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Abstract. Topic evolution helps the understanding of current research topics and their histories by automatically modeling and
detecting the set of shared research fields in academic publications as topics. This paper provides a generalized analysis of
the topic evolution method for predicting the emergence of new topics, which can operate on any dataset where the topics are
defined as the relationships of their neighborhoods in the past by extrapolating to the future topics. Twenty sample topic networks
were built with various fields-of-study keywords as seeds, covering domains such as business, materials, diseases, and computer
science from the Microsoft Academic Graph dataset. The binary classifier was trained for each topic network using 15 structural
features of emerging and existing topics and consistently resulted in accuracy and F1 over 0.91 for all twenty datasets over the
periods of 2000 to 2019. Feature selection showed that the models retained most of the performance with only one-third of the
tested features. Incremental learning was tested within the same topic over time and between different topics, which resulted
in slight performance improvements in both cases. This indicates there is an underlying pattern to the neighbors of new topics
common to research domains, likely beyond the sample topics used in the experiment. The result showed that network-based
new topic prediction can be applied to various research domains with different research patterns.
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1. Introduction

Scientific knowledge evolves through the contribution of researchers around the globe; discoveries are made to
expand existing research topics or to contribute towards creation of new topics. Gradual expansion or transition of
research topics based on the foundation of past knowledge guarantees validity and soundness of the research. This is
amplified by the fact that researchers within a community can easily be unaware of research breakthroughs in other
related fields [28]. Identifying and predicting emergence of new topics therefore depend on understanding a set of
themes shared by related research communities, which are defined as the research topics. They can appear in various
forms, including philosophical categories of research, theoretical developments of research models, applications of
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technology, and specific algorithms. Identifying such topics in academic publications is therefore a crucial part
of research activity. Researchers understand topics by first reviewing a multitude of articles, internalizing topical
evolution occurring within their fields of interest, which in turn allows them to ascertain the desirable paths current
and future research can take. A better understanding of such knowledge allows more targeted research aimed at high
demand topics, which is needed in both academic and industrial fields.

Traditional topic evolution methods mimic the process by utilizing text-based topic models to understand topics in
each document collection and track topical changes over time. Topic modeling methods extract statistical constructs
based on word co-occurrences in the given document collection, where changes in topics can only be measured
by differences between the content of two topics; connections and correlations between different topics are not
incorporated into traditional topic modeling methods [23]. Topic evolution methods are therefore mostly limited to
identifying content transition within a given topic, not how it is correlated to other topics. Unforeseen topics in the
future cannot be modeled without having access to a set of future documents yet to be written. As a result, topic
evolution based on traditional topic modeling methods is not suited to predict new topics.

A previously proposed network-based approach identified emergence on topic networks where a topic is defined
by its neighbors’ previous relationships. The approach required only past data, intuitively allowing extrapolations
to future new topic predictions [19]. The definition allowed topics in a certain timeslot to be classified based only
on structural properties available in previous timeslots, showcasing a novel functionality of predicting topic evo-
lutions solely with topic co-occurrences using journal-specific publications as the dataset. This paper expands on
this research by testing generalizability of the method, offering a better understanding of the network-based topic
prediction method.

The goal of the proposed method is to capture emergence of new topics, which can be explained by their correla-
tion to existing topics. This can be formalized as classifying subgraphs in the given topic network as to-be-neighbors
of new topics in the future based on their graphical properties. The topic networks can be any pre-existing topic
co-occurrence networks, or they can be built from open bibliographical datasets. Each network contains a set of
research interests related to a designated domain-topic. Each network is divided yearly to generate an evolving net-
work, where each topic in timeslot y is either new, appearing for the first time in y for a given topic network, or old.
A binary machine learning algorithm is trained using neighbors of each node in the previous years, classifying the
neighbor subgraphs in the past having new or old topics as their future neighbors. The semantics of publications,
topics, and their relationships were not considered in this paper as the effectiveness of semantic-based processing is
already proven within the research community. No textual metadata was used in the proposed method to isolate the
effects of topic classification co-occurrences.

