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Abstract. The information perceived via visual observations of real-world phenomena is unstructured and complex. Computer
vision (CV) is the field of research that attempts to make use of that information. Recent approaches of CV utilize deep learning
(DL) methods as they perform quite well if training and testing domains follow the same underlying data distribution. However,
it has been shown that minor variations in the images that occur when these methods are used in the real world can lead to un-
predictable and catastrophic errors. Transfer learning is the area of machine learning that tries to prevent these errors. Especially,
approaches that augment image data using auxiliary knowledge encoded in language embeddings or knowledge graphs (KGs)
have achieved promising results in recent years. This survey focuses on visual transfer learning approaches using KGs, as we
believe that KGs are well suited to store and represent any kind of auxiliary knowledge. KGs can represent auxiliary knowl-
edge either in an underlying graph-structured schema or in a vector-based knowledge graph embedding. Intending to enable the
reader to solve visual transfer learning problems with the help of specific KG-DL configurations we start with a description of
relevant modeling structures of a KG of various expressions, such as directed labeled graphs, hypergraphs, and hyper-relational
graphs. We explain the notion of feature extractor, while specifically referring to visual and semantic features. We provide a
broad overview of knowledge graph embedding methods and describe several joint training objectives suitable to combine them
with high dimensional visual embeddings. The main section introduces four different categories on how a KG can be combined
with a DL pipeline: 1) Knowledge Graph as a Reviewer; 2) Knowledge Graph as a Trainee; 3) Knowledge Graph as a Trainer;
and 4) Knowledge Graph as a Peer. To help researchers find meaningful evaluation benchmarks, we provide an overview of
generic KGs and a set of image processing datasets and benchmarks that include various types of auxiliary knowledge. Last, we
summarize related surveys and give an outlook about challenges and open issues for future research.

Keywords: Knowledge graph, visual transfer learning, knowledge-based machine learning

1. Introduction

Deep learning (DL) as a machine learning (ML) technique is broadly used to successfully solve computer vi-
sion (CV) tasks. Their main strength is their ability to find complex underlying features in a given set of images.
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A common method for training a deep neural network (DNN) is to minimize the cross-entropy (CE) loss, which
is equivalent to maximizing the negative log-likelihood between the empirical distribution of the training set and
the probability distribution defined by the model. This relies on the independent and identically distributed (i.i.d.)
assumptions as underlying rules of basic ML, which state that the examples in each dataset are independent of
each other, that train and test set are identically distributed and drawn from the same probability distribution [47].
However, if the train and test domains follow different image distributions the i.i.d. assumptions are violated, and
DL leads to unpredictable and poor results [131]. This has been demonstrated by using adversarially constructed
examples [48] or variations in the test images such as noise, blur, and JPEG compression [55]. Moreover, authors
in [26] even claim that any standard DNN suffers from such an unpredictable distribution shift when it is deployed
in the real world.

Transfer learning is the area of machine learning that groups approaches dealing with such an unpredictable
distribution shift [26]. Most of the transfer learning approaches try to solve the problem by inducing a bias into the
DNN to overcome data issues. Especially, approaches that extend image data using auxiliary knowledge encoded in
language embeddings or knowledge graphs (KGs) have achieved promising results in recent years. Due to Larochelle
et al. [78] auxiliary knowledge is not only important to solve transfer learning problems, but also an opportunity to
influence the way an ML model learns from unstructured data.

In this survey, we focus on visual transfer learning approaches using KGs, as we believe that KGs are well
suited to store and represent any kind of auxiliary knowledge. The auxiliary knowledge encoded in an underlying
graph-structured schema can then be converted to a vector-based knowledge graph embedding (hs). The ability to
transform the graph-based knowledge into the vector space enables the application of linear operations thus its use
in combination with DNNs. A commonly used method for introducing auxiliary knowledge is to use a joint training
objective that combines the semantic embedding hs with the visual embedding hv . In the scope of the survey we
introduce three distinct types of joint embeddings: a) A semantic-visual embedding hs,v , where semantic data is
embedded using hv as an objective; b) A visual-semantic embedding hv,s , where visual data is embedded using
hs as an objective; and c) A hybrid embedding hh, where both semantic and visual data are embedded using a
combination of hs and hv as an objective.

Our main contributions in this survey are listed in the following:

• A categorization of visual transfer learning approaches using KGs according to four distinct ways a KG can be
combined with a DL pipeline.

• A description of generic KGs and relevant datasets and benchmarks for visual transfer learning using KGs for
CV tasks.

• A comprehensive summary of the existing surveys on visual transfer learning using auxiliary knowledge.
• An analysis of research gaps in the area of visual transfer learning using KGs which can be used as a basis for

future research.

The remainder of this paper is structured as follows: Section 2 provides an overview of the methodology followed
to conduct the survey. In Section 3 we introduce the term visual transfer learning. In addition, we outline different
types of modeling structures of knowledge graphs such as directed labeled graphs, hypergraphs, and hyper-relational
graphs. We explain the notion of features extractor, specifically referring to visual and semantic features. Further,
we describe the term knowledge graph embedding and provide a brief categorization of KGE-Methods concerning
different supervision and input types. Several joint training objectives suitable to combine semantic embeddings
with visual embeddings are described. The main section, Section 4 introduces four different categories on how a
KG can be combined with a DL pipeline:

1) Knowledge Graph as a Reviewer – where the KG is used for post-validation of a visual model;
2) Knowledge Graph as a Trainee, where the KG is embedded into hs,v using hv as objective;
3) Knowledge Graph as a Trainer, where the KG with hs is used as an objective to embedd images into hv,s ; and
4) Knowledge Graph as a Peer, where the KG with hs is combined with hv to suit as objective that embedds both

the KG and images into hh.
Since KGE-Methods have only recently entered the field of visual transfer learning, we also list related methods

forming hs based on other types of auxiliary knowledge in categories 2), 3), and 4). Other types of auxiliary knowl-
edge are language descriptions or class attributes so that their semantic features extractor fs(·) differs in the type of
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input, but not in its architecture. Furthermore, in Section 5 we provide an overview of generic KGs, several datasets
and benchmarks using various types of auxiliary knowledge, like attributes, textual descriptions, or graphs. In Sec-
tion 6 we summarize related surveys in the field of visual transfer learning and knowledge-based ML. Section 7
gives an outlook about challenges and open issues in the field of visual transfer learning using knowledge graphs.
Finally, Section 8 provides a discussion and a conclusion as well as an outlook of future directions on the field.

2. Methodology

Our objective is to provide a comprehensive overview of how KGs can be used in combination with DL to solve
visual transfer learning tasks. To ensure the quality of the outcome, we followed the process proposed by Petersen et.
al [108,109] and conducted an initial search on five scholarly indexing services. We applied inclusion and exclusion
criteria on our findings and extended them based on the snowballing approach [152].

2.1. Research questions

The combination of visual and semantic data seems to be a promising direction to build models that can cope
with the diversity of the real world. However, some major challenges and questions arise when combining these
modalities.

– RQ1 – How can a knowledge graph be combined with a deep learning pipeline?
– RQ2 – What are the properties of the respective combinations?
– RQ3 – Which knowledge graphs already exist, that can be used as auxiliary knowledge?
– RQ4 – What datasets exist, that can be used in the combination with auxiliary knowledge to evaluate visual

transfer learning?

RQ1 and RQ2 are answered in Section 4, where we categorize and discuss visual transfer learning approaches based
on how the KG is combined with the DL pipeline. RQ3 and RQ4 are answered in Section 5, where we summarize
available KGs, datasets, and benchmarks that will help to compare approaches of the field of visual transfer learning
using KGs.

2.2. Literature search

To collect relevant literature, we define a search string using the following strategy:

– Extract major terms from research questions.
– Use synonyms and alternative terms.
– Combine using OR to include synonyms and alternative terms.
– Combine using AND to join the key terms.

As a result, the following major terms related to the concepts are derived: Knowledge Graph, Visual Transfer
Learning, and connect them by a Boolean AND operation. Each term contains a set of keywords related to the
respective concept, connected by a Boolean OR operation. Therefore, the initial search string was as follows:
((“Knowledge Graph” OR “Knowledge Graph Embedding” OR “Semantic Embedding”) AND (“Visual
Transfer Learning” OR “Transfer Learning” OR “Zero-shot Learning” OR “Deep Learning” OR “Com-
puter Vision”))

For the primary search process we used five scholarly indexing services: Google Scholar,1 IEEE Xplore,2 ACM
Digital Library,3 Scopus,4 and DBLP.5

1https://scholar.google.com
2https://ieeexplore.ieee.org
3https://dl.acm.org
4https://www.scopus.com
5https://dblp.uni-trier.de

https://scholar.google.com
https://ieeexplore.ieee.org
https://dl.acm.org
https://www.scopus.com
https://dblp.uni-trier.de
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2.3. Literature selection and quality assessment

After the literature search we included literature based on the following criteria:

– Studies using visual features.
– Studies using auxiliary knowledge.

Further, we excluded literature based on the following criteria:

– News articles.
– Non-English studies.
– Non-public available studies.
– Duplicate studies.

We reduced the amount of 16,200 studies after applying the inclusion and exclusion criteria on title and abstract to
17 relevant surveys and 164 studies (1.12%) During full-text reading, it became obvious that further articles should
be removed as they were not in the scope based on the inclusion and exclusion criteria. The remaining articles (106)
were used to conduct backward snowball sampling [152], which led to 22 additional studies. On the set of 128
primary studies we conducted a quality assessment on the following questions:

– Does the study provide a solid assessment?
– Are the results plausible?

Thus, we were able to reduce the number of studies to 124. These studies provide the basis for the survey and serve
to answer the formulated research questions.

3. Background

This section briefly introduces the term visual transfer learning, describes the fundamentals of KGs, feature
extractors, knowledge graph embeddings, and joint training objectives in the context of this survey.

