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recently emerged use-case of enhancing deep pre-trained masked language models based on the Transformer architecture.
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1. Introduction

Knowledge Graphs (KGs), such as Freebase [14], DBpedia [92], and Wikidata [184], contain rich and precise
information about entities of all kinds, such as persons, locations, organizations, movies, and scientific theories, just
to name a few. Each entity has a set of carefully defined relations and attributes, e.g. “was born in” or “play for”. This
wealth of structured information gives rise to and facilitates the development of semantic processing algorithms as
they can directly operate on and benefit from such entity representations. For instance, imagine a search engine that
is able to retrieve mentions in the news during the last month of all retired NBA players with a net income of more
than 1 billion US dollars. The list of players together with their income and retirement information may be available
in a knowledge graph. Equipped with this information, it appears to be straightforward to look up mentions of retired
basketball players in the newswire. However, the main obstacle in this setup is the lexical ambiguity of entities. In
the context of this application, one would want to only retrieve all mentions of “Michael Jordan (basketball player)”1

and exclude mentions of other persons with the same name such as “Michael Jordan (mathematician)”.2

This is why Entity Linking (EL) – the process of matching a mention, e.g. “Michael Jordan”, in a textual context
to a KG record (e.g. “basketball player” or “mathematician”) fitting the context – is the key technology enabling
various semantic applications. Thus, EL is the task of identifying an entity mention in the (unstructured) text and
establishing a link to an entry in a (structured) knowledge graph.

Entity linking is an essential component of many information extraction (IE) and natural language understanding
(NLU) pipelines since it resolves the lexical ambiguity of entity mentions and determines their meanings in context.
A link between a textual mention and an entity in a knowledge graph also allows us to take advantage of the
information encompassed in a semantic graph, which is shown to be useful in such NLU tasks as information
extraction, biomedical text processing, or semantic parsing and question answering (see Section 5). This wide range
of direct applications is the reason why entity linking is enjoying great interest from both academy and industry for
more than two decades.

1.1. Goal and scope of this survey

Recently, a new generation of approaches for entity linking based on neural models and deep learning emerged,
pushing the state-of-the-art performance in this task to a new level. The goal of our survey is to provide an overview
of this latest wave of models, emerging from 2015.

Models based on neural networks have managed to excel in EL as in many other natural language processing
tasks due to their ability to learn useful distributed semantic representations of linguistic data [11,30,203]. These
current state-of-the-art neural entity linking models have shown significant improvements over “classical”3 ma-
chine learning approaches [27,84,148] to name a few that are based on shallow architectures, e.g. Support Vector
Machines, and/or depend mostly on hand-crafted features. Such models often cannot capture all relevant statistical
dependencies and interactions [54]. In contrast, deep neural networks are able to learn sophisticated representa-
tions within their deep layered architectures. This reduces the burden of manual feature engineering and enables
significant improvements in EL and other tasks.

In this survey, we systemize recently proposed neural models, distilling one generic architecture used by the
majority of neural EL models (illustrated in Figs 2 and 5). We describe the models used in each component of
this architecture, e.g. candidate generation, mention-context encoding, entity ranking. Prominent variations of this
generic architecture, e.g. end-to-end EL or global models, are also discussed. To better structure the sheer amount
of available models, various types of methods are illustrated in taxonomies (Figs 3 and 6), while notable features
of each model are carefully assembled in a tabular form (Table 2). We discuss the performance of the models on
commonly used entity linking/disambiguation benchmarks and an entity relatedness dataset. Because of the sheer
amount of work, it was not possible for us to try available software and to compare approaches on further parameters,
such as computational complexity, run-time, and memory requirements. Nevertheless, we created a comprehensive

1https://en.wikipedia.org/wiki/Michael_Jordan
2https://en.wikipedia.org/wiki/Michael_I._Jordan
3On classical ML vs deep learning: https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa.

https://en.wikipedia.org/wiki/Michael_Jordan
https://en.wikipedia.org/wiki/Michael_I._Jordan
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
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collection of references to publicly available official implementations of EL models and systems discussed in this
survey (see Table 7 in the Appendix).

An important component of neural entity linking systems is distributed entity representations and entity encoding
methods. It has been shown that encoding the KG structure (entity relationships), entity definitions, or word/entity
co-occurrence statistics from large textual corpora in low-dimensional vectors improves the generalization capa-
bilities of EL models [54,70]. Therefore, we also summarize distributed entity representation models and novel
methods for entity encoding.

Many natural language processing systems take advantage of deep pre-trained language models like ELMo [138],
BERT [36], and their modifications. EL made its path into these models as a way of introducing information stored
in KGs, which helps to adapt word representations to some text processing tasks. We discuss this novel application
of EL and its further development.

1.2. Article collection methodology

We do not have a strict article collection algorithm for the review like e.g., the one conducted by Oliveira et al.
[130]. Our main goal is to provide and describe a conceptual framework that can be applied to the majority of re-
cently presented neural approaches to EL. Nevertheless, as with all surveys, we had to draw the line somewhere. The
main criteria for including papers into this survey was that they had been published during or after 2015, and they
primarily address the task of EL, i.e. resolving textual mentions to entries in KGs, or discussing EL applications.
We explicitly exclude related work e.g., on (fine-grained) entity typing (see [4,28]), which also encompasses a dis-
ambiguation task, and work that employs KGs for other tasks than EL. This survey also does not try to cover all EL
methods designed for specific domains like biomedical texts or messages in social media. For the general-purpose
EL models evaluated on well-established benchmarks, we try to be as comprehensive as possible with respect to
recent-enough papers that fit into the conceptual framework, no matter where they have appeared (however, with a
focus on top conferences and journals in the fields of natural language processing and Semantic Web).

1.3. Previous surveys

One of the first surveys on EL was prepared by Shen et al. [162] in 2015. They cover the main approaches to entity
linking (within the modules, e.g. candidate generation, ranking), its applications, evaluation methods, and future
directions. In the same year, Ling et al. [96] presented a work that aims to provide (1) a standard problem definition
to reduce confusion that appears due to the existence of variant similar tasks related to EL (e.g., Wikification [112]
and named entity linking [67]), and (2) a clear comparison of models and their various aspects.

There are also other surveys that address a wider scope. The work of Martínez-Rodríguez et al. [106], published
in 2020, involves information extraction models and semantic web technologies. Namely, they consider many tasks,
like named entity recognition, entity linking, terminology extraction, keyphrase extraction, topic modeling, topic
labeling, relation extraction. In a similar vein, the work of Al-Moslmi et al. [3], released in 2020, overviews the
research in named entity recognition, named entity disambiguation, and entity linking published between 2014 and
2019.

Another recent survey paper by Oliveira et al. [130], published in 2020, analyses and summarizes EL approaches
that exhibit some holism. This viewpoint limits the survey to the works that exploit various peculiarities of the
EL task: additional metadata stored in specific input like microblogs, specific features that can be extracted from
this input like geographic coordinates in tweets, timestamps, interests of users posted these tweets, and specific
disambiguation methods that take advantage of these additional features. In the concurrent work, Möller et al. [113]
overview models developed specifically for linking English entities to the Wikidata [184] and discuss features of
this KG that can be exploited for increasing the linking performance.

Previous surveys on similar topics (a) do not cover many recent publications [96,162], (b) broadly cover numerous
topics [3,106], or (c) are focused on the specific types of methods [130] or a knowledge graph [113]. There is not
yet, to our knowledge, a detailed survey specifically devoted to recent neural entity linking models. The previous
surveys also do not address the topics of entity and context/mention encoding, applications of EL to deep pre-trained
language models, and cross-lingual EL. We are also the first to summarize the domain-independent approaches to
EL, several of which are based on zero-shot techniques.
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1.4. Contributions

More specifically, this article makes the following contributions:

– a survey of state-of-the-art neural entity linking models;
– a systematization of various features of neural EL methods and their evaluation results on popular benchmarks;
– a summary of entity and context/mention embedding techniques;
– a discussion of recent domain-independent (zero-shot) and cross-lingual EL approaches;
– a survey of EL applications to modeling word representations.

The structure of this survey is the following. We start with defining the EL task in Section 2. In Section 3.1, the
general architecture of neural entity linking systems is presented. Modifications and variations of this basic pipeline
are discussed in Section 3.2. In Section 4, we summarize the performance of EL models on standard benchmarks
and present results of the entity relatedness evaluation. Section 5 is dedicated to applications of EL with a focus on
recently emerged applications for improving neural language models. Finally, Section 6 concludes the survey and
suggests promising directions of future work.

2. Task description

2.1. Informal definition

Consider the example presented in Fig. 1 with an entity mention Scott Young in a soccer-game-related context.
Literally, this common name can refer to at least three different people: the American football player, the Welsh
football player, or the writer. The EL task is to (1) correctly detect the entity mention in the text, (2) resolve its
ambiguity and ultimately provide a link to a corresponding entity entry in a KG, e.g. provide for the Scott Young
mention in this context a link to the Welsh footballer4 instead of the writer.5 To achieve this goal, the task is usually
decomposed into two sub-tasks, as illustrated in Fig. 1: Mention Detection (MD) and Entity Disambiguation (ED).

2.2. Formal definition

2.2.1. Knowledge graph (KG)
A KG contains entities, relations, and facts, where facts are denoted as triples (i.e. head entity, relation, tail entity)

as defined in Ji et al. [77]. Formally, as defined by Färber et al. [45], a KG is a set of RDF triples where each triple
(s, p, o) is an ordered set of the following terms: a subject s ∈ U∪B, a predicate p ∈ U , and an object o ∈ U∪B∪L.
An RDF term is either a URI u ∈ U , a blank node b ∈ B, or a literal l ∈ L. URI (or IRI) nodes are for the global
identification of entities on the Web; literal nodes are for strings and other datatype values (e.g. integers, dates); and
the blank node is for anonymous nodes, which are not assigned an identifier, as explained in Hogan et al. [68].

Fig. 1. The entity linking task. An entity linking (EL) model takes a raw textual input and enriches it with entity mentions linked to nodes in a
knowledge graph (KG). The task is commonly split into entity mention detection and entity disambiguation sub-tasks.

4https://en.wikipedia.org/wiki/Scott_Young_(Welsh_footballer)
5https://en.wikipedia.org/wiki/Scott_Young_(writer)

https://en.wikipedia.org/wiki/Scott_Young_(Welsh_footballer)
https://en.wikipedia.org/wiki/Scott_Young_(writer)
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This RDF representation can be considered as a multi-relational graph G = (E,A = {A0, A1, . . . , Am ⊆
(E × E)}), where E is a set of all entities of a KG, and A is a family of typed edge sets of length m. For example,
A0 is the “occupation” predicate adjacency matrix, A1 is the “founded” predicate adjacency matrix, etc.

There is also an equivalent three-way tensor representation of a KG A ∈ {0, 1}n×m×n, where

Ai,k,j =
{

1 if (i, j) ∈ Ak : k � m,

0 otherwise.
(1)

2.2.2. Mention detection (MD)
The goal of mention detection is to identify an entity mention span, while entity disambiguation performs linking

of found mentions to entries of a KG. We can consider this task as determining an MD function that takes as
input a textual context ci ∈ C (e.g. a document in a document collection) and outputs a sequence of n mentions
(m1, . . . , mn) in this context mi ∈ M , where M is a set of all possible text spans in the context:

MD : C −→ Mn. (2)

In the majority of works on EL, it is assumed that the mentions are already given or detected, for example, using
a named entity recognition (NER) system (sometimes called named entity recognition and classification (NERC)
[4,119]). We should note that, usually, in addition to MD, NER systems also tag/classify mentions with a predefined
types [95,107,130,181] that also can be leveraged for disambiguation [107].

2.2.3. Entity disambiguation (ED)
The entity disambiguation task can be considered as determining a function ED that, given a sequence of n

mentions in a document and their contexts (c1, . . . , cn), outputs an entity assignment (e1, . . . , en), ei ∈ E, where E

is a set of entities in a KG:

ED : (M,C)n −→ En. (3)

To learn a mapping from entity mentions in a context to entity entries in a KG, EL models use supervision signals
like manually annotated mention-entity pairs. The size of KGs varies; they can contain hundreds of thousands or
even millions of entities. Due to their large size, training data for EL would be extremely unbalanced; training sets
can lack even a single example for a particular entity or mention, e.g. as in the popular AIDA corpus [67]. To deal
with this problem, EL models should have wide generalization capabilities.

Despite KGs being usually large, they are incomplete. Therefore, some mentions in a text cannot be correctly
mapped to any KG entry. Determining such unlinkable mentions, which usually is designated as linking to a NIL
entry, is one of the current EL challenges. Methods that address this problem provide a separate function for it or
extend the set of entities in the disambiguation function with this special entry:

ED : (M,C)n −→ (E ∪ NIL)n. (4)

2.3. Terminological aspects

More or less, the same technologies and models are sometimes called differently in the literature. Namely, Wiki-
fication [26] and entity disambiguation are considered as subtypes of EL [116]. To be comprehensive in this survey,
we assume that the entity linking task encompasses both entity mention detection and entity disambiguation. How-
ever, only a few studies suggest models that perform MD and ED jointly, while the majority of papers on EL focus
exclusively on ED and assume that mention boundaries are given by an external entity recognizer [152] (which may
lead to some terminological confusions). Numerous techniques that perform MD (e.g. in the NER task) without
entity disambiguation are considered in many previous surveys [57,95,119,160,193] inter alia and are out of the
scope of this work.
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Entity linking in the general case is not restricted to linking mentions to graph nodes but rather to concepts in
a knowledge base. However, most of the modern widely-used knowledge bases organize information in the form
of a graph [14,92,184], even in particular domains, like e.g. the scholarly domain [34]. A basic statement in a
data/knowledge base usually can be represented as a subject-predicate-object tuple (s, p, o), e.g. (John_Lennon,

occupation, singer) or (New_York_City, founded, 1624), and a set of such tuples can be represented as a multi-relational
graph. This formalism helps to efficiently organize knowledge for many applications ranging from search engines
to question answering and recommendation systems [68,77]. Therefore, in this article, the terms Knowledge Graph
(KG) and Knowledge Base (KB) are used interchangeably.

