
CORRECTED P
ROOF

Semantic Web -1 (2022) 1–25 1
DOI 10.3233/SW-223098
IOS Press

MTab4D: Semantic annotation of tabular data
with DBpedia
Phuc Nguyen a,*, Natthawut Kertkeidkachorn b, Ryutaro Ichise a and Hideaki Takeda a

a National Institute of Informatics, Tokyo, Japan
E-mails: phucnt@nii.ac.jp, ichise@nii.ac.jp, takeda@nii.ac.jp
b Japan Advanced Institute of Science and Technology, Ishikawa, Japan
E-mail: natt@jaist.ac.jp

Editor: Jens Lehmann, University of Bonn, Germany
Solicited reviews: Vasilis Efthymiou, FORTH-ICS, Greece; Ivan Ermilov, University of Leipzig, Germany; 5 anonymous reviewers

Abstract. Semantic annotation of tabular data is the process of matching table elements with knowledge graphs. As a result,
the table contents could be interpreted or inferred using knowledge graph concepts, enabling them to be useful in downstream
applications such as data analytics and management. Nevertheless, semantic annotation tasks are challenging due to insufficient
tabular data descriptions, heterogeneous schema, and vocabulary issues. This paper presents an automatic semantic annotation
system for tabular data, called MTab4D, to generate annotations with DBpedia in three annotation tasks: 1) matching table cells
to entities, 2) matching columns to entity types, and 3) matching pairs of columns to properties. In particular, we propose an
annotation pipeline that combines multiple matching signals from different table elements to address schema heterogeneity, data
ambiguity, and noisiness. Additionally, this paper provides insightful analysis and extra resources on benchmarking semantic
annotation with knowledge graphs. Experimental results on the original and adapted datasets of the Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching (SemTab 2019) show that our system achieves an impressive performance for the
three annotation tasks. MTab4D’s repository is publicly available at https://github.com/phucty/mtab4dbpedia.

Keywords: Table annotation, knowledge graph, DBpedia, semantic table interpretation

1. Introduction

Many tabular data resources have been made available on the Web and data portals, thanks to the Open Data
initiative in recent years. The resources contain valuable information that helps establish transparency, improve
human life quality, and inspire business opportunities. Although tabular data offers enormous potential, it is difficult
to be used in applications due to insufficient descriptions, heterogeneous schema, and vocabulary issues.

One possible solution for the usability problems is to generate semantic annotation of tables, particularly matching
table elements with knowledge graphs (KGs) such as DBpedia. As a result, the meaning of tabular data could be
interpreted or inferred by knowledge graph concepts; therefore, it is easy to be used in other downstream applications
such as data analytics and management.

This paper presents MTab4D, a semantic annotation system for tabular data, designed to address the three anno-
tations tasks of the Semantic Web challenge on tabular data annotation with knowledge graphs (SemTab 2019).1

*Corresponding author. E-mail: phucnt@nii.ac.jp.
1SemTab 2019: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/, last accessed 03/2022.

1570-0844 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:phucnt@nii.ac.jp
mailto:ichise@nii.ac.jp
mailto:takeda@nii.ac.jp
mailto:natt@jaist.ac.jp
https://github.com/phucty/mtab4dbpedia
mailto:phucnt@nii.ac.jp
http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
https://creativecommons.org/licenses/by/4.0/

CORRECTED P
ROOF

2 P. Nguyen et al. / MTab4D

Fig. 1. Tabular data annotations with DBpedia. dbr: is an entity prefix, and dbo: is a type prefix.

Fig. 2. An example of semantic annotation of tabular data.

SemTab 2019 is a systematic benchmark for promoting a comparison of state-of-the-art annotation systems [7]. Fig-
ure 1 illustrates the three semantic annotation tasks. Cell-Entity annotation (CEA) is the task of assigning an entity
to a table cell (Fig. 1a). Column-Type annotation task (CTA) assigns entity types (e.g., DBpedia class hierarchy) to
a table column (Fig. 1b). Column Pair-Property annotation (CPA) is the task of assigning a property or a predicate
to the relation between two table columns (Fig. 1c).

Figure 2 depicts an example of semantic annotations for tabular data. dbr:Arthur_Drews is an entity annotation
for cell “A. Drews”. The type annotations for column “col1” are dbo:PopulatedPlace and dbo:Place. The property
of dbo:deathYear is the annotation for the relation between column “col0” and column “col2”.

This paper proposes an annotation pipeline that combines multiple matching signals from table elements to ad-
dress schema heterogeneity and ambiguity. Our system is inspired by the graphical probability model-based ap-
proach [11] and the signal (or confidence) propagation as in the T2K system [22]; however, our system improves
the annotation tasks’ performance with the following contributions:

– Table Pre-processing: We introduce a method for pre-processing tables to deal with data noisiness consisting
of cell normalization, datatype prediction for cells and columns, header prediction, subject column prediction,
and matching target prediction.

– Entity Search: Most previous systems used online entity search services to generate candidate entities (e.g.,
DBpedia lookup); however, it is hard to reproduce the same search results if the search index change due to
the evolution of the knowledge graph. We introduce novel entity search modules as in Section 3.3 (keyword
search, fuzzy search, and aggregation search) based on the DBpedia October 2016 dump that enables the entity
search results to be reproduced for future studies.

– Numerical Column Matching: Data matching for numerical columns is challenging because the correspond-
ing value in KG is rarely equal to a query value. Therefore, we adopt EmbNum+ [16] as the semantic labeling
for numerical columns to find relevant properties and use DBpedia ontology to infer entity types which are the
domains of the relevant properties.

– Column-based Matching: We introduce column-based matching between the table subject column and other
remaining table columns (i.e., entity columns, literal columns). The novel column-based signals could enhance
the overall matching performance.

We also provide the contributions to the tabular data annotation community as follows.

– Data Analysis and Extra Resources for Reproducibility: This paper provides insightful analysis and extra
resources on benchmarking semantic annotation with knowledge graphs. Since the knowledge graph changes
over time, it is hard to compare annotation systems that used a different version of the target knowledge graph.

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 3

To standardize the evaluation of the tabular data annotation tasks, we provide the extra resources, the adapted
SemTab 2019 dataset built on the October 2016 version of DBpedia (similar to the SemTab 2019 setting), as in
[14]. The resources are also accessible from the public APIs,2 e.g., entity search, entity information retrieval,
numerical attribute retrieval, and evaluation retrieval.

– Annotation API and Graphical Interface: We provide tabular data annotation API, graphical interface,3

and instruction on replicating MTab4D experiment results.4 Our implementation supports multilingual tables
(covered the most popular languages) and could process many table formats such as Excel, CSV, TSV, or
markdown tables.

MTab4D is an extended version of our work MTab [13,15] (the best performance for the three matching tasks: the
1st rank in all (four) rounds and all (three) tasks). This system advances the previous study in the three directions:

– Refactoring Implementation: We refactor the codes over most of the components of MTab [13,15] to optimize
MTab4D efficiency. Moreover, MTab4D could auto predict table header, subject column, and matching targets
(Section 3.2), and provide annotations. MTab4D is publicly available at4 under an open-source license.

– Reproducibility: MTab’s entity search modules are built by aggregating many online entity search services
from DBpedia, Wikipedia, and Wikidata [13,15]. As a result, it is hard to reproduce the entity search results
since the search index changes over time. We build new search modules based on the DBpedia October 2016
dump to enable reproducibility. Moreover, we also provide the adapted SemTab 2019 data with the DBpe-
dia October 2016 version [14]. These resources enable a consistent environment setup for a fair comparison
between annotation systems in future studies.

– Public services: We also focus on building public services so that we refactor the implementation, optimize
system efficiency, and support multilingual tables, and could be able to process various table formats such as
Excel, CSV, TSV, or markdown tables. We also provide a graphical interface that enables the user to do table
annotation by pasting the table of contents from table files or websites. Wang et al. [26] state that only our
system could generate the annotations, while other annotation systems require high time complexity.

The rest of this paper is organized as follows. In Section 2, we define the annotation tasks and describe MTab4D
assumptions. Then, we present the overall framework and the details of each framework’s module in Section 3.
Section 4 reports experimental settings, results, and error analysis. We describe MTab4D public APIs and graphical
interfaces in Section 5. Section 6 discusses the related work on semantic annotation of table data and summarizes
the participant approaches. Finally, we summarize the paper and discuss future directions and the lessons learned in
Section 7.

2. Definitions and assumptions

In this section, we provide formal definitions for the three annotation tasks in Section 2.1. The assumptions on
MTab4D are described in Section 2.2.

2.1. Problem definitions

2.1.1. Knowledge graph
The DBpedia knowledge graph G can be described as an RDF graph consisting of a set of RDF triples (facts)

F = {f1, .., f|F |}. A triple f ∈ F , which is in the form of (subject, predicate, object), comprises a subject (an
entity), a predicate (a property), and an object (an entity, or a literal value). Literal values could be expressed in
plain literals as strings with or without language tags, e.g., “Tokyo@en”, or typed literals as strings with datatype
values (integers, dates), e.g., “13”^^xsd:int.

2API documents: https://mtab4d.kgraph.jp/docs, last accessed 03/2022.
3MTab4D Graphical Interface: https://mtab4d.kgraph.jp, last accessed 03/2022.
4MTab4D Repository: https://github.com/phucty/mtab4dbpedia, last accessed 03/2022.

https://mtab4d.kgraph.jp/docs
https://mtab4d.kgraph.jp
https://github.com/phucty/mtab4dbpedia

CORRECTED P
ROOF

4 P. Nguyen et al. / MTab4D

We denote the set of entities as E = {e1, . . . , e|E|}, the set of entity types (derived from the rdf:type predicate of
the triples) as T = {t1, . . . , t|T |}, and the set of properties as P = {p1, . . . , p|P |}.

Entity types are related by an rdfs:subClassOf relation. When t1 is a subclass of t2 (or multi hops) (t1, t2 ∈ T),
we write the relation between the two types as t1 ⊆+ t2 (or t1 ⊆∗ t2 for multi hops).