3.1. Visual transfer learning

Visual transfer learning is presented in [118] as follows: Given a source domain DS with input data XS , a
corresponding source task TS with labels YS , as well as a target domain DT with input data XT and a target task
TT with labels YT , the objective of visual transfer learning is to learn the target conditional probability distribution
PT (YT |XT ) with the information gained from DS and TS where DS �= DT or TS �= TT .

Zero-shot learning is a visual transfer learning task with labeled source domain data and unlabeled target domain
data. Zero-shot learning aims to extract implicit knowledge of the classes in the source domain task TS and transfers
this knowledge to unknown classes of the target domain task TT [103]. If zero-shot learning has access to an
additional set of labeled target data XT , the task is called few-shot learning.

Domain generalization is a visual transfer learning task with access to labeled source domain data and unlabeled
target domain data. Domain generalization aims to extract implicit knowledge of the source domain DS and transfer
this knowledge to an unknown target domain DT [12,95]. If domain generalization has access to an additional set
of labeled target data XT , the task is called domain adaptation.

3.2. Knowledge graph

Knowledge is the awareness, understanding, or information for a phenomenon or a subject that has been obtained
by observations or study.6 It can be either implicit or explicit and stored and represented in different ways. Explicit

6https://dictionary.cambridge.org/dictionary/english/knowledge

https://dictionary.cambridge.org/dictionary/english/knowledge
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knowledge is the type of knowledge that can be easily interpreted, organized, managed, and transmitted to others.
Implicit knowledge is the form of knowledge that is gathered through observations and activities of everyday life.
Using various modeling techniques, complex explicit knowledge can be formally represented in KGs. On the other
hand, a common method for gathering implicit knowledge is to use feature extraction methods, that learn latent
knowledge representations, e.g. visual or semantic embeddings, from observations [47].

There exist many ways for expressing, representing, and storing knowledge. In this survey, we focus on KGs, a
structured representation of facts, consisting of entities, relationships, and semantic descriptions. A comprehensive
definition is given by the authors of [58] where a KG is defined as a graph of data with the objective of accumulating
and conveying real-world knowledge, where entities are represented by nodes and relationships between entities are
represented by edges. Knowledge can be expressed in a factual triple in the form of (head, relation, tail). In its most
basic form, we see a KG as a set of triples G = H,R, T , where H is a set of entities, T ⊆ E ×L, is a set of entities
and literal values and R, set of relationships which connects H and R.

A graph model is a model which structures the data, including its schema and/or instances in form of graphs, and
the data manipulation is realized by graph-based operations and adequate integrity constraints [3]. Each graph model
has its formal definition based on the mathematical foundation, which can vary according to different characteristics,
for instance, directed vs undirected, labeled vs unlabeled, etc. The most basic model is composed of labeled nodes
and edges, easy to comprehend but inappropriate to encapsulate multidimensional information. Other graph models
allow for the representation of information utilizing complex relationships in the form of hypernodes or hyperedges.
In the following, we discuss three common graph models that are used in practice to represent data graphs.

Directed labeled graphs: A directed labeled graph is comprised of a set of nodes and a set of edges connecting
those nodes, labeled based on a specific vocabulary [3].

The direction of the edge of two paired nodes is important, which clearly distinguishes between the start node
and the end node. This intuitively enables the organization of information via the utilization of binary relationships.

Hypergraphs: Hypergraphs extend the definition of binary edges by allowing the modeling of multiple and com-
plex relationships [3].

On the other hand, hypernodes modularize the notion of node, by allowing nesting graphs inside nodes. In addi-
tion, the notion of a hyperedge enables the definition of n-ary relations between different concepts.

Hyper-relational graphs: A hyper-relational graph is also a labeled directed multigraph where each node and edge
might have several associated key-value pairs [4].

Internally, nodes and edges are annotated according to a chosen vocabulary and have unique identifiers, making
them a flexible and powerful form of modeling for graph analysis with weighted edges.

Table 1 illustrates the three graph models mentioned above with some corresponding examples. A KG can be
based on any such graph model utilizing nodes and edges as a fundamental modeling form.

3.3. Feature extractor

A feature extractor is a transformation function from higher dimensional into lower dimensional vector space,
including a vast variety of dimensionality reduction methods [11,147].

Since it has been shown that most downstream tasks can be solved better on a reduced dimensionality, feature
extractors are also a fundamental building block of modern systems working on visual and semantic data.

However, more and more conventional feature extraction methods have been replaced with DNNs. A DNN is
an artificial neural network (NN) with multiple layers between the input and output layers, having the ability to
automatically extract lower dimensional features from the input data [57,69].

As depicted in Fig. 1, a DNN can be decoupled in a feature extractor f (·), with its embedding space �h and a
prediction task g(·), expressing the function

�̂y = g
(
f (�x)

)
, with f (x) = �h. (1)

There are different architectures of DNNs, but they always consist of the same components: neurons, synapses,
weights, biases, and functions [47]. The most common architectures that build a DNN are multilayer perceptrons
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Table 1

Various graph models. Three common graph models used as underlying structure for knowledge representation in KGs: 1) directed labeled
graphs; 2) hypergraphs; and 3) hyper-relational graphs

Directed labeled graphs Hypergraphs Hyper-relational graphs

Nodes and
Literals

– Real-world and abstract entities
– Entity’s attribute value

– Real-world and abstract entities
– Entity’s attribute value

– Real-world and abstract entities
– Entity’s attribute value

Relationships – Binary relations between entities
– Relations between an entity and its
attribute’s values

– Binary relations between entities
– Relations between an entity and its
attribute’s values
– Many-to-many relations between
entities (Hyperedge)

– Binary relations between entities
– Relations between an entity and its
attribute’s values
– Additional information encoded in
relationship (Hyper-relation)

Semantics Connect two nodes Connect an arbitrary set of nodes Connect two nodes with additional
contextual information

Example

Fig. 1. A DNN that takes �x as input and predicts �̂y can be decoupled into a feature extractor f (·) with its embedding space �h and a prediction
task g(·).

(MLP), convolutional neural networks (CNN), recurrent neural networks (RNN), and transformer models. Each
architecture has its advantages and is therefore preferred for a particular type of input data and particular task [47].

Whereas, DNNs are usually trained end-to-end resulting in a task-dependent embedding space �h, more recently,
attempts have been made to independently pre-train the feature extractor that it can be applied to several visual
transfer learning and downstream tasks [22].

Visual features extractor: A visual features extractor fv(·), shown in Fig. 2(a), is a transformation function that
transform visual input data �xv from an higher dimensional image space into a lower dimensional visual embedding
space �hv .

A formal definition is given by

�hv = fv( �xv), (2)

where the final dimensionality of �hv is determined by the architecture.
Whereas early approaches used traditional visual features extractors as scale-invariant feature transform

(SIFT) [87] or histogram of oriented gradients (HOG) [25], modern CV methods use almost only DNN-based
approaches. A common method to obtain a general DNN-based visual feature extractor is to pre-train a DNN on a
large image dataset, such that the DNN automatically learns to extract valuable features out of the images.
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Fig. 2. Feature extractors transform input data into embedding space: (a) a visual features extractor transforms visual input data, i.e. images,
into visual embedding space; and (b) a semantic features extractor transforms semantic input data, e.g. text or graphs, into semantic embedding
space.

Fig. 3. A KGE-method transforms a KG into a knowledge graph embedding hs .

Semantic features extractor: A semantic features extractor fs(·), shown in Fig. 2(b), is a transformation function
that transform semantic input data �xs from an higher dimensional image space into a lower dimensional semantic
embedding space �hs .

A formal definition is given by

�hs = fs( �xs), (3)

where the final dimensionality of �hs is determined by the architecture.
The term semantic data is here used for both, unstructured data from language and structured data from a KG.

Although the input data structure differs in its original format, the output of the semantic features extractor is
always a low dimensional and vector-based semantic embedding space. This similarity enables a seamless transfer
from hybrid approaches of vision and language to hybrid approaches of vision and KGs.

3.4. Knowledge graph embedding

A knowledge graph embedding hs is a representation of a KG in vector space, where close relationships between
entities in a KG are reflected by local neighborhoods in hs . hs is generated by a knowledge graph embedding
method (KGE-Method), which maps the entities and relations of a KG into low-dimensional vectors, while capturing
their semantic meanings and relations [145]. Therefore, a KGE-Method is a special case of the semantic features
extractors fs(·) that works on graph data.

In Fig. 3, the general pipeline of KGE-Methods which transform a KG into hs is illustrated.

3.4.1. KGE-methods – learning mode
Originally, KGE-Methods were developed to solve graph-based tasks such as node classification or link pre-

diction. However, there is an increasing interest to apply KGE-Methods for visual tasks, such as classification,
detection, or segmentation. We briefly categorize KGE-Methods therefore into unsupervised and supervised KGE-
Methods, as Chami et al. [15] recently proposed for graph embedding algorithms.
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Unsupervised KGE-methods: Unsupervised KGE-Methods form hs based on the inherent graph structure and the
node features, without considering additional task-specific labels for the graph or its nodes. An overview about
unsupervised KGE-Methods is given by Ji et al. [62], who categorized KGE-Methods based on their representation
space (vector, matrix, and tensor space), the scoring function (distance-based, similarity-based), the encoding model
(linear/bilinear models, factorization models, neural networks), and the auxiliary information (text descriptions, type
constraints).

Supervised KGE-methods: In contrast, supervised KGE-Methods learn hs to best predict node or graph labels.
Forming hs by using task-specific labels for the node features, hs can be optimized for a particular task while
retaining the full expressivity of the graph. The most common supervised KGE-Methods are graph neural networks
(GNNs) [49]. GNNs are extensions of standard DNNs that can directly work on a graph structure as provided by a
KG. For scalability reasons and to overcome challenges that arise from graph irregularities various adaptations have
emerged, such as graph convolutional networks (GCN) [71] or graph attention networks (GAT) [136]. Furthermore,
non-Euclidean graph convolutional methods, such as hyperbolic graph convolutional neural networks (HGCN) [16]
are used to deal with a hierarchical structure of the input data.

