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Abstract. A common practice within object-oriented software is using composition to realize complex object behavior in a
reusable way. Such compositions can be managed by Dependency Injection (DI), a popular technique in which components
only depend on minimal interfaces and have their concrete dependencies passed into them. Instead of requiring program code,
this separation enables describing the desired instantiations in declarative configuration files, such that objects can be wired
together automatically at runtime. Configurations for existing DI frameworks typically only have local semantics, which limits
their usage in other contexts. Yet some cases require configurations outside of their local scope, such as for the reproducibility of
experiments, static program analysis, and semantic workflows. As such, there is a need for globally interoperable, addressable,
and discoverable configurations, which can be achieved by leveraging Linked Data. We created Components.js as an open-
source semantic DI framework for TypeScript and JavaScript applications, providing global semantics via Linked Data-based
configuration files. In this article, we report on the Components.js framework by explaining its architecture and configuration,
and discuss its impact by mentioning where and how applications use it. We show that Components.js is a stable framework that
has seen significant uptake during the last couple of years. We recommend it for software projects that require high flexibility,
configuration without code changes, sharing configurations with others, or applying these configurations in other contexts such
as experimentation or static program analysis. We anticipate that Components.js will continue driving concrete research and
development projects that require high degrees of customization to facilitate experimentation and testing, including the Comunica
query engine and the Community Solid Server for decentralized data publication.
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1. Introduction

Object-oriented (OO) programming is a highly popular paradigm within the domain of software engineering.
Considering objects containing data and logic as primary software elements makes it easy for developers to under-
stand software, as it makes software resemble real-world mechanisms with interacting physical objects. Most OO
languages enable object composition [16], a flexible pattern for managing object relationships, where objects can
be contained within other objects.

*Corresponding author. E-mail: ruben.taelman@ugent.be.

1570-0844 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:ruben.taelman@ugent.be
https://creativecommons.org/licenses/by/4.0/


136 R. Taelman et al. / Components.js: Semantic dependency injection

A popular technique to manage the composition of objects is called Dependency Injection (DI) [15]. It enables
objects to ask for the interfaces it requires, rather than retrieving or instantiating objects implementing these in-
terfaces itself. A DI framework is then responsible for instantiating and injecting the necessary dependencies into
these objects. This technique allows objects to be very loosely coupled, as they only depend on each other via a
minimal and generic interface, without depending on concrete implementations of such interfaces. In order to link
these interfaces to concrete implementations, a generic DI framework can provide specific implementations where
needed based on some external configuration. Since objects only communicate by strict interfaces, and specific im-
plementations are derived from an external configuration, the specific wiring of a software application is decoupled
from the application’s main implementation. This allows the wiring to be altered afterwards by only modifying this
configuration, which makes the application more flexible.

Configurations for existing DI frameworks are either defined directly within a programming language, or are
defined declaratively within text files with a domain-specific language using syntaxes such as JSON and XML. The
latter type of configuration files is better suited for use cases where no changes can be made to existing code (e.g., in
the case of pre-compiled languages), when the creators of these configuration files have no programming knowledge,
or when configuration files are created automatically from an external tool (e.g., a visual drag-and-drop interface).
Such declarative configuration files typically have only local semantics, which means that they are usually only
usable within the DI framework for which they were created, and for the current application only. With the power
of Linked Data [3] and the Semantic Web [4] in mind, these configurations could move beyond their local scope,
and make them globally interoperable, addressable, and discoverable.

To this end, we present Components.js, a semantic DI framework for TypeScript and JavaScript applications
that gives global semantics to software configurations, hence surpassing existing dependency injection frameworks.
Components.js thereby enables highly modular applications to be built that are dynamically wired based on seman-
tic configuration files. The framework is open-source [41], is available on npm [42], and has extensive documen-
tation [35]. Furthermore, it is being actively used as core technology within popular tools such as the Community
Solid Server [48] and Comunica [40]. Within Components.js, software configurations and modules are described as
Linked Data using the Object-Oriented Components vocabulary [47] and the Object Mapping vocabulary [36]. By
publishing such descriptions, the composition of software (and parts thereof) can be unambiguously identified by
IRIs and retrieved through dereferencing. Components.js automatically instantiates such software configurations,
including resolving the necessary dependencies. As such, this (de)referenceability of software configurations by IRI
could be beneficial in use cases such as:

Experimental research Providing the full provenance trail of used software configurations to produce experimental
results for improving reproducibility.

Static program analysis Discovering conflicts or compatibility issues of different classes within software using
RDF tools such as SPARQL query engines and reasoners.

Semantic workflows Automatic wiring of software using RDF tools to optimally address a specific need.

We consider this article an extension of our previous work involving describing software as Linked Data [47].
Concretely, the contributions of this work are:

• the Components.js dependency injection framework and its architecture;
• the Components-Generator.js tool for generating component descriptions for TypeScript projects;
• the Object-Oriented Components and Object Mapping vocabularies; and
• the Linked Software Dependencies (LSD) service that makes npm packages dereferenceable.

While Components.js can aid in the reproduction of experiments as one possible use case, we consider full
reproducibility of experiments out of scope for this work. Instead, to enable full replication of experiments, we refer
to tools such as NixOS [26] that can describe full experimental environments, where Components.js can offer more
granular software configuration descriptions.

In this article, we introduce the Components.js framework as follows. In the next section (Section 2), we discuss
the related work. Next, in Section 3 we explain the declarative configuration files of Components.js, followed by
an architectural overview of the framework itself in Section 4. Then, in Section 5, we mention some applications
where Components.js is being used. Finally, we conclude in Section 6.
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2. Related work

2.1. Dependency injection

Inversion of control Inversion of Control (IoC) [15] is a general principle within software engineering that inverts
the usual flow of control within software architectures. This is mostly done to reduce coupling between software
components, and make the overall architecture more modular and extensible. On the one hand, traditional procedural
programming gives the developer direct control of the flow of logic, where code directly invokes other code. IoC on
the other hand implies the use of a framework that manages this flow, and allows custom code – that is supplied by
the developer – to be invoked when the frameworks deems it necessary. This concept is typically referred to as “The
Hollywood Principle: Don’t call us, we’ll call you”.