Entity e ∈ E could be an instance of one or multiple types (hierarchy). We denote Te as the subset of T that are
types of entity e, and te ∈ Te as a type of entity e.

A triple comprises an entity e, a property p, and an object (an entity e′ �= e or a literal value).

2.1.2. Tabular data
Let S be a two-dimensional table consisting of an ordered set of N rows and M columns. We denote a table row

as ri , where i ∈ [1 . . . N]; a table column as cj , in which j ∈ [1 . . . M]. A table cell is denoted as Si,j in the row ri
and the column cj . A relation between two columns cj and cj ′ is denoted as Rj,j ′ , where j, j ′ ∈ [1,M], j �= j ′.

2.1.3. Matching targets
Let mS

CEA, mS
CTA, and mS

CPA be the matching targets (indexes) of table cells, columns, and column pair relations.

2.1.4. Semantic annotation tasks
Given the DBpedia knowledge graph G, table S, and matching targets mS

CEA, mS
CTA, mS

CPA, the tables to KG
matching problems could be formalized the three following tasks:

– Cell-Entity matching (CEA): matching each table cell in the CEA matching targets (Si,j ∈ mS
CEA) into an

entity ei,j ∈ E.

Si,j
CEA−−→ E (1)

– Column-Type matching (CTA): matching each table column in the CTA matching targets (cj ∈ mS
CTA) into a

class hierarchy Tj ∈ T .

cj
CTA−−→ T (2)

– Column Pair Relation-Property matching (CPA): matching each relation between two columns in the CPA
matching targets (Rj,j ′ ∈ mS

CPA) into a property pi,j ′ ∈ P .

Rj,j ′
CPA−−→ P (3)

2.2. Assumptions

We build MTab4D system based on the following assumptions:

Assumption 1. MTab4D is built based on a closed-world assumption.

MTab4D annotates tabular data based on the knowledge graph information. Therefore, we assume that the knowl-
edge graph (DBpedia) is complete and correct. When table elements are not available in the knowledge graph, the
system mistakenly returns the most relevant results (incorrect answers).

Assumption 2. The tabular input data is a horizontal relational table type.

A horizontal relational table contains semantic knowledge graph triples as (subject, predicate, object). The table
also has a subject column containing entity names, and the relation between the subject column and other table
columns represents the predicate relation between the entities (subject) and attribute values (object).

Assumption 3. All the cell values of the same column have the same datatype, and the entities related to cell values
of the same column are of the same type.

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 5

Fig. 3. MTab4D framework for tabular data annotations.

3. MTab4D approach

In this section, we describe the MTab4D framework in Section 3.1. The details of each step are described from
Section 3.2 to Section 3.7.

3.1. Framework

We design MTab4D as the seven-step pipeline as shown in Fig. 3.
Step 1 pre-processes the input table consisting of cell value normalization, cell and column datatype prediction,

header prediction, subject column prediction, and matching targets prediction. Step 2 is to generate candidate enti-
ties.

Then, Step 3 and Step 4 generate candidate types and properties using the row-based aggregation from Step 2,
respectively. Step 5 disambiguates candidate entities with confidence aggregation from Step 2, Step 3, and Step 4.

Step 6 and Step 7 are to disambiguate candidate types and properties with results from Step 5, respectively.
The following are detailed explanations of each step of the framework.

3.2. Step 1: Pre-processing

We perform the five following processes: cell normalization, datatype prediction, header detection, and subject
column prediction, matching targets prediction.

3.2.1. Cell normalization
We remove HTML tags and non-cell-values such as -, NaN, none, null, blank, unknown, ?, #. Additionally, we

use the ftfy tool [23] to fix all noisy cells caused by incorrect encoding during file loading.

3.2.2. Data type prediction
The system predicts a table cell’s datatype into either non-cell (empty cell), literal, or named-entity (NE). We

use the pre-trained SpaCy models [8] (OntoNotes 5 dataset) to identify named and numeric entities. A cell has a
named-entity type when the SpaCy model recognizes an entity-name tag such as PERSON (human names), NORP
(nationalities), FAC (building), ORG (companies), GPE (countries, cities), LOC (locations), PRODUCT (objects,
vehicles), EVENT (wars, sports events), WORK_OF_ART (books, songs), LAW (law documents), LANGUAGE

CORRECTED P
ROOF

6 P. Nguyen et al. / MTab4D

(named language). A cell has a literal type when the recognized SpaCy tag is a numeric tag such as DATE (date),
TIME (time), PERCENT (percentage), MONEY (amount of money), QUANTITY (measurements), ORDINAL
(ordinal), and CARDINAL (other numerical values). If no tag is assigned, we associate the cell type with named-
entity because the SpaCy model could miss the named-entity types.

Next, the system predicts a table column’s datatype into either a non-match column (empty column) cnan, a literal
clit, or a named-entity column cent. The column datatype is derived from the majority voting of all cell datatypes in
this column.

3.2.3. Header prediction
Let rh be a table header. We use simple heuristics to predict table headers as follows.

– Table headers could be located in some of the first rows of a table.
– If the list of datatypes of the header candidate row differs from most datatypes of the remaining rows, the

candidate is the table header. For example, the list of datatypes of header candidate (row) is [named-entity,
named-entity, named-entity], while the list of the majority datatype of remaining rows is [named-entity, literal,
literal].

– We also found that the length of header text is empirically shorter or longer than the remaining data rows. If
the length of values of the header candidate row is less than the 0.05 quantile or larger than the 0.95 quantiles
of the length of the value of remaining rows, the candidates are the table header.

3.2.4. Subject column prediction
Let ccore be the subject column of a table. We adopt the heuristics proposed by Ritze et al. [22] and modify a

simple heuristic to predict the subject column of a table as follows.

– A column is a subject column when its datatype is a named-entity type.
– The average cell value length is from 3.5 to 200. We also add a restriction that only considers non-header cells

since the length of table headers could differ from the remaining cells.
– The subject column is determined based on the uniqueness score as an increased score for columns with many

unique values and reduces the score for columns with many missing values. The subject column is the highest
unique score column. If we have many columns with the same score, the left-most column is chosen.

3.2.5. Matching targets prediction
MTab4D uses the following heuristics to generate matching targets for the three annotations tasks when the input

does not have matching targets.

– CEA task: matching targets are the table cells whose datatypes are strings.
– CTA task: matching targets are columns so that the column datatypes are strings.
– CPA task: matching targets are the relation between the core attribute and the remaining table columns.

3.3. Step 2: Candidate entity generation

To generate candidate entities for the CEA matching targets, we perform entity searching on the MTab4D search
engine.5 Unlike previous work using online entity search services to generate candidate entities, the MTab4D entity
search engine is built from DBpedia’s October 2016 dump version for reproducibility. We extracted 5,226,192
entities (ignore disambiguate entities) and 35,331,799 entity labels (including entity labels, aliases, other names,
redirect entity labels, and disambiguation entity names) from DBpedia dump files in the most popular languages
(i.e., English, China, German, France, Arabic, Russia, Italy, Japanese, Netherlands, Poland, Portugal).

We build the three entity search modules (i.e., keyword search, fuzzy search, and aggregation search) to address
table cell values’ ambiguity and noisiness.

5MTab4D Entity search: https://mtab4d.kgraph.jp/search, last accessed 03/2022.

https://mtab4d.kgraph.jp/search

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 7

Let q be a query which is a table cell Si,j ; the entity search module retrieves the query from the MTab4D search
engine to get a ranking list of relevant entities Eq and entities’ ranking scores. We normalize the ranking scores to
[0, 1] using the softmax function and associate these normalized scores as entity confidence scores of cell Si,j using
an entity search module φ1(Si,j , ei,j).

For the three search modules, the default limit of the ranking list is set as 100 in all our experiments for efficiency
reasons. The detail of search modules is described as follows.

3.3.1. Keyword search
We build the keyword search to address table cells ambiguity and entity name variant. We use the Elasticsearch

engine6 to index Wikidata entity labels as separated documents. The ranking scores are calculated using the default
BM25 ranking function of Elasticsearch and entity popularities. The entity popularities are pre-calculated using
the PageRank algorithm on DBpedia. The ranking scores of the keyword search module fkeyword are calculated as
follows.

fkeyword(q, e) = α · softmax
(
fbm25(q, e)

) + (1 − α) · fpopularity(e) (4)

where the BM25 ranking scores are denoted as fbm25(q, e), and the entity popularities are denoted as fpopularity(e).
We use the BM25 hyper-parameters as b = 0.75, k1 = 1.2. We set α = 0.8 as empirically putting more weighting
for the ranking functions of the BM25 algorithm.

3.3.2. Fuzzy search
Another challenge of entity search is that table cells might be noisy, contain many spelling errors, and are ex-

pressed as abbreviations. We introduce the fuzzy search module using edit distance (Damerau–Levenshtein) and
entity popularities. The ranking score of fuzzy search is calculated as follows.

ffuzzy(q, e) = α · 1

fedit(q, e) + 1
+ (1 − α) · fpopularity(e) (5)

where fedit(q, e) is Damerau–Levenshtein distance between the table cell and entity label. We also use the same
keyword search parameter α to put more weight into the edit distance empirically.

Since the edit distance calculation is expensive, we perform candidate filtering and hashing to reduce the number
of operations on pairwise edit distance calculation. We remove candidate entities with their length larger or smaller
d characters than the query’s length (To be simple, we set d to six in all of our experiments). Because of the efficient
reason, we only perform a fuzzy search with a maximum of six edit distances. We also perform candidate hashing
with pre-calculating entity label deletion as SymSpell: Symmetric Delete algorithm [6].

3.3.3. Aggregation search
This search module is designed to aggregate keyword search and fuzzy search results with a weighted fusion as

the following equation.

fagg(q, e) = β · fkeyword + (1 − β) · ffuzzy (6)

We set the β parameter as 0.5 to equal contribution to the keyword search and the fuzzy search.