3. Neural entity linking

We start the discussion of neural entity linking approaches from the most general architecture of EL pipelines
and continue with various specific modifications like joint entity mention detection and linking, disambiguation
techniques that leverage global context, domain-independent EL approaches including zero-shot methods, and cross-
lingual models.

3.1. General architecture

Some of the attempts to EL based on neural networks treat it as a multi-class classification task in which entities
correspond to classes. However, the straightforward approach results in a large number of classes, which leads to
suboptimal performance without task-sharing [80]. The streamlined approach to EL is to treat it as a ranking prob-
lem. We present the generalized EL architecture in Fig. 2, which is applicable to the majority of neural approaches.
Here, the mention detection model identifies the mention boundaries in text. The next step is to produce a short-
list of possible entities (candidates) for the mention, e.g. producing Scott_Young_(writer) as a candidate rather than a
completely random entity. Then, the mention encoder produces a semantic vector representation of a mention in a
context. The entity encoder produces a set of vector representations of candidates. Finally, the entity ranking model
compares mention and entity representations and estimates mention-entity correspondence scores. An optional step
is to determine unlinkable mentions, for which a KG does not contain a corresponding entity. The categorization of
each step in the general neural EL architecture is summarized in Fig. 3.

3.1.1. Candidate generation
An essential part of EL is candidate generation. The goal of this step is given an ambiguous entity mention, such

as “Scott Young”, to provide a list of its possible “senses” as specified by entities in a KG. EL is analogous to the
Word Sense Disambiguation (WSD) task [116,121] as it also resolves lexical ambiguity. Yet in WSD, each sense of
a word can be clearly defined by WordNet [46], while in EL, KGs do not provide such an exact mapping between
mentions and entities [22,116,121]. Therefore, a mention potentially can be linked to any entity in a KG, resulting

Fig. 2. General architecture for neural entity linking. Entity linking (EL) consists of two main steps: mention detection (MD), when entity
mention boundaries in a text are identified, and entity disambiguation (ED), when a corresponding entity is predicted for the given mention.
Entity disambiguation is further carried out in two steps: candidate generation, when possible candidate entities are selected for the mention, and
entity ranking, when a correspondence score between context/mention and each candidate is computed through the comparison of their vector
representations.
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Fig. 3. Reference map of the general architecture of neural EL systems. The categorization of each step in the general neural EL architecture
with alternative design choices and example references illustrating each of the choices.

Table 1

Candidate generation examples. Candidate entities for the example mention “Big Blue” obtained using several candidate generation meth-
ods. The highlighted candidates are “correct” entities assuming that the given mention refers to the IBM corporation and not a river, e.g.
Big_Blue_River_(Kansas)

Method 5 candidate entities for the example mention “Big Blue”

surface form matching based on DBpedia names6 Big_Blue_Trail, Big_ Bluegrass, Big_Blue_Spring_cave_crayfish,
Dexter_Bexley_and_the_Big_Blue_Beastie, IBM_Big_ Blue_(X-League)

expansion using aliases from YAGO-means7 Big_Blue_River_(Indiana), Big_ Blue_River_(Kansas), Big_Blue_(crane),
Big_ Red_(drink), IBM

probability + expansion using aliases from [54]:
Anchor prob. + CrossWikis + YAGO8

IBM, Big_Blue_River_(Kansas), The_Big_Blue, Big_Blue_River_(Indiana),
Big_Blue_(crane)

in a large search space, e.g. “Big Blue” referring to IBM. In the candidate generation step, this issue is addressed by
performing effective preliminary filtering of the entity list.

Formally, given a mention mi , a candidate generator provides a list of probable entities, e1, e2, . . . , ek , for each
entity mention in a document.

CG : M −→ (e1, e2, . . . , ek). (5)

Similar to [3,162], we distinguish three common candidate generation methods in neural EL: (1) based on surface
form matching, (2) based on expansion with aliases, and (3) based on a prior matching probability computation. In
the first approach, a candidate list is composed of entities that match various surface forms of mentions in the
text [87,115,211]. There are many heuristics for the generation of mention forms and matching criteria like the
Levenshtein distance, n-grams, and normalization. For the example mention of “Big Blue”, this approach would
not work well, as the referent entity “IBM” or its long-form “International Business Machines” does not contain a
mention string. Examples of candidate entity sets are presented in Table 1, where we searched a name matching of
the mention “Big Blue” in the titles of all Wikipedia articles present in DBpedia and presented random 5 matches.

In the second approach, a dictionary of additional aliases is constructed using KG metadata like disambigua-
tion/redirect pages of Wikipedia [43,211] or using a dictionary of aliases and/or synonyms (e.g. “NYC” stands
for “New York City”). This helps to improve the candidate generation recall as the surface form matching usually
cannot catch such cases. Pershina et al. [137] expand the given mention to the longest mention in a context found
using coreference resolution. Then, an entity is selected as a candidate if its title matches the longest version of the

6Random matches from DBpedia labels dataset – http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2.
7YAGO-means dataset of Hoffart et al. [67] – http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2.
8We generated these examples using the source code of Peters et al. [139] – https://github.com/allenai/kb.

http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2
https://github.com/allenai/kb
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mention, or it is present in disambiguation/redirect pages of this mention. This resource is used in many EL models,
e.g. [20,107,125,131,144,165,196]. Another well-known alternative is YAGO [171] – an ontology automatically
constructed from Wikipedia and WordNet. Among many other relations, it provides “means” relations, and this
mapping is utilized for candidate generation like in [54,67,158,165,196]. In this technique, the external information
would help to disambiguate “Big Blue” as “IBM”. Table 1 shows examples of candidates generated with the help of
the YAGO-means candidate mapping dataset used in Hoffart et al. [67].

The third approach to candidate generation is based on pre-calculated prior probabilities of correspondence
between certain mentions and entities, p(e|m). Many studies rely on mention-entity priors computed based on
Wikipedia entity hyperlinks. A URL of a hyperlink to an entity page of Wikipedia determines a candidate entity,
and the anchor text of the hyperlink determines a mention. Another widely-used option is CrossWikis [170], which
is an extensive resource that leverages the frequency of mention-entity links in web crawl data [54,62].

It is common to apply multiple approaches to candidate generation at once. For example, the resource constructed
by Ganea and Hofmann [54] and used in many other EL methods [82,86,139,159,198] relies on prior probabilities
obtained from entity hyperlink count statistics of CrossWikis [170] and Wikipedia, as well as on entity aliases ob-
tained from the “means” relationship of the YAGO ontology Hoffart et al. [67]. The illustrative mention “Big Blue”
can be linked to its referent entity “IBM” with this method, as shown in Table 1. As another example, Fang et al. [44]
utilize surface form matching and aliases. They share candidates between abbreviations and their expanded versions
in the local context. The aliases are obtained from Wikipedia redirect and disambiguation pages, the Wikipedia
search engine, and synonyms from WordNet [46]. Additionally, they submit mentions that are misspelled or contain
multiple words to Wikipedia and Google search engines and search for the corresponding Wikipedia articles. It is
also worth noting that some works also employ a candidate pruning step to reduce the number of candidates.

Recent zero-shot models [55,100,191] perform candidate generation without external resources. Section 3.2.3
describes them in detail.

3.1.2. Context-mention encoding
To correctly disambiguate an entity mention, it is crucial to thoroughly capture the information from its context.

The current mainstream approach is to construct a dense contextualized vector representation of a mention ym using
an encoder neural network.

mENC : (C,M)n −→ (ym1
, ym2

, . . . , ymn
). (6)

Several early techniques in neural EL utilize a convolutional encoder [49,127,169,172], as well as attention be-
tween candidate entity embeddings and embeddings of words surrounding a mention [54,86]. However, in recent
models, two approaches prevail: recurrent networks and self-attention [182].

A recurrent architecture with LSTM cells [66] that has been a backbone model for many NLP applications, is
adopted to EL in [43,62,82,87,107,129,165] inter alia. Gupta et al. [62] concatenate outputs of two LSTM networks
that independently encode left and right contexts of a mention (including the mention itself). In the same vein,
Sil et al. [165] encode left and right local contexts via LSTMs but also pool the results across all mentions in a
coreference chain and postprocess left and right representations with a tensor network. A modification of LSTM –
GRU [29] – is used by Eshel et al. [40] in conjunction with an attention mechanism [7] to encode left and right
context of a mention. Kolitsas et al. [82] represent an entity mention as a combination of LSTM hidden states
included in the mention span. Le and Titov [87] simply run a bidirectional LSTM network on words complemented
with embeddings of word positions relative to a target mention. Shahbazi et al. [159] adopt pre-trained ELMo [138]
for mention encoding by averaging mention word vectors.

Encoding methods based on self-attention have recently become ubiquitous. The EL models presented in [25,100,
139,191,198] and others rely on the outputs from pre-trained BERT layers [36] for context and mention encoding. In
Peters et al. [139], a mention representation is modeled by pooling over word pieces in a mention span. The authors
also put an additional self-attention block over all mention representations that encode interactions between several
entities in a sentence. Another approach to modeling mentions is to insert special tags around them and perform a
reduction of the whole encoded sequence. Wu et al. [191] reduce a sequence by keeping the representation of the
special pooling symbol ‘[CLS]’ inserted at the beginning of a sequence. Logeswaran et al. [100] mark positions of a
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mention span by summing embeddings of words within the span with a special vector and using the same reduction
strategy as Wu et al. [191]. Yamada et al. [198] concatenate text with all mentions in it and jointly encode this
sequence via a self-attention model based on pre-trained BERT. In addition to the simple attention-based encoder of
Ganea and Hofmann [54], Chen et al. [25] leverage BERT for capturing type similarity between a mention and an
entity candidate. They replace mention tokens with a special “[MASK]” token and extract the embedding generated
for this token by BERT. A corresponding entity representation is generated by averaging multiple embeddings of
mentions.

3.1.3. Entity encoding
To make EL systems robust, it is essential to construct distributed vector representations of entity candidates ye

in such a way that they capture semantic relatedness between entities in various aspects.

eENC : Ek −→ (ye1
, ye2

, . . . , yek
). (7)

For instance, in Fig. 4, the most similar entities for Scott Young in the Scott_Young_(American_football) sense are
related to American football, whereas the Scott_Young_(writer) sense is in the proximity of writer-related entities.

There are three common approaches to entity encoding in EL: (1) entity representations learned using unstruc-
tured texts and algorithms like word2vec [111] based on co-occurrence statistics and developed originally for em-
bedding words; (2) entity representations constructed using relations between entities in KGs and various graph
embedding methods; (3) training a full-fledged neural encoder to convert textual descriptions of entities and/or
other information into embeddings.

In the first category, Ganea and Hofmann [54] collect entity-word co-occurrences statistics from two sources: en-
tity description pages from Wikipedia; text surrounding anchors of hyperlinks to Wikipedia pages of corresponding
entities. They train entity embeddings using the max-margin objective that exploits the negative sampling approach
like in the word2vec model, so vectors of co-occurring words and entities lie closer to each other compared to vectors
of random words and entities. Some other methods directly replace or extend mention annotations (usually anchor
text of a hyperlink) with an entity identifier and straightforwardly train on the modified corpus a word representation
model like word2vec [115,176,197,210,211]. In [54,115,125,176], entity embeddings are trained in such a way that
entities become embedded in the same semantic space as words (or texts i.e., sentences and paragraphs [197]). For
example, Newman-Griffis et al. [125] propose a distantly-supervised method that expands the word2vec objective

Fig. 4. Visualization of entity embeddings. Entity embedding space for entities related to the ambiguous entity mention “Scott Young”. Three
candidate entities from Wikipedia are illustrated. For each entity, their most similar 5 entities are shown in the same colors. Entity embeddings
are visualized with PCA, which is utilized to reduce dimensionality (in this example, to 2D), using pre-trained embeddings provided by Yamada
et al. [194]9.

9We used the English 100D embeddings from https://wikipedia2vec.github.io/wikipedia2vec/pretrained.

https://wikipedia2vec.github.io/wikipedia2vec/pretrained
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to jointly learn words and entity representations in the shared space. The authors leverage distant supervision from
terminologies that map entities to their surface forms (e.g. Wikipedia page titles and redirects or terminology from
UMLS [12]).

In the second category of entity encoding methods that use relations between entities in a KG, Huang et al. [70]
train a model that generates dense entity representations from sparse entity features (e.g. entity relations, descrip-
tions) based on the entity relatedness. Several works expand their entity relatedness objective with functions that
align words (or mentions) and entities in a unified vector space [20,42,144,163,194,196], just like the methods from
the first category. For example, Yamada et al. [196] jointly optimize three objectives to learn word and entity rep-
resentations: prediction of neighbor words for the given target word, prediction of neighbor entities for the target
entity based on the relationships in a KG, and prediction of neighbor words for the given entity.