3.4.2. KGE-methods – input type
The majority of existing KGE-Methods only work on directed labeled graphs, expecting binary relations in a

tripled-based format. However, as shown in Section 3.2, a basic triplet representation oversimplifies the complex
nature of the information that can be stored in hypergraphs and hyper-relational graphs [116]. A hypergraph or
hypher-relational graph can be transformed into directed labeled graphs, either by reification [35], that converts
the graphs into binary-relation graphs, by creating additional triplets from a hyper-relational fact or by the star-to-
clique [151] technique, that converts a tuple defined on k entities into

(
k
2

)
tuples. However, these conversions lead to

suboptimal and incomplete models as well as information loss. They only convert a set of key-value pairs, that are
unaware of the triplet structure [35,116]. To preserve the whole expressivity of the KG, a set of new KGE-Methods
are developed to directly operate on hypergraphs and hyper-relational graphs. Some of the methods that deal with
hypergraphs are HEBE [52], HGE [157], Hyper2vec [59], HNN [36], HCN [154], DHNE [134], HHNE [9], Hyper-
SAGNN [164], HypE [35] and methods that embedd hyper-relational graphs are for instance m-TransH [151],
HSimple [35], RAE [163], GETD [84], TuckER [7], NaLP [51], HINGE [116], StarE [40].

3.5. Training objectives for joint embeddings

Since visual and semantic information can be encoded in a vector-based embedding space forming hv and hs ,
there are several training objectives to learn a joint embedding. The objectives and also the DNNs are optimized
mainly using stochastic gradient descent (SGD) or its derivatives. SGD minimizes an objective, that measures
how far apart the ground truth from the predicted probability distribution or value is. The most common principle
to derive specific objectives that are good estimators for different models is the maximum likelihood principle.
Any of these objectives can be seen as a cross entropy between the empirical distribution defined by the training
set and the probability distribution defined by model [47]. Here we present some of the basic objectives used in
visual transfer learning using KG, which can be augmented with additional regularization terms or hyperparameters.
Although work [13,73] showed that the objectives have a smaller impact on the learned DNN than suspected, there
are configurations of visual and semantic embedding space that only allow certain objectives to be applied. We
define �l ∈ R

K as the network’s output (logits) vector, and �t ∈ 0, 1K as the one-hot encoded vector of targets, where
‖t‖1 = 1. We refer to visual data as xv and semantic data as xs , and equally to visual embedding as hv and semantic
embedding as hs .

3.5.1. Pointwise objectives
Softmax cross-entropy (CE) [14]: CE is the most common objective to learn multi-class classification tasks. The
softmax represents a probability distribution over a discrete variable with K possible values, i.e. classes. CE learns
the DNN end-to-end by comparing the logits �l with the target vector �t and is given by

LCE(�l, �t) = −
K∑

k=1

tk log

(
exp (lk)∑K

j=1 exp (lj )

)
(4)
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= −
K∑

k=1

tklk + log
K∑

k=1

exp (lk) (5)

Mean squared error (MSE): MSE is the most intuitive way of attracting two vectors and is given by

LMSE = 1

K

K∑
k=1

∥∥(�hs,k − �hv,k)
∥∥2

. (6)

The MSE loss calculates the Euclidean distance and maps a training image xv,k and its visual feature vector hv,k) to
a semantic embedding vector hs,k , corresponding to the same class k [128].

However, using the Euclidian distance as a metric fails in high-dimensional space [89]. An alternative metric in
high dimensions is the cosine distance, which is given by sim(�u, �v) = �u��v/‖�u‖‖�v‖.

3.5.2. Pairwise objectives
Pairwise objectives [53] always rely on the information of positive and negative samples. They have the goal to

pull positive visual embedding vectors �hv,p to its corresponding semantic embedding anchor vector �hs,a and push
negatives �hv,n away [37].

Triplet and hinge rank loss [143]: The triplet and hinge rank loss requires an explicit negative sampling. It uses a
margin α as a regularization term and it is given by

Ltri =
∑
n�=p

max
[
0, α − sim(�hs,a, �hv,p) + sim(�hs,a), �hv,n

]
. (7)

Contrastive loss: The contrastive loss extends the triplet loss by a version of the softmax and handles multiple
positives and negatives at a time and is given by

Lcon = − log
exp (sim(�hs,a, �hv,p)/τ)∑2N

n=1 1n�=a exp (sim(�hs,a, �hv,n)/τ)
(8)

where, 1n�=a ∈ {0, 1} is an indicator function that returns 1 iff n �= a, and τ > 0 denotes a temperature parameter.

4. Visual transfer learning using knowledge graphs

Visual transfer learning using knowledge graphs has proven to be particularly advantageous compared to ap-
proaches without auxiliary knowledge [128,148]. Since auxiliary knowledge mitigates the sole dependence on data
distribution, it leads to models that are better generalized and thus more robust and applicable to new domains [78].
Having various kinds of auxiliary knowledge, a KG can serve as a universal knowledge representation. KGs en-
code the classes either hierarchically, organized in superclasses, or flat, using relationships to other objects or other
classes. Section 3.2 presents three distinct modeling structures with different levels of expressiveness and Sec-
tion 3.4 introduces relevant embedding methods. All approaches that use a KG in combination with a DNN use the
KG to implement some prior assumptions in the data-driven DL pipeline. A prior assumption induced by the KG
is the definition of relationships between objects/classes so that objects/classes can borrow statistical strength from
other related objects/classes in the graph. These priors give the CV process a structure that allows making better
predictions even when visual data is sparse or erroneous. However, there are several ways the auxiliary knowledge
of a KG can be induced into a DNN.

Referring to RQ1, this section provides a categorization of visual transfer learning approaches that combine KGs
with the DL pipeline.

As shown in Fig. 4, we categorize the field of visual transfer learning using knowledge graphs into:
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Fig. 4. Visual transfer learning using KGs according to the role of the KG are split in four categories: 1) knowledge graph as a reviewer;
2) knowledge graph as a trainee; 3) knowledge graph as a trainer; and 4) knowledge graph as a peer.

1) Knowledge Graph as a Reviewer – where the KG is used for post-validation of a visual model;
2) Knowledge Graph as a Trainee, where a semantic-visual embedding hs,v is learned using a visual embedding

hv as objective;
3) Knowledge Graph as a Trainer, a visual-semantic embedding hv,s is learned using a semantic embedding hs
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Table 2

Categories and their tasks: task transfer refers to the category zero and few-shot learning, domain transfer refers to the category domain general-
ization and adaptation, and other relates to object classification, object detection, and object segmentation on source task and domain only. Note:
all approaches using related types of auxiliary knowledge are highlighted in bold

Category Sub-category Task transfer Domain transfer Other

Knowledge Graph as a Reviewer [27,29,76,88,115] [42,46] [23,63,82,85,90,99,121]

Knowledge Graph as a Trainee Semantic-Visual
Transformation Model

[114,162]

Semantic-Visual
Features Extractor

[21,41,45,67,106,148], [80,141,169] [24]

Knowledge Graph as a Trainer Visual-Semantic
Transformation Model

[2], [37,72,98,102,128,166] [93]

Visual-Semantic
Features Extractor

[61] [94], [110] [65]

Knowledge Graph as a Peer Hybrid Transformation
Model
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Fig. 5. Approaches from the category knowledge graph as a reviewer use the KG for post-validation of a pre-trained DNN or its intermediate
feature layers.

as objective; and
4) Knowledge Graph as a Peer, where a hybrid-embedding hh is learned using a combination of semantic em-

bedding hs and a visual embedding hv as objective.
Since KGE-Methods have only recently entered the field of visual transfer learning, we also list related methods

forming hs based on other types of auxiliary knowledge in categories 2), 3), and 4). Other types of auxiliary knowl-
edge are language descriptions or class attributes, so that their semantic features extractor fs(·) differs in the type
of input, but not in its architecture, as described in Section 3.3.

Regarding RQ2, we describe the categories and their approaches in detail and discuss their field of application
and their properties. A summary of all approaches and their respective transfer learning task is given in Table 2.

4.1. Knowledge graph as a reviewer

Approaches of the category Knowledge Graph as a Reviewer arrange the visual model and the KG in a sequential
order, as depicted in Fig. 5. The visual output of a pre-trained DNN or its intermediate feature layers suit as an
input to a graph or graph-based network. Unlike the other categories, the KG as a reviewer does not learn a joint
embedding space, instead, it uses the KG or its hs to reason over the independent output of a visual model hv .