3.4. Step 3: Candidate type generation

This step is to generate candidate types for the named-entity columns. The overall confidence scores of candi-
date types are described in Section 3.4.5. The details of entity search signals, named-entity recognition signals,
table header signals, numerical column signals are described in Section 3.4.1, Section 3.4.2, Section 3.4.3, and
Section 3.4.4.

6https://www.elastic.co/elasticsearch/, last accessed 03/2022.

https://www.elastic.co/elasticsearch/

CORRECTED P
ROOF

8 P. Nguyen et al. / MTab4D

3.4.1. Entity search signals
Let φ2(cj , tj) be a potential function of candidate type tj of column cj derived from entity search signals as the

following equation:

φ2(cj , tj) =
∑

Si,j ∈cj

f2(Si,j , ti,j) (7)

where the type confidence f2(Si,j , ti,j) is the majority vote for type ti,j ∈ Ti,j of candidate entity ei,j ∈ Ei,j at
cell Si,j . We use entity confidence φ1(Si,j , ei,j) as in Section 3.3 as the voting score. Finally, we normalize the
confidence scores of candidate types derived from entity search signals to a range [0, 1] by dividing each element
by the total sum.

3.4.2. Named-entity recognition signals
We denote the potential function of candidate types derived from name-entity recognition signals as φ3(cj , tj).

The potential function is calculated as the following equation:

φ3(cj , tj) =
∑

Si,j ∈cj

f3(Si,j , ti,j) (8)

where f3(Si,j , ti,j) is an indicator function of the mapping between name entities and DBpedia classes as in Table 1.
f3(· · ·) is calculated as the following equation:

f3(Si,j , ti,j) =
{

1, if ∃TypeMap(fNER(Si,j))

0, others
(9)

where TypeMap(· · ·) is the mapping function between named entities and DBpedia classes. The name-entity recog-
nition function is denoted as fNER. We use the SpaCy tool [8] to derive the name-entity label for each cell Si,j in
the column cj as in Section 3.2.2.

Finally, we normalize the confidence scores of candidate types to the range [0, 1]. The normalization is done by
dividing each element by the total sum.

3.4.3. Table header signals
Let φ4(cj , r

h
j , tj) be the potential function of type candidates from similarity measures between header rh

j of
column cj and DBpedia classes. We use a lexical similarity, specifically normalized Damerau–Levenshtein distance,

Table 1

Mappings between named entities (using SpaCy toolkit) and DBpedia entity types

NER Tags DBpedia Entity Types

PERSON dbo:Person

NORP dbo:Country, dbo:Religious, dbo:PoliticalParty

FAC dbo:PopulatedPlace, dbo:Building, dbo:RouteOfTransportation, dbo:Airport

ORG dbo:Organization

LOC dbo:PopulatedPlace

GPE dbo:PopulatedPlace

PRODUCT dbo:Device, dbo:Food

EVENT dbo:Event

WORK_OF_ART dbo:Work

LAW dbo:LawFirm

LANGUAGE dbo:Language

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 9

as the potential function.

φ4
(
cj , r

h
j , tj

) = 1

fedit(tj , r
h
j) + 1

(10)

where fedit(tj , r
h
j) is the edit distance between column header rh

j and a type tj (a DBpedia class).
We also normalize candidate type confidence scores to [0, 1] by dividing each element by the total sum.

3.4.4. Numerical column signals
Let φ5(c

core
j , cnum

j ′ , tj) be the potential function of candidate types of the subject column ccore
j derived from nu-

merical column cnum
j ′ .

We first use EmbNum+ [16] for column cnum
j ′ to find relevant numerical properties Pj ′ in DBpedia.7 The confi-

dence score of property pj ′ ∈ Pj ′ is calculated as the following equation.

fnum
(
cnum
j ′ , pj ′

) = |Pj ′ | − rankpj ′ (11)

where rankpj ′ is the ranking index of pj ′ in Pj ′ . The scores are also normalized to [0, 1] by diving each element to
the total sum.

Next, we use the candidate properties to infer the classes (types) for the subject column. The inferred classes
are the candidate properties’ domain classes (dbo:domain). For example, in Fig. 4, the candidate properties of the
two numerical columns are “dbo:oclc” and “dbo:finalPublicationYear”. The inferred candidate types of the subject
column given the two numerical columns are “dbo:WrittenWork” and “dbo:PeriodcalLiterature” (the domain types
of the candidate properties).

Let Tcnum
j

be the set of inferred types from numerical columns for the subject column ccore
j . The type confidence

scores are calculated as the following equation.

φ5
(
ccore
j , cnum

j ′ , tj
) = max

(
f ′

num

(
cnum
j ′ , tj

))
(12)

where

f ′
num

(
cnum
j ′ , tj

) = fnum
(
cnum
j ′ , pj ′

)
(13)

where tj is the domain of the property pj ′ . We also normalize the type confidence scores to [0, 1] by dividing each
element by the total sum.

Fig. 4. Property lookup with EmbNum+.

7We used the 200 most frequently numerical attributes (numerical properties, e.g., height, weight) of DBpedia as the database.

CORRECTED P
ROOF

10 P. Nguyen et al. / MTab4D

3.4.5. Signal aggregation
The confidence scores of candidate types φ6(cj , tj) are aggregated from entity search signals φ2(cj , tj) (Sec-

tion 3.4.1), named-entity recognition signals φ3(cj , tj) (Section 3.4.2), table header signals φ4(cj , r
h
j , tj) (Sec-

tion 3.4.3), and numerical column signals φ5(c
core
j , cnum

j ′ , tj) (Section 3.4.4). The aggregated type confidence scores
are calculated as the following equations:

φ6(cj , tj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w2 · φ2(cj , tj) + w3 · φ3(cj , tj) + w4 · φ4(cj , r
h
j , tj) + w5 · φ5(c

core
j , cnum

j ′ , tj),

cj is a NE and a subject column

w2 · φ2(cj , tj) + w3 · φ3(cj , tj) + w4 · φ4(cj , r
h
j , tj),

cj is a NE and not a subject column

(14)

To avoid adding too much noise to the final aggregation, we omit the types that have confidence scores less
than γ .8 MTab4D uses an equal contribution for the weighting of w2, w3, w4, w5. After aggregation, we normalize
candidate types to [0, 1] by dividing each candidate type φ6(cj , tj) by the total sum of the confidence scores of all
candidate types in the column cj .

3.5. Step 4: Candidate property generation

This step is to generate candidate properties pj,j ′ ∈ Pj,j ′ of the relation Rj,j ′ between two columns cj and cj ′ .
We assume that the input table is a horizontal relational type so that this step focuses on the relations of 1) the
subject column to an entity column and 2) the subject column to a literal column. We associate the subject column
with ccore

j , an entity column with cent
j ′ , and a literal column with clit

j ′ .

3.5.1. Subject column – named-entity column
Let φ7(c

core
j , cent

j ′ , pj,j ′) be the potential function of candidate properties of the relation Rj,j ′ between the subject

column ccore
j and a named-entity column cent

j ′ .
Cell Si,j is the table cell in the subject column ccore

j and row ri . Cell Si,j ′ is the table cell in the same row ri and
the named-entity column cent

j ′ .
We assume that there is a relation between candidate entities of Si,j and Si,j ′ that equivalence to a DBpedia

property; therefore, we query how many links (relations or properties) between candidate entities of Si,j and Si,j ′ .
The confidence scores of candidate properties are calculated as f7(ri , Rj,j ′ , pj,j ′) = 1 if there is any relation
between the candidate entities of the two cells. We aggregate the scores of all rows of the two columns to get the
confidence scores of candidate properties as the following equation.

φ7
(
ccore
j , cent

j ′ , pj,j ′
) =

∑
i∈[1,N]

f7(ri , Rj,j ′ , pj,j ′) (15)

Then, we normalize the confidence scores of candidate properties between the subject column and a named-entity
column to a range of [0, 1] by dividing each element by the total sum.

Figure 5 illustrates candidate property generation between the subject and entity columns. The list of e1, e2, e3
is candidate entities of the table cell c1, while e4, e5, e6 are the candidate entities of cell c2. The candidate property
p1 is derived from finding properties between the two lists of candidate entities. The final candidate properties are
aggregated from all rows of the two columns.

3.5.2. Subject column – literal column
Let φ8(c

core
j , clit

j ′ , pj,j ′) be the potential function of candidate properties of the relation between the subject column

ccore
j and a literal column clit

j ′ . At row ri , cell Si,j is in the subject column, and cell Si,j ′ is in the literal column.

8The parameter γ = 0.5 is selected empirically.

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 11

Fig. 5. Illustration of candidate property generation between the subject column and an entity column.

Fig. 6. Illustration of candidate property generation between the subject column and a literal column.

We perform value-based matching to calculate the similarities between entity attribute values of the Si,j candidate
entities and the cell value Si,j ′ . Given a candidate entity ei,j of Si,j that has pairs of property(pei,j

)-value(vei,j
), we

compare the similarity between Si,j ′ with all pair values vei,j
based on their datatypes (textual type or numerical

type). We select the pairs of table cell values and entity values with larger similarities than β. The similarities are
calculated as the following:

– Textual values: We use the normalized Damerau–Levenshtein distance as the similarity between vei,j
and Si,j ′

as the following equation.

f text
8 (vei,j

, Si,j ′) = 1

fedit(vei,j
, Si,j ′) + 1

(16)

where fedit(ve, Si,j ′) is the Damerau–Levenshtein distance.
– Numerical values: we adapt the relative change as the numerical similarity as the following equation.

f num
8 (vei,j

, Si,j ′) =
⎧⎨
⎩

1 − |Si,j ′−vei,j
|

max(|Si,j ′ |,|vei,j
|) , if max(|Si,j ′ |, |vei,j

|) �= 0

1, if max(|Si,j ′ |, |vei,j
|) = 0 and |Si,j ′ − vei,j

| = 0
(17)

We aggregate the confidence scores of all rows of the two columns based on properties and then normalize these
scores to [0, 1].