Recently, knowledge graph embedding has become a prominent technique and facilitated solving various NLP
and data mining tasks [187] from KG completion [15,123,189] to entity classification [128]. For entity linking, two
major graph embedding algorithms are widely adopted: DeepWalk [136] and TransE [15].

The goal of the DeepWalk [136] algorithm is to produce embeddings of vertices that preserve their proximity in
a graph [58]. It first generates several random walks for each vertex in a graph. The generated walks are used as
training data for the skip-gram algorithm. Like in word2vec for language modeling, given a vertex, the algorithm
maximizes the probabilities of its neighbors in the generated walks. Parravicini et al. [135], Sevgili et al. [157]
leverage DeepWalk-based graph embeddings built from DBpedia [92] for entity linking. Parravicini et al. [135] use
entity embeddings to compute cosine similarity scores of candidate entities in global entity linking. Sevgili et al.
[157] show that combining graph and text-based embeddings can slightly improve the performance of neural entity
disambiguation when compared to using only text-based embeddings.

The goal of the TransE [15] algorithm is to construct embeddings of both vertices and relations in such a way
that they are compatible with the facts in a KG [187]. Consider the facts in a KG are represented in the form
of triples (i.e. head entity, relation, tail entity). If a fact is contained in a KG, the TransE margin-based ranking
criterion facilitates the presence of the following correspondence between embeddings: head + relation ≈ tail.
This means that the relationship in a KG should be a linear translation in the embedding space of entities. At
the same time, if there is no such fact in a KG, this functional relationship should not hold. The TransE-based
entity representations constructed from Wikidata [184] and Freebase [14] have been used for entity representation
in language modeling [206] and in several works on EL [9,124,169]. Banerjee et al. [9], Sorokin and Gurevych
[169] utilize Wikidata-based entity embeddings as an input component of neural models along with other types
of information about entities. The ablation study conducted by Banerjee et al. [9] show that the TransE entity
embeddings are the most important features for their entity linking model. They attribute this finding to the fact that
graph embeddings contain rich information about the KG structure. Similarly, Sorokin and Gurevych [169] find that
without KG structure information, their entity linker experiences a big performance drop. Nedelchev et al. [124]
integrate knowledge graph embeddings built from Freebase and word embeddings in a single end-to-end model
that solves entity and relation linking tasks jointly. The quantitative analysis shows that their KG-embedding-based
method helps to pick correct entity candidates. Recently, Wu et al. [190] also utilize TransE embeddings with other
types of entity embeddings, like Ganea and Hofmann [54] or dynamic representation, to compute pairwise entity
relatedness scores.

There are many other techniques for KG embedding: [35,59,128,175,189,199] inter alia and very recent 5*E
[122], which is designed to preserve complex graph structures in the embedding space. However, they are not widely
used in entity linking right now. A detailed overview of all graph embedding algorithms is out of the scope of the
current work. We refer the reader to the previous surveys on this topic [18,58,154,187] and consider integration of
novel KG embedding techniques in EL models a promising research direction.

In the last category, we place methods that produce entity representations using other types of information like
entity descriptions and entity types. Often, an entity encoder is a full-fledged neural network, which is a part of
an entity linking architecture. Sun et al. [172] use a neural tensor network to encode interactions between surface
forms of entities and their category information from a KG. In the same vein, Francis-Landau et al. [49] and Nguyen
et al. [127] construct entity representations by encoding titles and entity description pages with convolutional neural
networks. In addition to a convolutional encoder for entity descriptions, Gupta et al. [62] also include an encoder for
fine-grained entity types by using the type set of FIGER [97]. Gillick et al. [55] construct entity representations by
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encoding entity page titles, short entity descriptions, and entity category information with feed-forward networks. Le
and Titov [87] use only entity type information from a KG and a simple feed-forward network for entity encoding.
Hou et al. [69] also leverage entity types. However, instead of relying on existing type sets like in [62], they construct
custom fine-grained semantic types using words from starting sentences of Wikipedia pages. To represent entities,
they first average the word vectors of entity types and then linearly aggregate them with embeddings of Ganea and
Hofmann [54].

Recent works leverage deep language models like BERT [36] or ELMo [138] for encoding entities. Nie et al.
[129] use an architecture based on a recurrent network for obtaining entity representations from Wikipedia entity
description pages. Subsequently, several models adopt BERT for the same purpose [100,191] inter alia. Yamada
et al. [198] propose a masked entity prediction task, where a model based on the BERT architecture learns to predict
randomly masked input entities. This task makes the model learn also how to generate entity representations along
with standard word representations. Shahbazi et al. [159] introduce E-ELMo that extends the ELMo model [138]
with an additional objective. The model is trained in a multi-task fashion: to predict next/previous words, as in a
standard bidirectional language model, and to predict the target entity when encountering its mentions. As a result,
besides the model for mention encoding, entity representations are obtained. Mulang’ et al. [118] use bidirectional
Transformers to jointly encode context of a mention, a candidate entity name, and multiple relationships of a can-
didate entity from a KG verbalized into textual triples: “[subject] [predicate] [object]”. The input sequence of the
encoder is composed simply by appending all these types of information delimited by a special separator token.

3.1.4. Entity ranking
The goal of this stage is given a list of entity candidates (e1, e2, . . . , ek) from a KG and a context C with a

mention M to rank these entities assigning a score to each of them, as in Equation (8), where n is a number of entity
mentions in a document, k is a number of candidate entities. Figure 5 depicts the typical architecture of the ranking
component.

RNK : (
(e1, e2, . . . , ek), C,M

)n −→ R
n×k. (8)

The mention representation ym generated in the mention encoding step is compared with candidate entity rep-
resentations yei

(i = 1, 2, . . . , k) according to the similarity measure s(m, ei). Entity representations can be pre-
trained (see Section 3.1.3) or generated by another encoder as in some zero-shot approaches (see Section 3.2.3). The
BERT-based model of Yamada et al. [198] simultaneously learns how to encode mentions and entity embeddings in
the unified architecture.

Fig. 5. Entity ranking. A generalized entity candidate ranking neural architecture: entity candidates are ranked according their appropriateness
for a particular mention in the current context.
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Most of the state-of-the-art studies compute similarity s(m, e) between representations of a mention m and an
entity e using a dot product as in [54,62,82,139,191]:

s(m, ei) = ym · yei
; (9)

or cosine similarity as in [49,55,172]:

s(m, ei) = cos(ym, yei
) = ym · yei

‖ym‖ · ‖yei
‖ . (10)

The final disambiguation decision is inferred via a probability distribution P(ei |m), which is usually approxi-
mated by a softmax function over the candidates. The calculated similarity score or probability can be combined
with mention-entity priors obtained during the candidate generation phase [49,54,82] or other features f (ei,m) such
as various similarities, a string matching indicator, and entity types or type similarity [25,49,158,159,165,200]. One
of the common techniques for that is to use an additional one or two-layer feedforward network φ(·, ·) [49,54,159].
The obtained local similarity score �(ei,m) or the probability distribution can be further utilized for global scoring
(see Section 3.2.2).

P(ei |m) = exp(s(m, ei))∑k
i=1 exp(s(m, ei))

, (11)

�(ei,m) = φ
(
P(ei |m), f (ei,m)

)
. (12)

There are several approaches to framing a training objective in the literature on EL. Consider that we have k

candidates for the target mention m, one of which is a true entity e∗. In some works, the models are trained with
the standard negative log-likelihood objective like in classification tasks [100,191]. However, instead of classes,
negative candidates are used:

L(m) = −s(m, e∗) + log
k∑

i=1

exp
(
s(m, ei)

)
. (13)

Instead of the negative log-likelihood, some works use variants of a ranking loss. The idea behind such an ap-
proach is to enforce a positive margin γ > 0 between similarity scores of mentions to positive and negative candi-
dates [54,82,139]:

L(m) =
∑

i

�(ei, m), where (14)

�(ei,m) = [
γ − �(e∗,m) + �(ei,m)

]
+ (15)

or

�(ei,m)

=
{

[γ − �(ei,m)]+, if ei equal e∗
[�(ei,m)]+, otherwise.

(16)

3.1.5. Unlinkable mention prediction
The referent entities of some mentions can be absent in the KGs, e.g. there is no Wikipedia entry about Scott

Young as a cricket player of the Stenhousemuir cricket club.10 Therefore, an EL system should be able to predict the

10Information about Scott Young as a cricket player: https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009.

https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009
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absence of a reference if a mention appears in specific contexts, which is known as the NIL prediction task:

NILp : (C,M)n −→ {0, 1}n. (17)

The NIL prediction task is essentially a classification with a reject option [51,64,65]. There are four common ways
to perform NIL prediction. Sometimes a candidate generator does not yield any corresponding entities for a mention;
such mentions are trivially considered unlikable [165,176]. One can set a threshold for the best linking probability
(or a score), below which a mention is considered unlinkable [84,139]. Some models introduce an additional special
“NIL” entity in the ranking phase, so models can predict it as the best match for the mention [82]. It is also possible
to train an additional binary classifier that accepts mention-entity pairs after the ranking phase, as well as several
additional features (best linking score, whether mentions are also detected by a dedicated NER system, etc.), as
input and makes the final decision about whether a mention is linkable or not [107,115].

3.2. Modifications of the general architecture

This section presents the most notable modifications and improvements of the general architecture of neural entity
linking models presented in Section 3.1 and Figs 2 and 5. The categorization of each modification is summarized in
Fig. 6.

3.2.1. Joint entity mention detection and disambiguation
While it is common to separate the mention detection (cf. Equation (2)) and entity disambiguation stages (cf.

Equation (3)), as illustrated in Fig. 1, a few systems provide joint solutions for entity linking where entity mention
detection and disambiguation are done at the same time by the same model. Formally, the task becomes to detect a
mention mi ∈ M and predict an entity ei ∈ E for a given context ci ∈ C, for all n entity mentions in the context:

EL : C −→ (M,E)n. (18)

Undoubtedly, solving these two problems simultaneously makes the task more challenging. However, the inter-
action between these steps can be beneficial for improving the quality of the overall pipeline due to their natural
mutual dependency. While first competitive models that provide joint solutions were probabilistic graphical models
[103,126], we focus on purely neural approaches proposed recently [17,23,33,82,107,139,142,169].

The main difference of joint models is the necessity to produce also mention candidates. For this purpose, Kolitsas
et al. [82] and Peters et al. [139] enumerate all spans in a sentence with a certain maximum width, filter them
by several heuristics (remove mentions with stop words, punctuation, ellipses, quotes, and currencies), and try
to match them to a pre-built index of entities used for the candidate generation. If a mention candidate has at
least one corresponding entity candidate, it is further treated by a ranking neural network that can also discard it

Fig. 6. Reference map of the modifications of the general architecture for neural EL. The categorization of each modification with various
design choices and example references illustrating each choice. Sections 3.2.3 and 3.2.4 are categorized based on their EL solutions, here.
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by considering it unlinkable to any entity in a KG (see Section 3.1.4). Therefore, the decision during the entity
disambiguation phase affects mention detection. In a similar fashion, Sorokin and Gurevych [169] treat each token
n-gram up to a certain length as a possible mention candidate. They use an additional binary classifier for filtering
candidate spans, which is trained jointly with an entity linker. Banerjee et al. [9] also enumerates all possible n-
grams and expands each of them with candidate entities, which results in a long sequence of points corresponding
to a candidate entity for a particular mention n-gram. This sequence is further processed by a single-layer BiLSTM
pointer network [183] that generates index numbers of potential entities in the input sequence. Li et al. [94] consider
various possible spans as mention candidates and introduce a loss component for boundary detection, which is
optimized along with the loss for disambiguation.

Martins et al. [107] describe the approach with tighter integration between detection and linking phases via multi-
task learning. The authors propose a stack-based bidirectional LSTM network with a shift-reduce mechanism and
attention for entity recognition that propagates its internal states to the linker network for candidate entity ranking.
The linker is supplemented with a NIL predictor network. The networks are trained jointly by optimizing the sum
of losses from all three components.

Broscheit [17] goes further by suggesting a completely end-to-end method that deals with mention detection and
linking jointly without explicitly executing a candidate generation step. In this work, the EL task is formulated as
a sequence labeling problem, where each token in the text is assigned an entity link or a NIL class. They leverage
a sequence tagger based on pre-trained BERT for this purpose. This simplistic approach does not supersede [82]
but outperforms the baseline, in which candidate generation, mention detection, and linking are performed inde-
pendently. In the same vein, Chen et al. [23] use a sequence tagging framework for joint entity mention detection
and disambiguation. However, they experiment with both settings: when a candidate list is available and not, and
demonstrate that it is possible to achieve high linking performance without candidate sets. Similar to Li et al. [94],
they optimize the joint loss for linking and mention boundary detection.

Poerner et al. [142] propose a model E-BERT-MLM, in which they repurpose the masked language model (MLM)
objective for the selection of entity candidates in an end-to-end EL pipeline. The candidate mention spans and
candidate entity sets are generated in the same way as in [82]. For candidate selection, E-BERT-MLM inserts a
special “[E-MASK]” token into the text before the considered candidate mention span and tries to restore an entity
representation for it. The model is trained by minimizing the cross-entropy between the generated entity distribution
of the potential spans and gold entities. In addition to the standard BERT architecture, the model contains a linear
transformation pre-trained to align entity embeddings with embeddings of word-piece tokens.