Twenty topic networks evolving over twenty years were generated from 1.8 million publications related to highly
used fields-of-studies from the Microsoft Academic Graph1 dataset. The impact of different features and the number
of features impactful to classification performances are analyzed. The topic co-occurrence patterns representing
new topics in scientific bibliographic records are incrementally learned over time within a single dataset to capture
domain-specific knowledge and their evolutions. The same process is then tested over different datasets to capture
underlying common patterns throughout different domains. The experiment results showed that the proposed method
retains its high classification accuracy with all 20 datasets with less than one-third of the 15 features while showing
relatively small, but statistically significant, performance improvement using incremental learning.

Section 2 reviews the related work on topic evolution, previous attempts on the prediction of new topics, as well
as background research for the proposed method. Sections 3 and 4 detail the proposed method and experimentation,
and the experiment results are shown in Section 5.

2. Related work

2.1. Identifying the evolution of topics

Automatically identifying topical changes within the document set requires methods to extract machine-readable
topics from the collection. Topic modeling provides a statistical approach to discover topics within a given corpus,

1https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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where topics are modeled as the latent semantic structures in the form of word-popularity sets based on the statistical
distribution and word co-occurrences.

Latent Dirichlet Allocation (LDA) [5] finds latent topics within a document collection and is one of the most
widely used topic modeling methods on which many other methods are based [15,24]. Word-topic links are itera-
tively assigned with word co-occurrences between documents; topics, defined as word distributions over a corpus
dictionary, are then assigned to each document [40]. LDA-based topic models have also been amalgamated with
word embeddings to overcome the issue of large and heavy-tailed vocabulary sets [10], utilizing embedding simi-
larities between words and topics to retain topic interpretability with a large corpus.

Topic evolution aims to identify the evolution of such topics in a sequentially ordered document collection.
Document collection is first divided either uniformly or irregularly [14] into sequentially-ordered sub-collections
on which topic models independent of the neighboring sub-collections are generated. Temporal topic models are
then connected over time with similarity measures, and changes in the topics are sequentially analyzed to identify
evolution of topics.

Dynamic topic models [4] are one of the early implementations of topic evolution, focusing on capturing changes
within a set of chained topics with fixed timeslots where the Kalman filter and wavelet regression are used to
approximate natural parameters of the topics found at different time slices. Evolutionary theme pattern mining
has tried to capture not only changes within each topic but also sequential connections over multiple topics [26].
The Kullback–Leibler divergence is used as a distance metric between topics, and the topics on different timeslots
are designated as having an evolutionary transition when their distance stays below dataset-specific thresholds.
The collection of such evolutionary transitions results in detecting merge and split events over time as multiple
connections are allowed between different topics. A similar approach is made by utilizing cross-citations between
topic pairs’ member documents as well [18].

Topic evolution in conjunction with bibliographical dataset analysis has been tried by numerous researchers to
better identify the topic evolution events. Citation contexts are used in an iterative topic evolution learning frame-
work to increase performance of topic evolution with better topic models [16], where document collection is ex-
panded by documents cited by its members. The inheritance topic model [11] is utilized to classify publications into
autonomous parts with originalities and parts inherited from cited documents. Differentiating two parts allowed the
method to overcome the topic dilution with cited publications, generating more new topics compared to LDA-based
approaches.

A more recent approach to topic evolution utilizes communities of keywords in a dynamic co-occurrence network
[2]. The medical subject headings dataset from PubMed2 was used to build a filtered co-occurrence network of
major subjects within the medicine domain divided into five-year snapshots. Word clusters were found and linked to
generate the evolution of topics over time. Topic evolution based on two-tier topic models is tried for a better merge
and split detection, where topic correlations in the same timeslot are used to identify topic evolution [7]. Timeslot-
specific local topics are extracted from yearly divided sub-collections of documents, while time-spanning global
topics are retrieved using the whole corpus. Global topics stay static, having connected to dynamic local topics at
each timeslot with cosine similarities above a given threshold. Changes in the number of local topics connected to
global topics are then used to define the topic evolution events; decreased and increased numbers of local topics
connected to a global topic respectively represent merging and splitting of the topic.