Most of the approaches map the output of a visual features extractor fv(·) on the corresponding input nodes in
a hierarchical graph, to enrich the output with inter-class relationships. Lampert et al. [76] train a support vector
machine (SVM) on SIFT features to predict binary animals with attributes (AwA) dataset attributes. These class
attributes are fed into a hierarchical graph-based network to predict unknown classes for a zero-shot learning task.
Salakhutdinov et al. [121] introduce a hierarchical Bayesian classification model [123] that learns a tree structure of
class and super-class relationships. They use their learned graph on top of an SVM, which classifies HOG features
of images. They show that their method using a learned graph outperforms a method using a fixed graph based on
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WordNet7 [92] and other approaches without hierarchical graph information. Deng et al. [29] proposed the DARTS
algorithm for zero-shot learning. They pre-train an SVM on SIFT features of the ImageNet [28] dataset and map
its classification output to WordNet with a reward and an accuracy to maximize the information gain. Ordonez et
al. [99] extend the approach to output human-understandable entry categories for images. They enrich the output of
an SVM-based image classification model with information from a text-based n-gram language model by mapping
both sources to the corresponding node in the WordNet graph. Rohrbach et al. [115] present propagated semantic
transfer (PST). They use WordNet and attribute vectors from the AwA dataset to perform classification on few-shot
learning classes of ImageNet. PST exploits similarities in visual embeddings of known classes encoded by an SVM
learning a k-Nearest Neighbor (kNN) graph that helps to find relationships to new classes. Deng et al. [27] propose
to use a hierarchy and exclusion (HEX) graph that exploits hierarchical class relationships of the output of a visual
model. HEX graphs allow flexible specification of relations between labels applied to the same object. To build
the graph, they use the hierarchical structure of WordNet extended with additional specifications and relations to
objects, such as mutual exclusion (e.g., an object cannot be a dog and a cat), overlap (e.g., a husky can be a puppy
and vice versa), and subsumption (e.g., all huskies are dogs). In addition, they proposed a probabilistic classification
model that exploits their HEX graphs and evaluated their approach on ImageNet, in object classification and zero-
shot learning. Gebru et al. [42] use WordNet attributes to improve fine-grained object classification on the task
of domain generalization with the Office-31 [120] and the large-scale Car dataset [43]. Source and target domain
images are fed through a pipeline with two identical CNNs and a classification layer that classifies both the fine-
grained classes and the different attribute types. The Kullback–Leibler divergence is used to compare the predicted
label distributions. Lee et al. [79] propose a graph gated neural network (GGNN) that incorporates a structured KG
based on WordNet and learned edge weights to improve zero-shot learning. First, an NN is learned that combines
the GloVe [107] language embeddings of the class labels and the pre-trained visual feature vectors of the images
as input to the GGNN. Second, the GGNN learns to propagate the information through the KG and outputs a final
probability for each node.

Instead of using hierarchical graphs of WordNet and class attributes only, other approaches make use of flat
object or class relationships. Their graph consists of specific real-world configurations of objects and their ap-
pearance. Marino et al. [90] improves fine-grained image classification by creating a KG using the most common
object-attribute and object-object relationships of the Visual Genome [74] dataset and higher-level semantics from
WordNet. The output of a pre-trained, faster R-CNN [113] object detector is fed into a graph search neural net-
work (GSNN) which reasons about relationships of the detected objects. The final prediction is a combination of
the GSNN output, the visual embedding, and the detections of the faster R-CNN. Chen et al. [23] propose an object
detection post-processing that connects a local and a global module via an attention mechanism. The local module
is based on a convolutional gated recurrent unit (GRU) and builds spatial memory of previously detected objects
using the class label and its visual embedding. The global graph-reasoning module consists of two paths, a spa-
tial path that uses a region graph to connect far detected classes, and a semantic path which uses a KG, based on
ADE20K [168] and Visual Genome, to connect classes with semantically related classes. Jiang et al. [63] extend [23]
with hybrid knowledge routed modules (HKRM) allowing them to be applied on the intermediate feature represen-
tation directly to check the compatibility of auxiliary knowledge with visual evidence in each image. HKRM can
be divided into an explicit knowledge module and an implicit knowledge module, whereas the former contains ex-
ternal knowledge such as shared attributes, co-occurrence, and relationships, and the latter is built without explicit
definitions and forms a region-to-region graph with constraints over objects, as spatial knowledge such as layout,
size, overlap. Liu et al. [85] improve object detection by feeding the final object detections into a GCN which is
based on object relationships and learned from MSCOCO dataset [83]. Gong et al. [46] propose a human parsing
agent called “Graphonomy” that learns a knowledge graph on a conventional parsing network. It consists of an
intra-graph reasoning module in form of a GCN whose structure uses semantic constraints from the human body
to transfer knowledge within a dataset due to encoded relationships between nodes, and an inter-graph reasoning
module, that uses handcrafted relations, a learnable matrix, feature similarities, and semantic similarities, to transfer
semantic information between different datasets. Liang et al. [82] present a symbolic graph reasoning (SGR) layer

7https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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Fig. 6. Approaches that belong to the category knowledge graph as a trainee learn semantic visual embedding space supervised by a visual
embedding. They either learn (a) a transformation function, e.g. MLP, on top of a pre-trained semantic embedding space or (b) a semantic-visual
features extractor.

for semantic segmentation and image classification. It consists of a module that assigns the visual features of a pre-
trained DNN to corresponding nodes of a KG. A graph reasoning over all previously defined nodes is performed,
and a mapping from the symbolic graph information back to the visual feature space. Their graph is based on an
object relation graph from Visual Genome and a hierarchical relation graph from WordNet.

Luo et al. [88] propose a context-aware zero-shot learning framework, where they use a KG to reason about
visual feature vectors generated from an object detection model. By using inter-class relationships, they improve
traditional zero-shot learning techniques on the Visual Genome dataset.

4.2. Knowledge graph as a trainee

Approaches that belong to this category combine the visual DNN with the auxiliary knowledge of a KG by
learning a semantic-visual embedding hs,v . Unlike the Knowledge Graph as a Reviewer, which uses the visual
embedding hv as input for the KG, approaches from the category Knowledge Graph as a Trainee use hv as an
objective to embedd the KG into hs,v . Figure 6 illustrates a conceptual architecture of the knowledge graph as
a trainee approach. To combine visual and semantic information, some approaches either learn a transformation
function, e.g. MLP, on top of a semantic embedding space hs , or apply supervised KGE-Methods to learn a semantic-
visual features extractor fs,v(·) directly.

4.2.1. Semantic-visual transformation models
As shown in Fig. 6(a), the pre-trained hs is fixed over the whole training process, and an additional transformation

function, e.g. MLP, is learned to transform hs , into the semantic-visual embedding space hs,v .

Related approaches using other auxiliary knowledge: Rochan et al. [114] used a fixed language embedding to
define relationships between classes, that unknown classes in a zero-shot learning task can borrow their visual
embeddings from a linear combination of known related classes. Zhang et al. [162] extends suggesting to use the
visual space, instead of the semantic space, as the main embedding space, thus reducing the hubness problem that
occurs in high dimensions.

4.2.2. Semantic-visual features extractors
As illustrated in Fig. 6(b) the semantic-visual features extractor fs,v(·) learns to directly transform the KG into a

semantic-visual embedding hs,v using the supervision of the visual embedding space hv . As described in Section 3.4,
fs,v(·) is mostly implemented using a supervised KGE-Method.

Wang et al [148] build a GCN on the structure of WordNet and optimize it to predict ImageNet pre-trained visual
classifiers. Based on the learned relations in the GCN they are able to transform information to novel class nodes
to perform zero-shot learning. A similar principle is used by Chen et al. [24] for multi-label image recognition.
However, instead of using a hierarchical graph, the approach uses an object-relation graph which reflects the differ-
ent relations between objects in a scene. They build their graph based on the occurrence probabilities of different
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objects in the MSCOCO dataset since some objects are more likely to occur together. Kampffmeyer et al. [67] claim
that multi-layer GNN architectures, which are required to propagate knowledge to distant nodes in the graph, dilute
the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease per-
formance. They propose a dense graph propagation (DGP) module with direct links among distant nodes to exploit
the hierarchical graph structure of the KG. They tested their approach on zero-shot learning tasks as 21K ImageNet
dataset and AWA2. Gao et al. [41] designed a two-stream GCN (TS-GCN) to perform zero-shot action recognition
(ZSAR). Their GCN architectures are based on the ConceptNet 5.5 KG, which contains information from various
knowledge bases such as WordNet and DBpedia. The first classifier branch uses the language embedding vectors of
all classes as input for a GCN and then generates the classifiers for each action category. The second instance branch
feeds video segments into a DNN and outputs object scores, which are combined with attribute vectors from the
classifier branch using a post-processing GCN to form an attribute feature space. The final objective is then defined
by a comparison of the attribute feature space and the output of the classifier branch. Peng et al. [106] propose
a knowledge transfer network (KTN), which extends [148] with a vision-knowledge fusion model. This vision-
knowledge fusion model is used to combine the final prediction output of the GCN with the output of a DNN, as
they claim that semantic embeddings and visual embeddings are complementary and therefore cannot be combined
with a single inner product. They pre-train their visual feature learning module using cosine similarity on image
data, use a subgraph of WordNet for their knowledge transfer module, and language embeddings of the class labels
as the initial state of the nodes of the GCN. Chen et al. [21] present the knowledge graph transfer network (KGTN).
The knowledge graph transfer module incorporates a GGNN, which supports knowledge transfer of classes through
a KG. To train GGNN, they fix the weights of a pre-trained visual features extractor and examine three different
similarity metrics, such as inner product, cosine similarity, and person correlation coefficient, to compare the output
of the DNN and the GGNN. They show that the accuracy of the model benefits from a reasoning process and the
auxiliary knowledge from a KG.

Geng et al. [45] recently proposed Onto-ZSL, an ontology-enhanced zero-shot learning framework that can be
applied either to image classification or knowledge graph completion. They build an inter-class relationship using an
ontological schema, that comprises a label taxonomy from WordNet, textual descriptions, and attribute descriptions.
Further, they address the data imbalance problem between seen and unseen images by leveraging a generative
adversarial network (GAN) that produces synthesized visual feature vectors for unseen classes.

Related approaches using other auxiliary knowledge: Approaches using language models leverage GANs to imag-
ine unseen categories from text descriptions and hence recognize novel classes with no examples being seen. GANs
can be seen as a transformation function from text-based input to visual features, using the supervision of a visual
model. Zhu et al. [169] propose GAZL, an approach that takes noisy text descriptions about unseen classes from
Wikipedia and generates synthesized visual features for this class. Using textual input for unseen classes they learn
a GAN that generates visual features similar to the pre-trained ones of the seen classes. Therefore, the zero-shot
learning problem is transformed into a standard classification task and a classifier that can handle unseen classes
can be trained using the synthesized image features for every unseen class. Li et al. [80] extended the approach
by introducing LisGAN, a GAN that takes semantic descriptions and random noise to generate visual features for
unseen classes. In addition, they deploy the average representation of all samples from an unseen class defining
the soul sample of the class to reduce the noise in the predictions. Vyas et al. [141] propose LsrGAN, a generative
model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowl-
edge transfer by incorporating a novel semantic regularized loss (SR-Loss). Knowing the inter-class relationships
in the semantic space helps to impose the same relationship constraints among the generated visual features.