De Cao et al. [33] recently have proposed a generative approach to performing mention detection and disambigua-
tion jointly. Their model, which is based on BART [93], performs a sequence-to-sequence autoregressive generation
of text markup with information about mention spans and links to entities in a KG. The generation process is con-
strained by a markup format and a candidate set, which is retrieved from standard pre-built candidate resources.
Most of the time, the network works in a copy-paste regime when it copies input tokens into the output. When it
finds a beginning of a mention, the model marks it with a square bracket, copies all tokens of a mention, adds a
finishing square bracket, and generates a link to an entity. Although this approach to EL, at the first glance, is coun-
terintuitive and completely different from the solutions with a standard bi-encoder architecture, this model achieves
near state-of-the-art results for joint MD and ED and competitive performances on ED-only benchmarks. However,
as it is shown in the paper, to achieve such impressive results, the model had to be pre-trained on a large annotated
Wikipedia-based dataset [191]. The authors also note that the memory footprint of the proposed model is much
smaller than that of models based on the standard architecture due to no need for storing entity embeddings.

3.2.2. Global context architectures
Two kinds of contextual information are available in entity disambiguation: local and global. In local approaches

to ED, each mention is disambiguated independently based on the surrounding words, as in the following function:

LED : (M,C) −→ E. (19)

Global approaches to ED take into account semantic consistency (coherence) across multiple entities in a context.
In this case, all q entity mentions in a group are disambiguated interdependently: a disambiguation decision for one
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Fig. 7. Global entity disambiguation. The global entity linking resolves all mentions simultaneously based on entity coherence. Bolder lines
indicate expected higher degrees of entity-entity similarity.

entity is affected by decisions made for other entities in a context as illustrated in Fig. 7 and Equation (20).

GED : (
(m1,m2, . . . , mq), C

) −→ Eq. (20)

In the example presented in Fig. 7, the consistency score between correct entity candidates: the national football
team sense of Wales and the Welsh footballer sense of Scott Young and John Hartson, is expected to be higher than
between incorrect ones.

Besides involving consistency, the considered context of a mention in global methods is usually larger than in
local ones or even extends to the whole document. Although modeling consistency between entities and the extra
information of the global context improves the disambiguation accuracy, the number of possible entity assignments
is combinatorial [53], which results in high time complexity of disambiguation [54,200]. Another difficulty is an
attempt to assign an entity its consistency score since this score is not possible to compute in advance due to the
simultaneous disambiguation [196].

The typical approach to global disambiguation is to generate a graph including candidate entities of mentions
in a context and perform some graph algorithms, like random walk algorithms (e.g. PageRank [133]) or graph
neural networks, over it to select highly consistent entities [61,137,210,211]. Recently, Xue et al. [192] propose
a neural recurrent random walk network learning algorithm based on the transition matrix of candidate entities
containing relevance scores, which are created from hyperlinks information and cosine similarity of entities. Cao
et al. [19] construct a subgraph from the candidates of neighbor mentions, integrate local and global features of each
candidate, and apply a graph convolutional network over this subgraph. In this approach, the graph is static, which
would be problematic in such cases that two mentions would co-occur in different documents with different topics,
however, the produced graphs will be the same, and so, could not catch the different information [190]. To address
it, Wu et al. [190] propose a dynamic graph convolution architecture, where entity relatedness scores are computed
and updated in each layer based on the previous layer information (initialized with some features, including context
scores) and entity similarity scores. Globerson et al. [56] introduce a model with an attention mechanism that takes
into account only the subgraph of the target mention, rather than all interactions of all the mentions in a document
and restrict the number of mentions with an attention.

Some works approach global ED by maximizing the Conditional Random Field (CRF) potentials, where the
first component � represents a local entity-mention score, and the other component � measures coherence among
selected candidates [53,54,85,86], as defined in Ganea and Hofmann [54]:

g(e,m, c) =
n∑

i=1

�(ei,mi, ci) +
∑
i<j

�(ei, ej ). (21)

However, model training and its exact inference are NP-hard. Ganea and Hofmann [54] utilize truncated fitting of
loopy belief propagation [53,56] with differentiable and trainable message passing iterations using pairwise entity
scores to reduce the complexity. Le and Titov [85] expand it in a way that pairwise scores take into account relations
of mentions (e.g. located_in, or coreference: the mentions are coreferent if they refer to the same entity) by modeling
relations between mentions as latent variables. Shahbazi et al. [158] develop a greedy beam search strategy, which
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starts from a locally optimal initial solution and is improved by searching for possible corrections with the focus on
the least confident mentions.

Despite the optimizations proposed like in some aforementioned works, taking into account coherence scores
among candidates of all mentions at once can be prohibitively slow. It also can be malicious due to erroneous co-
herence among wrong entities [43]. For example, if two mentions have coherent erroneous candidates, this noisy
information may mislead the final global scoring. To resolve this issue, some studies define the global ED problem
as a sequential decision task, where the disambiguation of new entities is based on the already disambiguated ones
with high confidence. Fang et al. [43] train a policy network for sequential selection of entities using reinforcement
learning. The disambiguation of mentions is ordered according to the local score, so the mentions with high confi-
dent entities are resolved earlier. The policy network takes advantage of output from the LSTM global encoder that
maintains the information about earlier disambiguation decisions. Yang et al. [200] also utilize reinforcement learn-
ing for mention disambiguation. They use an attention model to leverage knowledge from previously linked entities.
The model dynamically selects the most relevant entities for the target mention and calculates the coherence scores.
Yamada et al. [198] iteratively predict entities for yet unresolved mentions with a BERT model, while attending on
the previous most confident entity choices. Similarly, Gu et al. [60] sort mentions based on their ambiguity degrees
produced by their BERT-based local model and update query/context based on the linked entities so that the next
prediction can leverage the previous knowledge. They also utilize a gate mechanism to control historical cues –
representations of linked entities. Yamada et al. [196] and Radhakrishnan et al. [144] measure the similarity first
based on unambiguous mentions and then predict entities for complex cases. Nguyen et al. [127] use an RNN to
implicitly store information about previously seen mentions and corresponding entities. They leverage the hidden
states of the RNN to reach this information as a feature for the computation of the global score. Tsai and Roth [176]
directly use embeddings of previously linked entities as features for the disambiguation model. Recently, Fang et al.
[44] combine sequential approaches with graph based methods, where the model dynamically changes the graph
depending on the current state. The graph is constructed with previously resolved entities, current candidate entities,
and subsequent mention’s candidates. The authors use a graph attention network over this graph to make a global
scoring. As explained before, Wu et al. [190] also change the entity graph dynamically depending on the outputs
from previous layers of a GCN. Zwicklbauer et al. [211] include to the candidates graph a topic node created from
the set of already disambiguated entities.

Some studies, for example, Kolitsas et al. [82] model the coherence component as an additional feed-forward
neural network that uses the similarity score between the target entity and an average embedding of the candidates
with a high local score. Fang et al. [42] use the similarity score between the target entity and its surrounding entity
candidates in a specified window as a feature for the disambiguation model.

Another approach that can be considered as global is to make use of a document-wide context, which usually
contains more than one mention and helps to capture the coherence implicitly instead of explicitly designing an
entity coherence component [49,62,115,139].

3.2.3. Domain-independent architectures
Domain independence is one of the most desired properties of EL systems. Annotated resources are very limited

and exist only for a few domains. Obtaining labeled data in a new domain requires much labor. Earlier, this problem
is tackled by few domain-independent approaches based on unsupervised [20,125,186] and semi-supervised models
[84]. Recent studies provide solutions based on distant learning and zero-shot methods.

Le and Titov [86,87] propose distant learning techniques that use only unlabeled documents. They rely on the
weak supervision coming from a surface matching heuristic, and the EL task is framed as binary multi-instance
learning. The model learns to distinguish between a set of positive entities and a set of random negatives. The
positive set is obtained by retrieving entities with a high word overlap with the mention and that have relations in a
KG to candidates of other mentions in the sentence. While showing promising performance, which in some cases
rivals results of fully supervised systems, these approaches require either a KG describing relations of entities [87]
or mention-entity priors computed from entity hyperlink statistics extracted from Wikipedia [86].

Recently proposed zero-shot techniques [100,174,191,201] tackle problems related to adapting EL systems to
new domains. In the zero-shot setting, the only entity information available is its description. As well as in other
settings, texts with mention-entity pairs are also available. The key idea of zero-shot methods is to train an EL
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system on a domain with rich labeled data resources and apply it to a new domain with only minimal available
data like descriptions of domain-specific entities. One of the first studies that proposes such a technique is Gupta
et al. [62] (not purely zero-shot because they also use entity typings). Existing zero-shot systems do not require such
information resources as surface form dictionaries, prior entity-mention probabilities, KG entity relations, and entity
typing, which makes them particularly suited for building domain-independent solutions. However, the limitation
of information sources raises several challenges.

Since only textual descriptions of entities are available for the target domain, one cannot rely on pre-built dic-
tionaries for candidate generation. All zero-shot works rely on the same strategy to tackle candidate generation:
pre-compute representations of entity descriptions (sometimes referred to as caching), compute a representation of
a mention, and calculate its similarity with all the description representations. Pre-computed representations of de-
scriptions save a lot of time at the inference stage. Particularly, Logeswaran et al. [100] use the BM25 information
retrieval formula [78], which is a similarity function for count-based representations.

A natural extension of count-based approaches is embeddings. The method proposed by Gillick et al. [55], which
is a predecessor of zero-shot approaches, uses average unigram and bigram embeddings followed by dense layers
to obtain representations of mentions and descriptions. The only aspect that separates this approach from pure
zero-shot techniques is the usage of entity categories along with descriptions to build entity representations. Cosine
similarity is used for the comparison of representations. Due to the computational simplicity of this approach, it
can be used in a single stage fashion where candidate generation and ranking are identical. For further speedup, it
is possible to make this algorithm two-staged. In the first stage, an approximate search can be used for candidate
set retrieval. In the second stage, the retrieved smaller set can be used for exact similarity computation. Instead of
simple embeddings, Wu et al. [191] suggest using a BERT-based bi-encoder for candidate generation. Two separate
encoders generate representations of mentions and entity descriptions. Similar to the previous work, the candidate
selection is based on the score obtained via a dot-product of mention/entity representations.

For entity ranking, a very simple embedding-based approach of Gillick et al. [55] described above shows very
competitive scores on the TAC KBP-2010 benchmark, outperforming some complex neural architectures. The re-
cent studies of Logeswaran et al. [100] and Wu et al. [191] utilize a BERT-based cross-encoder to perform joint
encoding of mentions and entities. The cross-encoder takes a concatenation of a context with a mention and an
entity description to produce a scalar score for each candidate. The cross-attention helps to leverage the semantic
information from the context and the definition on each layer of the encoder network [71,150]. In both studies,
cross-encoders achieve superior results compared to bi-encoders and count-based approaches. For entity linking,
cross-attention between mention context representations and entity descriptions is also used by Nie et al. [129].
However, they leverage recurrent architectures for encoding. Yao et al. [201] introduce a small tweak of positional
embeddings in the Logeswaran et al. [100]’s architecture aimed at better handling long contexts. Tang et al. [174]
address the problem of the limited size of the mention context and the entity description that could be processed
by the standard BERT model. They argue that the input size of 512 tokens is not enough to capture context and
entity description relatedness since the evidence for linking could scatter in different paragraphs and suggest a novel
architecture that resolves this problem. Roughly speaking, their model splits the context of a mention and entity
description into multiple paragraphs, performs cross-attention between representations of these paragraphs, and ag-
gregates the results for disambiguation. The experimental results show that their model substantially improves the
zero-shot performance keeping the inference time in an acceptable range.

Evaluation of zero-shot systems requires data from different domains. Logeswaran et al. [100] proposes the Zero-
shot EL11 dataset, constructed from several Wikias.12 In the proposed setting, training is performed on one set of
Wikias while evaluation is performed on others. Gillick et al. [55] construct the Wikinews dataset. This dataset can
be used for evaluation after training on Wikipedia data.

Clearly, heavy neural architectures pre-trained on general-purpose open corpora substantially advance the per-
formance of zero-shot techniques. As highlighted by Logeswaran et al. [100] further unsupervised pre-training on
source data, as well as on the target data is beneficial. The development of better approaches to the utilization of

11https://github.com/lajanugen/zeshel
12https://www.wikia.com

https://github.com/lajanugen/zeshel
https://www.wikia.com
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unlabeled data might be a fruitful research direction. Furthermore, closing the performance gap of entity ranking
between a fast representation based bi-encoder and a computationally intensive cross-encoder is an open question.

3.2.4. Cross-lingual architectures
An abundance of labeled data for EL in English contrasts with the amount of data available in other languages.

The cross-lingual EL (sometimes called XEL) methods [76] aim at overcoming the lack of annotation for resource-
poor languages by leveraging supervision coming from their resource-rich counterparts. Many of these methods are
feasible due to the presence of a unique source of supervision for EL – Wikipedia, which is available for a variety
of languages. The inter-language links in Wikipedia that map pages in one language to equivalent pages in another
language also help to map corresponding entities in different languages.