2.2. Identifying and predicting new topics

Topic Detection and Tracking (TDT) [12] aims to capture the appearances of new topics in continuously generated
text data in real-time; a topic is defined as “a seminal event or activity along with all directly related events and
activities” [12]. First story detection (FSD) is one of the parts of TDT research tasks. The goal of FSD is to search
and organize new topics from multilingual news articles or identify the first article introducing the new story [1].
Topic-conditioned FSD with a supervised learning algorithm first classified news articles into a set of pre-defined
topic categories before identifying novelty within each topic [38]. FSD is also used in conjunction with document
clustering algorithms to identify the earliest report of a certain event in news articles [42].

2https://www.ncbi.nlm.nih.gov/pubmed/
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Identification of emerging topic trends has led to the division of research front and intellectual base, where the
latter is an established foundation of domain knowledge on which the former is built. The underlying assumption is
that citation and co-citation between articles transfer existing knowledge from the intellectual base to the research
front. The CiteSpace II [8] further utilized a keyword co-occurrence relationship by employing a bipartite graph
of keywords and articles. Research front terms are identified by sharp frequency growth, and then used to identify
research front articles, which in turn are absorbed into the intellectual base in the next time slice. Burst term detec-
tion, in conjunction with keyword co-word analysis, allows multi-dimensional exploration of the research front in
question [25].

While these approaches allow detection of merging and splitting of time-spanning topics and their transitional
ratio at the temporal level, the use of text-based topic models inherently limits predictive capabilities; evolutionary
events such as emerge, merge, or split can only be retrospectively analyzed once topics are captured from a document
set. Using author groups from a bibliographic dataset for determining topics carried over time by the evolving author
groups showed that when topics defined by the authors are used instead of NLP-based topic models, topic evolution
on the temporal network is possible; the topic evolution events are defined by network structures, and therefore a
predictive analysis is possible [23].

On top of the emergence events detected by the appearance of topic models dissimilar to the ones in the previous
timeslots, there are a number of research studies dedicated to identifying new topics with a varying definition of
topic. One such field is new topic identification, where topics are defined as the entities the user is interested in
during a search engine querying session; the query patterns and intervals between queries are used to identify topics
[29]. A neural network (NN) is introduced to reduce the errors in new topic estimations based on misspells and
typos by utilizing the character n-gram method to bypass spelling errors in the queries [13]. There are also several
researches focusing on utilizing the queries’ statistical characteristics, such as search patterns, frequency of queries,
and relative position in the querying sessions [30].

Technology forecasting [32] is another field of research aiming to predict the characteristics of technology in
the future; the technology, or topic, is defined as a representative keyword instead of a statistical model. Various
techniques from simple extrapolation to organization management [3] and fuzzy NLP [27] are used to identify
and predict changes in technology indicators [6]. Multiple applications of the predictive topic evolution have been
proposed. A semi-manual technology trend analysis was done to identify the roots of new technologies with their
projected impact on the research field [36]. A semantically enhanced technology-topic model for interdisciplinary
knowledge sharing was also proposed, integrating topic models and their similarities to calculate the likelihood of a
technology being adapted to a specific research area without extensive presence in the field [28].

A previously proposed technology trend analysis approach with multiple data sources shows that while different
data sources exhibit different forecast speeds, predicting the growth and shrinking in technology trends is possible
extrapolating on a previously known technology growth curve [37]. A network-based approach was proposed to
overcome the rigidity of trend-based forecasting where the prediction is dependent on the type and shape of the
technology growth curve used. Node prediction based on preferential attachment link prediction is proposed to
classify whether the nodes in citation networks have a connection to a new node in the future [21], labeling the new
nodes by utilizing the metadata of their neighboring nodes [22]. This showed that predicting nodes in bibliographic
networks is possible based on the structural properties of the network. More complex contexts of the new nodes in
knowledge networks were extracted by identifying the neighbors of the new node in the past timeslot to formulate
the context of the new node solely based on the metadata of its to-be-neighbors [20].