Figure 6 illustrates candidate property generation between the subject and literal columns. The list of e1, e2, e3 is
the candidate entities of the table cell c1, the pairs of property-value [p1, v1], [p2, v2] are the triples of the candidate
entity e1. We calculate the similarities between the entity attribute values v1, v2, and the literal cell c2 and aggregate
the similarity based on the properties of the entity values.

3.6. Step 5: Entity matching

This step is to re-calculate the candidate entities based on the prior signals from the previous steps. Given a table
cell Si,j , we consider the signals from:

CORRECTED P
ROOF

12 P. Nguyen et al. / MTab4D

– φ1(Si,j , ei,j): The candidate entity confidences from entity search as described in Section 3.3.
– φ9(cj , ei,j): The confidence scores of candidate entities of their type’s confidence scores are as in Section 3.4.

The entity confidences scores derived from type confidence score of column cj as φ9(cj , ei,j) = φ6(cj , tj).
– φ10(Si,j , ei,j): We calculate the similarity between the candidate entity label and the table cell using the nor-

malized Damerau–Levenshtein distance. Then, we associate the score as the confidence score of candidate
entities given the cell value Si,j using the lexical similarity measurement.

– φ11(ri , ei,j): These signals are calculated from the confidence scores of candidate entities in the subject column
given cell values in a row ri . We do the same procedure of value-based matching as Step 4 to compare all
entity attribute values with row values, but similarities are ordered by the entities. Then, we compute the mean
probability for all cell values.

The candidate entity confidence scores of the table cell of Si,j is calculated as the following equation:

φ12(Si,j , ei,j) =

⎧⎪⎪⎨
⎪⎪⎩

w1 · φ1(Si,j , ei,j) + w9 · φ9(cj , ei,j) + w10 · φ10(Si,j , ei,j) + w11 · φ11(ri , ei,j),

if Si,j ∈ ccore
j

w1 · φ1(Si,j , ei,j) + w9 · φ9(cj , ei,j) + w10 · φ10(Si,j , ei,j), if Si,j /∈ ccore
j

(18)

where w1, w9, w10, w11 are parameters. We also use an equal contribution for the parameters. We select the highest
confidence score of candidate entities as the annotation for a table cell.

3.7. Step 6, 7: Type and property matching

We aggregate the highest probabilities of candidate entities in Step 5 for each cell Si,j , then infer types and
properties with the majority voting.

4. Evaluation

This section first reports the detail about benchmark datasets in Section 4.1, evaluation metrics in Section 4.3,
and experimental setting in Section 4.4. The overall results are reported in Section 4.5.

4.1. Datasets

We use the two datasets as the original SemTab 2019 (four rounds) and the adapted SemTab 2019 with the 2016
October of DBpedia [14]. Table 2 reports the number of tables in each dataset; target cells (in CEA), columns (in
CTA), and column pairs (in CPA) of the original and adapted versions of the SemTab 2019 dataset.

4.1.1. Original SemTab 2019 dataset
The SemTab 2019 challenge has four rounds; each round came with a different set of tables and matching targets

for each annotation task [7]. In detail, Round 1 data is a subset of the T2Dv2 dataset, a standard dataset in tabular
data annotation. Round 2 is the biggest and most complex since it combines Wikipedia tables and automatically
generated tables from DBpedia. Round 3 and 4 datasets also are automatically generated from DBpedia, but the

Table 2

Statistics of matching targets on the original and adapted SemTab 2019 datasets

Round #Table CEA Targets CPA Targets CTA Targets

Original Adapted Original Adapted Original Adapted

1 70 8418 8406 116 116 120 120

2 11925 463796 457567 6762 6762 14780 14333

3 2162 406827 406820 7575 7575 5762 5673

4 818 107352 107351 2747 2747 1732 1717

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 13

easily matched cells are removed in Round 4. To generate the tabular data, firstly, a list of classes and properties
are gathered, then for each class, the generator selects groups of properties and uses them to create “realistic”
tables using SPARQL queries. Finally, the “realistic” tables are added noise into the surface textual of table cells or
removed “easy” matches cells.

4.1.2. Adapted SemTab 2019 dataset
This section presents an adapted SemTab 2019 with the 2016 October of DBpedia for reproducibility [14]. It

is challenging to compare annotation systems while not using the same experimental setting (DBpedia version).
Knowledge Graphs change over time so that the schema or instances from a DBpedia version have many differences
from another version. As a result, an annotation system could yield a different performance when benchmarked on
different DBpedia versions.

To enable reproducibility, we perform adaptations on the original version of the SemTab 2019 dataset to October
2019 of DBpedia as in Section 4.1.3. Section 4.1.4 reports the open resources from the adapted dataset.

4.1.3. Ground truth
We process the original SemTab 2019 dataset as follows:

– We make matching targets, and ground truth answers consistent by removing the matching targets that are not
available in the ground truth and the original matching targets.

– We remove invalid entities, types, and properties that are not available in the October 2016 version of DBpedia.
– We add missing redirects, equivalent entities, types, and properties.
– We remove prefixes to avoid redirect issues. For example, the expected prefix of the entity “Lake Alan Henry”

is “http://dbpedia.org/resource/Lake_Alan_Henry” while the CEA ground truth of the original SemTab 2019
Round 1 has “http://dbpedia.org/page/Lake_Alan_Henry”. Removing the prefix also have a data storage-
efficient (The adapted SemTab 2019 saves 51.3% more space than the original dataset).

4.1.4. Public resources
We also prepare open resources to be reproduced for future studies.

– Schema: We prepare the CSV files as DBpedia class hierarchy, properties, and equivalents.
– Data: We also published an entity JSON list dump (all information about entities) of the October 2016 ver-

sion of DBpedia. The information of each entity could be accessed quickly using our opened API4 without
processing entire all DBpedia entities.

– Entity Search: We provide a public API of entity search based on entity label and aliases (multilingual) of
DBpedia 2016 October. The search results will be expected to be the same using our API, while using other
online entity searches (e.g., DBpedia entity search or Wikipedia search) could yield different answers.

– Other resources: We also provide other public APIs4 of tabular data annotations, numerical attribute labeling,
annotation evaluation for the original and adapted SemTab 2019 datasets [14].

4.2. Analysis of the original SemTab 2019 dataset

CEA task Table 3 depicts the number of inconsistencies between the SemTab 2019 ground truth data and the
October 2016 version of DBpedia.

Index Inconsistencies (IIndex) describes the number of invalid table cell indexes of CEA targets. Encoding In-
consistencies (IEncoding) describes the number of encoding errors of DBpedia URIs. Many samples are inconsis-
tent with URI encoded and decoded representation. For example, an entity URI of dbr:Angélica_Rivera could be
encoded as “dbr:Ang%C3%A9lica_Rivera” and decoded as “dbr:Angélica_Rivera”. The ground truth of CEA con-
tains a mixture between encoded URI and decoded URI. The encoding URI (percent-encoding) is not encouraged.9

Invalid Inconsistencies (IInvalid) is the number of invalid entities not in the October 2016 version of DBpedia, and
Redirect Inconsistencies (IRedirect) is the number of matching targets missing redirect entities.

9DBpedia URI encoding: https://wiki.dbpedia.org/uri-encoding, last accessed 03/2022.

https://wiki.dbpedia.org/uri-encoding

CORRECTED P
ROOF

14 P. Nguyen et al. / MTab4D

Table 3

Analysis of the CEA task of SemTab 2019 with the DBpedia October 2016

Round IIndex IEncoding IInvalid IRedirect

1 0 418 22 203

2 250 21912 7662 6130

3 0 7427 763 4140

4 0 1487 22 682

Table 4

Analysis on CTA task of SemTab 2019 with the
October 2016 version of DBpedia

Round IIndex IHierarchy

1 0 0

2 323 697

3 0 353

4 0 14

The Round 2 dataset contains many inconsistencies, including the four types of inconsistencies (7.8% inconsis-
tencies) because this dataset combines a subset of Wikipedia tables (with a different KG target: the October 2015
version of DBpedia) and automatically generated tables (from the October 2016 version of DBpedia). Round 1
dataset is the second place of inconsistencies (7%) since this is the subset of the T2D dataset (with a KG target as
the 2014 version of DBpedia). Round 3 dataset has 3% inconsistencies, and Round 4 dataset is the cleanest in four
rounds (2% inconsistencies).

CTA task Table 4 depicts the number of inconsistencies of CTA with the October 2016 version of DBpedia.
Index errors (IIndex) describes the number of invalid table column indexes of CTA targets. Missing equivalent
classes (IHierarchy) is the number of hierarchy classes’ inconsistencies in the CTA ground truth. There are 2%
index errors in the Round 2 dataset. Although the CTA ground truth is derived from the October 2016 version of
DBpedia, there are some inconsistencies, such as dbo:Region class is not an ancestor of dbo:City in the October
2016 version of DBpedia while it is an ancestor in the ground truth data. The class hierarchy also misses equivalent
classes such as dbo:PenaltyShootOut class is the equivalent with dbo:Event. It could be semantic incorrect about
(dbo:PenaltyShootOut owl:equivalentClass dbo:Event); however, we adopt the fact to follow DBpedia correctness
and completeness assumption.

Round 2 dataset has 2% index errors where the target matching is not available in the input table. Round 1 has no
errors, while Round 2, 3, 4 have 5%, 6%, and 1% IHierarchy error rates.

CPA task We found that the ground truth of the CPA task misses many equivalent properties. For example, the
properties of dbo:team has its equivalent property as dbo:club. Some of the equivalent properties in the October 2016
version of DBpedia are (dbo:team, dbo:club), (dbo:composer, dbo:musicBy, dbo:jureLanguage), and (dbo:area,
dbo:landArea, dbo:waterArea).

Table 5 depicts statistics on missing equivalent properties (IIEquivalent) in the October 2016 version of DBpedia.
Round 1 has 4% of ground truth missing equivalent properties. Round 2, 3, 4 have approximately 28% missing
equivalent properties.