Challenges in XEL start at candidate generation and mention detection steps since a resource-poor language
can lack mappings between mention strings and entities. In addition to the standard mention-entity priors based
on inter-language links [165,176,179], candidate generation can be approached by mining a translation dictionary
[134], training a translation and alignment model [177,180], or applying a neural character-level string matching
model [151,207]. In the latter approach, the model is trained to match strings from a high-resource pivot language
to strings in English. If a high-resource pivot language is similar to the target low-resource one, such a model is able
to produce reasonable candidates for the latter. The neural string matching approach can be further improved with
simpler average n-gram encoding and extending entity-entity pairs with mention-entity examples [208]. Such an
approach can also be applied to entity recognition [31]. Fu et al. [50] criticize methods that solely rely on Wikipedia
due to the lack of inter-language links for resource-poor languages. They propose a candidate generation method
that leverages results from querying online search engines (Google and Google Maps) and show that due to its much
higher recall compared to other methods, it is possible to substantially increase the performance of XEL.

There are several approaches to candidate ranking that take advantage of cross-lingual data for dealing with the
lack of annotated examples. Pan et al. [134] use the Abstract Meaning Representation (AMR) [8] statistics in En-
glish Wikipedia and mention context for ranking. To train an AMR tagger, pseudo-labeling [89] is used. Tsai and
Roth [176] train monolingual embeddings for words and entities jointly by replacing every entity mention with
corresponding entity tokens. Using the inter-language links, they learn the projection functions from multiple lan-
guages into the English embedding space. For ranking, context embeddings are averaged, projected into the English
space, and compared with entity embeddings. The authors demonstrate that this approach helps to build better entity
representations and boosts the EL accuracy in the cross-lingual setting by more than 1% for Spanish and Chinese.
Sil et al. [165] propose a method for zero-shot transfer from a high-resource language. The authors extend the pre-
vious approach with the least squares objective for embedding projection learning, the CNN context encoder, and
a trainable re-weighting of each dimension of context and entity representations. The proposed approach demon-
strates improved performance as compared to previous non-zero-shot approaches. Upadhyay et al. [179] argues that
the success of zero-shot cross-lingual approaches [165,176] might be largely originating from a better estimation of
mention-entity prior probabilities. Their approach extends [165] with global context information and incorporation
of typing information into context and entity representations (the system learns to predict typing during the training).
The authors report a significant drop in performance for zero-shot cross-lingual EL without mention-entity priors,
while showing state-of-the-art results with priors. They also show that training on a resource-rich language might
be very beneficial for low-resource settings.

The aforementioned techniques of cross-lingual entity linking heavily rely on pre-trained multilingual embed-
dings for entity ranking. While being effective in settings with at least prior probabilities available, the performance
in realistic zero-shot scenarios drops drastically. Along with the recent success of the zero-shot multilingual transfer
of large pre-trained language models, this is a motivation to utilize powerful multilingual self-supervised mod-
els. Botha et al. [16] use the zeros-shot monolingual architecture of Logeswaran et al. [100], Wu et al. [191] and
mBERT [141] to build a massively multilingual EL model for more than 100 languages. Their system effectively
selects proper entities among almost 20 million of candidates using a bi-encoder, hard negative mining, and an ad-
ditional cross-lingual entity description retrieval task. The biggest improvements over the baselines are achieved in
the zero-shot and few-shot settings, which demonstrates the benefits of training on a large amount of multilingual
data.
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3.3. Methods that do not fit the general architecture

There are a few works that propose methods not fitting the general architecture presented in Figs 2 and 5. Raiman
and Raiman [146] rely on the intermediate supplementary task of entity typing instead of directly performing en-
tity disambiguation. They learn a type system in a KG and train an intermediate type classifier of mentions that
significantly refines the number of candidates for the final linking model. Onoe and Durrett [131] leverage distant
supervision from Wikipedia pages and the Wikipedia category system to train a fine-grained entity typing model.
At test time, they use the soft type predictions and the information about candidate types derived from Wikipedia
to perform the final disambiguation. The authors claim that such an approach helps to improve the domain inde-
pendence of their EL system. Kar et al. [80] consider a classification approach, where each entity is considered as
a separate class or a task. They show that the straightforward classification is difficult due to exceeding memory
requirements. Therefore, they experiment with multitask learning, where parameter learning is decomposed into
solving groups of tasks. Globerson et al. [56] do not have any encoder components; instead, they rely on contextual
and pairwise feature-based scores. They have an attention mechanism for global ED with a non-linear optimization
as described in Section 3.2.2.

3.4. Summary

We summarize design features for neural EL models in Table 2 and also links to their publicly available im-
plementations in Table 7 in the Appendix. The mention encoders have made a shift to self-attention architectures
and started using deep pre-trained models like BERT. The majority of studies still rely on external knowledge for
the candidate generation step. There is a surge of models that tackle the domain adaptation problem in a zero-shot
fashion. However, the task of zero-shot joint entity mention detection and linking has not been addressed yet. It is
shown in several works that the cross-encoder architecture is superior compared to models with separate mention
and entity encoders. The global context is widely used, but there are few recent studies that focus only on local EL.

Each column in Table 2 corresponds to a model feature. The encoder type column presents the architecture of
the mention encoder of the neural entity linking model. It contains the following options:

– n/a – a model does not have a neural encoder for mentions / contexts.
– CNN – an encoder based on convolutional layers (usually with pooling).
– Tensor net. – an encoder that uses a tensor network.
– Atten. – means that a context-mention encoder leverages an attention mechanism to highlight the part of the

context using an entity candidate.
– GRU – an encoder based on a recurrent neural network and gated recurrent units [29].
– LSTM – an encoder based on a recurrent neural network and long short-term memory cells [66] (might be also

bidirectional).
– FFNN – an encoder based on a simple feedforward neural network.
– ELMo – an encoder based on a pre-trained ELMo model [138].
– BERT – an encoder based on a pre-trained BERT model [36].
– fastText – an encoder based on a pre-trained fastText model [13].
– word2vec-based – an encoder that leverages principles of CBOW or skip-gram algorithms [88,110,111].

Note that the theoretical complexity of various types of encoders is different. As discussed by Vaswani et al.
[182], complexity per layer of self-attention is O(n2 · d), as compared to O(n · d2) for a recurrent layer, and
O(k · n · d2) for a convolutional layer, where n is the length of an input sequence, d is the dimensionality, and k

is the kernel size of convolutions. At the same time, the self-attention allows for a better parallelization than the
recurrent networks as the number of sequentially executed operations for self-attention requires a constant number
of sequentially executed operations of O(1), while a recurrent layer requires O(n) sequential operations. Overall,
estimation of the computational complexity of training and inference of various neural networks is certainly beyond
the scope of the goal of this survey. The interested reader may refer to [182] and specialized literature on this topic,
e.g. [99,132,166].



546
Ö

.Sevgilietal./N
euralentity

linking:
A

survey
ofm

odels
based

on
deep

learning

Table 2

Features of neural EL models. Neural entity linking models compared according to their architectural features. The description of columns is presented in the beginning of Section 3.4. The
footnotes in the table are enumerated in the end of Section 3.4

Model Encoder type Global MD +
ED

NIL
pred.

Ent. encoder source based on Candidate generation Learning type for
disam.

Cross-
lingual

Sun et al. (2015) [172] CNN + Tensor net. ent. specific info. surface match + aliases supervised

Francis-Landau et al. (2016) [49] CNN ✘3 ✘ ent. specific info. surface match + prior supervised

Fang et al. (2016) [42] word2vec-based ✘ relational info. n/a supervised

Yamada et al. (2016) [196] word2vec-based ✘ relational info. aliases supervised

Zwicklbauer et al. (2016b) [211] word2vec-based ✘ ✘ unstructured text + ent. specific
info.

surface match unsupervised5

Tsai and Roth (2016) [176] word2vec-based ✘ ✘ unstructured text prior supervised ✘

Nguyen et al. (2016b) [127] CNN ✘ ✘ ent. specific info. surface match + prior supervised

Globerson et al. (2016) [56] n/a ✘ n/a prior + aliases supervised

Cao et al. (2017) [20] word2vec-based ✘ relational info. aliases supervised or
unsupervised

Eshel et al. (2017) [40] GRU + Atten. unstructured text1 aliases or surface match supervised

Ganea and Hofmann (2017) [54] Atten. ✘ unstructured text prior + aliases supervised

Moreno et al. (2017) [115] word2vec-based ✘3 ✘ unstructured text surface match + aliases supervised

Gupta et al. (2017) [62] LSTM ✘3 ent. specific info. prior supervised4

Nie et al. (2018) [129] LSTM + CNN ✘ ent. specific info. surface match + prior supervised

Sorokin and Gurevych (2018) [169] CNN ✘ ✘ relational info. surface match supervised

Shahbazi et al. (2018) [158] Atten. ✘ unstructured text prior + aliases supervised

Le and Titov (2018) [85] Atten. ✘ unstructured text prior + aliases supervised

Newman-Griffis et al. (2018) [125] word2vec-based unstructured text aliases unsupervised

Radhakrishnan et al. (2018) [144] n/a ✘ relational info. aliases supervised

Kolitsas et al. (2018) [82] LSTM ✘ ✘ unstructured text prior + aliases supervised

Sil et al. (2018) [165] LSTM + Tensor net. ✘ ent. specific info. prior or prior + aliases zero-shot ✘

Upadhyay et al. (2018a) [179] CNN ✘3 ent. specific info. prior zero-shot ✘

Cao et al. (2018) [19] Atten. ✘ relational info. prior + aliases supervised

Raiman and Raiman (2018) [146] n/a ✘ n/a prior + type classifier supervised ✘

Mueller and Durrett (2018) [117] GRU + Atten. + CNN unstructured text1 surface match supervised

Shahbazi et al. (2019) [159] ELMo unstructured text prior + aliases or aliases supervised

Logeswaran et al. (2019) [100] BERT ent. specific info. BM25 zero-shot

Gillick et al. (2019) [55] FFNN ent. specific info. nearest neighbors supervised4

Peters et al. (2019) [139]2 BERT ✘3 ✘ ✘ unstructured text prior + aliases supervised
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Table 2

(Continued)

Model Encoder type Global MD +
ED

NIL
pred.

Ent. encoder source based on Candidate generation Learning type for
disam.

Cross-
lingual

Le and Titov (2019b) [87] LSTM ent. specific info. surface match weakly-supervised

Le and Titov (2019a) [86] Atten. ✘ unstructured text prior + aliases weakly-supervised

Fang et al. (2019) [43] LSTM ✘ unstructured text +ent. specific
info.

aliases supervised

Martins et al. (2019) [107] LSTM ✘ ✘ unstructured text aliases supervised

Yang et al. (2019) [200] Atten. or CNN ✘ unstructured text or ent.
specific. info.

prior + aliases supervised

Xue et al. (2019) [192] CNN ✘ ent. specific info. prior + aliases supervised

Zhou et al. (2019) [207] n/a ✘ unstructured text prior + char.-level model zero-shot ✘

Broscheit (2019) [17] BERT ✘ ✘ n/a n/a supervised

Hou et al. (2020) [69] Atten. ✘ ent. specific info. +
unstructured text

prior + aliases supervised

Onoe and Durrett (2020) [131] ELMo + Atten. +
CNN + LSTM

n/a prior or aliases supervised4

Chen et al. (2020) [23] BERT ✘ relational info. n/a or aliases supervised

Wu et al. (2020b) [191] BERT ent. specific info. nearest neighbors zero-shot

Banerjee et al. (2020) [9] fastText ✘ relational info. surface match supervised

Wu et al. (2020a) [190] ELMo ✘ unstructured text + relational
info.

prior + aliases supervised

Fang et al. (2020) [44] BERT ✘ ent. specific info. surface match + aliases +
Google Search

supervised

Chen et al. (2020) [25] Atten. + BERT ✘ unstructured text prior + aliases supervised

Botha et al. (2020) [16] BERT ent. specific info. nearest neighbors zero-shot ✘

Yao et al. (2020) [201] BERT ent. specific info. BM25 zero-shot

Li et al. (2020) [94] BERT ✘ ent. specific info. nearest neighbors zero-shot

Poerner et al. (2020) [142]2 BERT ✘ ✘ ✘ relational info. prior + aliases supervised

Fu et al. (2020) [50] M-BERT ent. specific info. Google Search Google Maps zero-shot ✘

Mulang’ et al. (2020) [118] Atten. or CNN or BERT ✘ relational info. prior + aliases supervised

Yamada et al. (2021) [198] BERT ✘ unstructured text prior + aliases or aliases supervised

Gu et al. (2021) [60] BERT ✘ ✘ ent. specific info. surface match + prior or aliases supervised

Tang et al. (2021) [174] BERT ent. specific info. BM25 zero-shot

De Cao et al. (2021) [33] BART ✘ ✘ n/a prior + aliases supervised
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The global column shows whether a system uses a global solution (see Section 3.2.2). The MD + ED column
refers to joint entity mention detection and disambiguation models, where detection and disambiguation of entities
are performed collectively (Section 3.2.1). The NIL prediction column points out models that also label unlinkable
mentions. The entity embedding column presents which resource is used to train entity representations based on
the categorization in Section 3.1.3, where

– n/a – a model does not have a neural encoder for entities.
– unstructured text – entity representations are constructed from unstructured text using approaches based on

co-occurrence statistics developed originally for word embeddings like word2vec [111].
– relational info. – a model uses relations between entities in KGs.
– ent. specific info. – an entity encoder uses other types of information, like entity descriptions, types, or cate-

gories.

In the candidate generation column, the candidate generation methods are specified (Section 3.1.1). It contains
the following options:

– n/a – the solution that does not have an explicit candidate generation step (e.g. the method presented by
Broscheit [17]).