The predictive power of evolutionary topic networks is also validated through the use of community detection
algorithms, where the Advanced Clique Percolation Method (ACPM) classification algorithm [34] was proposed to
identify surging topic correlations. Topic clusters with notable recent collaborations are regarded as the ancestors of
a novel topic at its embryonic stage [33], which are found on the semantic-enhanced topic evolutionary networks
and represented with the core publications and author information.

Network-based topic emergence identification is an attempt to detect underlying patterns in networks for node
emergence, providing a general foundation towards a more advanced topic evolution research. The proposed method
is not tied to a specific clustering algorithm and hence is adaptable to new research contributions in the field without
modifications, and tackles the scalability issue on large dense networks by focusing on node-wise calculations. The
patterns are found solely using the topics and their relationships without accessing additional bibliographic data such
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as authoring or citations. The patterns are then used to automatically identify the early topic emergence with only
topic network data, which are achieved by utilizing machine-learning approaches. The emergence of new topics was
identified by capturing the relationships between their neighborhoods in the previous years, and predictions based on
the existing clustering algorithms were made to validate the possibility of proactive topic emergence predictions with
the proposed method. This paper aims to show the generalizability of the proposed method using various datasets
with different focus and interests, capturing the shared knowledge between different domains with an incremental
learning method to improve the performance.

3. Network-based new topic identification and prediction

3.1. Generating topic networks

NLP-based topic modeling can be used on the document collection dataset to retrospectively identify topics
already present in the research field but has limited capability to prospectively predict the appearance of previously
unused topics in the future without the documents to extract topics from. The proposed method utilizes a topic
network instead, where new topics in a bibliographic dataset equate to new nodes in the topic network. Textual
metadata is not considered for analysis, and only graphical structures are used.

The topic network Ty = (V ,Ry) is a set of topic set V representing the list of topics used for the given domain
and their co-occurrence frequencies Ry at year y. Topic set V consists of the topic node v and Ry is the weighted
edge set between two topic nodes v1 and v2, with wy as co-occurrence frequencies in y.

Ty = (V ,Ry), and V = {v}Ry = {v1, v2, wy} (1)

3.2. Extracting gold standards from the common neighbors

The proposed method aims to identify new topics, which are represented in the form of newly added nodes within
topic network, using structural features to classify their projected common future neighbor. The nodes in the topic
network Ty in Eq. (1) are distinguished as new or old to act as a gold standard answer set against the classification
results, where new nodes represent topics newly emerged in year y. Neighborhoods neighbors(v, y) of each topic v

in year y are extracted to build a set of neighborhoods Ny from Ty . Each neighborhood is then categorized into two
groups by age of v calculated as age(v, y) = y − used(v), where used(v) is the year topic v was first observed in
given topic network T ; when the topic v first appeared in given year y, used(v) = y. One cannot assume that the
given bibliographic dataset contains exhaustive records of all related publications, therefore used(v) represents the
first year v was used within the scope of the given topic. The state of v, C(v) is then calculated as the ceiling of
topic age normalized by the oldest topic, where new topics are denoted by C(v) = 0. Any preexisting topics have
non-zero ages, and their normalized ceiling functions result in C(v) = 1.

Ny = {
neighbors(v, y)|v ∈ Vy

}
, and

C(v) = ⌈
age(v, y)/

(
y − max

u ∈V

(
used(u)

))⌉
.

(2)

More prominent topics are likely to co-occur with more topics, and therefore the top 100 topics with the largest
neighborhoods in Ny are selected for each label C(v) = 0 and 1, resulting in a total topic count of 200 for each
classification task. In case number of instances for one label is below 100, the number of v for the other label is
reduced further to have the same number of instances for both labels.

