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Abstract. We present the Linked SPARQL Queries (LSQ) dataset, which currently describes 43.95 million executions of 11.56
million unique SPARQL queries extracted from the logs of 27 different endpoints. The LSQ dataset provides RDF descriptions of
each such query, which are indexed in a public LSQ endpoint, allowing interested parties to find queries with the characteristics
they require. We begin by describing the use cases envisaged for the LSQ dataset, which include applications for research on
common features of queries, for building custom benchmarks, and for designing user interfaces. We then discuss how LSQ has
been used in practice since the release of four initial SPARQL logs in 2015. We discuss the model and vocabulary that we use to
represent these queries in RDF. We then provide a brief overview of the 27 endpoints from which we extracted queries in terms of
the domain to which they pertain and the data they contain. We provide statistics on the queries included from each log, including
the number of query executions, unique queries, as well as distributions of queries for a variety of selected characteristics. We
finally discuss how the LSQ dataset is hosted and how it can be accessed and leveraged by interested parties for their use cases.
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1. Introduction

Since its initial recommendation in 2008 [70], the SPARQL query language for RDF has received considerable
adoption, where it is used on hundreds of public query endpoints accessible over the Web [93]. The most prominent
of these endpoints receive millions of queries per month [12], or even per day [57]. There is much to be learnt from
queries received by such endpoints, where research on SPARQL would benefit – and has already benefited – from
access to real-world queries to help focus both applied and theoretical research on commonly seen forms of queries
[59].

To exemplify how access to real-world queries can directly benefit research on SPARQL, first consider the com-
plexity results of SPARQL [67], which show that evaluation of SPARQL queries is intractable (PSPACE-hard). But
do the worst cases predicted in theory actually occur in practice? Is it possible to define fragments of the language
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that avoid computationally difficult cases and lead the way to efficient algorithms dedicated to these common cases?
The answer is yes, where a number of restricted fragments of SPARQL queries have been identified that are less
computationally costly for important tasks. These fragments include well-designed queries that use the OPTIONAL
clause in restricted ways [21,67], queries with low treewidth [21] whose structure is close to that of a tree, queries
such as simple transitive expressions [58] or (certain fragments of) simple conjunctive regular path queries [36]
where only restricted use of Kleene star (*) is allowed in path expressions, certain types of simple conjunctive regu-
lar path queries where disjunction (|) is not allowed inside Kleene star, and threshold queries that limit the number
of results returned [20]. Studies of SPARQL query logs have shown that these fragments cover many of the queries
seen in practice [24,58], where query logs help to bridge the theory and practice of SPARQL [59].

Another use case for a large collection of real-world queries pertains to benchmarking. For over a decade, the
SPARQL community has relied on synthetic datasets and queries (e.g., LUBM [40], Berlin [19]), or real-world
datasets and hand-crafted queries (e.g., BTC [63], FedBench [84]) to perform benchmarking. However, Aluç et al.
[7] and Saleem et al. [83] find the queries of these benchmarks to often be too narrow and simplistic. Building
benchmarks from real-world queries can help tune implementations and guide research towards better support for
the types of queries most commonly encountered in practical settings [13,16,62,65,79,101]. Yet another use case is
caching [50,54,100]. Here, real-world queries can be used to simulate practical workloads experienced by endpoints.
The usability of SPARQL interfaces [24,25,52,73] can also benefit from query logs, as these logs can reveal patterns
in how users incrementally build their queries, as has recently been studied by Bonifati et al. [24] in DBpedia logs.
These use cases and others will be discussed in more detail in Section 2.

Recognising the value of query logs, a number of such collections have been published previously, including
contributions from USEWOD [55],1 as well as Wikidata [57]. These logs have been widely used and analysed by
a variety of authors (e.g., [12,21,23,57,68,72]). However, (i) these logs are provided in ad-hoc formats, varying in
terms of syntax and information provided depending on the particular SPARQL implementation used to host the
endpoint. (ii) Typically, queries are published as strings, meaning (for example) that a client would need to use a
SPARQL query parser and some procedural code to find queries matching particular structures or characteristics.
(iii) Moreover, runtime statistics in terms of–for example–the selectivity of individual query patterns with respect
to the base dataset of the endpoint are not provided. (iv) Furthermore, these datasets have generally been limited to
publishing logs from a small number (1–4) of endpoints.

In this dataset description paper, we extend upon our previous work [77], which reported on the initial release of
the Linked SPARQL Query Dataset (LSQ). The goal of LSQ is to publish queries from a variety of SPARQL logs in
a consistent format and associate these queries with rich metadata, including both static metadata (i.e., considering
only the query) and runtime metadata (i.e., considering the query and the dataset). In particular, we propose an
RDF representation of queries that captures their source, structure, static metadata and runtime metadata. These
RDF descriptions of queries are indexed in a SPARQL endpoint. Thus, they allow clients to retrieve the queries
of interest to their use case declaratively, potentially sourced from several endpoints at once. In comparison to our
previous work [77], which described the initial release of the dataset in 2015:

– The LSQ dataset has grown considerably: LSQ 2.0 now features logs from 27 endpoints (22 of which are
from Bio2RDF) compared with 4 initial endpoints. As a result, the number of query executions described by
the LSQ 2.0 dataset has grown from 5.68 million to 43.95 million.

– Based on the experiences gained from the first version of LSQ, we have improved the RDF model to provide
better modularisation and more detailed metadata, facilitating new ways in which clients can select the queries
of interest to them; we have likewise updated the LSQ vocabulary accordingly.

– We have re-engineered the extraction framework, which takes as input raw logs produced by a variety of
popular SPARQL engines and Web servers, producing an output RDF graph in the LSQ 2.0 data model
describing the queries. The RDFization process can now be scaled as it leverages Apache Spark.2 The LSQ
software framework has been released as open source.

1http://usewod.org/; retr. 2015/04/14.
2https://spark.apache.org/

http://usewod.org/
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– We have evaluated the new queries locally in a Virtuoso instance in order to gain runtime statistics (including
estimates of the number of results, the selectivity of patterns, overall runtimes, etc.), and have updated the
statistical analysis of the queries featured by LSQ to include the additional data provided by the new endpoints.

– Since the initial release, LSQ has been used by a variety of diverse research works on SPARQL [2,3,11,14,15,
17,18,21,22,26,30–32,34,35,37,39,41,42,49,58,69,71,74–76,78–80,83,85–87,89–91,94,97–99,102]. To ex-
emplify the value of LSQ, we discuss the various ways in which the dataset has been used in these past
years.

LSQ 2.0 is available at http://aksw.github.io/LSQ/.
The rest of the paper is structured as follows:

– Section 2 describes use cases envisaged for LSQ.
– Section 3 details the model and vocabulary used by LSQ to represent and describe SPARQL queries.
– Section 4 describes how LSQ is published following Linked Data principles and best practices.
– Section 5 first describes the datasets for which LSQ indexes queries, and then provides details on the raw logs

from which queries are extracted.
– Section 6 provides an analysis of the LSQ dataset itself, as well as the queries it contains.
– Section 7 describes how LSQ has been adopted for the past six years since its initial release.
– Section 8 concludes and discusses future directions for the LSQ dataset.

2. Use cases

To help motivate the Linked SPARQL Queries dataset, we first discuss some potential use cases that we envisage.
We then list some general requirements for LSQ that arise from these use cases.

UC1 Custom Benchmarks A number of benchmarks have been proposed recently based on real-world queries
observed in logs [16,62,79,101]. The LSQ dataset can support the creation of such benchmarks, allowing users
to select queries from a diverse selection of logs based on custom criteria matching the metadata provided
by LSQ. Queries may be selected so as to provide a general benchmark that is representative of real-world
workloads, or a specialised benchmark focused on particular query characteristics, such as path expressions,
multi-way joins, and aggregation queries.