– surface match – surface form matching heuristics.
– aliases – a supplementary aliases for entities in a KG.
– prior – filtering candidates with pre-calculated mention-entity prior probabilities or frequency counts.
– type classifier – Raiman and Raiman [146] filter candidates using a classifier for an automatically learned type

system.
– BM25 – a variant of TF-IDF to measure similarity between a mention and a candidate entity based on descrip-

tion pages.
– nearest neighbors – the similarity between mention and entity representations is calculated, and entities that

are nearest neighbors of mentions are retrieved as candidates. Wu et al. [191] train a supplementary model for
this purpose.

– Google search – leveraging Google Search Engine to retrieve entity candidates.
– char.-level model – a neural character-level string matching model.

The learning type for disambiguation column shows whether a model is ‘supervised’, ‘unsupervised’, ‘weakly-
supervised’, or ‘zero-shot’. The cross-lingual column refers to models that provide cross-lingual EL solutions
(Section 3.2.4).

In addition, the following superscript notations are used to denote specific features of methods shown as a note in
the Table 2:

1. These works use only entity description pages, however, they are labeled as the first category (unstructured
text) since their training method is based on principals from word2vec.

2. The authors provide EL as a subsystem of language modeling.
3. These solutions do not rely on global coherence but are marked as “global” because they use document-wide

context or multiple mentions at once for resolving entity ambiguity.
4. These studies are domain-independent as discussed in Section 3.2.3.
5. Zwicklbauer et al. [211] may not be accepted as purely unsupervised since they have some threshold parame-

ters in the disambiguation algorithm tuned on a labeled set.

4. Evaluation

In this section, we present evaluation results for the entity linking and entity relatedness tasks on the commonly
used datasets.
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Table 3

Evaluation datasets. Descriptive statistics of the evaluation datasets used in this survey to compare the EL models. The values for MSNBC,
AQUAINT, and ACE2004 datasets are based on the update by Guo and Barbosa [61]. The statistics for AIDA-B, MSNBC, AQUAINT, ACE2004,
CWEB, and WW is reported according to [54] (# of mentions takes into account only non-NIL entity references). The TAC KBP dataset statistics
is reported according to [39,75,76,191] (# of mentions takes into account also NIL entity references)

Corpus Text genre # of documents # of mentions

AIDA-B [67] News 231 4,485

MSNBC [32] News 20 656

AQUAINT [112] News 50 727

ACE2004 [148] News 36 257

CWEB [52,61] Web & Wikipedia 320 11,154

WW [61] Web & Wikipedia 320 6,821

TAC KBP 2010 [75] News & Web 2,231 2,250

TAC KBP 2015 Chinese [76] News & Forums 166 11,066

TAC KBP 2015 Spanish [76] News & Forums 167 5,822

4.1. Entity linking

4.1.1. Experimental setup
The evaluation results are reported based on two different evaluation settings. The first setup is entity disambigua-

tion (ED) where the systems have access to the mention boundaries. The second setup is entity mention detection
and disambiguation (MD + ED) where the input for the systems that perform MD and ED jointly is only plain text.
We presented their results in separate tables since the scores for the joint models accumulate the errors made during
the mention detection phase.

Datasets We report the evaluation results of monolingual EL models on the English datasets widely-used in recent
research publications: AIDA [67], TAC KBP 2010 [75], MSNBC [32], AQUAINT [112], ACE2004 [148], CWEB
[52,61], and WW [61]. AIDA is the most popular dataset for benchmarking EL systems. For AIDA, we report the
results calculated for the test set (AIDA-B).

The cross-lingual EL results are reported for the TAC KBP 2015 [76] Spanish (es) and Chinese (zh) datasets. The
descriptive statistics of the datasets and their text genres are presented in Table 3 according to information reported
in [39,54,75,76,191].

Evaluation metrics For the ED setting, we present micro F1 or accuracy scores reported by model authors. We
note that, since mentions are provided as an input, the number of mentions predicted by the model is equal to the
number of mentions in the ground truth [162], so micro F1, precision, recall, and accuracy scores are equal in this
setting as explained in Shen et al. [162]:

F1 = Acc = # correctly disamb. mentions

# total mentions
. (22)

For the MD + ED setting, where joint models are evaluated, we report micro F1 scores based on strong annotation
matching. The formulas to compute F1 scores are shown below, as described in Shen et al. [162] and Ganea et al.
[53]:

P = # correctly detected and disamb. mentions

# predicted mentions by model
, (23)

R = # correctly detected and disamb. mentions

# mentions in ground truth
, (24)

F1 = 2 · P · R

P + R
. (25)
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We note that results reported in multiple considered papers are usually obtained using GERBIL [153] – a platform
for benchmarking EL models. It implements various experimental setups, including entity disambiguation denoted
as D2KB and a combination of mention detection and disambiguation denoted as A2KB. GERBIL encompasses
many evaluation datasets in a standartized way along with annotations and provides the computation of evaluation
metrics, i.e. micro-macro precision, recall, and F-measure.

Baseline models While our goal is to perform a survey of neural EL systems, we also report results of several
indicative and prominent classic non-neural systems as baselines to underline the advances yielded by neural models.
More specifically, we report results of DBpedia Spotlight (2011) [108], AIDA (2011) [67], Ratinov et al. (2011)
[148], WAT (2014) [140], Babelfy (2014) [116], Lazic et al. (2015) [84], Chisholm and Hachey (2015) [27], and
PBOH (2016) [53].

For considered neural EL systems, we present the best scores reported by the authors. For the baseline systems,
the results are reported according to Kolitsas et al. [82]13 and Ganea and Hofmann [54].

4.1.2. Discussion of results
Entity disambiguation results We start our discussion of the results from the entity disambiguation (ED) mod-
els, for which mention boundaries are provided. Figure 8 shows how the performance of the entity disambiguation
models on the most widely-used dataset AIDA improved during the course of the last decade and how the best
disambiguation models based on classical machine learning methods (denoted as “non-neural”) correspond to the
recent state-of-the-art models based on deep neural networks (denoted as “neural”). As one may observe, the mod-
els based on deep learning substantially improve the EL performance pushing the state of the art by around 10
percentage points in terms of accuracy.

Table 4 presents the comparison of the ED models in detail on several datasets presented above. The model of
Yamada et al. [198] yields the best result on AIDA and appears to behave robustly across different datasets, getting
top scores or near top scores for most of them. Here, we should also mention that none of the non-neural baselines
reach the best results on any dataset.

Fig. 8. Entity disambiguation progress. Performance of the classic entity linking models (green) with the more recent neural models (gray) on
the AIDA test set shows an improvement (around 10 points of accuracy).

13Some of the baseline scores are presented in the Appendix of [82], which is available at https://arxiv.org/pdf/1808.07699.pdf.

https://arxiv.org/pdf/1808.07699.pdf
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Table 4

Entity disambiguation evaluation. Micro F1/Accuracy scores of neural entity disambiguation as compared to some classic models on common
evaluation datasets

Model AIDA-B
Accuracy

KBP’10
Accuracy

MSNBC
Micro F1

AQUAINT
Micro F1

ACE-2004
Micro F1

CWEB
Micro F1

WW
Micro F1

KBP’15 (es)
Accuracy

KBP’15 (zh)
Accuracy

Non-neural baseline models

DBpedia Spotlight (2011) [108] 0.561 - 0.421 0.518 0.539 - - - -

AIDA (2011) [67] 0.770 - 0.746 0.571 0.798 - - - -

Ratinov et al. (2011) [148] - - 0.750 0.830 0.820 0.562 0.672 - -

WAT (2014) [140] 0.805 - 0.788 0.754 0.796 - - - -

Babelfy (2014) [116] 0.758 - 0.762 0.704 0.619 - - - -

Lazic et al. (2015) [84] 0.864 - - - - - - - -

Chisholm and Hachey (2015) [27] 0.887 - - - - - - - -

PBOH (2016) [53] 0.804 - 0.861 0.841 0.832 - - - -

Guo and Barbosa (2018) [61] 0.890 - 0.920 0.870 0.880 0.770 0.845 - -

Neural models

Sun et al. (2015) [172] - 0.839 - - - - - - -

Francis-Landau et al. (2016) [49] 0.855 - - - - - - - -

Fang et al. (2016) [42] - 0.889 0.755 0.852 0.808 - - - -

Yamada et al. (2016) [196] 0.931 0.855 - - - - - - -

Zwicklbauer et al. (2016b) [211] 0.784 - 0.911 0.842 0.907 - - - -

Tsai and Roth (2016) [176] - - - - - - - 0.824 0.851

Nguyen et al. (2016b) [127] 0.872 - - - - - - - -

Globerson et al. (2016) [56] 0.927 0.872 - - - - - - -

Cao et al. (2017) [20] 0.851 - - - - - - - -

Eshel et al. (2017) [40] 0.873 - - - - - - - -

Ganea and Hofmann (2017) [54] 0.922 - 0.937 0.885 0.885 0.779 0.775 - -

Gupta et al. (2017) [62] 0.829 - - - 0.907 - - - -

Nie et al. (2018) [129] 0.898 0.891 - - - - - - -

Shahbazi et al. (2018) [158] 0.944 0.879 - - - - - - -

Le and Titov (2018) [85] 0.931 - 0.939 0.884 0.900 0.775 0.780 - -

Radhakrishnan et al. (2018) [144] 0.930 0.896 - - - - - - -

Kolitsas et al. (2018) [82] 0.831 - 0.864 0.832 0.855 - - - -

Sil et al. (2018) [165] 0.940 0.874 - - - - - 0.823 0.844

Upadhyay et al. (2018a) [179] - - - - - - - 0.844 0.860

Cao et al. (2018) [19] 0.800 0.910 - 0.870 0.880 - 0.860 - -

Raiman and Raiman (2018) [146] 0.949 0.909 - - - - - - -

Shahbazi et al. (2019) [159] 0.962 0.883 0.923 0.901 0.887 0.784 0.798 - -

Gillick et al. (2019) [55] - 0.870 - - - - - - -

Le and Titov (2019b) [87] 0.815 - - - - - - - -

Le and Titov (2019a) [86] 0.897 - 0.922 0.907 0.881 0.782 0.817 - -

Fang et al. (2019) [43] 0.943 - 0.928 0.875 0.912 0.785 0.828 - -

Yang et al. (2019) [200] 0.946 - 0.946 0.885 0.901 0.756 0.788 - -

Xue et al. (2019) [192] 0.924 0.944 0.919 0.911 0.801 0.855 - -

Zhou et al. (2019) [207] - - - - - - - 0.829 0.855

Hou et al. (2020) [69] 0.926 - 0.943 0.912 0.907 0.785 0.819 - -

Onoe and Durrett (2020) [131] 0.859 - - - - - - - -

Wu et al. (2020b) [191] - 0.945 - - - - - - -

Wu et al. (2020a) [190] 0.931 - 0.927 0.894 0.906 0.814 0.792 - -

Fang et al. (2020) [44] 0.830 - 0.800 0.880 0.890 - - - -
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Table 4

(Continued)

Model AIDA-B
Accuracy

KBP’10
Accuracy

MSNBC
Micro F1

AQUAINT
Micro F1

ACE-2004
Micro F1

CWEB
Micro F1

WW
Micro F1

KBP’15 (es)
Accuracy

KBP’15 (zh)
Accuracy

Chen et al. (2020) [25] 0.937 - 0.945 0.898 0.908 0.782 0.810 - -

Mulang’ et al. (2020) [118] 0.949 - - - - - - - -

Yamada et al. (2021) [198] 0.971 - 0.963 0.935 0.919 0.789 0.892 - -

De Cao et al. (2021) [33] 0.933 - 0.943 0.909 0.911 0.773 0.879 - -

Fig. 9. Mention/context encoder type for entity disambiguation. Performance of the entity disambiguation models on the AIDA test set with
mention/context encoder displayed with different colors as defined in Table 2. The bars with multiple colors refer to the models that use different
types of encoder models; the bars do not reflect any meaning on the percentage. Note: we assigned the “RNN” label for the models LSTM, GRU,
and ELMo; the “Transformers” label for BERT and BART models.

Among local models for disambiguation, the best results are reported by Shahbazi et al. [159] and Wu et al. [191].
It is worth noting that the latter model can be used in the zero-shot setting. Shahbazi et al. [159] has the best score
on AIDA among other local models outperforming them by a substantial margin. However, this is due to the use
of the less-ambiguous resource of Pershina et al. [137] for candidate generation, while many other works use the
YAGO-based resource provided by Ganea and Hofmann [54], which typically yields lower results.

The common trend is that the global models (those trying to disambiguate several entity occurrences at once)
outperform the local ones (relying on a single mention and its context). The best considered ED model of Yamada
et al. [198] is global. Its performance improvements over competitors are attributed by the authors to the novel
masked entity prediction objective that helps to fine-tune pre-trained BERT for producing contextualized entity
embeddings and to the multi-step global disambiguation algorithm.

Finally, as one could see from Table 4, the least number of experiments is reported on the non-English datasets
(TAC KBP datasets for Chinese and Spanish). Among the four reported results, the approach of Upadhyay et al.
[179] provides the best scores, yet outperforming the other three approaches only by a small margin.