4.3. Knowledge graph as a trainer

Methods that belong to the category Knowledge Graph as a Trainer combine the visual output of a DNN with
the auxiliary knowledge of a KG by learning a visual-semantic embedding hv,s . Figure 7 illustrates a conceptual
architecture of the knowledge graph as a trainer approach. The KG acts as a trainer and supervises the training of
the DNN using hs , rather than letting the DNN learn a hv solely depending on the data distribution of the images.
We refer to such an embedding of visual information learned under the supervision of a semantic embedding hs
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Fig. 7. Approaches that belong to the category knowledge graph as a trainer learn visual semantic embedding space supervised by a semantic
embedding. They either learn (a) a transformation function, e.g. MLP, on top of a pre-trained visual embedding space that suits as a transformation
function or (b) a visual-semantic features extractor that learns the final embedding directly.

as a visual-semantic embedding hv,s . To combine semantic and visual information, some approaches either learn
a transformation function, e.g. MLP, on a pre-trained and fixed visual embedding hv or learn a visual-semantic
features extractor fv,s(·) directly.

4.3.1. Visual-semantic transformation models
As shown in Fig. 7(a), the pre-trained hv is fixed over the whole training process and an additional transformation

function, e.g. MLP, is learned to transform hv , into the visual-semantic embedding space hv,s .
Akata et al. [2] refer to their semantic embedding space transformations as label embedding methods. They

compared transformation functions from the visual embedding space to the attribute label embedding space, the
hierarchy label embedding space, and the Word2Vec [91] label embedding space. Lonij et al. [86] approached the
task of open-world visual recognition by using KGs. They learn hs from a WordNet KG by using the neural tensor
layer (NTL) [127] architecture and embedd the visual embedding generated by a pre-trained CNN into the same
space using the hinge rank loss.

Related approaches using other auxiliary knowledge: One of the first approaches that use semantic embeddings
with NNs is the work from Mitchell et al. [93]. They use language embeddings derived from text corpus statistics
to generate neural activity pattern images. Instead of generating images from text, Palatucci et al. [102] learn a
linear regression model to map neural activity patterns into language embedding space. Socher et al. [128] present a
model for zero-shot learning that learns a transformation function between a visual embedding space, obtained by an
unsupervised feature extraction method, and a semantic embedding space, based on a language model. The authors
trained a 2-layer NN with the MSE loss to transform the visual embedding into the language embedding of 8 classes.
Frome et al. [37] introduce the deep visual-semantic embedding model DeViSE that extends the approach from 8
known and 2 unknown classes to 1,000 known and 20,000 unknown classes. Therefore, they pre-train their visual
features extractor using ImageNet and their semantic embedding vector using a skip-gram language model [91]. In
contrast to Socher et al. [128] they learn a linear transformation function between the visual embedding space and
the semantic embedding space using a combination of dot-product similarity and hinge rank loss since they claim
that MSE distance fails in high dimensional space. Norouzi et al. [98] propose convex combination of semantic
embeddings (ConSE). ConSE performs a convex combination of known classes in the semantic embedding space,
weighted by their predicted output scores of the DNN, to predict unknown classes in a zero-shot learning task.
Similarly, Zhang et al. [166] introduce the semantic similarity embedding (SSE), which models target data instances
as a mixture of seen class proportions. They built a semantic space that each novel class could be represented as a
probabilistic mixture of the projected source attribute vectors of the known classes.

Kodirov et al. [72] propose SAE a semantic autoencoder for zero-shot learning. It is learned by encoding pre-
trained visual features of a CNN into a latent semantic space and then by decoding them back into visual space. The
semantic space is based on class attributes for smaller datasets and on a word2vec language model for larger datasets.
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Fig. 8. Approaches that belong to the category knowledge graph as a peer learn hybrid embedding space as a combination of visual and semantic
embedding space. They either learn (a) transformation functions, e.g. MLPs, on top of both pre-trained visual and semantic embedding spaces
that suit as a transformation function or (b) hybrid features extractors that learn the final embedding directly.

They claim that their latent semantic embedding space can better handle the projection domain shift problem, i.e.
the distribution shift between seen and unseen classes.

4.3.2. Visual-semantic features extractors
As illustrated in Fig. 7(b) the visual-semantic features extractor fv,s(·) is learned to directly transform the images

into a visual-semantic embedding hv,s using the supervision of the semantic embedding space hs . As described in
Section 3.4, hs is mostly learned using an unsupervised KGE-Method and fv,s(·) is implemented using a standard
DNN.

Monka et. al [94] propose KG-NN, an approach that uses a KG and its hs to train a visual DNN. Using a con-
trastive knowledge graph embedding loss in combination with hs they learn a visual-semantic features extractor
fv,s(·). They test their approach on domain generalization and adaptation tasks for road sign recognition in Ger-
many and China, as well as on mini-ImageNet and various derivatives. They show that their visual features extractor
learned using the Knowledge Graph as a Trainer outperforms a conventional DNN trained with CE, the same DNN
without additional information from the KG, and the same DNN using additional information from a pre-trained
GloVe embedding in visual transfer learning tasks.

Jayathilaka et al. [61] proposed a framework named ViOCE that integrates ontology-based background knowl-
edge in the form of n-ball class embeddings into a DNN-based vision architecture. The approach consists of two
components – converting symbolic knowledge of an ontology into continuous space by learning n-ball embeddings
that capture properties of subsumption and disjointness and guiding the training and inference of a vision model
using the learned embeddings.

Related approaches using other auxiliary knowledge: Joulin et al. [65] demonstrate that feature extractors trained
to predict words in image captions learn useful image representations. They convert the title, description, and hash-
tag metadata of images into a bag-of-words multi-label classification task and showed that pre-training a feature
extractor to predict these labels learned representations which performed similarly to ImageNet-based pre-training
on transfer tasks. Radford et al. [110] claim that state-of-the-art CV systems are restricted to predict a fixed set
of predetermined object categories. Therefore, they propose to use a simple and general pre-training of their CNN
with natural language supervision, i.e. predicting which caption goes with which image on a dataset of 400 million
image-text pairs collected from the internet using the objective of Zhang et al. [165].

4.4. Knowledge graph as a peer

Approaches of the category Knowledge Graph as a Peer combine the visual DNN with the auxiliary knowledge
of a KG by influencing both semantic and visual embedding. Unlike the previous categories, the idea of a hybrid
embedding hh is to fuse the visual embedding hv and the semantic embedding hs . Both semantic and visual data are
then embedded into hh. Figure 8 illustrates a conceptual architecture of the knowledge graph as a peer approach. The
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final hybrid embedding space is either a combination of pre-trained visual embedding hv and semantic embedding
hs , using a transformation function, e.g. MLP, or a combination of hybrid-visual fh,v(·) and hybrid-semantic features
extractors fh,s(·).
4.4.1. Hybrid transformation models

As shown in Fig. 8(a), pre-trained hs and pre-trained hv are fixed over the whole training process and an additional
transformation functions, e.g. MLPs, are learned to transform hs and hv , into the hybrid embedding space hh.

Zhao et al. [167] propose a joint model that combines an image stream and a concept stream via a joint loss func-
tion to preserve concept hierarchy as well as visual feature similarities. The concept stream is based on a language
embedding with the hierarchical graph of WordNet and the image stream is a visual embedding from semantic seg-
mentation DNN. They compare their approach against the standard CE-based approach and semantic embedding
space transformations based on Word2Vec. Roy et al. [117] introduce a zero-shot learning model that takes advan-
tage of the commonsense knowledge graph ConceptNet 5.5 to generate hs of the class labels by using a GCN-based
autoencoder. They enrich hs with additional attributes and language embeddings, which is then compared with a
pre-trained visual output of a DNN using a relation network [130].

Related approaches using other auxiliary knowledge: Yang et al. [155] propose a two-sided NN to learn a combi-
nation of a pre-trained visual embedding and a semantic embedding of attributes and word vectors based on image
descriptions to perform zero-shot learning and domain generalization. To train their NN they use a Euclidean loss
for regression and a hinge rank loss for classification. Fu et al. [38] try to reduce the bias of semantic embedding
spaces, by proposing a transductive multi-view embedding framework that aligns novel features with the seman-
tic embedding space for zero-shot learning. The framework first transforms the semantic embedding space into a
joint embedding space using the unlabeled target data with a multi-view canonical correlation analysis (CCA) to
alleviate the projection domain shift problem. And Second, a heterogeneous multi-view hypergraph label propaga-
tion method is used to perform zero-shot learning in the transductive embedding space, which combines additional
semantic knowledge in the form of attributes and word vectors from related classes. Ba et al. [6] introduce a flex-
ible zero-shot learning model that learns to predict unseen image classes using a language embedding. Therefore,
they add two separate MLPs on top of the visual embedding and the semantic embedding and train them using the
binary-CE loss, the hinge loss, and the Euclidean distance loss. Karpathy et al. [68] learn a model that generates
language descriptions for detected objects in an image. Their objective aligns the output of a pre-trained CNN ap-
plied to image regions, and the output of a bidirectional RNN applied to sentences. Changpinyo et al. [17] use a
set of “phantom” object classes whose coordinates live in both the semantic space and the model space. To align
the two spaces, they view the coordinates in the visual embedding as the projection of the vertices on the graph
from the semantic embedding. To compute low-dimensional Euclidean space embeddings from the weighted graph
they propose to use the algorithm of Laplacian eigenmaps, mapping semantic and visual embedding into a common
space defined by the mixture of seen classes proportions. Tsai et al. [133] propose the approach ReViSE that learns
an unsupervised joint embedding of semantic and visual features to enable zero-shot learning. As external knowl-
edge, they experiment with three different embedding methods for their attributes, human-annotated attributes [77],
Word2Vec attributes, and GloVe attributes. Tang et al. [132] propose the large scale detection through adaptation
(LSDA) framework to improve object detectors with image classification DNNs, hence without requiring expensive
bounding box annotations. LSDA defines visual similarity as the distance between pre-trained visual embedding
vectors and semantic similarity as the distance between pre-trained language embedding vectors of the labels. Jiang
et al. [64] introduce their transferable contrastive network (TCN) explicitly transfers knowledge from the source
classes to the target classes, to counteract the overfitting problem on source classes. To compute the similarities
between classes in the hybrid embedding space, they design a contrastive network that automatically judges how
well the embedding vector is consistent with a specific class. Li et al. [81] propose a multi-layer transformer [135]
model as DNN, which uses object tags detected in images as anchor points to learn a joint embedding of the de-
tected objects and the language tags, instead of simply concatenating visual embedding and semantic embedding.
Yu et al. [158] propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and
language using a transformer model as DNN. ERNIE-ViL tries to construct the detailed semantic connections across
vision and language while constructing a scene graph parsed from sentences and type prediction tasks, i.e., object
prediction, attribute prediction, and relationship prediction in the pre-training phase.
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4.4.2. Hybrid features extractors
As depicted in Fig. 8(b), hybrid-semantic fh,s(·) and hybrid-visual fh,v(·) features extractors are learned to di-