UC2 SPARQL Adoption Various works have analysed SPARQL query logs in order to understand how features of
the SPARQL standard are used “in the wild” as well as to extract structural properties of real-world queries
[12,21,23,24,57,68,72]. In turn, this family of works has led to the definition of tractable fragments of queries
that are common in practice [20,58]. LSQ can facilitate further research on the use of SPARQL in the wild as
it compiles logs from different domains.

UC3 Caching Techniques for SPARQL caching [50,60,66,100] aim to re-use solutions across multiple queries.
Caching allows for reducing the computational requirements needed to evaluate a workload, particularly in
cases where queries are often repeated and the underlying data do not change too frequently. The LSQ dataset
can again provide a sequence of real-world queries for benchmarking caching systems in realistic settings.

UC4 Usability Aside from efficiency, a crucial aspect of SPARQL research and development is to explore tech-
niques that allow non-expert users to express queries against endpoints more easily. A number of techniques
have been proposed to enhance the usability of SPARQL endpoints, including works on auto-completion
[25,52,73], query relaxation [38,43,96] and query builders [10,27,44,95]. Such works could use the LSQ
dataset to investigate patterns in how users iteratively formulate more complex queries, causes for queries
with empty results, as well as to detect the most important features that interfaces must support.

UC5 Optimisation Understanding the most common cases encountered in real-world queries can allow for opti-
mising implementations towards those cases. One such optimisation is to define workload-aware schemes for
local [8,9] and distributed [4,28,45] indexing that attempt to group data commonly requested together in the
same region of storage; other optimisations look at scheduling the execution of parallel query requests in an
effective and fair manner [56], or propose efficient algorithms for frequently encountered patterns in queries
[58]. The LSQ dataset can provide diverse examples of real workloads to help configure and evaluate such
techniques.

http://aksw.github.io/LSQ/
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UC6 Meta-Querying The final use case is admittedly more speculative. By meta-querying, we refer to LSQ being
used to query for queries of interest, for example, to find the (most common) queries that are asked about
specific resources, such as finding out what queries are being asked involving dbr:Zika_virus, or what
frequent co-occurrences of resources appear in queries. Meta-querying along these lines may help to under-
stand what are the common information needs of users.

These six use cases are intended to help motivate the dataset, to give ideas of potential applications, and also to
help distil some key requirements for the design of the dataset. The list should not be considered complete, as other
use cases will naturally arise in future. We identify the following facets of the dataset as relevant to support the
aforementioned six use cases.

F1 Static Query Features LSQ should describe the key features of each query independently of the dataset. These
include SPARQL keywords (e.g., UNION, DISTINCT), syntactic features (e.g., property paths), and struc-
tural features (e.g., multi-way joins, number of projected variables, statistics relating to basic graph patterns
(BGPs), etc.). Furthermore, the query should make the resources it mentions explicit. Static features are of
key importance to UC1, UC2, UC4, UC5 and UC6.

F2 Provenance LSQ should provide provenance meta-data about the execution of each query, including the end-
point it was issued to, a timestamp of when it was executed, and an anonymised identifier for the client.
Timestamps are of particular importance to UC3 and UC4, while an anonymised identifier for the client is
mostly of importance to UC4.

F3 Runtime Query Statistics LSQ should include statistics of the evaluation of the query over the original dataset,
including the number of results returned, the estimated runtime, and the selectivity of individual patterns in
the query. Again, making such statistics available allows clients to select and analyse queries with regard to
these features without having to execute them over the original dataset. Runtime statistics are of particular
importance to UC1, UC3, UC4 and UC5.

These facets guide the design of the LSQ dataset in terms of what is included, and how the descriptions of
individual queries are represented in RDF.

3. Data model & vocabulary

In this section, we describe the data model and vocabulary employed by LSQ for describing SPARQL queries.
First, we identify a number of desiderata:

D1 Generality The data model should facilitate a variety of use cases and cover at least the aforementioned facets
(F1–F3) without the need for clients to parse the raw query strings.

D2 Conciseness With logs containing millions of queries, the data model should be relatively concise – in terms of
triples produced per query – to keep LSQ at a manageable volume of data.

D3 Usability Core competency questions over the dataset (e.g., find all queries using a particular feature) should
be expressible in terms of simple queries that are efficient to evaluate.

D4 Linked Data Compatibility URIs should be dereferenceable so as to abide by the Linked Data Principles.
Terms from external well-known vocabularies should be re-used where appropriate. Links to other datasets
should be provided.

It is important to note that some of these desiderata are incompatible. For example, D2 is in direct conflict with
D1 as adding more meta-data for queries can increase generality, but decreases conciseness. D2 can also be seen as
being in conflict with D3 and D4, as D3 can be achieved by adding “shortcut” representations for common needs,
while D4 requires the addition of links to external datasets, both of which reduce conciseness. Consequently, the
data model must find a balance between providing a detailed description of each query, being useful for various
purposes, and keeping the overall dataset relatively concise and manageable.
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Fig. 1. Core of the LSQ data model: dashed lines indicate sub-classes; datatype properties are embedded within their associated class nodes
to simplify presentation; external classes are shown with dotted borders. For clarity, we do not show details of the SPIN representation, or the
execution of query elements more fine-grained than BGPs (which follow a similar pattern).

In Fig. 1 we provide an overview of the model used to represent queries in RDF, while in Listing 1 we provide a
snippet of the top-level data generated for a query found in the SWDF logs.3 We now discuss the groups of features
described for each query.

Query instance We define a “query” to be uniquely identified by the syntactic query string (independently of
the endpoint, the particular execution, etc.). We type these queries with lsqv:Query. Instances of this class are
linked to the query string using lsqv:text, and to various instances of local and remote executions. Other links
are provided to other resources that capture further details of the static features of the query, its structure, as well
as runtime statistics of its local execution (on our server) as information about its remote execution (on the original
server).

Static features Next we define some static features of the query, independent of the dataset over which it is eval-
uated. These include links to its individual join variables, triple patterns, and basic graph patterns; the SPARQL
features that is uses; its number of projected variables, basic graph patterns, join variables, triple patterns; the maxi-
mum, mean and median degree of its join variables; and the maximum and minimum size of its basic graph patterns.
The triple patterns and basic graph patterns themselves link to the SPIN representation of the query included in the
description (and discussed presently); the triple patterns, in turn, link to the resources used by the query. The join
variables, on the other hand, are described separately, indicating the degree of the variable and type of join [81] it
induces.

SPIN representation While the static features aim to capture some high-level descriptions of the query that may
be of interest to specific use cases, some details may be missing. In the interest of generality, we also include for
each query a SPARQL Inferencing Notation (SPIN) [48] representation of the query, which essentially captures a
fine-grained translation of the SPARQL query to RDF. This SPIN encoding can be translated back to a SPARQL
query equivalent to the original.4

3Note that for the purposes of presentation, we abbreviate some of the details of the query, including the IRIs used to identify local query
executions.

4Given a query Q and dataset D, let Q(D) denote the result(s) of evaluating Q over D. Two queries Q1 and Q2 are then defined to be
equivalent if and only if Q1(D) = Q2(D) for every dataset D.



172 C. Stadler et al. / LSQ 2.0: A linked dataset of SPARQL query logs

Listing 1. An example LSQ/RDF representation of a SPARQL query in Turtle syntax
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Remote execution(s) Next, individual queries are associated with one or more executions on the original endpoint,
including a timestamp of when the query was executed, as well as an anonymised ID for the client – based on
their cryptographically-hashed and salted I.P. – to identify which queries are run by the same agent.5 The remote
execution is also linked to the originating endpoint using lsqv:endpoint.6 Given that these meta-data constitute
provenance for the query, we use the PROV Ontology (PROV-O) [51] for modelling the time, date and agent
involved in the remote execution.