A specific technique to achieve IoC is Dependency Injection (DI) [15], where the framework calls constructors
and methods with the right parameters. As mentioned before, DI enables relationships between objects by allowing
objects to ask for other objects, rather than actively getting them itself. These composed objects are tied to each
other only by a lightweight interface, where different implementations may be possible for each interface. Using a
DI framework, specific implementations for such interfaces can be configured, after which they can be instantiated
into objects, and are injected into each other using the DI framework’s assembler to complete the wiring of the
software application.

The configuration of such a wiring of objects can either be done in code, or via external configuration files.
The main motivations for configurations are the strict boundaries between configuration and logic, enabling non-
developers to configure the code, and taking away the need to recompile the code for pre-compiled languages.
However, when dependencies are defined based on some logic such as external conditions, configuration via code
may be better suited, as this can become too complex to define in declarative configuration files.

Forms of injection In practice, three main forms of DI exist through which dependencies can be injected into an
object:

Constructor injection Dependency objects are passed via a class constructor.
Setter injection Dependencies are passed to an object by invoking setter methods.
Interface injection The interface of dependencies expose a method that, when invoked, injects this dependency

into an object that is passed to it. Such passed objects will typically be a setter method for this.

Constructor injection is the simplest and most popular form. It requires all dependencies to be wired at con-
struction time, which usually leads to immutable wiring. Setter injection is more flexible as wiring can be changed
afterwards, but could lead to problems where not all dependencies have been fully configured yet. Interface injec-
tion is more complex, and is mainly useful if bidirectional links between dependencies and dependents need to be
configured.

Advantages and disadvantages To end this section, we summarize the main advantages and disadvantages of DI.
Advantages:

• Classes are loosely coupled, which leads to lower maintenance effort.
• Loose coupling also leads to better testability, as dependencies with lightweight interfaces can easily be

mocked.
• Classes have a single responsibility, which leads to better understandable code.
• Applications are more flexible, as they can be wired differently by changing a configuration file.
• Applications are more extensible, as different interface implementations can be created, and swapped in or out

easily.
• Since classes are coded against interfaces of dependencies, they lead to more independent code, which is

beneficial in large teams that work in parallel.

Disadvantages:

• Defining the wiring of an application via configurations can be complex, so good defaults must be available.
• Logic flow is harder to follow when debugging, which leads to the need of good documentation.
• DI frameworks can lead to overhead in terms of understandability, execution time and software size.
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2.2. Semantic software description

Configuration-based DI frameworks make use of some form of software description. Therefore, we introduce the
related work around semantic software descriptions.

Software can be described on several levels of granularity, going from a high-level package overview to a low-
level description of the actual code. The Software Ontology (SWO) [24] and Description of a Project (DOAP) [50]
ontology focus on the high-level management of software development, enabling the description of tools, resources,
contributors and tasks. At a slightly lower level, SWO includes interfaces, algorithms, versions, and the associated
provenance data, but does not reach the level of detail to describe operational code.

Ontologies that describe software configuration from a research workflow perspective are LODFlow [31],
Workflow-Centric Research Objects [2] with the Wf4Ever Research Object Model and the Ontologies for Describing
the Context of Scientific Experiment Processes [25] with the TIMBUS Context Model to compliment the Research
Objects model. From a more generic perspective, there exist the PROV Ontology [23], the OPMW-PROV Ontology
[17], and the DDI-RDF Discovery Vocabulary [5]. However, these efforts can only cover (parts of) the connec-
tion between research and software, which is insufficient for dependency injection. Such descriptions are moreover
interpretive in that any given tool is subject to having multiple descriptions by different users. In contrast to the
human-driven descriptions, our work both enables and accelerates the generation of machine-driven Linked Data
descriptions of software modules, their components, as well as their configurations to be uniformly created. Con-
sequently, this makes it possible to accurately describe and instantiate software experiments that can be reused and
compared with unambiguously.

Much more low-level and exact is the Core Software Ontology (CSO) [29], which provides a foundational vocab-
ulary that is designed for extensibility. This includes the distinctive concepts to describe software as code, software
as object to computational hardware, and software as a running computational activity, but also Interfaces, Classes,
Methods, the relationships between them, and workflow information on their invocation. Its extension, the Core
Ontology of Software Components (COSC), moves closer to the topic of this article by describing interfaces and
protocols of objects. Similar in scope is the Software Engineering Ontology Network (SEON) [32], which con-
solidates multiple ontologies for the Software Engineering field. It includes a higher Core and Foundational layer,
as well as multiple domain-specific ontologies. Of particular interest is their Software Ontology (SwO) that cap-
tures the different artifacts in software. More recently, the GraphGen4Code toolkit [1] has been introduced, which
provides an ontology to capture code semantics to represent classes, functions and methods. In general, these ontolo-
gies (or suites) view software from a “network of communicating concepts” perspective. This allows for exhaustive
descriptions of complex software systems, but is not suited for describing class instances or aspects of modular
programming (e.g., package dependencies). As such, the vocabularies that we introduced do not make use of these
existing ontologies, but they do make use of parts of them where possible.

2.3. Dependency injection frameworks

The large spectrum of existing dependency injection frameworks indicates a high demand for such systems. Java
likely contains the largest collection of dependency injection frameworks. Much of this stems from the strict typing,
which makes it difficult to create mock objects when required for testing if the dependencies are nested in the
implementation.

One of the biggest Java frameworks is Spring [34], which amongst many things, also provides dependency in-
jection. That is one of its advantages though: many projects already use Spring for other reasons, reducing the
jump required to add the dependency injection framework. It supports two ways to do the injection. The first one is
through an external XML configuration file which defines all the classes and how they are linked together. The other
one is with annotations in the actual code that define how the interlinking of classes should work. Google’s Guice
[18] is a more lightweight alternative to Spring; Dagger [11] was created to be even more lightweight than Guice.