4.3. Evaluation metrics

There are four different metrics used to evaluate tabular data annotation:
F1-score is a harmonic mean of precision and recall. It is used as the primary score to measure the performance

of entity annotations (CEA – all rounds), property annotations (CPA – all rounds), and type annotation (CTA –
Round 1). The F1 metric is calculated as follows.

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(19)

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 15

Table 5

Analysis on CPA task of
SemTab 2019 with the October
2016 version of DBpedia

Round IEquivalent

1 5

2 1911

3 2030

4 828

where Precision, and Recall are calculated as follows.

Precision = # correct annotations

annotations
(20)

Recall = # correct annotations

annotation targets
(21)

Precision scores are used as the secondary score in entity annotations (CEA – all rounds), property annotations
(CPA – all rounds), and type annotation (CTA – Round 1).

Regarding the type annotation CTA task, two metrics are designed to measure the hierarchy of class annotations
(Average Hierarchical – AH) and perfect class annotations (Average Perfect – AP) [9]. The AH score is used as the
primary score, while the AP score is used as the secondary score for rounds 2, 3, 4 of CTA task.

Let the list of target columns be mS
CTA, the number of column annotations be a, and the number of perfect

annotations be aperfect, the number of OK annotations denotes as aOK, and the number of the wrong annotation
denotes as awrong. The equations of the AH score and AP score are described as follows.

AH =
∑

a∈mS
CTA

aperfect + 0.5 ∗ aOK − awrong

|T | (22)

AP =
∑

a∈mS
CTA

aperfect∑
a∈T aperfect + aOK + awrong

(23)

4.4. Experimental settings

MTab4D is built based on the October 2016 version of DBpedia with three versions (a, b, f) depending on the
use of the entity search module. MTab4Db is the system that uses the keyword search, MTab4Df is used the fuzzy
search, and MTab4Da is used the aggregation search.

We compare MTab4D with other systems, using the results reported in SemTab 2019 dataset (original version).
Unlike our participated system MTab, MTab4D focuses on reproducibility, where we use the entity search built from
dump data of DBpedia.

We also conduct experiments MTab4D on the adapted version of SemTab 2019, where we remove the inconsis-
tencies between ground truth and the October 2016 version of DBpedia.

4.5. Experimental results

In this section, we first report the results of MTab4D with other SemTab 2019 participants on the original data
version in Section 4.5.1. The full results are reported on the challenge websites.10 Then, we present the results of
MTab4D on the adapted version of SemTab 2019 in Section 4.5.2.

10Results: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html, last accessed 03/2022.

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html

CORRECTED P
ROOF

16 P. Nguyen et al. / MTab4D

4.5.1. Original SemTab 2019 dataset
Table 6 depicts the CEA results in the F1 score and Precision of MTab4D compared to the other systems on the

original version of SemTab 2019. Because of the high data inconsistencies in Rounds 1 and 2, MTab4D could not
provide comparable results with the original system MTab. However, MTab4Db, with a keyword search, got slightly
higher performance than the MTab system in Round 3 and Round 4. In Round 1 and Round 2, MTab4Df using
fuzzy search achieves higher performance than MTab4D using keyword search and aggregation search. It could be
explained that the datasets have a higher noisy level of table cells, such as incorrect encoding parsing, entity labels
variance, or abbreviation. In rounds 3 and 4, MTab4Db using keyword search achieves higher performance since
the table cells are more likely similar to entity labels of DBpedia.

Table 7 depicts the CTA results in AH score and AP score of MTab4D compared to the other systems on the
original version of SemTab 2019. Because of the CTA inconsistencies of the ground truth, MTab4D results are not
comparable with our system MTab in SemTab 2019. MTab4Df achieves slightly higher performance than MTab4D
using other entity search modules.

Table 8 depicts the CPA results in F1 score and precision of MTab4D compared to the other systems on the
original version of SemTab 2019. MTab4D results are slightly lower than our system MTab in SemTab 2019 because
of lacking equivalent properties of the CPA ground truth. The results of using different search modules are similar;
as a result, we conclude that there is no effect of using different entity search modules in MTab4D.

Table 6

CEA results in F1 score and Precision for the four rounds of the original version of SemTab 2019

F1 score Precision

Round: 1 2 3 4 1 2 3 4

MTab* 1.000 0.911 0.970 0.983 1.000 0.911 0.970 0.983

CSV2KG* 0.448 0.883 0.962 0.907 0.627 0.893 0.964 0.912

Tabularisi* 0.884 0.826 0.857 0.803 0.908 0.852 0.866 0.813

MantisTable* 1.000 0.614 0.633 0.973 1.000 0.673 0.679 0.983

LOD4ALL* 0.852 0.757 0.828 0.648 0.874 0.767 0.833 0.654

ADOG* 0.657 0.742 0.912 0.835 0.673 0.745 0.913 0.838

DAGOBAH* 0.897 0.713 0.725 0.578 0.941 0.816 0.745 0.599

MTab4Db 0.839 0.888 0.984 0.984 0.839 0.888 0.984 0.984

MTab4Df 0.867 0.892 0.983 0.983 0.873 0.899 0.983 0.983

MTab4Da 0.839 0.885 0.983 0.983 0.839 0.885 0.983 0.983
*Results are taken from SemTab 2019 [9].

Table 7

CTA results in F1 and Precision for Round 1 and AH score, and AP score of the original version of SemTab 2019

AH score AP score

Round: 1 (F1) 2 3 4 1 (Precision) 2 3 4

MTab* 1.000 1.414 1.956 2.012 1.000 0.276 0.261 0.300

CSV2KG* 0.833 1.376 1.864 1.846 0.833 0.257 0.247 0.274

Tabularisi* 0.825 1.099 1.702 1.716 0.825 0.261 0.277 0.325

MantisTable* 0.929 1.049 1.648 1.682 0.933 0.247 0.269 0.322

LOD4ALL* 0.850 0.893 1.442 1.071 0.850 0.234 0.260 0.386

ADOG* 0.829 0.713 1.409 1.538 0.851 0.208 0.238 0.296

DAGOBAH* 0.644 0.641 0.745 0.684 0.580 0.247 0.161 0.206

MTab4Db – 0.952 1.837 1.922 – 0.217 0.247 0.289

MTab4Df – 0.996 1.839 1.927 – 0.225 0.249 0.289

MTab4Da – 0.970 1.838 1.922 – 0.218 0.247 0.289
*Results are taken from SemTab 2019 [9].

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 17

Table 8

CPA results in F1 score and Precision for the four rounds of the original version of SemTab 2019

F1 score Precision

Round: 1 2 3 4 1 2 3 4

MTab* 0.987 0.881 0.844 0.832 0.975 0.929 0.845 0.832

CSV2KG* – 0.877 0.841 0.830 – 0.926 0.843 0.835

Tabularisi* 0.606 0.79 0.827 0.823 0.638 0.792 0.83 0.825

MantisTable* 0.965 0.46 0.518 0.787 0.991 0.544 0.595 0.841

LOD4ALL* – 0.555 0.545 0.439 – 0.941 0.853 0.904

ADOG* – 0.459 0.558 0.75 – 0.708 0.763 0.767

DAGOBAH* 0.415 0.533 0.519 0.398 0.347 0.919 0.826 0.874

MTab4Db – 0.839 0.844 0.830 – 0.842 0.849 0.838

MTab4Df – 0.839 0.844 0.830 – 0.842 0.849 0.838

MTab4Da – 0.839 0.844 0.830 – 0.843 0.849 0.838
*Results are taken from SemTab 2019 [9].

Table 9

CEA results in F1 score of MTab4D for the original and adapted version of SemTab 2019 dataset

Method Round 1 Round 2 Round 3 Round 4

Original Adapted Original Adapted Original Adapted Original Adapted

MTab4Db 0.839 0.857 (+2.15%) 0.888 0.918 (+3.38%) 0.984 0.992 (+0.81%) 0.984 0.987 (+0.30%)

MTab4Df 0.867 0.886 (+2.19%) 0.892 0.923 (+3.48%) 0.983 0.992 (+0.92%) 0.983 0.987 (+0.41%)

MTab4Da 0.839 0.860 (+2.50%) 0.885 0.916 (+3.50%) 0.983 0.992 (+0.92%) 0.983 0.986 (+0.31%)

Table 10

CTA results in AH score of MTab4D for the original and adapted version of SemTab 2019 dataset

Method Round 1 Round 2 Round 3 Round 4

Original Adapted Original Adapted Original Adapted Original Adapted

MTab4Db 1.292 1.350 (+4.49%) 0.952 0.986 (+3.57%) 1.837 1.926 (+4.84%) 1.922 1.923 (+0.05%)

MTab4Df 1.337 1.396 (+4.41%) 0.996 1.031 (+3.51%) 1.839 1.928 (+4.84%) 1.927 1.926 (−0.05%)

MTab4Da 1.300 1.358 (+4.46%) 0.970 1.006 (+3.71%) 1.838 1.927 (+4.84%) 1.922 1.923 (+0.05%)

4.5.2. Adapted SemTab 2019 dataset
This section compares the MTab4D performance on the original and adapted versions of the SemTab 2019

datasets.
Table 9 depicts the MTab4D results in the F1 score of the CEA task on the original and adapted version of

the SemTab 2019 dataset. MTab4D, built on the October 2016 version of DBpedia, consistently achieves better
performance on the adapted version dataset than the original one. Round 1 and 2 results in the adapted version have
more improvement than Round 3, 4 because Round 1, 2 have more inconsistencies in the original dataset.

Table 10 depicts the MTab4D results in the AH score of the CTA task on the original and adapted version of the
SemTab 2019 dataset. The performance of MTab consistently improves on the adapted version.

Table 11 depicts the MTab4D results in the F1 score of the CPA task on the original and adapted version of
the SemTab 2019 dataset. The performance of MTab significantly improves on the adapted version, adding the
equivalent properties into the ground truth data. Due to the incompleteness of DBpedia, there are many indirect
equivalent properties in DBpedia. For example, dbo:deathCause and dbo:causeOfDeath have the same equivalent
property of wikidata:P509 (cause of death). The problem of knowledge graph completion is not the main focus
of this work, but we can expect the improvement of property annotations when the completeness of DBpedia is
improved.