Local execution In most cases, the log of the remote executions will not provide statistics about the execution of
the query in terms of how many results were returned, how long it took, how selective were the individual patterns,
and so forth. Hence we re-execute the queries offline against the original dataset to generate runtime statistics about
the query. Local executions were run on a machine with 64 core Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10 GHz,
and 528 GB RAM running Ubuntu 18.04.5 LTS using Virtuoso 7.2.7 Due to the large number of queries to evaluate,
we set a query timeout of one minute. The statistics generated include the number of results and the runtime for the
query, as well as the number of results and the selectivity for each individual triple pattern.8 Runtime statistics are
computed in a controlled environment that abstract away external factors such as the load on the endpoint server,
etc.; however, due to the costs involved in evaluating such queries, we compute these only for one query engine,
namely Virtuoso 7.2, where runtime estimates may thus vary for other engines.

Summary The meta-data described in this section aim to strike a balance in terms of the four desiderata mentioned
previously. In terms of Generality, we provide detailed meta-data for static query features, for provenance, and for
runtime query statistics. In terms of Conciseness, though the detailed meta-data do require potentially many triples
to be encoded for each query, we take steps to reduce this number by re-using resources insofar as appropriate
where, for example, each unique query string is encoded once per log, with one set of static features, one SPIN
representation, and one set of local executions, being subsequently linked to its different remote executions (rather
than duplicate the former meta-data each time the same query string appears in the log). In terms of Usability, we
provide some “shortcut triples” that allow for quickly finding queries of interest; for example, the static features
of the query are largely of this form, where all such meta-data could in principle be computed from the SPIN
representation, but using rather complex SPARQL queries over LSQ; the static query features are thus presented
to make it easier to find queries, for example, with a certain range of numbers of triple patterns, or queries using
DISTINCT and GROUP BY, etc. We will discuss Linked Data Compatibility in the section that follows.

4. Publication

The LSQ dataset is published as Linked Data. Before describing the current contents of LSQ, we discuss in more
detail how LSQ has been published.

5A “salt” in cryptography is a privately-held arbitrary string that is combined (e.g., concatenated) with the input being hashed in order to avoid
attacks based on precomputed tables (e.g., of common values or, in this case, of a collection of I.P.’s of interest).

6Although there exist properties called “endpoint” – such as void:sparqlEndpoint or sd:endpoint – the domains of these properties
were not query executions, but rather VoID datasets (i.e., sets of RDF triples), or SPARQL services. Though it would be possible to define proper-
ties such as lsqv:dataset or lsqv:service and then link a query execution <x> to an endpoint URL <e> with <x> lsqv:dataset
[void:sparqlEndpoint <e>], or alternatively <x> lsqv:service [sd:endpoint <e>], this would introduce O(n) additional
triples to the LSQ 2.0 dataset, for n the number of remote query executions (in LSQ 2.0, n = 43,952,379). (Please note that the dataset or
service may change during the lifetime of the log, which we do not have information about; hence we cannot refer to one dataset/service at a
given endpoint.) Thus we rather introduce lsqv:endpoint in the data and define property chain axioms in the LSQ 2.0 vocabulary to relate
lsqv:endpoint to lsqv:dataset/void:sparqlEndpoint and lsqv:service/sd:endpoint.

7The configuration used for Virtuoso was MaxQueryMem = 32G, NumberOfBuffers = 20050000, and MaxDirtyBuffers =
20000000.

8The selectivity of the triple pattern is the ratio of triples from the dataset that it selects.
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Table 1

Locations from which LSQ can be accessed including an example Linked Data IRI, the vocabulary, dumps, the SPARQL endpoint, as well as
locations where LSQ is indexed, including DataHub, Linked Open Vocabularies (LOV) and prefix.cc

Method Location

Linked Data IRIs http://lsq.aksw.org/lsqQuery-3wBd2uKotB_-vUxnngs6ZNsGPhJmIDD9c7ig0UI24y8 (example)

Vocabulary http://lsq.aksw.org/vocab

Dumps http://lsq.aksw.org/downloads

SPARQL Endpoint http://lsq.aksw.org/sparql

Catalogue Location

Datahub https://datahub.io/dataset/lsq

LOV https://lov.linkeddata.es/dataset/lov/vocabs/lsq

prefix.cc http://prefix.cc/lsqv

Access methods We provide a number of ways to access LSQ. Firstly, following Linked Data principles, all IRIs
under the lsqr: namespace are made dereferenceable using a 303 Redirect; this is implemented with Lod-
View9 and supports content negotiation. A SPARQL endpoint is provided for querying LSQ 2.0. Table 1 lists the
locations for these access methods.

Vocabulary As seen in Fig. 1, we use a mixture of a custom vocabulary in the lsqv: namespace, as well as exist-
ing vocabulary where possible. The custom LSQ vocabulary dereferences (via 303 Redirect) to an RDFS/OWL
definition of the corresponding terms in Turtle, which includes metadata about authors. The vocabulary meets four
of the five stars of Linked Data vocabulary use [46].10 With respect to external vocabulary, we re-use terms from the
SPARQL Inferencing Notation (SPIN) ontology [48], as well as the Provenance Ontology (PROV-O) [51] where
possible.

Discoverability The LSQ dataset has been registered in the DataHub catalogue, while the LSQ vocabulary has
been listed on Linked Open Vocabularies (LOV) [92] as well as prefix.cc. We provide these locations in Table 1.
We also compute and publish meta-data about the LSQ dataset using the Vocabulary of Interlinked Datasets (VoID)
[5]. More specifically, we compute a separate VoID description for each log and make the resulting description
accessible via both a downloadable file and a named graph of the SPARQL endpoint.

Availability The LSQ dataset has been hosted for over six years (at the time of writing) by the Agile Knowledge
Engineering and Semantic Web (AKSW) group. As discussed in Section 7, it has been widely adopted in that time.
The dataset is available to all under a CC-BY license. We further make the source code used for generating the LSQ
dataset from the raw query logs available on Github https://github.com/AKSW/LSQ.

5. LSQ 2.0 logs

We now describe the content of the LSQ 2.0 dataset. In order to collect raw SPARQL query logs, we sent mails
both to the public-lod@w3.org mailing list and to individual providers of endpoints. We also incorporated
logs from LSQ 1.0 [77] and a sample of queries from the Wikidata logs [57]. We thus acquired access to the logs of
27 endpoints, 22 of which are part of Bio2RDF release 3 [33].11 Table 2 provides high-level statistics of the query
logs from which we extract the LSQ dataset, including the query executions registered; the unique query strings; the
number of queries providing a runtime error, or returning zero results; as well as the percentage of unique queries
using SELECT, CONSTRUCT, DESCRIBE or ASK. Aside from the initial log of LSQ, only one log is already
publicly available, namely Wikidata [57], of which we include a subset described in our data model.

9https://github.com/LodLive/LodView
10With respect to the fifth star, which requires that our LSQ vocabulary be linked to from external vocabularies, we are not aware of such

links, though we do know, for example, that Varga et al. [94] incorporate elements of the LSQ vocabulary within their own Analytical Metadata
(AM) model, while Singh et al. [86] also use the LSQ vocabulary within their benchmark.