In JavaScript, dependency injection frameworks tend to be less common because of its flexible nature. How-
ever, with the increasing popularity of TypeScript – which provides strict typings for JavaScript –, the need for
dependency injection is increasing. Still, multiple frameworks are available, such as BottleJS [6], Wire [52], and
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Electrolyte [14], all backed by rather small communities. One of the biggest ones, InversifyJS [21], uses annota-
tions similar to Java frameworks to define possible injections. Unlike standard JavaScript, it requires the developer
to define interfaces and types via TypeScript, thereby allowing it to make use of this extra information to correctly
handle the linking. Like Guice, it also has a bindings file to link classes to interfaces.

Components.js differs from the aforementioned frameworks on different aspects. First, Components.js decouples
the dependency injection layer from the software implementation via separate configuration files, while the other
JavaScript DI frameworks use code-based configuration and thereby have a stronger coupling of these layers. It is
thereby more similar to the Java-based DI frameworks that tend to rely more on external configuration files. This is
the primary reason why we opted to create a new framework, instead of extending an existing one. Second, Compo-
nents.js is the only framework that makes use of RDF-based configuration files, which makes these configurations
globally interoperable, addressable, and discoverable. Third, regarding the form of dependency injection, Compo-
nents.js makes use of constructor injection, just like all other discussed frameworks. Only the Spring also provides
the option to make use of the other forms of injection, but constructor injection is the most popular option.

2.4. JavaScript runtime environments

The most popular runtime environment for JavaScript is Node.js [27], which allows JavaScript code to be exe-
cuted outside of a Web browser. Node.js is based on the highly performant V8 engine [45] that is also used within
the Chrome browser. Even though Node.js can not directly execute TypeScript code, TypeScript code can be tran-
spiled to JavaScript so that it can be executed in Node.js. Node.js makes use of the npm [28] package manager for
distributing and installing third-party packages (over 1.3 million at the time of writing). Using a package.json file,
all dependencies of a module can be defined together with their version range, which are resolved from npm at
install time.

Deno [12] is a relatively new runtime environment for JavaScript that aims to become a modern replacement for
Node.js. It is also based on the V8 engine, but it allows both JavaScript and TypeScript to be executed without
prior transpilation. Furthermore, there is a significant difference in the way Deno handles dependencies compared
to Node.js. Code written for Node.js can only refer to dependencies by a name, and requires a package manager
such as npm to bind it to a concrete package and version. Deno avoids this decoupling by allowing code to directly
refer to dependencies based on URLs that can include version ranges.

For the remainder of this article, we will assume the usage of the Node.js runtime. This is because Components.js
Node.js is still predominantly used at the time of writing. Nevertheless, since Deno’s philosophy regarding deref-
erenceable modules is compatible with the dereferenceability of Components.js configurations, we will consider
support for it in the future.

3. Declarative configurations

Components.js depends on two levels of configuration for enabling the wiring of software components. The first
level is the creation of components files, which are the semantic representation of component (or class) constructors,
and can usually be automatically generated. The second level is the creation of configuration files, which represent
the actual instantiation of components based on the generated components files.

In this section, we discuss the two main vocabularies that are used within these component files, and show how
configuration files can refer to them for instantiation. Next, we explain how URLs can be minted for software
components, so that they become fully dereferenceable. Finally, we explain how these component files can be
generated automatically from existing TypeScript code.

3.1. Object-oriented components vocabulary

Components.js distinguishes between three main concepts:

Module a software package containing zero or more components. For example, this is equivalent to a module within
Node.js.
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Fig. 1. Classes and properties in the Object-Oriented Components vocabulary (OO), with as prefix oo.

{
" @context " : [

" h t t p s : / / l i n k e d s o f t w a r e d e p e n d e n c i e s . o rg / b u n d l e s / npm / c o m p o n e n t s j s /
^ 4 . 0 . 0 / components / c o n t e x t . j s o n l d " ,

{" ex " : " h t t p : / / example . o rg / " }
] ,
"@id " : " ex : MyModule " ,
" @type " : " Module " ,
" requ i reName " : " my−module " ,
" components " : [

{
"@id " : " ex : MyModule / MyComponent " ,
" @type " : " C l a s s " , " r e q u i r e E l e m e n t " :
" MyComponent " , " p a r a m e t e r s " : [

{
"@id " :
" ex : MyModule / MyComponent#name " ,
" u n i q u e " : t r u e ,
" r a n g e " : " xsd : s t r i n g "

}
]

}
]

}

Listing 1. A description of a module ex:MyModule with a single component using the JSON-LD serialization, compacted with the https://
linkedsoftwaredependencies.org/bundles/npm/componentsjs/^4.0.0/components/context.jsonld context.

Component a class that can be instantiated by creating a new instance of that type with zero or more parameter
values. Parameters are defined by the class constructor.

Configuration a semantic representation of an instantiation of a component into an object instance based on pa-
rameters.

These concepts are described in the programming language independent Object-Oriented Components vocabu-
lary (OO) [47]. This vocabulary enables software components to be instantiated based on certain parameters, analog
to constructor arguments in object-oriented programming. This is interpreted in the broad sense: only classes, ob-
jects and constructor parameters are considered. An overview is given in Fig. 1.

A module is considered a collection of components. Within object-oriented languages, this can correspond to
for example a software library or an application. A component is typed as oo:Component, which is a subclass of
rdfs:Class. The parameters to construct the component can therefore be defined as a property having that component
as its domain.