rectly transform KG and images into a common hybrid embedding hh. As described in Section 3.4, fh,s(·) is usually
implemented using a supervised KGE-Method and fh,v(·) using a standard DNN.

Recently, Naeem et. al [97] proposed a method to perform zero-shot image classification using hybrid features
extractors. An ImageNet pre-trained DNN is used for the visual features extractor and a GCN in the compositional
graph embedding (CGE) setting is used for the semantic features extractor. However, they learn a joint embedding
function that can influence the weights of the DNN as well as the weights from the GCN. Interestingly, they compare
their model against a similar version of their model, but with a fixed visual features extractor where the KG just acts
as a trainee (see Section 4.2). They use that version for comparison with related approaches, stating that all other
methods are based on fixed visual features extractors. Moreover, they show that a hybrid approach with an adaptive
visual features extractor performs better than the other.

Related approaches using other auxiliary knowledge: Zhang et al. [165] use two contrastive pre-training objec-
tives, contrasting semantic embedding to visual embedding, and vice versa, on the special domain of medical imag-
ing to learn a joint feature extractor. Instead of previous works that learn transformation functions on top of fixed
image trained visual features extractors they directly supervise the training of the CNNs with language embedding
information. To train their DNN they use text-image paired data.

5. Visual transfer learning datasets and benchmarks

Building expressive knowledge graphs from scratch can be a quite challenging task. Concerning RQ3, this section
provides an overview of standard and large-scale KGs that can be used as auxiliary knowledge. Moreover, as there
are no standard datasets and benchmarks to compare visual transfer learning tasks that use KGs, we refer to RQ4
and provide a list of datasets and benchmarks that have been used in the community of knowledge-based ML and
visual transfer learning in Table 3. These Datasets and Benchmarks include: a) Attribute augmented image datasets
with textual image or class attribute descriptions; b) Language augmented image datasets, providing additional
textual descriptions of the images; c) Knowledge graph augmented image datasets, containing meta information of
class relations in a KG; d) Image datasets without auxiliary knowledge, used for zero-shot learning and domain
generalization tasks.

5.1. Generic knowledge graphs

Over the years, several open-access KGs have been created by various community initiatives. These graphs con-
tain universal knowledge which potentially can be used as auxiliary knowledge in various scenarios. In the follow-
ing, some of the most common generic KGs currently available are described in more detail. However, for deeper
insights, we refer to the survey of Färber et al. [34].

WordNet [92]: WordNet, firstly released in 1995, is an online lexical reference system for English nouns, verbs,
and adjectives which are organized into synonym sets (synsets), each representing one underlying lexical concept.
WordNet superficially resembles a thesaurus, in that it groups words based on their meanings. There are 117,000
synsets, each synset is linked with other synsets by super-subordinate relations, forming a hierarchical structure of
instances, concepts and categories whereas all are linked with the root node, entity.

ConceptNet 5.5 [129]: ConceptNet 5.5 is a KG that connects words and phrases of natural language with la-
beled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing,
and games with a purpose. It is designed to represent the general knowledge involved in understanding language,
improving natural language applications by allowing the application to better understand the meanings behind the
words people use. Information within ConceptNet is modeled as a directed labeled graph (see Section 3.2), where
concepts are connected via binary relationships. It contains approximately 34 million statements, i.e. edges.8

8https://conceptnet.io

https://conceptnet.io
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Table 3

Datasets and benchmarks of the field of visual transfer learning and knowledge-based ML are summarized due to type of knowledge, task,
auxiliary knowledge, and their release date. ZSL is zero-shot-learning, DG is domain generalization, and other are tasks from image classification,
object detection, object segmentation, and image captioning

Type of knowledge Task Dataset Auxiliary knowledge Release date

Attributes + Images ZSL AwA textual attributes for img/cls 2009

AwA2 textual attributes for img/cls 2019

SUN textual attributes for img/cls 2012

CUB textual attributes for img/cls 2010

DG Large-Scale Car Dataset textual attributes for img/cls 2017

Language + Images Other MS-COCO textual denotation graph 2014

Flickr30K textual denotation graph 2015

SBU Captions textual descriptions for img 2011

Conceptual Captions textual descriptions for img 2018

Knowledge Graph + Images ZSL Visual Genome flat concept graph 2017

miniImageNet hierarchical concept graph 2016

tiredImageNet hierarchical concept graph 2018

DG ImageNet hierarchical concept graph 2009–2015

Images ZSL CIFAR-FS N/A 2016

FC-100 N/A 2016

DG Office-31 N/A 2010

Office-Home N/A 2016

VisDA2017 N/A 2017

DBPedia [5]: DBPedia is a community effort to extract structured information from Wikipedia and to make this
information available on the Web. DBpedia allows you to ask sophisticated queries against datasets derived from
Wikipedia and to link other datasets on the Web to Wikipedia data. The underlying structure of DBpedia is a
hypergraph model (see Section 3.2) where facts are represented via binary and n-ary relationships. The English
version of the DBpedia knowledge base describes 4,58 million things, out of which 4,22 million are classified in a
consistent ontology, including 1,445,000 persons, 735,000 places, and 411,000 creative works.9

Wikidata [140]: Wikidata is a KG, built collaboratively by humans or automated agents. It encapsulates facts about
the world entities organized in a form of complex statements. The basic structure comprises items defined with a
label and several aliases. In addition, Wikidata contains some sense of basic commonsense knowledge [60] which
allows for performing several sophisticated downstream tasks based on reasoning capabilities. The facts within
Wikidata are represented as a hyper-relation graph (see Section 3.2) where relations are enriched with additional
information known as qualifiers [40]. These qualifiers enable the disambiguation of complex facts about the same
entities in different contexts. Currently, Wikidata has 92,4 million items, where around 6,3 million of them are
humans, 2 million administrative entities, 22,5 million scholarly articles, and so on.10

5.2. Image datasets with auxiliary knowledge

Some datasets are built on auxiliary knowledge bases or intended to use with auxiliary information. We provide
a categorization of the datasets and benchmarks concerning the type of auxiliary knowledge it is augmented with.

5.2.1. Attribute augmented image datasets
Attribute augmented image datasets are image datasets with additional descriptions of image and class attributes,

used for knowledge-based ML.

9https://wiki.dbpedia.org/about
10https://www.wikidata.org/wiki/Wikidata:Statistics, accessed on 02 February 2021.

https://wiki.dbpedia.org/about
https://www.wikidata.org/wiki/Wikidata:Statistics
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AwA [76]: The Animals with Attributes dataset consists of over 30,000 images with pre-computed reference fea-
tures for 50 animal classes, for which a semantic attribute annotation is available from studies in cognitive science.
However, as the AWA images do not have a public copyright license, only some computed image features, i.e.
SIFT [87], DECAF [33], VGG19 [126] of AWA dataset are publicly available, rather than the raw images. Since
image feature learning is an important part of modern CV, this dataset is of limited use for end-to-end learned visual
models.

AwA2 [153]: The Animals with Attributes 2 dataset is recently introduced and has roughly the same number of
images all with public licenses, and the same number of classes and attributes as the AwA dataset.

CUB [150]: The Caltech-UCSD-Birds 200-2011 dataset is a fine-grained and medium scale dataset concerning
both the number of images and the number of classes, i.e. 11,788 images from 200 different types of birds annotated
with 312 attributes. Akata et al. [2] introduces the first zero-shot split of CUB with 150 training, 50 validation, and
50 test classes.

SUN [104]: The Scene Categorization Benchmark is also a fine-grained and medium-sized dataset, both in terms
of the number of images and the number of classes., i.e. SUN contains 14,340 images coming from 717 types
of scenes annotated with 102 attributes. Lampert et al. [77] use 645 classes of SUN for training, 65 classes for
validation, and 72 classes for testing.

Large-scale car dataset [43]: The Large-Scale Car Dataset originally consists of 2,657 classes and 1,095,021
images from four sources: craigslist.com, cars.com, edmunds.com and Google Street View. They refer to images
from craigslist.com, cars.com and edmunds.com as web images and those from Google Street View as GSV images.
It was adapted to domain generalization using a subset of 170 classes and 71,030 images [42]. The image category
web images is used as source domain, whereas the category GSV images suits as target domain. The cars in web
images are large and typically un-occluded whereas those in GSV are small, blurry and occluded. In addition to
the category labels, each class is accompanied by metadata such as the make, model body type, and manufacturing
country of the car.

5.2.2. Language augmented image datasets
These image datasets are enriched with additional textual descriptions and captions of images. To categorize

images based on the textual descriptions, denotation graphs are introduced and are available for some datasets.