11We also acquired logs for the British Museum and UniProt endpoints, but decided to omit them due to having few unique queries.

http://lsq.aksw.org/lsqQuery-3wBd2uKotB_-vUxnngs6ZNsGPhJmIDD9c7ig0UI24y8
http://lsq.aksw.org/vocab
http://lsq.aksw.org/downloads
http://lsq.aksw.org/sparql
https://datahub.io/dataset/lsq
https://lov.linkeddata.es/dataset/lov/vocabs/lsq
http://prefix.cc/lsqv
https://github.com/AKSW/LSQ
https://github.com/LodLive/LodView
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Table 2

High-level statistics for queries in the LSQ dataset (QE = Query Executions, UQ = Unique Queries, RE = Runtime Error, ZR = Zero Results,
SEL = SELECT, CON = CONSTRUCT, DES = DESCRIBE)

DATASET QE UQ RE ZR SEL (%) CON (%) DES (%) ASK (%)

AFFYMETRIX 1,229,339 311,096 277,983 31,659 16.47 83.21 0.02 0.30

BIOMODELS 1,238,375 435,232 412,984 21,692 41.18 58.75 0.00 0.06

BIOPORTAL 1,337,804 89,664 85,273 3,389 64.88 34.78 0.00 0.34

CTD 940,390 287,296 266,999 19,824 11.98 87.76 0.00 0.26

DBPEDIA 6,535,500 4,258,941 1,259,972 1,755,338 69.90 3.59 25.23 1.28

DBSNP 794,023 269,498 267,662 1,698 4.99 94.99 0.00 0.02

DRUGBANK 1,613,951 379,233 372,022 6,186 46.67 52.80 0.05 0.48

GENAGE 589,211 265,067 263,205 1,661 5.55 94.43 0.00 0.02

GENDR 690,864 270,697 262,776 7,726 7.53 92.45 0.00 0.02

GO 1,839,991 121,542 88,743 30,082 98.31 0.03 0.35 1.31

GOA 3,544,273 343,836 310,800 32,317 26.18 73.69 0.06 0.07

HGNC 1,529,681 364,961 327,540 33,568 29.15 70.58 0.04 0.23

IREFINDEX 1,560,704 309,777 289,546 19,858 18.10 81.88 0.00 0.02

KEGG 66,830 19,871 10,386 8,004 92.04 4.30 0.41 3.24

LINKEDGEODATA 154,884 61,897 11,028 13,990 98.58 1.00 0.02 0.40

LINKEDSQP 337,001 204,112 203,534 310 0.28 99.69 0.00 0.03

MGI 1,316,673 319,627 277,080 33,781 21.12 78.60 0.05 0.23

NCBIGENE 770,716 216,832 215,938 718 8.71 91.26 0.00 0.04

OMIM 1,506,621 335,541 290,483 44,093 22.78 76.89 0.08 0.26

PHARMGKB 94,540 24,000 14,597 8,649 60.35 39.65 0.00 0.01

SABIORK 922,407 274,098 253,733 19,938 7.91 92.07 0.00 0.02

SGD 973,281 318,641 309,593 7,199 16.06 80.53 0.30 3.12

SIDER 599,285 277,766 274,963 1,965 9.38 90.59 0.00 0.03

SWDF 1,415,567 101,423 30,792 36,789 73.57 0.06 26.17 0.21

TAXONOMY 7,698,898 354,582 334,290 20,041 15.83 84.16 0.00 0.02

WIKIDATA 3,298,254 844,256 520,976 150,395 95.03 0.13 0.08 4.77

WORMBASE 1,353,316 498,170 496,325 1,660 49.33 50.66 0.00 0.01

Overall 43,952,379 11,557,656 7,729,223 2,312,530 36.14 57.8 1.89 0.60

AFFYMETRIX is a biomedical Linked Dataset describing probesets found in DNA microarrays [33].
BIOMODELS is a biomedical Linked Dataset describing mathematical models of biological systems [33].12

BioPortal is a biomedical Linked Dataset cataloguing biomedical ontologies [33].
CTD: Comparative Toxicogenomics Database is a biomedical Linked Dataset that describes how environmental

chemicals relate to diseases [33].
DBPEDIA is a cross-domain Linked Dataset that is primarily extracted from Wikipedia [53].
DBSNP: Single Nucleotide Polymorphism Database is a biomedical Linked Dataset that describes single base nu-

cleotide substitutions and short deletion and insertion polymorphisms [33].
DRUGBANK is a biomedical Linked Dataset that describes drugs and drug targets [33].
GENAGE is a biomedical Linked Dataset that describes human and other genes linked with ageing [33].
GENDR: Dietary Restriction Gene Database is a biomedical Linked Dataset that describes genes associated with

dietary restrictions [33].
GO: Gene Ontology is a biomedical ontology that describes gene, gene products, and their functions [33].
GOA: Gene Ontology Annotation is a biomedical Linked Dataset that provides annotations on proteins, RNA and

protein complexes [33].

12The external SPARQL endpoint is spelt biomedels, and thus the IRIs use this spelling in LSQ 2.0.
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HGNC: HUGO Gene Nomenclature Committee is a biomedical Linked Dataset that describes human gene nomen-
clature [33].

IREFINDEX is a biomedical Linked Dataset that indexes interaction data for proteins [33].
KEGG: Kyoto Encyclopedia of Genes and Genomes is a biomedical Linked Dataset that describes functions of

genes and biological systems [33].
LINKEDGEODATA is a geographical Linked Data extracted primarily from Open Street Map [88].
LINKEDSQP: Linked Structured Product Labelling is a biomedical Linked Dataset that contains meta-data about

drug labels sourced from DailyMed [33].
MGI: Mouse Genome Informatics is a biomedical Linked Dataset that describes mouse genes, alleles, and strains

[33].
NCBI Gene is a biomedical Linked Dataset that describes gene-related information given by the National Center

for Biotechnology Information (NCBI) [33].
Online Mendelian Inheritance in Man (OMIM) is a biomedical Linked Dataset that catalogues human genes as well

as genetic traits and disorders [33].
PHARMGKB is a biomedical Linked Dataset describing how genetic variations impact drug responses [33].
SABIORK: System for the Analysis of Biochemical Pathways – Reaction Kinetics is a biomedical Linked Dataset

that describes biochemical reactions [33].
SGD: Saccharomyces Genome Database is a biomedical Linked Dataset describing the biology and genetics of the

yeast Saccharomyces cerevisiae [33].
SIDER: Side Effect Resource is a biomedical Linked Dataset describing the side effects of drugs [33].
SWDF: Semantic Web Dog Food is a bibliographical Linked Dataset describing papers, presentations and people

participating in top Semantic Web related conferences and workshops [61].
TAXONOMY: NBCI Taxonomy is a biomedical Linked Dataset that describes all organisms found in genetic

databases [33].
WIKIDATA is a collaboratively edited knowledge graph hosted by the Wikimedia foundation [57].
WORMBASE is a biomedical Linked Dataset that describes the biology and genome of worms [33].

6. LSQ 2.0 query statistics

We now look in more detail at the composition of the queries currently included in the LSQ dataset. In particular,
we first look at some high-level statistics for queries in the dataset, before looking at the static features of the query,
the agents making the queries, as well as runtime statistics computed against the corresponding dataset. Finally we
discuss the composition of the LSQ dataset itself.

High-level statistics Table 2 provides a high-level analysis of the queries (both query executions and unique
queries) appearing in each of the logs considered. From the overall row, we see that LSQ contains 43.95 mil-
lion query executions and 11.56 million unique queries, implying that each query is executed, on average, 3.8 times
within each log. Of the unique queries, 7.7 million (66.9%) have runtime errors; and 2.3 million (20.0%) have no
errors but return empty results. A high ratio of runtime errors come from the Bio2RDF logs. The majority of queries
are CONSTRUCT queries (60.0%), followed by SELECT (32.3%), DESCRIBE (7.1%) and ASK (0.5%). We find that
CONSTRUCT queries are particularly prevalent on Bio2RDF endpoints, while DESCRIBE queries are particularly
prevalent on DBPEDIA and Wikdata endpoints, possibly due to the use of such queries for dereferencing Linked
Data IRIs through the endpoint.

Static features Turning to static features, we first look at the percentages of unique queries without parse errors
using different SPARQL features (note that we will analyse joins in BGPs and property paths later). Table 3 provides
statistics for the usage of different features of SPARQL. We see that FILTER is among the most widely used
features, along with SPARQL functions and expressions (note that almost all filters use such expressions). This
feature is followed by DISTINCT and other solution modifiers, UNION, OPTIONAL, etc. Notably these are all
SPARQL 1.0 features. The SERVICE keyword is commonly used on WIKIDATA since the Wikidata Query Service
provides a custom service for retrieving multilingual labels as preferred/available.
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Table 3

Percentage of unique queries without parse errors using the specified SPARQL feature (SOL. MOD. includes the solution modifiers ORDER BY, OFFSET, and LIMIT; AGG. includes
aggregation features GROUP BY, HAVING, AVG, SUM, COUNT, MAX, and MIN; NEG. includes MINUS, NOT EXISTS, and EXISTS; BIND. includes VALUES and BINDING; GRAPH

includes FROM, FROM NAMED, and GRAPH; FUNC. includes SPARQL functions and expressions)

DATASET UNION OPTIONAL DISTINCT FILTER REGEX SERVICE SUB-Q. SOL. M. AGG. NEG. BIND. GRAPH FUNC.