CORRECTED P
ROOF

18 P. Nguyen et al. / MTab4D

Table 11

CPA results in F1 score of MTab4D for the original and adapted version of SemTab 2019 dataset

Method Round 1 Round 2 Round 3 Round 4

Original Adapted Original Adapted Original Adapted Original Adapted

MTab4Db – – 0.839 0.982 (+17.04%) 0.844 0.975 (+15.52%) 0.830 0.983 (+18.43%)

MTab4Df – – 0.839 0.982 (+17.04%) 0.844 0.975 (+15.52%) 0.830 0.983 (+18.43%)

MTab4Da – – 0.839 0.983 (+17.16%) 0.844 0.975 (+15.52%) 0.830 0.983 (+18.43%)

Table 12

Statistics of entity annotation errors on the adapted SemTab 2019 dataset. We show the number of CEA matching targets as #Targets, the number
of errors of MTab4Db as #Errors, the percentage of CEA errors when there is no correct entity available in the candidate entity list of the search
modules (Section 3.3) as Search, and Others (other error cases)

Round 1 Round 2 Round 3 Round 4

#Targets 8,406 457,567 406,820 107,351

#Errors 1,204 (14.32%) 37,365 (8.17%) 3,069 (0.75%) 1,360 (1.27%)

Search 89.78% 93.92% 89.21% 95.88%

Others 10.22% 6.08% 10.79% 4.12%

4.6. Errors analysis

This section analyzes the error cases of entity CEA, CTA, and CPA tasks of MTab4D. Specifically, we perform
the following analysis objectives:

– EA1: How many MTab4D errors are on the CEA task? Which source caused these errors?
– EA2: How many MTab4D errors are on the CTA task? Do CEA results affect the annotation result of the CTA

task?
– EA3: How many MTab4D errors are on the CPA task? Do CEA results affect the annotation result of the CPA

task?
– EA4: How many MTab4D errors are on different table sizes?

For each question, we analyze MTab4D results on the adapted datasets (Section 4.5.2) using the MTab4Db
(MTab4D with the keyword search in Section 3.3.1) since this setting achieved the best performance in this dataset.
Error details on each table and errors of other MTab4D versions (i.e., MTab4Df, and MTab4Da) are available on the
MTab4D repository.11

4.6.1. EA1: MTab4D errors on the CEA task
Statistics of entity annotation errors on the adapted SemTab 2019 dataset depicts in Table 12. The error rate

of entity annotation is from 0.75% to 14.32%. MTab4D results have higher error rates in noisy data as Round 1
(14.32%), and Round 2 (8.17%), and lower error rates in the synthesis data Round 3 (0.75%), and Round 4 (1.27%).

Most entity annotation errors (from 89.21% to 95.88%) do not have correct answers in entity search modules in
Step 2. Due to the high ambiguity of table cells, there are 4.12%–10.79% of other CEA errors even if there is a
correct answer in the step of candidate entity generation.

Because MTab4D entity search modules return the top 100 relevant entities as a default setting (efficiency rea-
sons), a correct answer might be ranked lower than the top 100. To understand MTab4D performances in a larger
search limit, we re-run the experiments with the search limit setting as 1,000. Table 13 depicts MTab4D perfor-
mances with the search limit as 1,000 and as 100 on the adapted SemTab 2019 dataset. Although there is an increas-
ing search limit in MTab4D, the differences in final results are not significant. Building a better search engine for
tabular data is challenging for future studies because table data contains ambiguous text, abbreviations, misspellings.

11MTab4D error log files: https://github.com/phucty/mtab4dbpedia/blob/master/data/errors.tar.bz2, last accessed 03/2022.

https://github.com/phucty/mtab4dbpedia/blob/master/data/errors.tar.bz2

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 19

Table 13

Annotation results of MTab4D on the adapted SemTab 2019 dataset with the search limit as 1,000. We also show the percentage difference of
the results with search limit as 1000 and the results of the search limit of 100 (as in Table 9, 10, and 11)

Task Method Round 1 Round 2 Round 3 Round 4

CEA MTab4Db 0.849 (−0.93%) 0.918 (+0.00%) 0.994 (+0.20%) 0.992 (+0.51%)

MTab4Df 0.883 (−0.34%) 0.925 (+0.22%) 0.994 (+0.20%) 0.991 (+0.41%)

MTab4Da 0.851 (−1.05%) 0.916 (+0.00%) 0.993 (+0.10%) 0.991 (+0.51%)

CTA MTab4Db 1.358 (+0.59%) 0.975 (−1.12%) 1.927 (+0.05%) 1.923 (+0.00%)

MTab4Df 1.396 (+0.00%) 1.031 (+0.00%) 1.930 (+0.10%) 1.925 (−0.05%)

MTab4Da 1.358 (+0.00%) 0.986 (−1.99%) 1.928 (+0.05%) 1.923 (+0.00%)

CPA MTab4Db – 0.982 (+0.00%) 0.975 (+0.00%) 0.983 (+0.00%)

MTab4Df – 0.982 (+0.00%) 0.975 (+0.00%) 0.984 (+0.10%)

MTab4Da – 0.983 (+0.00%) 0.975 (+0.00%) 0.983 (+0.00%)

Table 14

Statistics of type annotation errors on the adapted SemTab 2019 dataset. We show the number of CTA matching targets as #Targets, the number
of errors of MTab4Db as #Errors. CEA errors depicts the probability of having CEA errors in the table that have CTA errors

Round 1 Round 2 Round 3 Round 4

#Targets 109 14,333 5,673 1,717

#Errors 10 (9.17%) 2,401 (16.75%) 99 (1.75%) 27 (1.57%)

CEA errors 80.00% 99.35% 88.16% 81.82%

Table 15

Statistics of property annotation errors on the adapted SemTab 2019 datasets. We show the number of CPA matching targets as #Targets, the
number of errors of MTab4Db as #Errors. CEA errors depicts the probability of having CEA errors in the table that have CPA errors

Round 1 Round 2 Round 3 Round 4

#Targets – 6,762 7,575 2,747

#Errors – 151 (2.23%) 225 (2.97%) 73 (2.66%)

CEA errors – 98.75% 90.09% 88.89%

4.6.2. EA2: MTab4D errors on the CTA task
Statistics of type annotation errors on the adapted SemTab 2019 dataset are depicts in Table 14. In this analysis,

a type annotation is an error when there is no overlapping between the annotated and ground truth types (the
concatenation of perfect and OK types). The error rate of type annotation is from 1.57% to 16.75%. MTab4D
results have higher error rates in noisy data as Round 1 (9.17%), and Round 2 (16.75%), and lower error rates in the
synthesis data Round 3 (1.75%), and Round 4 (1.57%).

There is also a large portion of the CEA annotation errors (80%-99.35%) for type errors. Since the MTab4D type
annotation module aggregates confidence signals from CEA annotation results, the errors in CEA tasks also affect
the performance of CTA tasks.

4.6.3. EA3: MTab4D errors on the CPA task
Statistics of property annotation errors on the adapted SemTab 2019 dataset are depicts in Table 15. The error rate

of type annotation is from 2.66% to 2.97%. We also have the same observation as the CTA tasks; the CPA results
are strongly affected by the CEA task performance as a large portion of the CEA annotation errors (80%-99.35%)
for property annotation errors.

4.6.4. EA4: MTab4D errors on different table sizes
Statistics of MTab4D errors on different table sizes are reported in Table 16. Overall, MTab4D performance

increase with the increase of table size. Regarding the CEA task, MTa4D provides many errors (31.78% of the
annotations are incorrect) in the small tables (less than ten cells), while the system performs very well in large
tables. In the CTA task, MTab4D results also have many errors in small table sizes (30.66% of the annotations are

CORRECTED P
ROOF

20 P. Nguyen et al. / MTab4D

Table 16

Statistics of MTab4D errors on different table sizes

#Cells 10 100 1,000 10,000 100,000

CEA 31.78% 1.82% 0.10% 0.03% 0.00%

CTA 30.66% 9.79% 2.72% 1.77% 0.00%

CPA – 7.89% 5.72% 9.26% –

errors); however, the system works well for large tables. There is no target matching for tables with the number of
cells less than ten and larger than 10,000 cells for the CPA task. MTab4D provides the best results for tables with
cells from 100 to 1,000 with only 5.72% incorrect answers.

5. MTab4D APIs, and graphical interface

This section describes our implementations as described in Section 3: MTab4D APIs and MTab4D graphical
interface.

5.1. MTab4D APIs

We provide the five following APIs.

– Entity Search: This API is used to search relevant entities from the October 2016 version of DBpedia. There
are three search modules (Section 3.3): keyword search, fuzzy search, and aggregation search.

– Entity Information Retrieval: This API is used to retrieve entity information from the October 2016 version of
DBpedia. The responded object includes DBpedia title, mapping to Wikidata, Wikipedia, label, aliases, types,
entity popularity (PageRank score), entity triples, and literal triples.

– Table Annotation: This API sends a table to the API and gets the annotation results, including structural and
semantic annotations. The user could provide the annotation targets for CEA, CTA, or CPA tasks as the input,
or MTab4D also could automatically predict the targets based on cell and column datatypes as in Section 3.2.5.

– Numerical Labeling: The user could do numerical labeling from numerical columns and get a ranking list of
relevant properties as EmbNum+ [16].

– SemTab 2019 Evaluation: The user could submit the annotation results of CEA, CTA, and CPA tasks to calcu-
late the evaluation metrics from the original and adapted datasets of SemTab 2019.

5.2. MTab4D graphical interface

We provide two interfaces entity search and table annotation.

5.2.1. Entity search interface
The user can enter a query in the entity search interface then search with the three MTab4D entity search modules

(i.e., keyword search, fuzzy search, and aggregation search). Figure 7 illustrates an example of the fuzzy search with
the keyword of “Senaticweb”. It takes only 0.06 seconds to get the relevant “Semantic Web” entity.