Note that the vocabulary does not contain an interface class, because this notion does not exist in JavaScript, and
it can exist in TypeScript code but, only before transpilation to JavaScript. Instead, we only define oo:AbstractClass,
as both abstract classes and interfaces can be considered equivalent at the level of dependency injection.

https://linkedsoftwaredependencies.org/bundles/npm/componentsjs/^4.0.0/components/context.jsonld
https://linkedsoftwaredependencies.org/bundles/npm/componentsjs/^4.0.0/components/context.jsonld
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{
" @context " : [

" h t t p s : / / l i n k e d s o f t w a r e d e p e n d e n c i e s . o rg / b u n d l e s / npm / c o m p o n e n t s j s /
^ 4 . 0 . 0 / components / c o n t e x t . j s o n l d " ,

{" ex " : " h t t p : / / example . o rg / " }
] ,
" @type " : " ex : MyModule / MyComponent " ,
" ex : MyModule / MyComponent#name " : " Some
name "

}

Listing 2. Instantiation of ex:MyModule/MyComponent using a value for the parameter ex:MyModule/MyComponent#name.

We illustrate the usage of this vocabulary with an example in Listing 1 using the JSON-LD [22] serialization.
This listing shows the definition of a new module (oo:Module) with compact IRI ex:MyModule. The name of the
module is set with the compact IRI requireName, which expands to doap:name from the Description of a Project
(DOAP) vocabulary [51].

Furthermore, our module contains a single class component (oo:Class) with compact IRI ex:MyModule/
MyComponent. Since this is a class component (subclass of oo:Component), this means that this component is
instantiatable based on parameters. Each component can refer to its path within a module using the oo:component-
Path predicate (compacted as requireElement). Finally, our single component has a parameter (oo:Parameter) with
compact IRI ex:MyModule/MyComponent#name that can be set when instantiating this component.

Since components and parameters are defined as RDFS vocabulary, we can instantiate components easily using
the rdf:type predicate, and by using parameters as predicates on such new instances, as shown in Listing 2. Instead
of passing literals as values to parameters, it is also possible to pass other component instances as values, thereby
allowing nested component instantiations to be defined.

3.2. Object mapping vocabulary

As shown in the previous section, the OO vocabulary allows modules, components, and parameters to be de-
fined, so that instances of components can be declared. However, this vocabulary only defines parameter values for
component instances, but it does not define how these parameter values are used to invoke the constructor of this
component. To enable this, we introduce the accompanying Object Mapping vocabulary (OM) [36]. Figure 2 shows
an overview of all its classes and predicates.

The OM vocabulary makes use of the oo:constructorArguments predicate for the domain oo:Class, and thereby
builds upon the OO vocabulary via the oo:constructorArguments extension point to define the class constructor’s
behaviour. Concretely, this new vocabulary defines a mapping between the component parameters as defined using
the OO vocabulary, and the raw objects that are passed into the constructor during instantiation.

In essence, this vocabulary enables an (RDF) list of om:ObjectMapping’s to be passed to the oo:constructorArgu-
ments of an oo:Class. An om:ObjectMapping represents an object containing zero or more key-value pairs, which
are represented by om:ObjectMappingEntry. om:ArrayMapping is a special type of om:ObjectMapping that repre-
sents an array, where its elements can be other om:ObjectMapping’s.

Building upon the OO example from Listing 1, we illustrate the usage of this vocabulary with an example in
Listing 3, again using the JSON-LD serialization. The only difference with the previous example, is the addition of
the constructorArguments block, which expands to oo:constructorArguments that is configured to always contain
an RDF list. The constructor arguments contain a single om:ObjectMapping, which is implied by the presence of
field, which expands to om:field. Since the field array contains just a single element (om:ObjectMappingEntry),
it represents an object with a single key and value. The key is defined by keyRaw (expands to om:fieldName),
which contains the constant name. The value is defined by value (expands to om:fieldValue), which refers to the
ex:MyModule/MyComponent#name parameter.

The addition of an object mapping to a component requires no changes as to how a component is instantiated,
which means that our component from Listing 3 can still be instantiated in the exact same way as the one from



142 R. Taelman et al. / Components.js: Semantic dependency injection

Fig. 2. Classes and properties in the Object Mapping vocabulary [36], with as prefix om.

{
" @context " : [
" h t t p s : / / l i n k e d s o f t w a r e d e p e n d e n c i e s . o rg / b u n d l e s / npm / c o m p o n e n t s j s /

^ 4 . 0 . 0 / components / c o n t e x t . j s o n l d " ,
{" ex " : " h t t p : / / example . o rg / " }
] ,
"@id " : " ex : MyModule " ,
" @type " : " Module " ,
" requ i reName " : " my−module " ,
" components " : [

{
"@id " : " ex : MyModule / MyComponent " ,
" @type " : " C l a s s " , " r e q u i r e E l e m e n t " :
" MyComponent " , " p a r a m e t e r s " : [

{
"@id " :
" ex : MyModule / MyComponent#name " ,
" u n i q u e " : t r u e ,
" r a n g e " : " xsd : s t r i n g "

}
]

}
] ,
" c o n s t r u c t o r A r g u m e n t s " : [

{
" f i e l d s " : [

{
" keyRaw " : " name " ,
" v a l u e " : " ex : MyModule / MyComponent#name "

}
]

}
]

}

Listing 3. A description of a module ex:MyModule with a single component having constructor arguments using the JSON-LD serialization,
compacted with the https://linkedsoftwaredependencies.org/bundles/npm/componentsjs/^4.0.0/components/context.jsonld context.

Listing 1. The only difference now, is that we are able to determine how exactly the parameter values are to be used
for invoking the component constructor. For example, the instantiation of Listing 2 corresponds to the following
code in JavaScript:

new
MyComponent({name:'Some name'})

https://linkedsoftwaredependencies.org/bundles/npm/componentsjs/^4.0.0/components/context.jsonld
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A real-world example of the combined usage of the OO and OM vocabularies can be found at https://
linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1/components/Actor.jsonld.

3.3. Dereferenceability

In previous work [47] we introduced the Linked Software Dependencies (LSD) service [46], which makes all
resource URLs within components files fully dereferenceable.

