demonstrate that, in the general case, it outperforms state-of-the-art pro-
posals in terms of the total execution time and the amount of memory required in the materialization process.

Our future lines of work include the extension of Morph-KGC and mapping partitions to RML-star [13], which
poses the challenge of recursive and more complex mapping rules. We also plan to address the limitation of the
current approach that prevents minimizing materialization time and memory consumption at the same time, by
using standards such as MPI [32].
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