Mention/context encoder type Figure 9 provides further analysis of the performance of entity disambiguation
models presented above. The top performing model by Yamada et al. [198] is based on Transformers. It is followed
by the model of Shahbazi et al. [159], which relies on RNNs: more specifically, it relies on the ELMo encoder
that is based on pre-trained bidirectional LSTM cells. Overall, RNN is a popular choice for the mention-context
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Fig. 10. Local-global entity disambiguation. Performance of the entity disambiguation models on the AIDA test set with local/global models
displayed with different colors as defined in Table 2. Note, some models, like Francis-Landau et al. [49], do not rely on global coherence, but
they use document-wide context or multiple mentions at once, as explained in Table 2.

encoder. However, recently, self-attention-based encoders, and especially the ones based on pre-trained Transformer
networks, have gained popularity.

Several approaches, such as Yamada et al. [196], rely on simpler encoders based on the word2vec models, yet
none of them manage to outperform more complex deep architectures.

Local-global models Figure 10 visualizes the usage of the local and global context in various models for entity
disambiguation. As one can observe from the plot, the majority of models perform global entity disambiguation,
including the top-performing model by Yamada et al. [198]. Although Shahbazi et al. [159] provide a local model,
they also show a good performance.

Joint entity mention detection and disambiguation Table 5 presents results of the joint MD and ED models. Only
a fraction of the models presented in Table 2 is capable of performing both entity mention detection and disam-
biguation; thus, the list of results is much shorter. Among the joint MD and ED solutions, the best results on the
AIDA dataset are reported by Chen et al. [23]. However, Poerner et al. [142] note that these results might not be
directly comparable with others due to a different evaluation protocol. The best comparable results on the AIDA
dataset are shown by E-BERT [142]. On the MSNBC dataset, the top scores are achieved by De Cao et al. [33] with
an autoregressive model. The scores of the systems that solve both tasks at once fall behind the disambiguation-only
systems since they rely on noisy mention boundaries produced by themselves. In the joint MD and ED setting, the
neural models also substantially (up to around 10 points) outperform the classic models.

On effect of hyperparameter search As explained above, in Tables 4 and 5, we present the best scores reported by
the authors of the models. In principle, each neural model can be further tuned as shown by Reimers and Gurevych
[149], but also the variance of neural models is rather high in general. Therefore, it may be possible to further
optimize meta-parameters of one (possibly simpler) neural model so that it outperforms a more complex (but tuned
in a less optimal way) model. One common example of such a case is RoBERTa [98], which is basically the original
BERT model, which was carefully and robustly optimized. This model outperformed many successors of the BERT
model, showing the new state-of-the-art results on various tasks while keeping the original architecture.
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Table 5

Evaluation of joint MD-ED models. Micro F1 scores for joint entity mention
detection and entity disambiguation evaluation on AIDA-B and MSNBC datasets

Model AIDA-B MSNBC

Non-neural baseline models

DBpedia Spotlight (2011) [108] 0.578 0.406

AIDA (2011) [67] 0.728 0.651

WAT (2014) [140] 0.730 0.645

Babelfy (2014) [116] 0.485 0.397

Neural models

Kolitsas et al. (2018) [82] 0.824 0.724

Martins et al. (2019) [107] 0.819 -

Peters et al. (2019) [139] 0.744 -

Broscheit (2019) [17] 0.793 -

Chen et al. (2020) [23] 0.877 -

Poerner et al. (2020) [142] 0.850 -

De Cao et al. (2021) [33] 0.837 0.737

4.2. Entity relatedness

The quality of entity representations can be measured by how they capture semantic relatedness between entities
[20,54,70,163,196]. Moreover, the semantic relatedness is an important feature in global EL [21,38]. In this section,
we present results of entity relatedness evaluation, which is different from evaluation of EL pipelines.

4.2.1. Experimental setup
We summarize results from several works obtained on a benchmark of Ceccarelli et al. [21] for entity relatedness

evaluation based on the dataset of Hoffart et al. [67]. Given a target entity and a list of candidate entities, the task
is to rank candidates semantically related to the target higher than the others [54]. For the most of the considered
works, the relatedness is measured by the cosine similarity of entity representations. For comparison, we also add
results for two other approaches: a well-known Wikipedia hyperlink-based measure devised by Milne and Witten
[112] known as WLM and a KG-based measure of El Vaigh et al. [38].

The evaluation metrics are normalized discounted cumulative gain (nDCG) [73] and a mean average precision
(MAP) [105]. nDCG is a commonly used metric in information retrieval. It discounts the correct answers, depending
on their rank in predictions Manning et al. [105]:

nDCG(Q, k) = 1

|Q|
|Q|∑
j=1

Zkj

k∑
m=1

2R(j,m) − 1

log2(1 + m)
, (26)

where Q is the set of target entities (queries); Zkj is a normalization factor, which corresponds to ideal ranking; k is
a number of candidates for each query; R(j,m) ∈ {0, 1} is the gold-standard annotation of relatedness between the
target entity j and a candidate m.

MAP is another common metric in information retrieval [105]:

MAP(Q) = 1

|Q|
|Q|∑
j=1

1

mj

mj∑
k=1

Precision@rjk, (27)

where Q is a set of target entities (queries); mj is the number of related candidate entities for the target j ,
and Precision@rjk is a precision at rank rjk , where rjk is a rank of each related candidate in the prediction
k = 1, . . . , mj [105].
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Table 6

Entity relatedness evaluation. Reported results for entity relatedness evaluation on the test set of Ceccarelli et al. [21]

Model nDCG@1 nDCG@5 nDCG@10 MAP

Milne and Witten (2008) [112] 0.540 0.520 0.550 0.480

Huang et al. (2015) [70] 0.810 0.730 0.740 0.680

Yamada et al. (2016) [196] 0.590 0.560 0.590 0.520

Ganea and Hofmann (2017) [54] 0.632 0.609 0.641 0.578

Cao et al. (2017) [20] 0.613 0.613 0.654 0.582

El Vaigh et al. (2019) [38] 0.690 0.640 0.580 -

Shi et al. (2020) [163] 0.680 0.814 0.820 -

4.2.2. Discussion of results
Table 6 summarizes the evaluation results in the entity relatedness task reported by the authors of the models. The

scores of Milne and Witten [112] are taken from Huang et al. [70].
The highest scores of nDCG@1 and MAP are reported by Huang et al. [70], and the best scores of nDCG@5 and

nDCG@10 are reported by Shi et al. [163]. The high scores of Huang et al. [70] can be attributed to the usage of
different information sources for constructing entity representations, including entity types and entity relations [54].
Shi et al. [163] also use various types of data sources for constructing entity representations, including textual and
knowledge graph information, like the types provided by a category hierarchy of a knowledge graph.

Note that cosine similarity based measures perform better in terms of nDCG@10 than the methods based on
relations in KG (shown as italic in Table 6).

5. Applications of entity linking

In this section, we first give a brief overview of established applications of the entity linking technology and then
discuss recently emerged use-cases specific to neural entity linking based on injection of these models as a part of a
larger neural network, e.g. in a neural language model.

5.1. Established applications

Text mining An EL tool is a typical building block for text mining systems. Extracting and resolving the ambiguity
of entity mentions is one of the first steps in a common information extraction pipeline. The ambiguity problem is
especially crucial for such domains as biomedical and clinical text processing due to variability of medical terms, the
complexity of medical ontologies such as UMLS [12], and scarcity of annotated resources. There is a long history
of development of EL tools for biomedical literature and electronic health record mining applications [6,24,83,
101,109,156,168,178,209]. These tools have been successfully applied for summarization of clinical reports [104],
extraction of drug-disease treatment relationships [81], mining chemical-induced disease relations [10], differential
diagnosis [5], patient screening [41], and many other tasks. Besides medical text processing, EL is widely used for
mining social networks and news [2,114]. For example, Twitcident [1] uses the DBpedia Spotlight [108] EL system
for mining Twitter messages for small scale incidents. Provatorova et al. [143] leverage a recently proposed EL
toolkit REL [181] for mining historical newspapers for people, places, and other entities in the CLEF HIPE 2020
evaluation campaign [37]. Luo et al. [102] automatically construct a large-scale dataset of images and text captions
that describe real and out-of-context news. They leverage REL for linking entities in image captions, which helps to
automatically measure inconsistency between images and their text captions.

Knowledge graph population EL is one of the necessary steps of knowledge graph population algorithms. Before
populating a KG with new facts extracted from raw texts, we have to determine mentioned concepts in these texts
and link them to the corresponding graph nodes. A series of evaluation workshops TAC14 provides a forum for
KG population tools (TAC KBP), as well as benchmarks for various subsystems including EL. For example, Ji and

14https://tac.nist.gov/2019/index.html

https://tac.nist.gov/2019/index.html
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Grishman [74] and Ellis et al. [39] overview various successful systems for knowledge graph population participated
in the TAC KBP 2010 and 2015 tasks. Shen et al. [161] propose a knowledge graph population algorithm that not
only uses the results of EL, but also helps to improve EL itself. It iteratively populates a KG, while the EL model
benefits from added knowledge and continuously learns to disambiguate better.

Information retrieval and question-answering EL is also widely used in information retrieval and question-
answering systems. EL helps to complement search results with additional semantic information, to resolve query
ambiguity, and to restrict the search space. For example, Lee et al. [91] use EL to complement the results of a
biomedical literature search engine with found entities: genes, diseases, drugs, etc. COVIDASK [90], a real-time
question answering system that helps researchers to retrieve information related to coronavirus, uses the BioSyn
model [173] for processing COVID-19 articles and linking mentions of drugs, symptoms, diseases to concepts in
biomedical ontologies. Links to entity descriptions help users to navigate the search results, which enhances the
usability of the system. Yih et al. [202] apply EL for pruning the search space of a question answering system. For
the query: “Who first voiced Meg on Family Guy?”, after linking “Meg” and “Family Guy” to entities in a KG,
the task becomes to resolve the predicates to the “Family Guy (the TV show)” entry rather than all entries in the
KG. Shnayderman et al. [164] develop a fast EL algorithm for pre-processing large corpora for their autonomous
debating system [167] with the goal to conduct an argumentative dialog with an opponent on some topic and to
prove a predefined point of view. The system uses the results of entity linking for corpus-based argument retrieval.

5.2. Novel applications: Neural entity linking for training better neural language models

Neural EL models have unlocked the new category of applications that have not been available for classical
machine learning methods. Namely, neural models allow the integration of an entire entity linking system inside a
larger neural network such as BERT. As they are both neural networks, such kind of integration becomes possible.
After integrating an entity linker into another model’s architecture, we can also expand the training objective with
an additional EL-related task and train parameters of all neural components jointly:

LJOINT = LBERT + LEL-related. (28)

Neural entity linkers can be integrated in any other networks. The main novel trend is the use of EL information
for representation learning. Several studies have shown that contextual word representations could benefit from
information stored in KGs by incorporating EL into deep language models (LMs) for transfer learning.

KnowBERT [139] injects one or several entity linkers between top layers of the BERT architecture and optimizes
the whole network for multiple tasks: the masked language model (MLM) task and next sentence prediction (NSP)
from the original BERT model, as well as EL:

LBERT = LNSP + LMLM, (29)

LKnowBert = LNSP + LMLM + LEL. (30)

The authors adopt the general end-to-end EL architecture of [82] but use only the local context for disambigua-
tion and an encoder based on self-attention over the representations generated by underlying BERT layers. If the EL
subsystem detects an entity mention in a given sentence, corresponding pre-built entity representations of candidates
are utilized for calculating the updated contextual word representations generated on the current BERT layer. These
representations are used as input in a subsequent layer and can also be modified by a subsequent EL subsystem.
Experiments with two EL subsystems based on Wikidata and WordNet show that presented modifications in Know-
BERT help it to slightly surpass other deep pre-trained language models in tasks of relationship extraction, WSD,
and entity typing.

ERNIE [206] expands the BERT [36] architecture with a knowledgeable encoder (K-Encoder), which fuses con-
textualized word representations obtained from the underlying self-attention network with entity representations
from a pre-trained TransE model [15]. EL in this study is performed by an external tool TAGME [47]. For model
pre-training, in addition to the MLM task, the authors introduce the task of restoring randomly masked entities



Ö. Sevgili et al. / Neural entity linking: A survey of models based on deep learning 557

in a given sequence keeping the rest of the entities and tokens. They refer to this procedure as a denoising entity
auto-encoder (dEA):

LERNIE = LNSP + LMLM + LdEA. (31)

Using English Wikipedia and Wikidata as training data, the authors show that introduced modifications provide
performance gains in entity typing, relation classification, and several GLUE tasks [185].

Wang et al. [188] train a disambiguation network named KEPLER using the composition of two losses: regular
MLM and a Knowledge Embedding (KE) loss based on the TransE [15] objective for encoding graph structures:

LKEPLER = LMLM + LKE. (32)

In the KE loss, representations of entities are obtained from their textual descriptions encoded with a self-attention
network [98], and representations of relations are trainable vectors. The network is trained on a dataset of entity-
relation-entity triplets with descriptions gathered from Wikipedia and Wikidata. Although the system exhibits a
significant drop in performance on general NLP benchmarks such as GLUE [185], it shows increased performance
on a wide range of KB-related tasks such as TACRED [205], FewRel [63], and OpenEntity [28].

Yamada et al. [195] propose a deep pre-trained model called “Language Understanding with Knowledge-based
Embeddings” (LUKE). They modify RoBERTa [98] by introducing an additional pre-training objective and an
entity-aware self-attention mechanism. The objective is a simple adoption of the MLM task to entities LMLMe,
instead of tokens, the authors suggest restoring randomly masked entities in an entity-annotated corpus.