Since our current focus is on enabling dependency injection for JavaScript, this LSD service provides Linked
Data subject pages for all packages within the npm package manager [28] for JavaScript. For example, the URL
https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1 is an identifier for the @comunica/
core package at version 1.21.1. Listing 4 shows a snippet of the JSON-LD contents when dereferencing this URL.

This LSD service allows creators of components files to automatically mint LSD-based URLs for their packages,
which will automatically become dereferenceable as soon as these packages are published to npm. The LSD service
thereby removes the dereferenceability responsibility from package developers that want to use dependency injec-
tion via Components.js, but do not have the will or ability to make their component files dereferenceable themselves.
The LSD service is not required for the functioning of the Components.js framework, so developers are not obli-
gated to publish their package to npm or mint their own URLs if they do not have this desire. But since publishing
packages to npm in a common practise within the JavaScript community, we consider this a low barrier to entry.

This dereferenceability is beneficial for enabling querying execution within and across component files. For
example, it enables using the follow-your-nose principle to analyze class inheritance chains of certain modules.
Another example in the domain of reproducibility is the ability to analyze which config parameters had the largest
influence on the performance of a system, assuming that the experimental results have also been linked to the
semantic configuration.

{
" @context " : [

" h t t p s : / / l i n k e d s o f t w a r e d e p e n d e n c i e s . o rg / c o n t e x t s / npm . j s o n l d " ,
{" l s d " : " h t t p s : / / l i n k e d s o f t w a r e d e p e n d e n c i e s . o rg / " }

] ,
" @type " : " doap : V e r s i o n " ,
"@id " : " l s d : b u n d l e s / npm/%40 comunica%2Fcore / 1 . 2 1 . 1 " ,
" name " : " @comunica / c o r e " ,
" v e r s i o n " : " 1 . 2 1 . 1 " ,
" d e s c r i p t i o n " : " L i g h t w e i g h t , s e m a n t i c and modular a c t o r framework " ,
" d e p e n d e n c i e s " : {

" @comunica / t y p e s " : " l s d : b u n d l e s / npm/%40 comunica%2F t y p e s /%5E1 . 2 1 . 1 " ,
" immutab le " : " l s d : b u n d l e s / npm / immutab le /%5E3 . 8 . 2 "

} ,
" m a i n t a i n e r s " : [

{
" e m a i l " : " m a i l t o : rubensworks@gmai l . com " ,
"@id " : " l s d : u s e r s / npm / rubensworks "

}
] ,
" d c t e r m s : l i c e n s e " : {

"@id " : " h t t p s : / / spdx . o rg / l i c e n s e s / MIT . h tml " ,
" r d f s : l a b e l " : " MIT"

} ,
" l s d : s c r i p t s / npm / t e s t " : {

"@id " : " l s d : b u n d l e s / npm/%40 comunica%2Fcore / 1 . 2 1 . 1 / s c r i p t s / t e s t "
}

}

Listing 4. Part of the JSON-LD contents of https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1.

https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1/components/Actor.jsonld
https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1/components/Actor.jsonld
https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1
https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1
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/∗∗
∗ Thi s i s a g r e a t c l a s s !
∗ /

e x p o r t c l a s s MyClass e x t e n d s O t h e r C l a s s {
/∗∗
∗ @param paramA − My p a r a m e t e r
∗ /
c o n s t r u c t o r ( paramA : boolean , paramB : number ) {

}
}

Listing 5. TypeScript class that is used as input to Components-Generator.js.

The long-term sustainability of the LSD service and its minted URLs is guaranteed by Ghent University, which
places a strong emphasis on ensuring that data is preserved in the long term. In the unlikely event that the LSD
service would experience downtime, all applications that make use of Components.js will still remain functional,
because the Components.js framework does not rely directly on the dereferenceability of these URLs.

3.4. Generation from TypeScript

For larger projects, the manual creation of components files for all classes in the project can require significant
manual effort, and can therefore become error-prone. For projects that make use of a strongly-typed language,
such as TypeScript, all required information to create such components files is in fact already available implicitly
via the source code files. In order to minimize manual effort for such projects, we provide the open-source tool
Components-Generator.js [37] (Zenodo [39]) for TypeScript projects.

Concretely, this tool can be installed into any TypeScript project. When its command-line script is invoked, it
scans all exported TypeScript classes within this project, and generates corresponding components files for them.
In doing so, it preserves information that is important for dependency injection, such as component extensions via
class inheritance relationships and parameter types with constructor arguments mapping via class constructors.

For example, assuming an npm package named my-package containing the single TypeScript class from Listing 5,
Components-Generator.js will generate the components file in Listing 6.

A real-world example of such conversion can be seen in the Community Solid Server [48] project. For example,
the CorsHandler TypeScript class (https://github.com/solid/community-server/blob/9b6eab27bc4e5ee25d1d3c6ce5972
e83db90c650/src/server/middleware/CorsHandler.ts#L31) is converted to the components file at https://linkedsoftwa
redependencies.org/bundles/npm/@solid/community-server/2.0.0/dist/server/middleware/CorsHandler.jsonld.

4. Dependency injection framework

Building on top of the declarative configurations that were explained in previous section, we now discuss Com-
ponents.js, which is a system that can interpret these configurations for enabling dependency injection within
JavaScript/TypeScript projects. In this section, we first explain the main architecture, followed by the most rele-
vant implementation details.