Evolution of existing topics such as merge and split is not targeted, and hence there is no need to train classifiers
for the gradual evolution events within existing topics. Temporal features are therefore not analyzed; only static
features are used in the experiment. Table 1 shows the list of 15 structural features of neighbor subgraphs used
to train the binary classifiers. These features characterize the subgraph quality in several aspects and are grouped
by components they are used to measure, including six properties related to the whole subgraphs, four average
values of member node properties, two properties related to the edges, and three properties weighted by the topic
co-occurrence frequencies.
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Table 1

Structural features used in the experiment

Category Features used Description

Subgraph Node Count Number of nodes

Cohesion Number of internal/external edges

Density Number of observed/possible edges

Transitivity Number of observed/possible triangles

Normalized Triangles Number of triangles/nodes

Mean Shortest Path Mean of all node pairs’ shortest paths

Nodes Mean PageRank Mean PageRank for subgraph nodes

Mean Degree Centrality Mean degree centrality for subgraph nodes

Mean Betweenness Centrality Mean betweenness centrality for subgraph nodes

Mean Node Age Mean age for subgraph nodes

Edges Edge Count Number of edges in the subgraph

Mean Degree Mean degree in the subgraph

Weighted Mean Degree Weighted Mean degree with edge weights

Mean Edge Weighted Mean edge weights

Mean Clustering Coefficient Mean weighted clustering coefficient

3.3. Classifying new topics with incremental learning

The emergence of new topics is the only event being searched; therefore the binary classification on year y

is trained by neighbor subgraphs in previous years. Sets of open neighborhoods Trainy,t and Testy are generated
where t is defined as the number of previous topic networks used to build the training set. The same set of neighbors
n = neighbors(v) is used to identify open neighborhood subgraphs of v in multiple previous timeslots, denoted by
Tk(n) where y − t � k � y.

sub(v, y, k) = {(
n, {ni, nj }

)|n ∈ neighbors(v, y), {ni, nj } ∈ Ek

}
,

Trainy,t = {
sub(v, y, y − t) ∪ · · · ∪ sub(v, y, y − 1)|v ∈ Vy

}
, and

Testy = {
sub(v, y, y)|n ∈ Ny

}
(3)

Neighbor subgraphs in Eq. (3) represent interactions within direct predecessors of new topics and neighbors of
preexisting old topics, which are shown to have distinguishable structural features in the previous research [19]. The
classification accuracies, precision, recall, F1, and area under the ROC curve (AUC) based on subsets of 15 features
are compared to show the effect of the number of features as well as the features with the most importance.

The proposed method trains a machine learning algorithm to classify new topics within a domain by past in-
teractions within their neighborhoods. Generalizability of the proposed method is analyzed by implementing an
incremental learning approach, with the default proposed method as the baseline for performance comparison. The
trained model is retained for each of the incremental learning processes instead of being re-initialized. Within-
domain learning is done over incrementing y within each of the domains to incrementally adapt to continuous
topical interactions over time. The number of trainings is calculated as the number of domains times number of
years. Between-domain learning is done between domain pairs to test the possibilities of incremental learning be-
tween different domains. Long chains would result in an exponentially large number of trainings required; therefore,
incremental training is only done at the same y with chain length of two, resulting in a total of k × (k −1) pairs for k

number of domains used in the experiment. Changes in its performance, when two domains share the same parent,
are observed as well. Increases in the performance when incremental learning is applied would suggest that topic
networks at different times and under different domains share underlying models. The proposed method would then
be generalizable to any parts of the knowledge stored in bibliographic records.
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4. Experiments