5.2.2. Table annotation interface
The user can copy and paste table content expressed in any language from tabular data files (Excel, CSV, TSV)

or tables on the Web in the table annotation interface. Then, the user could tap the “Annotate” button to get the
annotation results.

Figure 8 illustrates an example of table annotation on the “v15_1” table in Round 4 of SemTab 2019. MTab4D
takes 0.78 seconds to annotate the input table, as shown in the left figure. The figure on the right shows the annotation
results. The table header is in the first row, and the core attribute is in the first column. Entity annotations are in red
and located below the table cell value. The type annotation is in green and located in the “Type” column. Finally,
the relations between the core attribute and other columns are in blue and located in the property column.

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 21

Fig. 7. MTab4D entity search interface.

Fig. 8. MTab4D table annotation interface.

6. Related work

In this section, we review the other systems participating in SemTab 2019. Also, we discuss related works on the
tabular data annotation task.

6.1. SemTab 2019 systems

This section describes the six other frequent participants for all rounds of SemTab 2019 challenges.
The participants generate candidate entities by looking up table cell values or search values in the local index with

Elastic Search in DBpedia, Wikidata. Table 17 reports the lookup services used in the participant systems because of
lacking specification of information retrieval techniques, hyper-parameters, database index sources. Then, the can-
didate types and candidate properties are estimated using the candidate entities. Finally, the systems perform entity
disambiguation to return the CEA results. The CTA and CPA annotations are generated with the CEA annotations
using majority voting.

CORRECTED P
ROOF

22 P. Nguyen et al. / MTab4D

Table 17

Comparison of candidate entity generation methods of SemTab 2019 participants

MTab4D CSV2KG TabularISI MantisTable LOD4ALL ADOG DAGOBAH

URI heuristic* x � x x � x x

DBpedia SPARQL � x x � x x �
DBpedia Lookup � � x x x x x

DBpedia Spotlight x � x x x x x

Wikidata SPARQL � x � x x x �
Wikipedia (CirrusSearch) x x x x x x �
Wikipedia (Multilingual) � x x x x x x

DBpedia Elastic Search x x � x x � x

Wikidata Elastic Search x x � x x x �
LOD4ALL Elastic Search x x x x � x x
*URI heuristic: checking whether there is an available entity that has a similar label with table cell using ASK SPARQL.

CSV2KG (IDLAB) first searches on DBpedia lookup and DBpedia Spotlight to generate candidate entities [25].
The candidate types and property annotations are estimated using majority voting approaches based on candidate
entities. Then, the entity annotations are estimated using the information of candidate properties. Finally, type an-
notations are estimated using entity annotations.

Tabular ISI approach first generates candidate entities with Wikidata API and Elastic Search on entity labels of
Wikidata, DBpedia. Second, the authors use the heuristics TF-IDF approach and machine learning (neural network
ranking) model to select the best candidate for the entity annotation task [24]. The type annotations are estimated
with the results from entity annotations with hierarchy searching on common classes. The property annotations
are estimated by finding the relation between candidate entities of the primary and secondary columns or values
matching the primary and secondary columns’ values.

Mantis Table performs column analysis, including predicting name entity columns, literal columns, and subject
column, then mapping between columns into concepts in DBpedia [3]. The relationships between the subject column
and other columns are estimated based on predicate context and predicate frequency of column value and candidate
predicates. Finally, entity linking is performed using the results from previous steps for cell value disambiguation.
The property annotations are estimated by getting the maximum frequency of candidate properties in the entity
linking phase. The authors calculate the hierarchical path score of entity types from entity annotations to estimate
type annotations. Then type annotations are estimated on the maximum of the path score.

DAGOBAH performs entity linking with a lookup on Wikidata, DBpedia, and voting mechanisms [1]. The authors
used Wikidata entity embedding to estimate the entity candidate types, assuming that the same column’s entities
should be closed in the embedding spaces as they share semantic meanings.

LOD4ALL uses a combination of direct search (SPARQL ASK on dbr:“query”), keyword search (Abbreviation
of Human name), and Elastic Search to find candidate entities [12]. The candidate entities will be used to estimate
type annotations with majority voting. Then, the system determines the entity annotations with the type constraints.
Finally, the property annotations are estimated by a column-based majority voting with entity annotations of each
table row.

ADOG focuses on entity annotation with Elastic Search on an integrated ontology (DBpedia sub-graph) using a
NoSQL database named ArangoDB [18]. The system estimates entity annotation using Levenshtein distance, and
the results of type and property annotations are estimated from entity annotations.

In summary, some participants adopt the online lookup services of DBpedia, Wikidata, Wikipedia. As a result,
it is hard to reproduce the experimental result while the source index changes over time. Some participants built
offline lookup services that lacked specification on the information retrieval techniques, hyper-parameter settings,
or index sources. It is also hard to reproduce their results. To address the problem, we built a database index from
dump data of the October 2016 version of DBpedia. We released many public APIs about entity search modules that
enable reproducibility for future studies.

Moreover, tabular data contains many numerical attributes that help us use semantic labeling results for numerical
attributes. In MTab4D, we aggregate signal from the results of semantic labeling for numerical attributes (columns)

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 23

Table 18

Studies used DBpedia as the target knowledge graph

Study DBpedia Version

Quercini et al. [20] 2013

T2K [22] 2014

Efthymiou et al. [5] October 2015

MantisTable [4] 2017

MTab4D October 2016

using EmbNum+ [16] (deep metric for distribution similarity calculation). Additionally, we also use novel signals
from the relations of column pairs to enhance overall matching performance.

6.2. Other tabular data annotation tasks

The tabular data annotation tasks could be categorized as structure or semantic annotation.
The structural annotation contains table type prediction [17], datatype prediction, table header annotation, subject

column prediction, and holistic matching across tables [10]. In SemTab 2019, most tables are represented as a
horizontal relational type; headers are located at the first row of tables, and the subject column is in the first table
column.

There are many previous studies on table semantic annotation, including schema-level matching, e.g., tables to
classes [22], columns to properties [2,16,19,22] or classes [27], and data-level matching, e.g., rows [5,22] or cells
to entities [11,27]. SemTab 2019 also has schema annotation as the CTA task, data annotation as the CEA task, and
a novel CPA task as column relation annotation.

6.3. DBpedia version

Due to the different environment settings, such as the DBpedia version, it is hard to compare the annotations
directly. Table 18 reports the DBpedia versions used in table annotation tasks. Quercini et al. [20] used a snippet
of DBpedia in 2013. T2K [22] conducts experiments on the T2D dataset built on the 2014 version of DBpedia.
Efthymiou et al. [5] introduce Wikipedia tables and an adapted version of Limaye gold standard [11] built on the
October 2015 version of DBpedia. The recent work (MantisTable [4]) builds the annotation system based on the
DBpedia 2017 version. In this work, we follow the SemTab 2019 to build the system based on the DBpedia October
2016 version.

7. Conclusion

This paper presents MTab4D, a table annotation system that combines multiple matching signals from different
table elements to address schema heterogeneity, data ambiguity, and noisiness. This paper also provides insight-
ful analysis and extra resources on benchmarking semantic annotation with knowledge graphs. Additionally, we
also introduce MTab4D APIs and graphical interfaces for reproducibility. Experimental results on the original and
adapted datasets of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab 2019)
show that our system achieves an impressive performance for the three matching tasks.

7.1. Future work

MTab4D could be improved in many dimensions, such as effectiveness, efficiency, and generality. Regarding
efficiency, MTab4D could be modified in a parallel processing fashion since the lookup steps and the probability
estimations in Step 2, 3, and 4 are independent. Regarding effectiveness, MTab4D performance could be improved
by relaxing our assumptions:

CORRECTED P
ROOF

24 P. Nguyen et al. / MTab4D

– The closed-world assumption (Assumption 1) might not hold in practice. Improving the completeness and
correctness of knowledge graphs might improve MTab4D performance.

– MTab4D assumes the input table as a horizontal relational type as in Assumption 2. To make MTab4D work
for other table types, e.g., vertical relational, we need to perform further preprocessing steps to identify table
types and transform table data to horizontal relational.

– Many tables could have a shared schema, e.g., tables on the Web could be divided into many web pages;
therefore, we can expect an improving matching performance by stitching tables on the same web page (or
domain) [10,21].

7.2. Lessons learned

This section discusses the lessons learned from SemTab 2019 challenge.

Benchmarking value From our perspective, SemTab 2019 plays a vital role in benchmarking tabular data annota-
tion tasks. Due to the differences in benchmark settings, tabular datasets, and target matching knowledge bases in
the literature, there is a need for a general benchmark for tabular data annotation tasks to promote a fair comparison
of annotation systems. This challenge reflects the practical performance of matching techniques and the importance
of features for tabular matching.

DBpedia as target knowledge graph The choice of DBpedia as the target matching reflects the low update knowl-
edge graph. In real-world practice, many knowledge graphs change rapidly, such as Wikidata. We will have different
challenges in matching the fast-evolving knowledge graphs.

Acknowledgements

The research was partially supported by the Cross-ministerial Strategic Innovation Promotion Program (SIP)
Second Phase, “Big-data and AI-enabled Cyberspace Technologies” by the New Energy and Industrial Technology
Development Organization (NEDO).

We would like to thank the SemTab 2019 challenge organizers for organizing the successful challenge. We also
thank IBM Research and SIRIUS for their sponsorship of the challenge.

References

[1] Y. Chabot, T. Labbé, J. Liu and R. Troncy, DAGOBAH: An end-to-end context-free tabular data semantic annotation system, in:
SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553, CEUR-WS.org, 2019, pp. 41–48, http://ceur-ws.org/Vol-2553/paper6.
pdf.

[2] J. Chen, E. Jiménez-Ruiz, I. Horrocks and C.A. Sutton, ColNet: Embedding the semantics of web tables for column type prediction, in:
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, 2019, 2019, pp. 29–36. doi:10.1609/aaai.v33i01.330129.