4.1. Architecture

The primary functional requirement of our architecture is the ability to perform dependency injection based on the
configuration files from previous section. Concretely, this involves parsing the configuration files, interpreting them,
and instantiating the necessary components. Next to these functional needs, we took the following non-functional
requirements into account when designing the architecture:

• Usability: Developers using the framework should only be required to interact with a single entry point.
• Extensibility/Maintainability: The system should be robust against different future functional requirements.

https://github.com/solid/community-server/blob/9b6eab27bc4e5ee25d1d3c6ce5972e83db90c650/src/server/middleware/CorsHandler.ts#L31
https://github.com/solid/community-server/blob/9b6eab27bc4e5ee25d1d3c6ce5972e83db90c650/src/server/middleware/CorsHandler.ts#L31
https://linkedsoftwaredependencies.org/bundles/npm/@solid/community-server/2.0.0/dist/server/middleware/CorsHandler.jsonld
https://linkedsoftwaredependencies.org/bundles/npm/@solid/community-server/2.0.0/dist/server/middleware/CorsHandler.jsonld
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{
" @context " : [ " h t t p s : / / l i n k e d s o f t w a r e d e p e n d e n c i e s . o rg / b u n d l e s / npm / my−

package /
^ 1 . 0 . 0 / components / c o n t e x t . j s o n l d "

] ,
"@id " : " npmd : my−package " ,
" components " : [

{
"@id " : " ex : MyFile # MyClass " ,
" @type " : " C l a s s " ,
" r e q u i r e E l e m e n t " : " MyClass " ,
" e x t e n d s " : " ex : O t h e r F i l e # O t h e r C l a s s " ,
" comment " : " T h i s i s a g r e a t c l a s s ! " ,
" p a r a m e t e r s " : [

{
"@id " : " ex : MyFile #MyClass_paramA " ,
" r a n g e " : " xsd : b o o l e a n " ,
" comment " : "My p a r a m e t e r " ,
" u n i q u e " : t r u e ,
" r e q u i r e d " : t r u e

} ,
{

"@id " : " ex : MyFile # MyClass_paramB " ,
" r a n g e " : " xsd : i n t e g e r " ,
" u n i q u e " : t r u e ,
" r e q u i r e d " : t r u e

}
] ,

" c o n s t r u c t o r A r g u m e n t s " : [
{" @id " : " ex : MyFile #MyClass_paramA " } ,
{" @id " : " ex : MyFile # MyClass_paramB "}

]
}

]
}

Listing 6. Components file that is generated by Components-Generator.js from the TypeScript file from Listing 5.

• Performance: Parts of the architecture that are prone to performance issues should be cacheable.

To meet these requirements, the Components.js dependency injection tool goes through three main phases:

• Loading: Initialization of DI components, discovery of modules, and loading of configuration files.
• Preprocessing: Handling of constructor arguments before construction.
• Construction: Instantiation of JavaScript classes based on configuration files.

These three phases are handled by the ComponentsManager, which acts as the main entrypoint of the framework
as can be seen in Fig. 3 in the Appendix. This manager class is constructed via a static build method, via which
custom options can be passed, such as a callback for loading modules and configuration files. To meet the usability
requirement, this is the only part that most users of the framework will interact with.

For the sake of clarity, all UML architecture diagrams that we include in this article only contain simplified
representations of the actual classes. So there may be minor differences when comparing the diagrams with the
actual source code.

Hereafter, we explain these three phases in more detail.

4.1.1. Loading
When the ComponentsManager is being built, the loading phase will be initiated, which will make use of the

classes within the load package. The most important classes within this package are shown in Fig. 4 in the Appendix.
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This phase aims to contain all major I/O operations, which could be expensive on slow disks and/or in large projects.
This allows later phases to purely work on memory. Furthermore, the loaded information is designed to be cacheable,
which means that software that require repeated invocations may optimize the loading phase by caching certain parts,
which thereby meets the performance requirement.

The ModuleStateBuilder is a class that is responsible for scanning the current JavaScript project and its depen-
dencies. The main objective of this class is to build an IModuleState, that contains information such as the paths to
available components and dependencies.

ComponentRegistry and ConfigRegistry are classes that are exposed via a callback to invokers of Components
Manager.build(). These classes respectively enable modules and configurations to be registered, after those modules
and configurations will be loaded.

4.1.2. Preprocessing
Before a configuration is instantiated during the construction phase, it always goes through a preprocessing phase.

Concretely, this involves processing all parameters and constructor arguments, for which the most relevant classes
and interfaces are shown in Fig. 5 in the Appendix. To meet the extensibility and maintainability requirements,
the architecture allows different parameters and constructor arguments handlers to be injected. This makes the
architecture more robust against currently unforeseen functional requirements regarding the handling of parameters
and constructor arguments.

IConfigPreprocessor is an interface that represents a preprocessing algorithm for a configuration, and can have
multiple implementations.

ConfigPreprocessorComponent is a preprocessor that is able to determine what component is being instantiated
within a configuration. It will check if the linked component exists, and it will validate all passed parameters. For
this parameter validation, the ParameterHandler class is used, which works based on a list of IParameterProperty
Handler’s. For instance, parameter property handlers exist for validating the range of parameters, checking the
uniqueness, handling default values, and more.

ConfigPreprocessorComponentMapped is another preprocessor that builds upon ConfigPreprocessorComponent,
so that it additionally handles constructor arguments as defined by the Object Mapping vocabulary. Concretely, after
validating parameters, it will handle the constructor arguments recursively using a list of IConstructorArguments
ElementMappingHandler’s. These handlers can handle specific types of constructor arguments and parameters, such
as the conversion of om:ObjectMapping to an object, and the conversion of om:ArrayMapping to an array.

The end-result of the preprocessing phase is a configuration that represents the raw constructor call of a class,
together with the required arguments.

4.1.3. Construction
The construction phase is responsible for instantiating a configuration. The main classes for this are shown in

Fig. 6 in the Appendix. Like before, the extensibility and maintainability requirements also apply here regarding the
way in which things are constructed, for which we also provide the ability to inject different handlers.

ConfigConstructorPool is the main entrypoint that is used when a user instantiates a configuration via
ComponentsManager.instantiate(). Before actually instantiating a config, it will first check if it had been instan-
tiated before, in which case it returns it from a cache. This may occur for nested configurations that reuse the same
component in different places. If the config has not been instantiated before, it will first go through the preprocessing
phase as explained in the previous section, and then the processed config will be passed on to the ConfigConstructor.