MS-COCO [83]: MS-COCO includes images of complex everyday scenes with common objects in their natural
context. It contains a total of 2.5 million labeled instances of 91 object types, in 328k images, each accompanied
with five human-written captions. It is used for category detection, instance spotting, and instance segmentation.
Recently, Zhang et. al [159] released an additionally learned denotation graph for MS-COCO, which induces a
partial ordering over the textual image descriptions. There is also work that extends MS-COCO to zero-shot learning
tasks by providing additional splits of unseen and seen class categories [8].

Flickr30K [156]: The Flickr30K is a standard benchmark for sentence-based image description and was originally
developed for the tasks of image-based and text-based retrieval. The dataset contains 31K images collected from the
Flickr website, with five textual descriptions per image. Each image is described independently by five annotators
who are not familiar with the specific entities and circumstances, resulting in high-level descriptions such as “Three
people setting up a tent”. The images are under the Creative Commons license. Moreover, they released a denotation
graph for the dataset [159].

SBU captions [100]: SBU Captions contains a large number of images from the Flickr website. They are filtered
to produce a data collection containing over 1 million well-captioned images. The images have rich user-associated
captions from a web-scale captioned image collection. These text descriptions generally work similarly to captions
and usually relate directly to some aspect of the visual image content.

Conceptual captions [125]: Conceptual Captions consists of an order of magnitude more images than the MS-
COCO dataset and represents a wider variety of both images and image caption styles. Therefore, they extracted
and filtered image caption annotations from billions of internet sources, e.g. webpages.
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5.2.3. Knowledge graph augmented image datasets
These datasets are augmented with an additional KG describing relations between classes or a scene in an image.

Visual genome [74]: Visual Genome provides a flat concept graph model of object relationships in images. Dense
annotations of objects, attributes, and relationships within each image are collected. Specifically, the dataset contains
over 100K images where each image has an average of 21 objects, 18 attributes, and 18 pairwise relationships
between objects. For zero-shot learning a split with 608 categories are considered for classification [8,88]. Among
these, 478 are seen categories, and 130 are unseen categories. This results in 54,913 training images and 7,788 test
images. The relationship graph in the dataset has 6,396 edges.

ImageNet [119]: The ImageNet Large-Scale Visual Recognition Dataset and Challenge is a benchmark in object
category classification and detection on hundreds of categories and millions of images. The challenge has been run
annually from 2010 to 2015. It contains 1000 classes and more than 1,2 mil train, and 100K test images per class for
object classification. For object detection, it contains 1000 classes and more than 450K training images with 470K
bounding boxes, 50K validation images with 55K bounding boxes, and 40K test images per class.

There are several derivatives of ImageNet with different appearances, as ImageNetV2 [111], ImageNet
Sketch [142], ImageNet-Vid [124], ImageNet Adversarial [56], ImageNet Rendition [54], and such with synthetic
distribution shifts, as ImageNet-C [55], and Stylized ImageNet [44]. More recently, a domain generalization sce-
nario has been created in which ImageNet-trained models are tested on various ImageNet derivatives to evaluate the
robustness of the models to distribution shift.

MiniImageNet [138]: MiniImageNet is a derivative of the ImageNet dataset and consisting of 60K color images of
size 84 × 84 with 100 classes, each having 600 examples. Since this dataset fits in memory on modern computers,
it is very convenient for rapid prototyping and experimentation. These 100 classes are divided into 64 train, 16 val,
and 20 test classes for the zero-shot learning task.

TiredImageNet [112]: TiredImageNet is a subset of the ImageNet dataset. It groups classes into broader categories
corresponding to higher-level nodes in the ImageNet hierarchy. There are 34 categories in total, with each category
containing between 10 and 30 classes. For zero-shot learning they split the categories into 20 training, 6 validation,
and 8 testing categories. This ensures that all of the training classes are sufficiently distinct from the testing classes,
unlike miniImageNet.

5.3. Image datasets without auxiliary knowledge

This section introduces transfer learning image datasets that have been originally created without auxiliary knowl-
edge.

5.3.1. Zero-shot learning datasets without auxiliary knowledge
We introduce image datasets that have been applied mainly for zero-shot learning or few-shot learning tasks.

CIFAR-FS [10]: CIFAR-FS is randomly sampled from CIFAR-100 [75]. CIFAR-100 contains 600 images in each
of 100 classes, which are further grouped into 20 superclasses. The limited original resolution of 32 × 32 makes
the task harder and at the same time allows fast prototyping. Moreover, the dataset is used for the task of few-shot
learning.

FC100 [101]: Fewshot-CIFAR100 is a derivative of the CIFAR-100 dataset and provides a few-shot learning split
of the full CIFAR-100 dataset. The dataset is split into superclasses, rather than into individual classes to minimize
the information overlap. Thus the train split contains 60 classes belonging to 12 superclasses, the validation and test
contain 20 classes belonging to 5 superclasses each.

5.3.2. Domain generalization datasets without auxiliary knowledge
We provide a summary of image datasets that have been applied mainly for domain generalization or domain

adaptation tasks.
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Office-31 [120]: Office-31 is an object recognition dataset which contains 31 categories and three domains, that
is, Amazon (A), Webcam (W), and DSLR (D). These three domains have 2817, 498, and 795 instances, respectively.
The images in Amazon are the online e-commerce images taken from Amazon.com. The images in Webcam are
the low-resolution images taken by web cameras. And the images in DSLR are the high-resolution images taken
by DSLR cameras. In the experiments, every two of the three domains are selected as the source and the target
domains, which results in six tasks. The evaluation contains all 6 cross-domain tasks: A → D, A → W, D → A,
D → W, W → A,W → D.

Office-home [137]: Office Home contains 15,585 images of 65 categories, collected from 4 domains: a) Art: 2421
artistic depictions of objects in the form of sketches, paintings, ornamentation, etc.; b) Clipart: a collection of 4379
clipart images; c) Product: 4428 images of objects without a background, akin to the Amazon category in Office
dataset; d) Real-World: 4357 images of objects captured with a regular camera. The evaluation contains all 12
cross-domain tasks.

VisDA2017 [105]: The 2017 Visual Domain Adaptation Dataset and Challenge is focused on the simulation-to-
reality shift and has two associated tasks: image classification and image segmentation. The goal in both tracks is
to first train a model on simulated, synthetic data in the source domain and then adapt it to perform well on real
image data in the unlabeled test domain. VisDA2017 is the largest dataset for cross-domain object classification,
with over 280K images across 12 categories in the combined training, validation, and testing domains. The image
segmentation dataset is also large-scale with over 30K images across 18 categories in the three domains.

6. Related surveys

Since our survey explores approaches that are at the intersection of visual transfer learning and knowledge-
based machine learning, we look at well-known surveys from both fields in this section. Furthermore, we provide
additional insight into surveys on the topic of explainable AI, as the field is strongly related to knowledge-based
ML.

Visual transfer learning: Pan et al. [103] and Zhang et al. [161] categorized the task of visual transfer learning
into three main settings: inductive, transductive, and unsupervised transfer learning. In inductive transfer learning the
task changes from source to target, whereas the domain stays the same. In transductive transfer learning, the source
and target tasks are the same, while the source and target domains are different. Finally, in the unsupervised transfer
learning setting, similar to inductive transfer learning, the target task is different from but related to the source
task. However, unsupervised transfer learning focuses on solving learning tasks when no labeled data is available
in the source and the target domain. Weiss et al. [149] separated the field into homogeneous and heterogeneous
transfer learning, whereas approaches of the former are developed and proposed for handling the situations where the
domains are of the same feature space and the latter refers to the knowledge transfer process in the situations where
the domains have different feature spaces. Kaboli et al. [66] reviewed and structured 20 transfer-learning approaches.
Wang et al. [144] investigated the field from the domain change perspective. If the domain change is small they call it
homogeneous transfer learning and if the domain change is large they call it heterogeneous transfer learning. Zhang
et al. [160] further separated the field of transfer learning into 17 different tasks, based on supervision, the amount
of labeled data, and the size of the domain gap. Zhang et al. [161] categorized transfer learning based on their
adaptation process into weakly supervised learning, instance re-weighting, feature adaptation, classifier adaptation,
deep network adaptation, and adversarial adaptation. Wang et al. [146] provide a comprehensive survey about zero-
shot learning methods and their different semantic spaces. These semantic spaces can either be engineered semantic
spaces, generated by attributes, lexicals, and text-keywords, or learned semantic spaces, as label-embeddings, text-
embeddings, and image-representations. Xian et al. [153] recently released a survey about zero-shot learning where
they structured the field into methods that learn linear compatibility, nonlinear compatibility, intermediate attribute
classifier, or hybrid models.
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Knowledge-based machine learning: Only a few surveys have investigated the field of knowledge-based ML.
Von Rueden et al. [139] recently published a survey about knowledge-based ML under the term informed machine
learning. They structure the field based on the source of the knowledge, the representation of the knowledge, and
the integration of the knowledge into the ML pipeline. Further, Gouidis et al. [50] structured the knowledge-based
ML literature into approaches with symbolic knowledge, commonsense knowledge, and the ability to learn new
knowledge. They give an overview of different works that combines ML with knowledge-based approaches in the
field of CV. They categorized the approaches due to their CV task, e.g. object detection, scene understanding, image
classification, their applied ML architecture, e.g. CNN, GNN, RCNN, and their loss function, e.g. scoring functions,
probabilistic programming models, Bayesian Networks. Ding et al. [32] reviewed all ontology applications in the
field of object recognition. Another research field in demand is Explainable AI, where knowledge-based methods
and ML approaches are combined. Explainable AI refers to methods and techniques of ML such that the results of
the solution can be understood by humans. Futia et al. [39] investigated the field of explainable AI using KGs and
categorized approaches into knowledge matching, cross-disciplinary and interactive explanations. Chen et al. [20]
and Chari et al. [18] proposed to use hybrid explanations of a taxonomy generated for the end-user, including causal
methods, neuro-symbolic AI systems, and representation techniques. Seeliger et al. [122] summarized semantic web
technologies that can provide valid explanations for ML models, separating them due to their ML technique and
semantic expressiveness. Chen et al. [19] recently proposed a survey about knowledge-aware zero-shot learning.
They divided the machine learning methods that approach the zero-shot learning task into three distinct categories:
mapping function based, generative model based, and graph neural network based. They provided an overview of
different types of auxiliary knowledge, e.g. text, attribute, knowledge graph, and rule and ontology.