[3] M. Cremaschi, R. Avogadro and D. Chieregato, MantisTable: An automatic approach for the semantic table interpretation, in:
SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553, CEUR-WS.org, 2019, pp. 15–24, http://ceur-ws.org/Vol-2553/paper3.
pdf.

[4] M. Cremaschi, F.D. Paoli, A. Rula and B. Spahiu, A fully automated approach to a complete semantic table interpretation, Future Genera-
tion Computer Systems 112 (2020), 478–500. doi:10.1016/j.future.2020.05.019.

[5] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro and V. Christophides, Matching web tables with knowledge base entities: From entity
lookups to entity embeddings, in: The Semantic Web – ISWC 2017 – 16th International Semantic Web Conference, 2017, 2017, pp. 260–277.
doi:10.1007/978-3-319-68288-4_16.

[6] W. Garbe, SymSpell: Symmetric Delete algorithm, GitHub, 2012, https://github.com/wolfgarbe/SymSpell.
[7] O. Hassanzadeh, V. Efthymiou, J. Chen, E. Jiménez-Ruiz and K. Srinivas, SemTab2019: Semantic web challenge on tabular data to knowl-

edge graph matching – 2019 data sets, Zenodo, 2019. doi:10.5281/zenodo.3518539.
[8] M. Honnibal and I. Montani, spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incre-

mental parsing, 2017, https://spacy.io/.
[9] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen and K. Srinivas, SemTab 2019: Resources to benchmark tabular data to knowl-

edge graph matching systems, in: The Semantic Web – 17th International Conference, ESWC 2020, Lecture Notes in Computer Science,
Vol. 12123, Springer, 2020, pp. 514–530. doi:10.1007/978-3-030-49461-2_30.

http://ceur-ws.org/Vol-2553/paper6.pdf
http://ceur-ws.org/Vol-2553/paper6.pdf
https://doi.org/10.1609/aaai.v33i01.330129
http://ceur-ws.org/Vol-2553/paper3.pdf
http://ceur-ws.org/Vol-2553/paper3.pdf
https://doi.org/10.1016/j.future.2020.05.019
https://doi.org/10.1007/978-3-319-68288-4_16
https://github.com/wolfgarbe/SymSpell
https://doi.org/10.5281/zenodo.3518539
https://spacy.io/
https://doi.org/10.1007/978-3-030-49461-2_30

CORRECTED P
ROOF

P. Nguyen et al. / MTab4D 25

[10] O. Lehmberg and C. Bizer, Stitching web tables for improving matching quality, Proc. VLDB Endow. 10(11) (2017), 1502–1513, http://
www.vldb.org/pvldb/vol10/p1502-lehmberg.pdf. doi:10.14778/3137628.3137657.

[11] G. Limaye, S. Sarawagi and S. Chakrabarti, Annotating and searching web tables using entities, types and relationships, Proc. VLDB
Endow. 3(1) (2010), 1338–1347, http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R118.pdf. doi:10.14778/1920841.1921005.

[12] H. Morikawa, Semantic table interpretation using LOD4ALL, in: SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553, CEUR-
WS.org, 2019, pp. 49–56, http://ceur-ws.org/Vol-2553/paper7.pdf.

[13] P. Nguyen, N. Kertkeidkachorn, R. Ichise and H. Takeda, MTab: Matching tabular data to knowledge graph using probability models, in:
SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553, CEUR-WS.org, 2019, pp. 7–14, http://ceur-ws.org/Vol-2553/paper2.pdf.

[14] P. Nguyen, N. Kertkeidkachorn, R. Ichise and H. Takeda, Semantic annotation for tabular data with DBpedia: Adapted SemTab 2019 with
DBpedia 2016-10, Zenodo, 2021. doi:10.5281/zenodo.4922769.

[15] P. Nguyen, N. Kertkeidkachorn, R. Ichise and H. Takeda, MTab: Matching tabular data to knowledge graph using probability models, 2019,
CoRR abs/1910.00246, arXiv:1910.00246.

[16] P. Nguyen, K. Nguyen, R. Ichise and H. Takeda, EmbNum+: Effective, efficient, and robust semantic labeling for numerical values, New
Generation Computing 37(4) (2019), 393–427. doi:10.1007/s00354-019-00076-w.

[17] K. Nishida, K. Sadamitsu, R. Higashinaka and Y. Matsuo, Understanding the semantic structures of tables with a hybrid deep neural network
architecture, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017, 2017, pp. 168–174, http://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14396.

[18] D. Oliveira and M. d’Aquin, ADOG – annotating data with ontologies and graphs, in: SemTab@ISWC 2019, CEUR Workshop Proceedings,
Vol. 2553, CEUR-WS.org, 2019, pp. 1–6, http://ceur-ws.org/Vol-2553/paper1.pdf.

[19] M. Pham, S. Alse, C.A. Knoblock and P.A. Szekely, Semantic labeling: A domain-independent approach, in: The Semantic Web – ISWC
2016 – 15th International Semantic Web Conference, Lecture Notes in Computer Science, Vol. 9981, 2016, pp. 446–462. doi:10.1007/978-
3-319-46523-4_27.

[20] G. Quercini and C. Reynaud, Entity discovery and annotation in tables, in: Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings,
G. Guerrini and N.W. Paton, eds, ACM, 2013, pp. 693–704. doi:10.1145/2452376.2452457.

[21] D. Ritze, Web-scale web table to knowledge base matching, PhD thesis, University of Mannheim, Germany, 2017. https://ub-madoc.bib.
uni-mannheim.de/43123.

[22] D. Ritze, O. Lehmberg and C. Bizer, Matching HTML tables to DBpedia, in: Proceedings of the 5th International Conference on Web
Intelligence, Mining and Semantics, WIMS 2015, 2015, pp. 10–1106. doi:10.1145/2797115.2797118.

[23] R. Speer, ftfy, 2019, version 5.5. https://github.com/LuminosoInsight/python-ftfy.
[24] A. Thawani, M. Hu, E. Hu, H. Zafar, N.T. Divvala, A. Singh, E. Qasemi, P.A. Szekely and J. Pujara, Entity linking to knowledge graphs to

infer column types and properties, in: SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553, CEUR-WS.org, 2019, pp. 25–32,
http://ceur-ws.org/Vol-2553/paper4.pdf.

[25] G. Vandewiele, B. Steenwinckel, F.D. Turck and F. Ongenae, CVS2KG: Transforming tabular data into semantic knowledge, in:
SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553, 2019, pp. 33–40, http://ceur-ws.org/Vol-2553/paper5.pdf.

[26] D. Wang, P. Shiralkar, C. Lockard, B. Huang, X.L. Dong and M. Jiang, TCN: Table convolutional network for web table interpretation, in:
WWW ’21: The Web Conference 2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang and L. Zia, eds, ACM / IW3C2, 2021, pp. 4020–4032.
doi:10.1145/3442381.3450090.

[27] Z. Zhang, Effective and efficient semantic table interpretation using TableMiner+, Semantic Web 8(6) (2017), 921–957. doi:10.3233/SW-
160242.

http://www.vldb.org/pvldb/vol10/p1502-lehmberg.pdf
http://www.vldb.org/pvldb/vol10/p1502-lehmberg.pdf
https://doi.org/10.14778/3137628.3137657
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R118.pdf
https://doi.org/10.14778/1920841.1921005
http://ceur-ws.org/Vol-2553/paper7.pdf
http://ceur-ws.org/Vol-2553/paper2.pdf
https://doi.org/10.5281/zenodo.4922769
http://arxiv.org/abs/arXiv:1910.00246
https://doi.org/10.1007/s00354-019-00076-w
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14396
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14396
http://ceur-ws.org/Vol-2553/paper1.pdf
https://doi.org/10.1007/978-3-319-46523-4_27
https://doi.org/10.1007/978-3-319-46523-4_27
https://doi.org/10.1145/2452376.2452457
https://ub-madoc.bib.uni-mannheim.de/43123
https://ub-madoc.bib.uni-mannheim.de/43123
https://doi.org/10.1145/2797115.2797118
https://github.com/LuminosoInsight/python-ftfy
http://ceur-ws.org/Vol-2553/paper4.pdf
http://ceur-ws.org/Vol-2553/paper5.pdf
https://doi.org/10.1145/3442381.3450090
https://doi.org/10.3233/SW-160242
https://doi.org/10.3233/SW-160242

	Introduction
	Definitions and assumptions
	Problem definitions
	Knowledge graph
	Tabular data
	Matching targets
	Semantic annotation tasks

	Assumptions

	MTab4D approach
	Framework
	Step 1: Pre-processing
	Cell normalization
	Data type prediction
	Header prediction
	Subject column prediction
	Matching targets prediction

	Step 2: Candidate entity generation
	Keyword search
	Fuzzy search
	Aggregation search

	Step 3: Candidate type generation
	Entity search signals
	Named-entity recognition signals
	Table header signals
	Numerical column signals
	Signal aggregation

	Step 4: Candidate property generation
	Subject column – named-entity column
	Subject column – literal column

	Step 5: Entity matching
	Step 6, 7: Type and property matching

	Evaluation
	Datasets
	Original SemTab 2019 dataset
	Adapted SemTab 2019 dataset
	Ground truth
	Public resources

	Analysis of the original SemTab 2019 dataset
	Evaluation metrics
	Experimental settings
	Experimental results
	Original SemTab 2019 dataset
	Adapted SemTab 2019 dataset

	Errors analysis
	EA1: MTab4D errors on the CEA task
	EA2: MTab4D errors on the CTA task
	EA3: MTab4D errors on the CPA task
	EA4: MTab4D errors on different table sizes

	MTab4D APIs, and graphical interface
	MTab4D APIs
	MTab4D graphical interface
	Entity search interface
	Table annotation interface

	Related work
	SemTab 2019 systems
	Other tabular data annotation tasks
	DBpedia version

	Conclusion
	Future work
	Lessons learned

	Acknowledgements
	References