The ConfigConstructor is able to convert the representation of a class constructor call into an actual constructor
call to obtain an object. For this, the arguments of the constructor are first converted into actual objects, which is done
via a list of IArgumentConstructorHandler’s. For example, handlers exist to handle primitive values such as strings
and numbers, arrays, and references to other components (which requires a recursive call to ConfigConstructorPool).
Once the arguments have been resolved, the constructor can be applied to obtain the final instantiated object.

By default, the ConfigConstructor assumes that configurations are instantiated via the CommonJS JavaScript
standard, which is primarily used by the Node.js runtime environment. However, Components.js has been designed
to handle different kinds of instantiation, which can be done via different IConstructionStrategy’s. For instance, this
allows the framework to be compatible with other upcoming JavaScript standards such as JavaScript modules.
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4.2. Implementation

Components.js has been implemented in TypeScript, and is available on GitHub [41] and Zenodo [43] under the
MIT license. At the time of writing, the latest release is at version 4.4.1, which is published via the npm package
manager [42].

Due to the critical nature of this framework, it is being tested thoroughly. At the time of writing, it consists of 538
unit tests, which reach a test coverage of 100%.

Components.js is being maintained by IDLab via software projects that make use of this framework. Furthermore,
Components.js is part of the Comunica Association [9], which is a non-profit organization that aims to ensure the
long-term sustainability of certain open-source projects. A sustainability of this project is available on GitHub [38].

Finally, in-depth documentation [35] is available, which explains how to create component and configuration
files, and how to invoke the DI tool.

5. Usage

A measure of the usage of an open-source project without the use of any tracking software is a picture that is
always incomplete. Nevertheless, we analyze the usage of Components.js in this section on two aspects: empirical
usage via available metrics, and in-use analysis of specific projects. We discuss these two aspects hereafter.

5.1. Usage metrics

As the source code of Components.js is hosted on GitHub [41], it is possible to inspect the usage of this
project within other projects hosted on GitHub. As of August 2 2021, there are 9 GitHub projects that depend on
Components.js directly, and 268 that depend on it indirectly via transitive dependencies. This shows that
Components.js is primarily used as a core library to support larger projects that have a broad usage.

The npm package manager [42] from which Components.js can be installed offers us additional insights. For the
week of July 26 2021 until August 1 2021 (the last completed week before writing this section) there were 5.351
downloads, which is an average number when comparing it to previous weeks. However, there are outliers for which
Components.js has weekly downloads peak up to around 200.000 downloads.

While these GitHub and npm metrics give us some insight into the usage of Components.js, they are incomplete,
as projects may be hosted on other source code platforms such as GitLab, Bitbucket, or even private instances.
Furthermore, direct downloads from npm are also incomplete, as downstream users may use bundling tools such as
Webpack [49] to incorporate the Components.js source code directly within their library, which makes downloads of
that library not go via the Components.js npm package anymore. On the other hand, automated downloads by bots
(e.g. for mirror services) may artificially increase the download number, without actually representing real usage.
Therefore, we conclude that the metrics reported here are merely an estimate.

5.2. In-use analysis

In the previous section, we provided an informed estimate as to how much Components.js is being used. In this
section, we provide an analysis of in what way Components.js is being used in four real-world projects: Community
Solid Server, Handlers.js, Digita Identity Proxy, and Comunica.

5.2.1. Community solid server
The Community Solid Server [48] is a server-side implementation of the Solid specifications [33], which provides

a basis for the Solid decentralization effort. When such a server is hosted, it allows users to create their own personal
storage space (pod) and identity, so that this data can be used within any external Solid application. This server is
written in TypeScript, and is being developed by Inrupt [20] and imec [19], which includes authors of this article.

This server makes use of dependency injection because a primary goal of the server is to be as flexible as possi-
ble, so that developers can easily modify the capabilities of the server, or even add additional capabilities. This is
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especially useful in the context of research, where new components can be added to the server for experimentation,
before they are standardized and become a part of the Solid specifications. To enable this level of flexibility, all
components within this server are loosely coupled, and are wired via customizable Components.js configuration
files.

Since the Community Solid Server makes use of TypeScript, it is able to make use of the Components-Generator.js
tool as explained before in Section 3, which avoids the need to manually create components files, and thereby
significantly simplifies the usage of Components.js within this project. At the time of writing, this server contains
246 components that can be customized via specific parameters, and wired together to form a server instance with
specific capabilities.

5.2.2. Handlers.js
Handlers.js [44] aims to provide a comprehensive collection of generic logic classes, that can be wired together

via the composition pattern. While this project is still under development, it already provides numerous handlers and
services pertaining to data flows, storage, logging, error handling, as well as logic about serving data over HTTP
(routing, CORS, content negotiation, . . . ). This project is written in TypeScript, and is being developed by Digita
[13].

In contrast to the Community Solid Server, Handlers.js is not meant to be usable by itself as stand-alone tool.
Instead, it is an accompanying library that can be used by other tools. The components within Handlers.js are
meant to capture common patterns within projects that depend on composition-based components, so that they can
be reused by other projects that make use of DI frameworks such as Components.js. While Components.js is the
primary DI framework this library was designed for, it does not strictly depend on it thanks to the loosely coupling
of the Components.js DI layer and software implementations.

Handlers.js also make use of the Components-Generator.js tool to convert TypeScript classes into components
files. At the time of writing, this project exposes 40 components that range from abstract logic flows to specific
ones for setting up a simple HTTP server. Since components within Components.js have global semantics, these
components can be easily reused across projects.

5.2.3. Digita identity proxy
The Digita Identity Proxy (not public at the time of writing) is a Solid-OIDC [8]-compliant proxy server that acts

as a modular, and easily configurable compatibility layer for classic OIDC [30] Identity Providers. It enables Solid
apps to authenticate at Solid pod servers with these existing identity services, without any necessary modification.
This project is also written in TypeScript, and is under development by Digita [13].