4.1. Dataset preprocessing

Multiple topic networks were generated from bibliographic records extracted from the Microsoft Academic Graph
(MAG) [41], which is a heterogeneous bibliographic dataset [39]. The MAG is selected as the source dataset for
two reasons. Firstly, it was deemed competitive with major bibliographic search engines such as Google Scholar
or Scopus, even with relatively recent creation [17]. Secondly, the MAG has a built-in ontology called fields-of-
study (FoS) representing each publication with different hierarchical concepts [38]. A six-level hierarchy of concept
(FoS) is generated each month using knowledge base type prediction with Wikipedia articles, employing graph link
analysis and convolutional neural network methods. The publications are then tagged with the hierarchical concepts
using a large-scale multi-level text classification method on pre-trained word embedding vectors. The tagging is done
weekly to keep up-to-date concept assignments. Identifying dataset-wide topics in a large-scale dataset is by itself
a huge task; therefore the tagged concepts are defined as the topics in this paper. While author-assigned keywords
in research publications or semantic, ontological document topic assignments [35] often produce better quality
topics, they are often domain specific and therefore were disregarded in this research to retain generalizability of
the proposed method. High classification accuracy with the pre-defined topics would indicate the proposed method
performs even when non-goal oriented and non-domain specialized topic sets were used.

The MAG dataset snapshot in February 2020 is downloaded for preprocessing through Microsoft Azure
Databricks, containing 197,642,464 publications, 709,934 FoS, 48,829 journals, more than 1.5 billion citation links,
and 1.3 billion publication-FoS links. Analyzing the whole graph would be too complex to compute, and therefore
data subsets, or domains, are extracted as the bibliographic records related to selected FoS, or domain-topics. Each
selected domain-topic represents the specific research fields that the extracted domain is focused on.

Topics with a similar degree of popularity were selected to be used as the domain-topics for domains to be
represented by topic networks with adequate sizes. The size and activity of the domains are modulated by se-
lecting domain-topic with 100,000 < related publication count < 120,000 and 1,000,000 < combined citation
count < 1,500,000, counting duplicates for both. FoS without the main type data are filtered out to ensure that
each dataset’s parent domain is known, selecting two FoS from each main type with the highest ranking. The
selected domains also shared only a small ratio of common publications and other FoS between them. Out of pos-
sible 190 pairs, only three have shown more than 1% of publication overlap with 0.06% as an average: 3.04% for
[ozone, air pollution], 1.77% for [stent, thrombosis], and 1.32% for [ozone, hydrogen peroxide]. The pairs shared a
much higher degree of common FoS, respectively showing 32.19%, 28.29%, and 31.44%, with the average shared
FoS at 14.82% over 190 pairs. The differences show that even when direct publication sharing is very limited, there
are a number of generic topics and interdisciplinary research connecting different research fields. Table 2 shows
the resulting 20 domain-topics with ranks measured by the possible importance along with display name of the
FoS, their main type within an FoS hierarchy, level of the FoS in the hierarchy tree, as well as number of assigned
publications, co-occurring FoS, and the publication overlap ratio.

A Dataset is generated for each domain-topic by extracting all related topics and their co-occurrences into the
SQL databases, using a high-performance computing service by Alabama Supercomputer Authority3. The raw MAG
dataset files contain two relevant tables called FieldsOfStudy and PaperFieldsOfStudy. The PaperFieldsOfStudy
table contains FoS assignments to publications. All data rows in the table containing id (FieldOfStudyId) of the
selected domain-topic are first retrieved to get all publications related to it. The table is then searched again to extract
all FoS assigned to the retrieved publications. Finally, the extracted rows in the PaperFieldsOfStudy and matching
FoS metadata in the FieldsOfStudy tables are retrieved to be used to generate topic networks in the experiment. The
dataset is uploaded to a Zenodo repository4 for open access.

3https://hpcdocs.asc.edu/
4https://zenodo.org/record/5142618

https://hpcdocs.asc.edu/
https://zenodo.org/record/5142618


430 S. Jung and A. Segev / Analyzing the generalizability of the network-based topic emergence identification method

Table 2

Twenty FoS in the February 2020 MAG dataset used as the domain-topics

Rank DisplayName MainType Lv # of papers # of FoS Avg. Paper overlap

9863 usability business.industry 2 93,762 36,859 0.03%

9299 software development business.industry 3 88,510 23,615 0.03%

8335 polysaccharide chemistry.chemical_classification 2 89,531 26,968 0.03%

8494 hydrogen peroxide chemistry.chemical_compound 2 98,278 28,533 0.14%

8442 ozone chemistry.chemical_compound 2 85,775 23,537 0.29%

8868 palladium chemistry.chemical_element 3 108,698 17,079 0.06%

8480 cadmium chemistry.chemical_element 3 86,220 28,369 0.05%

9749 diamond engineering.material 2 97,743 23,982 0.01%

9216 drainage basin geography.geographical_feature_category 2 97,829 24,308 0.01%