AFFYMETRIX 3.68 0.02 7.64 83.30 0.15 0.01 0.06 4.85 0.36 0.00 0.01 0.69 83.30

BIOMODELS 2.64 0.01 0.18 94.32 0.06 0.00 0.01 0.12 0.10 0.00 0.00 0.03 94.32

BIOPORTAL 1.50 0.06 0.05 37.95 2.23 0.01 0.01 0.21 34.10 0.00 0.00 34.26 37.95

CTD 3.99 0.02 0.37 88.06 0.06 0.04 0.01 3.57 0.13 0.00 0.01 3.21 88.06

DBPEDIA 28.68 19.97 22.22 29.87 4.10 0.00 2.22 8.92 9.98 0.00 1.11 0.01 29.87

DBSNP 0.05 0.01 0.10 94.87 0.00 0.05 0.01 0.13 0.07 0.00 0.00 0.09 94.87

DRUGBANK 2.58 15.55 12.37 54.67 1.81 0.10 0.02 9.31 2.59 0.00 0.01 2.73 54.67

GENAGE 0.00 0.01 0.08 94.37 0.00 0.00 0.01 0.06 0.07 0.00 0.00 0.02 94.37

GENDR 0.01 0.01 0.07 96.55 0.00 0.01 0.01 0.06 0.07 0.00 0.00 0.02 96.55

GO 9.08 0.16 20.98 18.82 5.92 0.89 0.07 3.86 0.08 0.00 0.01 0.02 18.82

GOA 4.17 0.01 5.00 84.76 9.15 0.86 0.03 0.71 0.09 0.00 0.00 0.44 84.76

HGNC 3.16 0.02 5.00 84.12 0.04 0.03 0.02 1.20 0.44 0.00 0.00 0.47 84.12

IREFINDEX 9.99 1.00 0.86 83.37 2.29 0.01 0.01 0.87 0.12 0.00 0.00 0.74 83.37

KEGG 11.64 1.13 54.91 7.22 2.86 0.07 0.04 42.95 1.02 0.00 0.01 0.79 7.22

LINKEDGEODATA 1.15 19.13 9.24 18.06 2.61 0.01 7.64 30.75 37.57 0.00 0.52 2.52 18.06

LINKEDSQP 0.00 0.01 0.00 99.76 0.00 0.00 0.01 0.05 0.07 0.00 0.00 0.03 99.76

MGI 3.57 0.02 6.99 79.43 0.43 0.01 0.03 2.98 0.57 0.00 0.05 0.64 79.43

NCBIGENE 0.02 0.01 0.17 91.53 0.02 0.03 0.01 2.72 0.22 0.00 0.00 2.61 91.53

OMIM 3.52 1.10 4.90 80.83 0.31 0.39 0.04 5.62 0.93 0.00 0.01 1.09 80.83

PHARMGKB 33.05 0.00 42.22 47.92 0.28 0.13 0.01 43.40 0.07 0.00 0.00 1.14 47.92

SABIORK 4.15 0.01 0.12 92.00 0.00 0.00 0.01 0.17 0.09 0.00 0.00 0.05 92.00

SGD 1.63 0.01 6.73 80.06 0.09 0.03 0.04 4.38 3.87 0.00 0.00 4.24 80.06

SIDER 0.02 0.01 7.44 90.87 0.00 0.03 0.01 7.42 0.09 0.00 0.00 0.73 90.87

SWDF 40.13 34.08 53.16 2.34 0.87 0.04 0.10 31.45 1.08 0.00 0.01 32.32 2.34

TAXONOMY 3.19 0.01 0.04 92.91 0.04 0.00 0.01 0.35 0.25 0.00 0.00 0.44 92.91

WIKIDATA 9.27 29.21 15.32 26.48 1.13 54.38 7.44 40.72 7.99 0.00 8.99 0.00 26.48

WORMBASE 14.16 4.46 0.12 69.92 9.69 1.58 0.00 0.27 0.63 0.00 0.00 0.82 69.92

Overall 7.22 4.67 10.23 67.57 1.63 2.17 0.66 9.14 3.77 0.00 0.34 3.34 67.57
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Next, in Table 4, we provide three types of statistics about the basic graph patterns and property path features
used. First, we present the unique number of subject, predicate and object terms used in the BGPs of the logs in order
to characterise their diversity. We see that DBPEDIA, LINKEDGEODATA and WIKIDATA offer the most diversity,
particularly in terms of predicates found in the queries. Second, we present the percentage of queries with different
types of joins in the basic graph patterns [81]. Each join variable in a basic graph pattern is analysed in order to
understand how they connect triple patterns. We say that a join vertex has an “outgoing link” if it appears as a
subject of a triple pattern, and that it has an “incoming link” if it appears as predicate or object. The join types are
then defined as follows:

STAR has multiple outgoing but no incoming links.
PATH has one incoming and one outgoing link.
HYBRID has at least one incoming and outgoing link and three or more links overall.
SINK has multiple incoming but no outgoing links.

From Table 4, we see that the majority of queries have no joins, but where present, STAR joins are the most frequent,
followed by HYBRID and SINK joins. Third, we present the number of queries using different property path features,
where we see that DBPEDIA and WIKIDATA contain the most use of property path queries, while Bio2RDF logs
exhibit little use of this feature. The most used such feature is/for concatenation.

These statistics may be helpful for consumers to choose which dataset/log to work with. For example, for the
purposes of benchmarking joins, a dataset such as LINKEDGEODATA or WIKIDATA may be chosen as most queries
feature joins; in order to benchmark or analyse property paths, DBPEDIA or WIKIDATA may be chosen as they use
this feature more frequently; etc.

Provenance: Executions and agents Next we look at how many clients (anonymised IPs) and unique queries under-
lie the executions registered in order to compare the diversity of the different datasets. Note that client information
is not available for WIKIDATA. In Fig. 2(a) and Fig. 2(b), we present Lorenz curves for the number of executions
per client and per query, respectively.13 We present results for Bio2RDF together as one series to ensure better read-
ability. In general, we see a skew in the graph away from the equality curve towards the bottom-left corner, meaning
that a small number of clients/queries are involved in a large number of executions. The skew is more evident in the
case of clients, and particularly for the SWDF and Bio2RDF datasets; thus consumers of LSQ 2.0 should be aware
that a high ratio of queries from these datasets come from a small number of clients (likely bots). DBPEDIA is the
most diverse in terms of clients and queries.

Static and runtime statistics Next, in order to characterise how complex the queries are to evaluate, in Table 5 we
present some relevant static and runtime statistics, where static statistics can be computed from the query string,
while runtime statistics require evaluating the query locally (only queries that were successfully run are counted;
see Table 2 for statistics on runtime errors). Regarding runtimes, we recall that these were run with a one minute
timeout, which represents the max runtime. We see that LINKEDGEODATA contains the most costly queries to run,
which appears to correlate with larger result sizes and a larger mean join-vertex degree. Relatively high runtimes are
also seen for the KEGG dataset. The simplest queries to run are found in the GENAGE, GENDR and TAXONOMY

datasets. These results suggest, for example, that LINKEDGEODATA might be more suitable for consumers looking
for a challenging benchmark.

LSQ dataset statistics The LSQ 2.0 dataset, describing 43.95 million executions of 11.56 million unique queries,
contains 1.24 billion triples, split into 27 named graphs (one for each of the datasets listed).14

13Lorenz curves visualise (in)equality in distributions for a given quantity over a given set of elements: a coordinate (x, y) indicates that
ratio x of elements (given in ascending order by their quantity) are associated with ratio y of the total quantity. The solid black line indicates
a hypothetical equality where each element is associated with the same quality. For example, in Fig. 2(a) on the DBPEDIA curve, the point
(0.80, 0.29) denotes that 80% of clients invoke 29% of the executions (or 20% of the clients invoke 71% of the executions).