LLUKE = LMLM + LMLMe. (33)

Although the corpus used in this work is constructed from Wikipedia by considering hyperlinks to other Wikipedia
pages as mentions of entities in a KG, alternatively, it can be generated using an external entity linker.

The entity-aware attention mechanism helps LUKE differentiate between words and entities via introducing four
different query matrices for matching words and entities: one for each pair of input types (entity-entity, entity-
word, word-entity, and the standard word-word). The proposed modifications give LUKE exceptional performance
improvements over previous models in five tasks: Open Entity (entity typing) [28], TACRED (relation classifica-
tion) [205], CoNLL-2003 (named entity recognition) [155], ReCoRD (cloze-style question answering) [204], and
SQuAD 1.1 (reading comprehension) [147].

Févry et al. [48] propose a method for training a language model and entity representations jointly, which they call
Entities as Experts (EaE). The model is based on the Transformer architecture and is similar to KnowBERT [139].
However, in addition to the trainable word embedding matrix, EaE features a separate trainable matrix for entity
embeddings referred to as “memory”. The standard Transformer is also extended with an “entity memory” layer,
which takes the output from the preceding Transformer layer and populates it with entity embeddings of mentions
in the text. The retrieved entity embeddings are integrated into token representations by summation before layer
normalization. To avoid dependence at inference on an external mention detector, the model applies a classifier to
the output of Transformer blocks as in a sequence labeling model.

Analogously to [195], the EaE is trained on a corpus annotated with mentions and entity links. The final loss
function sums up of three components: the standard MLM objective, mention boundary detection loss as in a se-
quence labeling model LNER, and an entity linking objective that facilitates entity representations generated in the
model to be close to entity embedding of an annotated entity.

LEaE = LMLM + LNER + LEL. (34)

This approach to integrating knowledge about entities into LMs provides a significant performance boost in open
domain question answering. EaE, having only 367 million of parameters, outperforms the 11 billion parameter
version of T5 [145] on the TriviaQA task [79]. The authors also show that EAE contains more factual knowledge
than a comparably-sized BERT model.
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Poerner et al. [142] present an E-BERT language model that also takes advantage of entity representations. This
model is close to [206] as it also injects entities directly into the text and mixes entity representations with word
embeddings in a similar way. However, instead of updating the weights of the whole pre-trained language model,
they train only a linear transformation for aligning pre-trained entity representations with representations of word
piece tokens of BERT. Such a small modification helps this model to outperform baselines on unsupervised question
answering, supervised relation classification, and end-to-end entity linking.

The considered works demonstrate that the integration of structured KGs and LMs usually helps to solve
knowledge-oriented tasks: question answering (including open-domain QA), entity typing, relation extraction, and
others. A high-precision supervision signal from KGs either leads to notable performance improvements or allows
to reduce the number of trainable parameters of an LM while keeping a similar performance. Entity linking acts as
a bridge between highly structured knowledge graphs and more flexible language models. We expect this approach
to be crucial for the construction of future foundation models.

6. Conclusion

In this survey, we have analyzed recently proposed neural entity linking models, which generally solve the task
with higher accuracy than classical methods. We provide a generic neural entity linking architecture, which is
applicable for most of the neural EL systems, including the description of its components, e.g. candidate generation,
entity ranking, mention and entity encoding. Various modifications of the general architecture are grouped into
four common directions: (1) joint entity mention detection and linking models, (2) global entity linking models,
(3) domain-independent approaches, including zero-shot and distant supervision methods, and (4) cross-lingual
techniques. Taxonomy figures and feature tables are provided to explain the categorization and to show which
prominent features are used in each method.

The majority of studies still rely on external knowledge for the candidate generation step. The mention encoders
have made a shift from convolutional and recurrent models to self-attention architectures and start using pre-trained
contextual language models like BERT. There is a current surge of methods that tackle the problem of adapting a
model trained on one domain to another domain in a zero-shot fashion. These approaches do not need any annotated
data in the target domain, but only descriptions of entities from this domain to perform such adaptation. It is shown
in several works that the cross-encoder architecture is superior as compared to models with separate mention and
entity encoders. The global context is widely used, but there are few recent studies that focus only on local EL.

Among the solutions that perform mention detection and entity disambiguation jointly, the leadership is owned
by the entity-enhanced BERT model (E-BERT) of Poerner et al. [142] and the autoregressive model of De Cao et al.
[33] based on BART. Among published local models for disambiguation, the best results are reported by Shahbazi
et al. [159] and Wu et al. [191]. The former solution leverages entity-aware ELMo (E-ELMo) trained to additionally
predict entities along with words as in language-modelling task. The latter solution is based on a BERT bi-/cross-
encoder and can be used in the zero-shot setting. Yamada et al. [198] report results that are consistently better in
comparison to all other solutions. Their high scores are attributed to the masked entity prediction mechanism for
entity embedding and the usage of the pre-trained model based on BERT with a multi-step global scoring function.

7. Future directions

We identify five promising directions of future work in entity linking listed below:

1. More end-to-end models without an explicit candidate generation step: The candidate generation step
relies on pre-constructed external resources or heuristics, as discussed in Section 3.1.1. Both the recall and
precision of EL systems depend on their completeness and ambiguity. The necessity of building such resources
is also an obvious obstacle for applying models in zero-shot / cross-lingual settings. Several recent works
demonstrate that it is possible to achieve high EL performance without external pre-built resources [55,191]
or eliminate the candidate generation step [16,17]. There is also a line of works devoted to methods that
perform mention detection and entity disambiguation jointly [33,82], which helps to avoid error propagation
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through multiple independent processing steps in an EL pipeline. We believe that a possible further research
direction would be the development of entirely end-to-end trainable EL pipelines similar in spirit to the system
of Broscheit [17].

2. Further development of zero-shot approaches to address emerging entities: We also expect that zero-shot
EL will rapidly evolve, engaging other features like global coherence across all entities in a document, NIL
prediction, joining MD and ED steps together, or providing completely end-to-end solutions. The latter would
be an especially challenging task but also a fascinating research direction. To allow for a proper comparison,
more standardized benchmarks and evaluation processes for zero-shot methods are dearly needed.

3. More use-cases of EL-enriched language models: Some studies [139,142,188,206] have shown improve-
ments over contextual language models by including knowledge stored in KGs. They incorporate entity link-
ing into these deep models to use information in KGs. In future work, more use-cases are expected to enhance
language models by using entity linking. The enriched representations would be used in downstream tasks,
enabling improvements there.

4. Integration of EL loss in more neural models: It may be interesting to integrate EL loss in other neural
models distinct from the language models, but in a similar fashion as the models described in Section 5.2. Due
to the fact that an end-to-end EL model is also just a neural network, such integration with other networks is
technically straightforward. Some multi task learning methods have been already proposed, e.g. joint relation
extraction and entity linking [10]. Since entity linking is a key step in information extraction, injecting infor-
mation about entities contained in an EL model and multitask learning are expected to be useful for solving
other related tasks.

5. Multimodal EL: We witness the rise of a fascinating information extraction research direction that aims
to build models capable of processing not only text, but also data from other modalities like images. For
example, Moon et al. [114] and Adjali et al. [2] leverage both text and images in social media posts for entity
linking. Without taking into account an additional modality it would be impossible to correctly disambiguate
entities in a very noisy and limited textual context. Entity linking methods in the near future potentially could
take advantage of multimodal cross-attention and a surge of other techniques recently developed to improve
processing multiple types of data in a single architecture [72,120]. We consider that vice-versa is also possible:
EL could be seamlessly integrated into models for processing data with multiple modalities. EL not only
provides disambiguation of mentions in the text but also connects a data instance to a knowledge graph, which
opens the possibility of using reasoning elements during the solution of the final task.
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Appendix. Public implementations of neural entity linking models

Table 7

Publicly available implementations (either provided in the paper or available at PapersWithCode.com) of the neural models presented in Table 2

Model Link for source code

Sun et al. (2015) [172] -

Francis-Landau et al. (2016) [49] https://github.com/matthewfl/nlp-entity-convnet

Fang et al. (2016) [42] -

Yamada et al. (2016) [196] https://github.com/wikipedia2vec/wikipedia2vec

https://paperswithcode.com
https://github.com/matthewfl/nlp-entity-convnet
https://github.com/wikipedia2vec/wikipedia2vec
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Table 7

(Continued)

Model Link for source code

Zwicklbauer et al. (2016b) [211] https://github.com/quhfus/DoSeR

Tsai and Roth (2016) [176] -

Nguyen et al. (2016b) [127] -

Globerson et al. (2016) [56] -

Cao et al. (2017) [20] https://github.com/TaoMiner/bridgeGap

Eshel et al. (2017) [40] https://github.com/yotam-happy/NEDforNoisyText

Ganea and Hofmann (2017) [54] https://github.com/dalab/deep-ed

Moreno et al. (2017) [115] -

Gupta et al. (2017) [62] https://github.com/nitishgupta/neural-el

Nie et al. (2018) [129] -

Sorokin and Gurevych (2018) [169] https://github.com/UKPLab/starsem2018-entity-linking

Shahbazi et al. (2018) [158] -

Le and Titov (2018) [85] https://github.com/lephong/mulrel-nel

Newman-Griffis et al. (2018) [125] https://github.com/OSU-slatelab/JET

Radhakrishnan et al. (2018) [144] https://github.com/priyaradhakrishnan0/ELDEN

Kolitsas et al. (2018) [82] https://github.com/dalab/end2end_neural_el

Sil et al. (2018) [165] -

Upadhyay et al. (2018a) [179] https://github.com/shyamupa/xelms

Cao et al. (2018) [19] https://github.com/TaoMiner/NCEL

Raiman and Raiman (2018) [146] https://github.com/openai/deeptype

Mueller and Durrett (2018) [117] https://github.com/davidandym/wikilinks-ned

Shahbazi et al. (2019) [159] -

Logeswaran et al. (2019) [100] https://github.com/lajanugen/zeshel

Gillick et al. (2019) [55] https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_
retrieval

Peters et al. (2019) [139] https://github.com/allenai/kb

Le and Titov (2019b) [87] https://github.com/lephong/dl4el

Le and Titov (2019a) [86] https://github.com/lephong/wnel

Fang et al. (2019) [43] -

Martins et al. (2019) [107] -

Yang et al. (2019) [200] https://github.com/YoungXiyuan/DCA

Xue et al. (2019) [192] https://github.com/DeepLearnXMU/RRWEL

Zhou et al. (2019) [207] https://github.com/shuyanzhou/burn_xel

Broscheit (2019) [17] https://github.com/samuelbroscheit/entity_knowledge_in_bert

Hou et al. (2020) [69] https://github.com/fhou80/EntEmb

Onoe and Durrett (2020) [131] https://github.com/yasumasaonoe/ET4EL

Chen et al. (2020) [23] -

Wu et al. (2020b) [191] https://github.com/facebookresearch/BLINK

Banerjee et al. (2020) [9] https://github.com/debayan/pnel

Wu et al. (2020a) [190] https://github.com/wujsAct/DGCN_EL

Fang et al. (2020) [44] https://github.com/fangzheng123/SGEL

Chen et al. (2020) [25] -

Botha et al. (2020) [16] http://goo.gle/mewsli-dataset

Yao et al. (2020) [201] https://github.com/seasonyao/Zero-Shot-Entity-Linking

Li et al. (2020) [94] https://github.com/facebookresearch/BLINK/tree/master/elq

Poerner et al. (2020) [142] https://github.com/npoe/ebert

Fu et al. (2020) [50] http://cogcomp.org/page/publication_view/911

https://github.com/quhfus/DoSeR
https://github.com/TaoMiner/bridgeGap
https://github.com/yotam-happy/NEDforNoisyText
https://github.com/dalab/deep-ed
https://github.com/nitishgupta/neural-el
https://github.com/UKPLab/starsem2018-entity-linking
https://github.com/lephong/mulrel-nel
https://github.com/OSU-slatelab/JET
https://github.com/priyaradhakrishnan0/ELDEN
https://github.com/dalab/end2end_neural_el
https://github.com/shyamupa/xelms
https://github.com/TaoMiner/NCEL
https://github.com/openai/deeptype
https://github.com/davidandym/wikilinks-ned
https://github.com/lajanugen/zeshel
https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval
https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval
https://github.com/allenai/kb
https://github.com/lephong/dl4el
https://github.com/lephong/wnel
https://github.com/YoungXiyuan/DCA
https://github.com/DeepLearnXMU/RRWEL
https://github.com/shuyanzhou/burn_xel
https://github.com/samuelbroscheit/entity_knowledge_in_bert
https://github.com/fhou80/EntEmb
https://github.com/yasumasaonoe/ET4EL
https://github.com/facebookresearch/BLINK
https://github.com/debayan/pnel
https://github.com/wujsAct/DGCN_EL
https://github.com/fangzheng123/SGEL
http://goo.gle/mewsli-dataset
https://github.com/seasonyao/Zero-Shot-Entity-Linking
https://github.com/facebookresearch/BLINK/tree/master/elq
https://github.com/npoe/ebert
http://cogcomp.org/page/publication_view/911
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Table 7

(Continued)

Model Link for source code

Mulang’ et al. (2020) [118] https://github.com/mulangonando/Impact-of-KG-Context-on-ED

Yamada et al. (2021) [198] https://github.com/studio-ousia/luke

Gu et al. (2021) [60] -

Tang et al. (2021) [174] -

De Cao et al. (2021) [33] https://github.com/facebookresearch/GENRE
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