9961 calcination law.invention 3 100,643 14,192 0.06%

8177 fertility media_common.quotation_subject 3 94,294 28,185 0.02%

9058 unemployment media_common.quotation_subject 2 88,418 19,287 0.01%

9964 physical examination medicine.diagnostic_test 3 86,363 41,097 0.03%

8153 malaria medicine.disease 3 92,456 23,499 0.01%

8349 thrombosis medicine.disease 3 90,431 23,625 0.12%

7579 air pollution medicine.disease_cause 2 89,059 24,914 0.19%

9171 activated carbon medicine.drug 3 85,150 18,377 0.14%

12641 saline medicine.medical_treatment 3 92,560 40,057 0.03%

9418 stent medicine.medical_treatment 3 86,037 20,000 0.10%

12338 Gaussian symbols.namesake 2 97,147 32,848 0.01%

4.2. Generating topic networks

After the dataset preprocessing is done, the topic network Ty in Eq. (1) for each domain is generated for y =
[1991, . . . , 2020]. The first nine topic networks T1991 ∼ T1999 were not used for the testing, but only built to be
utilized for the training for future topic networks while T2020 was only used to identify future new topics for T2019,
hence the actual validation is done on T2000 ∼ T2019. For calculation convenience, TopicNeighborCount {Node1,
Node2, Year, Frequency} table is created to summarize undirected links with node pair u, v, year y, and frequency
w, where topics are nodes and links represent their co-occurrence. Frequency is divided for each year to distinguish
different topic links and weights at different years. Range of year y is selected to retrieve the detection of newly
used topics in the 21st century. For each domain, SQL queries are run on the TopicNeighborCount table to extract
topic co-occurrence with TopicNeighborCount.Year = y where Year column in the table represents the year the
topics co-occurred. Resulting edge data Ry is used to build a topic network using the equation in Eq. (1).

4.3. Extracting gold standards from the common neighbors

Data downsampling is done on each dataset with C(v) as the class variable. This is done to reduce the total
amount of data while balancing the number of labels for the classification. Isolated nodes are ignored as there are
no neighbors to analyze. Data standardization is also done to remove range differences between 15 features, where
the values of each feature are first subtracted by the average value and then divided by its standard deviation.

z = (x − μ)/σ (4)

Training size t is set to 9 as the increase in classification performance diminishes with large t values. Initial
experiments showed the Logistic Regression (LR) was one of the best performing algorithms without showing
anomalous classification patterns over combinations of classification variables. The L-BFGS algorithm [43] is used
as an optimization function for the ML model, with a maximum training iteration of 100.
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Table 3

Descriptions of four score functions used in classification

Score function Description

f_classif ANOVA F-value between labels

f_regression F-value for univariate regression

mutual_info_classif Estimated mutual information between labels

mutual_info_regression Estimated mutual information for continuous target

4.4. Classifying new topics with incremental learning

Feature selection is done for all feature counts f = 1, . . . , 15. For each f , combinations of features with length
f are compared by different score functions shown in Table 3, utilizing f-values and mutual information of the
classification results. To analyze importance of the features, one classification model is trained using the selected
features while another is trained using the excluded features. 2-dimensional principal component analysis (PCA) is
also done to test the linear separability of the features.

Incremental learning is implemented in two different ways, named after the function names they are based on. The
warm approach retains the coefficients of the trained model which are used as initial coefficients in the subsequent
training, while the partial approach incrementally trains the model with additional data. Sklearn Python library’s
warm_start attribute and partial_fit function are used respectively. Both approaches have limitations; the warm
approach risks overwriting the initial training result when there are major shifts in new training data, while the
partial approach would suffer performance losses in such cases as it would try to search for the solution covering
both datasets. These are compared against the non-incremental cold approach, where the training occurs within an
individual dataset without retaining the result. This is used as a baseline to compare incremental learning results
from both warm and partial approaches.