14We exclude some named graphs created by Virtuoso.



C
.Stadler

etal./L
SQ

2.0:
A

linked
datasetofSPA

R
Q

L
query

logs
179

Table 4

Analysis of basic graph patterns and property paths including number of unique subject/predicate/object terms, percentage of unique queries containing different types of joins (a query
may contain multiple join types), and number of queries using different types of property path expressions (/ denotes concatenation, ^ denotes inverse, * denotes zero-or-more; + denotes
one-or-more; | denotes disjunction

DATASET BGP TERMS JOIN TYPES (%) PROP. PATH FEATURES

SUBJ. PRED. OBJ. STAR HYB. PATH SINK NONE / ^ * + |

AFFYMETRIX 17,912 432 27,398 2.36 0.16 0.03 0.10 97.57 2 0 0 0 1

BIOMODELS 14,055 347 120,148 37.22 0.10 0.01 0.04 62.71 2 0 0 0 1

BIOPORTAL 9,275 130 6,275 36.26 34.22 0.01 53.08 44.60 1 0 0 0 1

CTD 14,927 276 22,320 1.72 0.19 0.04 0.16 98.21 3 1 0 0 1

DBPEDIA 912,943 10,842 1,104,732 29.38 7.06 1.71 15.48 69.56 49,660 39,039 271 7,582 32,709

DBSNP 12,825 112 6,069 2.10 0.06 0.01 0.04 97.86 2 0 0 0 1

DRUGBANK 37,578 989 34,601 33.39 16.81 2.01 7.50 64.44 8 0 1 0 1

GENAGE 2,666 113 11,875 4.30 0.04 0.01 0.01 95.66 2 0 0 0 1

GENDR 5,664 104 705 4.22 4.17 0.01 0.01 95.74 3 0 0 0 1

GO 35,504 394 59,362 16.51 0.90 0.87 1.31 83.14 4 2 0 0 1

GOA 33,593 204 22,044 8.06 0.05 0.02 0.02 91.89 5 0 0 0 1

HGNC 23,430 414 36,857 15.72 1.53 0.02 4.30 84.21 2 0 0 0 1

IREFINDEX 20,067 171 28,069 9.09 0.35 0.01 1.50 90.85 2 0 0 0 1

KEGG 5,620 251 8,964 7.24 1.67 0.51 0.93 92.08 3 0 0 0 1

LINKEDGEODATA 13,498 5,991 2,628 49.51 24.15 0.04 34.27 41.28 672 78 0 0 9

LINKEDSQP 326 55 144 0.05 0.03 0.02 0.00 99.91 2 0 0 0 1

MGI 28,702 391 23,867 2.13 1.36 0.15 0.56 97.79 5 0 0 0 1

NCBIGENE 11,753 254 4,427 2.16 0.20 0.02 0.18 97.79 3 0 1 0 1

OMIM 23,504 623 50,229 7.00 4.57 0.34 3.95 92.52 10 0 0 0 3

PHARMGKB 1,099 83 13,548 8.03 50.69 0.82 1.83 47.97 0 0 0 0 1

SABIORK 14,224 156 19,775 0.70 0.04 0.02 0.01 99.25 2 0 0 0 1

SGD 7,228 508 13,460 6.83 5.65 0.03 4.02 93.06 2 0 0 0 1

SIDER 8,792 152 3,589 0.53 0.08 0.02 0.04 99.43 6 0 0 0 1

SWDF 25,640 420 10,823 32.05 7.27 3.34 0.95 58.62 94 22 0 0 17

TAXONOMY 16,201 207 97,298 22.54 0.23 0.01 0.21 77.41 6 0 0 0 1

WIKIDATA 47,871 11,779 263,974 46.63 17.59 4.98 12.05 41.20 134,811 2,944 3,838 0 23,525

WORMBASE 53,807 148 24,083 39.40 5.13 4.47 5.07 60.55 2 0 0 0 1

Overall 1,398,704 35,546 2,017,264 15.74 6.58 0.72 5.47 80.56 185,314 42,086 4,111 7,582 56,285
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(a) Lorenz curve for distribution of executions per client. (b) Lorenz curve for distribution of executions per query.

Fig. 2. Lorenz curves for the LSQ dataset

7. LSQ adoption

In this section we present how LSQ has been adopted since its initial release with four logs in 2015. We organise
this discussion following the motivational use cases we originally envisaged, as presented in Section 2. Table 6
provides an overview of the research works that have used LSQ, and the relevant use case(s) that they target. We
now discuss these works in more detail; note that in the case of works that relate to multiple use cases, we will
discuss them once in what we identify to be the “primary” related use case. We further discuss some works that
have used the LSQ dataset for use cases beyond the six we had originally envisaged.

UC1: Custom Benchmarks LSQ has been adopted in various works for creating custom benchmarks.

– Saleem et al. [79] present a framework for generating benchmarks that can be used to evaluate SPARQL
endpoints under typical workloads; the benchmarks generate query types depending on the features of the
queries submitted to the endpoint, where LSQ is used for testing.

– Later works by Saleem et al. further propose frameworks for generating benchmarks from LSQ for the pur-
poses of evaluating query containment [80,82] and federated query evaluation [78], as well as comparing
existing SPARQL benchmarks against LSQ in order to understand how representative they are of real work-
loads [83].

– Hernández et al. [42] present an empirical study of the efficiency of graph database engines for answering
SPARQL queries over Wikidata; they refer to LSQ to verify that the query shapes considered for evaluation
correspond with other analyses of real-world SPARQL queries.

– Fernández et al. [35] evaluate various archiving techniques and querying strategies for RDF archives that store
historical data; in their evaluation, they select the 200 most frequent triple patterns from the DBPEDIA query
set in LSQ.

– Azzam et al. [15] use LSQ for retrieving highly-demanding queries from the dataset in order to evaluate their
system for dividing the load processed by different SPARQL servers.

– Bigerl et al. [18] develop a tensor-based triple store, where they used LSQ as input to the FEASIBLE frame-
work to generate a custom benchmark.

– Azzam et al. [14] present a system that dynamically delegates query processing load between clients and
servers. The authors use the Linked Data Fragments client/server approach improving it with the aforemen-
tioned technique and use 16 queries from LSQ to complement their evaluation.
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Table 5

Comparison of the mean values of runtime statistics across all query logs (PVs = Project Variables, BGPs = Basic Graph Patterns, TPs = Triple
Patterns, JVs = Join Vertices, MJVD = Mean Join Vertex Degree, MTPS = Mean Triple Pattern Selectivity)

DATASET STATIC STATISTICS (mean) RUNTIME STATISTICS (mean)

PVs BGPs TPs JVs MJVD MTPS RESULT SIZE RUNTIME (SEC)