Aditya et al. [1] provide a survey about reasoning mechanisms and knowledge integration methods for image
understanding applications.

Besides an overview of frameworks that handle logic operations, they briefly discuss at which position auxiliary
knowledge can be introduced into a DL pipeline: i) Ahead of the DNN, through a pre-processing of domain knowl-
edge and augmentation of training samples; ii) Inside the DNN, through a vectorization of parts of the knowledge
base and as an input to intermediate layers; iii) Inside of the DNN, to inspire the neural network architecture; and iv)
After the DNN, as a post-processing using external knowledge. We understand their taxonomy as a general explana-
tion of where external knowledge can be induced into the DL pipeline. For instance, our category Knowledge Graph
as a Reviewer is related to iv), since the KG can operate as a post-processing network on the output of the visual
DNN. However, we also see that the reasoning process of the Knowledge Graph as a Reviewer can be applied on an
intermediate visual feature layer of the DNN. Similarly, the categories Knowledge Graph as a Trainee, Knowledge
Graph as a Trainer, and Knowledge Graph as a Peer have overlaps with categories ii) and iii). However, in contrast
to Aditya et al. our categories are described by the explicit information exchange between the visual and seman-
tic embedding space. Instead of a categorization based on the position of the knowledge induction, our categories
depend on whether the semantic embedding inspires the visual embedding or vice versa. Using our categories, we
therefore describe four distinct principles used to combine the two modalities.

Our survey explores the field of visual transfer learning using KGs. Rather than just structuring the field, we also
aim to provide the necessary tools for using KGs with DL pipelines to facilitate a straightforward entry. Therefore,
we present different modeling structures for KGs, concepts about visual and semantic feature extractors, and differ-
ent methods for converting KGs into a vector-based hs . The main contribution is a categorization into four distinct
categories of how a KG can be used with a DL pipeline for visual transfer learning tasks. To enable a fair comparison
for approaches of visual transfer learning using KGs, we summarize available KGs, datasets, and benchmarks.

7. Challenges and open issues

Integrating auxiliary knowledge in form of a KG into the DL pipeline not only helps in tackling challenges such as
catastrophic forgetting or the need for a huge amount of data in transfer learning scenarios, but it also improves the
robustness of DL approaches against naturally occurring domain shift. However, exploiting this type of knowledge
brings up new challenges related to knowledge representation and utilization, which we are going to discuss in the
following.
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Relevant knowledge and its representation: A major challenging task when dealing with modeling the knowledge
for a given domain is to analyze what type of knowledge is relevant for performing a given task. Currently, the
majority of approaches focus on exploiting only the type of knowledge that is truly irrelevant to the context. Fur-
thermore, the temporal aspects between pieces of knowledge are minimally exploited or not exploited at all. As
described in Section 3.2, various modeling structures exist that can be used to represent multidimensional informa-
tion. However, the difficulty raised here is keeping the trade-off between the relevant knowledge and complexity of
structures used to represent that.

Evolving knowledge: In daily scenarios, CV-related applications based on ML consume an abundant amount of
data collected from various sensors. Typically, this information is used for training purposes in form of vectors
performing complex calculations to learn mathematical functions that best fit downstream tasks. A crucial challenge
here is to extract and integrate heterogeneous knowledge that can be managed and refined by humans. Progress
in the field of KG construction by embedding methods of language and information extraction has already been
achieved. [30,31,70]. This would enable the definition of different complex rules and reusable knowledge structures
which later can be incorporated back to the existing or new ML pipelines.

Knowledge embedding methods: As we pointed out in Section 3.3, there is a strong relation between knowledge
graph embeddings and language embeddings as both are generated by a semantic feature extractor. Using this
assumption, we can apply knowledge graph embeddings in various new domains, where language embeddings have
shown great potential, with the advantage that hs can be manually adapted to our needs. This is done either by
refining the knowledge in a KG or by using a particular embedding method relevant to the graph structure to best
represent the inherent knowledge. The challenge here is related to find suitable KGs and their modeling techniques
to form either task-specific or universal hs spaces that support and enhance DL approaches in CV.

Joint embedding learning: We have seen that basic supervised learning methods that use CE tend to overfit the
training data, leading to extensive problems when applied scenarios with a domain shift. Finding a good embedding
space is crucial which would enable it to be applied to multiple downstream tasks. To learn efficiently on high
dimensional spaces, energy-based functions instead of maximum likelihood seem to be promising, which should
be further investigated under different requirements, like imbalance distribution within datasets. As described in
Section 3.5, the quality of the combination of visual and semantic embedding space is highly dependent on the
similarity measure, the training objective, and the optimization method. It is still an open challenge how to best fit
these three parameters to find accurate combinations for a joint embedding space. Moreover, learning visual features
extractors directly on semantic embedding spaces with other features, e.g., temporal or contextualized embeddings,
instead of discrete labels is a major challenge for future research.

8. Discussion and conclusion

Visual transfer learning using different types of auxiliary knowledge has gained increasing attention in research.
Since initiatives for building and maintaining generic knowledge graphs host a large research community, we believe
that exploiting them with DL will improve various applications, especially in visual transfer learning. The insights
gained in this survey can be useful to conceive solutions for addressing the identified challenges and open issues.

The survey investigates various forms of how KGs as a unified representation of auxiliary knowledge can be used
based on a deep analysis of existing approaches. Different graph models, corresponding embedding methods, and
suitable training objectives to operate on high-dimensional spaces are described in detail. The major contributions
of the survey are formulated in four research questions presented in Section 2. The answers to these questions are
given as follows:

– RQ1 – How can a knowledge graph be combined with a deep learning pipeline?
Approaches of the field of visual transfer learning using KG can be separated into four distinct categories based
on how the KG is combined with the DL pipeline:
1) Knowledge Graph as a Reviewer – where the KG is used for post-validation of a visual model;
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2) Knowledge Graph as a Trainee, where a semantic-visual embedding hs,v is learned using a visual embedding
hv as objective;
3) Knowledge Graph as a Trainer, a visual-semantic embedding hv,s is learned using a semantic embedding
hs as objective; and
4) Knowledge Graph as a Peer, where a hybrid-embedding hh is learned using a combination of semantic
embedding hs and a visual embedding hv as objective.

– RQ2 – What are the properties of the respective combinations? It can be seen that every category has its
applications in distinct tasks.
1) Knowledge Graph as a Reviewer – approaches leverage auxiliary knowledge by using it as an independent
post-validation. The KG or hs enables reasoning over the output or intermediate feature layers of the DNN.
However, the modalities are either learned independently or in sequential order, so that semantic and visual
embedding space are not directly influenced by each other.
2) Knowledge Graph as a Trainee – approaches leverage auxiliary knowledge by providing a structure for a
KGE-Method, e.g. GNN, that is learned using hv as objective. Approaches are used mainly in the zero-shot
learning scenario to extend the learned model to classes that are not present in the training data, using the
inductive property of GNNs combined with the ability of DNNs to extract relevant features of images.
3) Knowledge Graph as a Trainer – approaches leverage auxiliary knowledge by influencing DNNs in learning
specific visual features. The DNN can learn an image data distribution independent embedding provided by hs

instead of just using the data distribution. Thus, we see the advantage of these approaches specifically in the
domain generalization scenario.
4) Knowledge Graph as a Peer – approaches leverage auxiliary knowledge by influencing semantic and visual
embedding equally. Although it is not clear which modality dominates the other and therefore the learned
embedding, approaches have yielded quite promising results for zero-shot learning and domain generalization
tasks.

– RQ3 – Which knowledge graphs already exist, that can be used as auxiliary knowledge? We provide a short
overview of generic KGs that could be used as a basis to form either specific or general approaches for the task
of visual transfer learning using KGs.
WordNet, an online lexical reference system for English nouns, verbs, and adjectives, often used to build hier-
archical relationship graphs of classes in the image dataset.
ConceptNet 5.5, a commonsense KG that connects words and phrases of natural language, often used to provide
flat relationships between different classes of the image dataset.
DBPedia, a KG that represents structured information from Wikipedia and therefore allows to extract facts.
Wikidata, a commonsense KG built collaboratively by humans or automated agents with reasoning capabilities.

– RQ4 – What datasets exist, that can be used in the combination with auxiliary knowledge to evaluate visual
transfer learning? We present several vision datasets and cluster them based on the type of auxiliary data they
are augmented with.
Attribute Augmented Image Datasets, as Awa, Awa2, CUB, SUN, and Large-Scale Car Dataset.
Language Augmented Image Datasets, as MS-COCO, Flickr30K, SBU Captions, and Conceptual Captions.
Knowledge Graph Augmented Image Datasets, as Visual Genome, ImageNet, miniImageNet, and tiredIma-
geNet.
Image Datasets without Auxiliary Knowledge for zero-shot learning, as CIFAR-FS, FC100, or domain gener-
alization, as Office-31, Office-Home, and VisDA2017.

Future work is directed on conducting extensive experiments using KGs for visual transfer learning tasks while
measuring various metrics, such as precision, recall, and accuracy. Furthermore, it will be relevant to investigate
the impact of knowledge structures represented via the three common graph models, the impact of different KGE-
Methods, and the impact of the four categories a KG can be combined with the DL pipeline on the metrics as above.
We hope that this survey will help the reader to combine the technology of KGs and DL to develop models that can
benefit from the appropriate combination of visual information with underlying semantic information.
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