Several components exists that enable additional functionality of Solid-OIDC, which can be plugged into the
proxy when the need exists. With Components.js, these components can be easily configured and plugged in via a
configuration file.

5.2.4. Comunica
Comunica [40] is another project that makes use of Components.js at its core. Comunica is a highly modular

SPARQL query engine that has been designed to be a flexible research platform for SPARQL query execution. It
has been written in TypeScript, and is developed by Ghent University, by authors of this article.

The modular nature of Comunica calls for a dependency injection framework due to its actor-mediator-bus
paradigm. All logic within Comunica is placed within small actors, which are registered on task-specific buses
following the publish-subscribe pattern. In order to select a certain actor on a bus for achieving a certain task, the
mediator pattern is applied, which allows different actors to be selected based on different actions. These actors,
buses, and mediators are loosely coupled with each other, and are wired together via Components.js configuration
files. For example, this allows users of Comunica to create and plug in a different algorithm for resolving a certain
SPARQL query operator.

At the time of writing, Comunica does not yet make use of the Components-Generator.js tool, as it was devel-
oped before Components-Generator.js was created. Therefore, all components files within Comunica are created
manually, which shows that Components.js is flexible in this regard.

As Comunica is a research platform for research around query execution, the ability to reproduce experiments is
crucial. This is where the benefit of Components.js becomes especially apparent. It is often the case that research
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articles with experimental results only report on the used software, without mentioning the exact version and con-
figuration that was used. When using a Components.js configuration file, the necessary semantics for accurately
replicating such experiments are available as Linked Data. The reproducibility of experimental results is often con-
sidered to be even more important than the research article itself [7], as the article can be considered to be merely
advertising of the scholarship. For example, the Comunica research article [40] contains an experiment work-
flow (https://comunica.github.io/Article-ISWC2018-Resource/#evaluation-workflow) that is backed by the used
Components.js configuration files.

6. Conclusions

After more than four years of development, Components.js has become a stable Dependency Injection framework
for TypeScript and JavaScript projects, and has seen a significant uptake by popular tools that make use of it as core
technology. It enables the primary tasks of a DI framework, but thanks to its semantic configuration files, it also
brings with it the power of Linked Data and the Semantic Web for enabling globally interoperable and discoverable
configurations. Using the Linked Software Dependencies service, components and configurations become derefer-
enceable and citable, which allows software configurations to be shared easily with others, which is for example
beneficial for improving the reproducibility of software experiments.

The previous section has shown that Components.js provides significant value in real-world applications. On the
one hand, tools such as the Community Solid Server and Comunica allow developers and researchers to rewire these
applications based on their specific needs. On the other hand, applications by companies such as Digita depend on
this flexibility for making logic changes via configuration files, as they want to enable their clients to make changes
by only modifying the configuration files, since their clients are sometimes non-technical people that have limited
programming knowledge.

We can recommend Components.js for TypeScript/JavaScript projects that have at least a subset of the following
characteristics:

• Architectures that require high modularity and flexibility;
• Need to modify wiring of components without changing code;
• Need for ability to share wiring configurations with others;
• Managing and including configurations across different projects;
• Using configurations in other contexts.

As with all DI frameworks, Components.js comes with the downside that for large applications, configurations
can become complex and logic flow may be harder to follow. In order to mitigate these risks, we recommend
a structured management of configuration files, which may involve splitting up configuration files based on an
architecture’s primary subsystems, which is the approach followed by large projects such as Community Solid
Server and Comunica.

The dereferenceability of software configurations by IRI is also an important benefit of the Components.js frame-
work. In the introduction, we mentioned that this dereferenceability could be beneficial for experimental research,
static program analysis, and semantic workflows. So far, we only have concrete proof of the experimental research
use case as shown in Section 5.2.4. We hope to see examples of the other use cases making use of this functionality
in future work.

In future work, we do not foresee the need for any major changes or additions within the Components.js frame-
work itself, aside from keeping up with new language features from JavaScript and TypeScript. However, all large
projects that make use of Components.js have identified the need for better tooling to create and manage configu-
ration files. For example, the Comunica project is developing a graphical user interface [10] to visually customize
the wiring of the engine, which can then be exported into a reusable configuration file. Since Components.js con-
figurations make use of the Linked Data principles, it is possible to create a generic user interface to create such
configuration files for any project that makes use of Components.js. Furthermore, since components and config-
uration files are largely programming language-independent, it is possible to create equivalent implementations
of Components.js for other OO languages such as Java and C#. Another venue that deserves investigation is the

https://comunica.github.io/Article-ISWC2018-Resource/#evaluation-workflow
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task of automatically letting the Linked Software Dependencies service execute the Components-Generator.js on
all TypeScript projects that do not provide component files yet, which could open up a huge domain on injectable
components.

In general, Components.js gives us the necessary foundation for building next-level applications that depend
on high flexibility, such as smart agents. These applications are crucial for environments such as Linked Data
and the Semantic Web, which require and benefit from this level of flexibility. Therefore, DI frameworks such as
Components.js pave the road towards a world with more flexible applications.
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Appendix. Architectural diagrams

This appendix section contains the architectural diagrams that were discussed in Section 4.1. Figure 3 contains
the main entrypoint of the framework, Fig. 4 represents the loading phase, Fig. 5 represents the preprocessing phase,
and Fig. 6 represents the construction phase.

Fig. 3. UML diagram of the classes within the main package, which contains the main entrypoint of the framework.

Fig. 4. UML diagram of the classes within the load package, which are responsible for loading components and configurations.
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Fig. 5. UML diagram of the classes within the preprocess package, which are responsible for preprocessing config parameters and constructor
arguments.

Fig. 6. UML diagram of the classes within the construct package, which are responsible for instantiating configs according to a certain strategy.
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