AFFYMETRIX 1.93 1.06 1.10 0.03 0.06 0.82 12708.39 0.084

BIOMODELS 1.24 1.04 1.42 0.37 0.75 0.57 4896.67 0.011

BIOPORTAL 1.16 1.03 1.94 1.43 1.12 0.54 1699.48 0.004

CTD 2.56 1.05 1.08 0.02 0.04 0.85 24354.24 0.102

DBPEDIA 2.78 2.37 3.23 0.93 0.66 0.01 114038.38 0.164

DBSNP 1.09 1.02 1.04 0.02 0.04 0.97 757108.37 0.009

DRUGBANK 2.61 1.05 1.93 0.69 0.91 0.66 119759.38 0.007

GENAGE 1.88 1.00 1.09 0.04 0.13 0.99 1642.84 0.003

GENDR 2.73 1.00 1.08 0.08 0.09 0.97 83.50 0.003

GO 1.46 1.10 1.37 0.22 0.38 0.02 93806.20 0.046

GOA 1.87 1.03 1.12 0.08 0.16 0.85 7692.26 0.016

HGNC 1.91 1.05 1.29 0.23 0.35 0.80 2419.43 0.019

IREFINDEX 2.92 1.13 1.43 0.19 0.25 0.82 32200.76 0.077

KEGG 2.27 1.15 1.31 0.13 0.18 0.33 175469.53 3.862

LINKEDGEODATA 2.27 1.16 2.62 1.10 1.76 0.15 11055973.09 6.788

LINKEDSQP 2.01 1.00 1.00 0.00 0.00 1.00 9503.41 0.014

MGI 2.04 1.04 1.11 0.05 0.06 0.84 2050.76 0.178

NCBIGENE 1.39 1.02 1.04 0.03 0.04 0.95 10731.33 0.021

OMIM 1.83 1.07 1.26 0.17 0.18 0.77 3505.54 0.020

PHARMGKB 1.96 1.34 2.48 1.06 1.08 0.39 255.61 0.017

SABIORK 2.96 1.05 1.06 0.01 0.02 0.88 1610.77 0.005

SGD 1.45 1.12 1.96 0.35 0.18 0.58 108951.60 0.058

SIDER 1.34 1.00 1.01 0.01 0.01 0.98 9703.86 0.010

SWDF 4.04 3.37 3.97 0.45 0.92 0.03 37362.67 0.007

TAXONOMY 1.77 1.17 1.53 0.23 0.59 0.69 1928.75 0.004

WIKIDATA 3.00 2.47 4.73 1.06 1.81 0.00 17817773.63 0.412

WORMBASE 1.56 1.25 2.05 0.65 0.87 0.98 9888.61 0.007

Overall 2.07 1.26 1.71 0.35 0.47 0.65 1126559.96 0.440

– Davoudian et al. [30] present a system that partitions graphs depending on the access frequency to their
nodes. In this way the system implements workload-aware partitioning. The authors use LSQ for evaluating
their approach.

– Desouki et al. [32] propose a method to generate synthetic benchmark data. To generate these synthetic data
they use other RDF graphs available, such as SWDF and DBPEDIA 2016. They benchmark their approach
using queries from LSQ.

– Röder et al. [74] develop a method to predict the performance of knowledge graph query engines; to do so the
authors use a stochastic generation model that is able to generate graphs of arbitrary sizes similar to the input
graph. They use LSQ as a benchmark of real-world queries.

UC2: SPARQL adoption Other works have used LSQ to understand how SPARQL is being used in practice.

– Han et al. [41] provide a statistical analysis of the queries of LSQ, surveying both syntactic features, such as
the number of triple patterns, the SPARQL features used, the frequency of well-designed patterns; as well as
semantic properties, such as montonicity, weak-monotonicity, non-monotonicity and satisfiability.

– Bonifati et al. [21,22] conduct detailed analysis of the queries in various logs, including LSQ; they study a
variety of phenomena in these queries, including their shape, their (hyper)treewidth, common abstract patterns
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Table 6

Research works making use of the LSQ dataset since its initial release, ordered by year and then alphabetically by author name, with relevant
use cases indicated (UC1: Custom Benchmarks; UC2: SPARQL Adoption; UC3: Caching; UC4: Usability; UC5: Optimisation; UC6: Meta-
Querying)

NAME YEAR UC 1 UC 2 UC 3 UC 4 UC 5 UC 6 Other

Saleem et al. [79] 2015 �
Arenas et al. [11] 2016 � �
Benedetti and Bergamaschi [17] 2016 �
Georgala et al. [39] 2016 �
Han et al. [41] 2016 � �
Hernandez et al. [42] 2016 �
Knuth et al. [49] 2016 � �
Rico et al. [71] 2016 �
Schoenfisch and Stuckenschmidt [85] 2016 � �
Song et al. [87] 2016 � �
Bonifati et al. [21] 2017 � �
Dellal et al. [31] 2017 �
Fokou et al. [37] 2017 �
Stegemann and Ziegler [89] 2017 � � �
Thakkar et al. [90] 2017 �
Akhtar et al. [2] 2018 � �
Bonifati et al. [22] 2018 � �
Darari et al. [29] 2018 �
Martens and Trautner [58] 2018 �
Salas and Hogan [76] 2018 � �
Saleem et al. [78] 2018 �
Saleem et al. [80] 2018 �
Varga et al. [94] 2018 �
Viswanathan et al. [97] 2018 �
Akhtar et al. [3] 2019 � �
Cheng and Hartig [26] 2019 � � �
Fafalios and Tzitzikas [34] 2019 �
Fernandez et al. [35] 2019 �
Potoniec [69] 2019 � �
Saleem et al. [83] 2019 �
Thost and Dolby [91] 2019 � �
Wang et al. [99] 2019 �
Savafi et al. [75] 2019 �
Singh et al. [86] 2019 � �
Azzam et al. [15] 2020 �
Bigerl et al. [18] 2020 �
Bonifati et al. [24] 2020 � � �
Figueira et al. [36] 2020 � �
Jian et al. [47] 2020 � �
Zhang et al. [102] 2020 � �
Aebeloe et al. [1] 2021 � �
Almendros-Jimenez et al. [6] 2021 � �
Azzam et al. [14] 2021 �
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Table 6

(Continued)

NAME YEAR UC 1 UC 2 UC 3 UC 4 UC 5 UC 6 Other

Davoudian et al. [30] 2021 �
Desouki et al. [32] 2021 �
Röder et al. [74] 2021 �
Wang et al. [98] 2021 � �

found in the property paths, “streaks” that represent a sequence of user reformulations from a seed query, and
more besides.

UC3: Caching LSQ can also be used to simulate real workloads for systems that explore caching techniques.

– Knuth et al. [49] propose a middleware component to which applications register and get notifications when
the results of their SPARQL queries change; the authors study the problem of scheduling refresh queries for
a large number of registered queries and use LSQ to validate their approach.

– Akhtar et al. [2,3] propose an approach to capture changes in an RDF dataset and update a cache system in
front of the SPARQL endpoint exposing that data; their approach consists of a change metric that quantifies
the changes in an RDF dataset, and a weighting function that assigns importance to recent changes; they use
LSQ to verify their approach for real workloads.

– Salas and Hogan [76] propose a method for query canonicalisation, which consists in mapping congruous
queries – i.e., queries that are equivalent modulo variable names – to the same query string; their main use
case is to increase the hit rate of SPARQL caches, where they use LSQ to test efficiency on real-world queries
and to see how many congruent queries can be found in real workloads.

– Savafi et al. [75] study SPARQL adoption using LSQ so they can later provide queries to summarise the
Knowledge Graphs such that they can be more efficiently accessed from and stored on mobile devices with
limited resources.

UC4: Usability LSQ also has applications for improving the usability of SPARQL endpoints.

– Arenas et al. [11] propose a method for reverse-engineering SPARQL queries, which attempts to construct a
query that will return a given set of positive examples as results, but not a second set of negative examples;
the authors use LSQ to show that the approach scales well in the data size, number of examples, and in the
size of the smallest query that fits the data.

– Benedetti and Bergamaschi [17] present a system (LODeX) that allows users to explore SPARQL endpoints
more easily through a formal model defined over the endpoint schema; they show that LODeX is able to
generate 77.6% of the 5 million queries contained in the original LSQ dataset.

– Dellal et al. [31] proposes query relaxation methods for queries with empty results, based on finding minimal
failing subqueries (generating empty results) and maximal succeeding subqueries (generating non-empty re-
sults) to aid the user [37]. The paper refers to LSQ to establish that queries with empty results are common in
practice.

– Stegemann and Ziegler [89] propose new operators for the SPARQL language that allow for composing path
queries more easily; the authors evaluated their approach with a user study and analysis of the extent to which
their language is able to express the real-world queries found in LSQ.

– Viswanathan et al. [97] propose a different form of query relaxation, which generalises a specific resource to
a variable on which specific restrictions are added that correspond to relevant characteristics of the resource;
they use LSQ to understand how entities are queried in practice.

– Potoniec [69] proposes an interactive system for learning SPARQL queries from positive and negative exam-
ples;15 he uses the DBPEDIA queries of LSQ for experiments.

15Notably the system is called Learning SPARQL Queries (LSQ).
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– Wang et al. [99] present an approach for explaining missing results for a SPARQL query – based on answering
“why-not” questions that ask why a specific result is not included – to help users refine their initial queries;
the authors search LSQ for queries useful for their approach.

– Bonifati et al. [24] analyse “streaks” in DBpedia query logs,16 where a streak is defined as a sequence of
similar queries in chronological order, capturing the idea of a user refining and/or extending an initial query
towards a final query.

– Jian et al. [47] use LSQ to evaluate their approach for SPARQL query relaxation (to generalise users’ queries)
and query restriction (to refine users’ queries) based on approximation and heuristics.

– Zhang et al. [102] propose a method to model client behaviour when formulating SPARQL queries in order
to predict their intent and optimise queries. They use LSQ for their evaluation.

– Almendros-Jimenez et al. [6] present two methods for discovering and diagnosing “wrong” SPARQL queries
based on ontology reasoning. They evaluate their approach using LSQ queries.

– Wang et al. [98] focus on providing explanations for SPARQL query similarity measures. The authors provide
similarity scores using several explainable models based on Linear Regression, Support Vector Regression,
Ridge Regression, and Random Forest Regression. They use LSQ to evaluate their query classification.

UC5: Optimisation The LSQ dataset can also be used to identify and study fragments that are commonly used in
practice and can be evaluated efficiently using dedicated algorithms.

– The aforementioned analyses by Han et al. [41] and Bonifati et al. [21,22] suggest that well-designed patterns,
queries of bounded treewidth, etc., make for promising fragments.

– In the context of probabilistic Ontology-Based Data Access (OBDA), Schoenfisch and Stuckenschmidt [85]
analyse the ratio of safe queries – whose evaluation is tractable in data complexity – versus unsafe queries –
whose evaluation is #P-hard; they show that over 97.9% of the LSQ queries are safe, and can be efficiently
evaluated.

– Song et al. [87] use LSQ to analyse how nested OPTIONAL clauses affect query response times; they propose
a way to approximate solutions for deeply-nested well-designed patterns.

– Martens and Trautner [58] later take the property paths extracted by Bonifati et al. [21] from LSQ and other
sources, defining simple transitive expressions that subsume almost all property path expressions seen in
practice, while allowing more efficient evaluation than the general case.

– Cheng and Hartig [26] introduce a monotonic version of the OPTIONAL operator to SPARQL called OPT+;
a possible downside of the operator is an increase in query result sizes, where they use the LSQ dataset to
study how OPTIONAL and OPT+ behave for real-world queries.

– Building upon the work of Martens and Trautner [58], Figueira et al. [36] specifically study the containment
problem for restricted classes of Conjunctive Regular Path Queries (CRPQs), which are akin to BGPs with
property paths; aside from complexity results, they show the coverage of the different classes for logs that
include LSQ [24].

UC6: Meta-querying A handful of works have also used LSQ in the context of meta-querying, where queries are
found based on the resources they contain.

– Rico et al. [71] observe that analogous DBPEDIA properties are often defined in two distinct namespaces
– e.g., dbo:birthPlace and dbp:birthPlace – where they propose methods to automatically ex-
pand SPARQL queries to capture solutions involving analogous properties; they show that only 0.2% of the
DBPEDIA queries in LSQ mention properties from both namespaces.

– Varga et al. [94] provide an RDF-based metamodel for BI 2.0 systems, which allows for capturing the schema
of a dataset, as well as previous queries that have been posed against that dataset by other users; the authors
propose to re-use parts of the LSQ vocabulary in their model; they further instantiate their model using LSQ
to retrieve queries asked about countries.

16In fact, these logs were gathered directly from OpenLink, though we include discussion since similar analysis could have been applied to
the LSQ logs, and LSQ logs where used in other analyses.
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Other use cases A number of works have used LSQ (mostly for evaluation) in contexts that were not originally
anticipated by the aforementioned use cases.

– Georgala et al. [39] propose a method to predict temporal relations between events represented by RDF
resources following Allen’s interval algebra; they use LSQ to validate their approach considering query exe-
cutions as events.

– Darari et al. [29] present a theoretical framework for augmenting RDF data sources with completeness state-
ments, which allows for reasoning about the completeness of SPARQL query results; they evaluate their
method using LSQ.

– Fafalios and Tzitzikas [34] present a query evaluation strategy, called SPARQL-LD, that combines link traver-
sal and query processing at SPARQL endpoints; they provide a method for checking if a SPARQL query can
be answered through link traversal, and analyse a large corpus of real SPARQL query logs – including LSQ
– for finding the frequency and distribution of answerable and non-answerable query patterns; they also use
LSQ to evaluate their approach.

– Singh et al. [86] use the LSQ vocabulary for providing a benchmark for Question Answering over Linked
Data. The authors use the LSQ vocabulary to represent the SPARQL query related features prior to generating
the benchmark.

– Thost and Dolby [91] present QED: a system for generating concise RDF graphs that are sufficient to produce
solutions from a given query, which can be used for benchmarking, for compliance testing, for training query-
by-example models, etc.; they apply their system over LSQ queries to generate datasets from DBPEDIA.

– Aebeloe et al. [1] present a decentralised architecture based on blockchain that allows users to propose updates
to faulty or outdated data, tracing back their origin, and query older versions of the data. They use LSQ queries
for their evaluation.

Discussion Per Table 6, we see that the original version of LSQ has been used in a wide variety of research works
for a variety of purposes. Complementing other SPARQL query logs such as Wikidata’s [57], we believe that LSQ
2.0, with its extended set of queries, will likewise serve as a useful resource to help align the theory and practice of
SPARQL research.

8. Conclusions and future directions

In this paper, we have described the Linked SPARQL Queries v.2 (LSQ 2.0) dataset, which represents queries in
logs as RDF, allowing clients to quickly find real-world queries that may be of interest to them. We have described a
number of use cases for LSQ, including the generation of custom benchmarks, the analysis of how SPARQL is used
in practice, the evaluation of caching systems, the exploration of techniques to improve the usability of SPARQL
services, the targeted optimisation of queries with characteristics commonly found in real workloads, as well as the
ability to find queries relating to specific resources. We then described the model and vocabulary used to represent
LSQ, including static features of queries, a SPIN representation, provenance encoding the agents and endpoints
from which the query originate, as well as runtime statistics generated through local executions of the queries
against their corresponding dataset. We then discussed how LSQ is published, thereafter describing the datasets and
queries featured in the current version of LSQ. Finally we discussed how LSQ has been used for research purposes
since its initial release in 2015.

As discussed in Section 7, since its initial release, LSQ has been adopted by a variety of research works for a
variety of purposes. In terms of future directions, we will look to continue adding further logs with further queries to
the dataset. Looking at how LSQ has been adopted in the literature has also revealed ways in which the metadata for
LSQ could be extended in a future version, such as to add information about monotonicity and satisfiability [41], or
information about (hyper)treewidth [21,22], for example. It may also be useful to provide a canonical version of the
query string [76]; this could perhaps be leveraged, for example, when evaluating caching methods. Another useful
feature would be to add questions in natural language that verbalise each query, which could be used, for example,
in order to create datasets for training and testing question answering systems, as well as enabling users to find



186 C. Stadler et al. / LSQ 2.0: A linked dataset of SPARQL query logs

relevant queries through keyword search; given the large number of queries in the dataset, an automated approach
may be applicable [64].

As discussed by Martens and Trautner [59], query logs allow to bridge the theory and practice of SPARQL. They
serve an important role, ensuring that the research conducted by the community is guided by the requirements and
trends that emerge in practice. We thus believe that LSQ (2.0) will continue to serve an important role in SPARQL
research in the coming years.
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