To analyze the possible differences between different classification algorithms, a linear support vector machine
(SVM) algorithm is used in addition to the logistic regression used in the previous section. Different epoch values
are tested to show the effect of epoch sizes. The partial_fit function only trains the model one generation at a time
while the model with warm_start attribute is trained over multiple epochs; hence it is repeated epoch number of
times to mimic the incremental learning with multiple epochs. The number of data rows affects the incremental
learning performances; hence a different number of topics is also tested.

epochs = [10, 50, 100], and num_topics = [10, 50, 100, 200]5 (5)

Within-domain learning is done over y from 2000 to 2019 for each domain, testing the incremental adaptation to
the continuous topical interactions over time. Between-domain learning is done between each of the domain pairs
at the same y, instead. This results in a total of 380 domain pairs used in the experiment; only num_topics = 200 is
used for between-domain learning with y = [2000, 2005, 2010, 2015]. The codes are shared through Github.6

5. Results

5.1. Classifying new topics within each domain

The classification results were measured excluding y = 2020 as performance is significantly lower for all domain
datasets in the last year with Acc = 0.4068, AUC = 0.8028, and F1 = 0.5589. This is because the MAG dataset used
in the experiment has only partial records of 2020 publications up to February. This is supported by the retained high
recall value for y = 2020. The model failed to distinguish between new and old topics based on their incomplete
neighborhoods, classifying all candidates as a single label resulting in high recall but low precision values. Excluding

5200 for between-domain.
6https://github.com/raphael-jung/swj2021

https://github.com/raphael-jung/swj2021
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Table 4

Summary of new topic classification results, using standardized data and original data during the training

Data used Standardized Original

Acc 0.9287 0.9240

AUC 0.9815 0.9792

F1 0.9287 0.9243

Precision 0.9522 0.9452

Recall 0.9114 0.9098

Table 5

Average R2 score for Greedy and Fluid communities over the 20 topic networks

Dependent variable Greedy Fluid

NewTopicCount 0.0363 0.4757

NewTopicFreq 0.0353 0.4777

AncestorCount 0.1775 0.5421

AncestorRatio 0.0270 0.0243

the last year, average of the 20 domains on remaining 20 timeslots resulted in Acc = 0.9287, and AUC = 0.9815,
and F1 = 0.9287 as shown in Table 4 with data standardization.

The model successfully captured the formation of new topics in various fields. A few cases were manually found
in the year 2010 to showcase the examples of new topics. Application of polysaccharide (domain) as the skin barrier
(new topic) agent was supported by topics such as nanotechnology, green algae, human growth hormone, and ma-
terials science (neighboring topics). Application of being used as metamaterial (new topic) was shown for diamond
(domain) in the form of aqueous solution or nanocomposite, with possible invisibility using its photoluminescence
properties (neighboring topics). Sometimes, topics with contrasting interests are joined to produce new topics. In the
ozone (domain) topic network, enhanced coal bed methane recovery (new topic) became known as topics such as
casing string and petroleum engineering were used with waste management and environmental science (neighboring
topics).

The classification performance for all 20 datasets showed slightly higher performance compared to the result
based on journals in the previous research which had an average accuracy of 0.9053 and average AUC score of
0.9809 [19]. Table 4 shows that the same holds even when the original data without standardization are used during
training. This shows that the proposed method is capable of generating highly accurate results with bibliographic
datasets built with different criteria and the performance improves when datasets with more focused research interest
are used.

Linear regression analysis was done on communities found with clustering algorithms to analyze the differences
between the existing and the proposed method. One-to-one connections between the sub-graphs and new topics are
not guaranteed; hence predictions were done for the following properties: the number of new topics connected to
each community (NewTopicCount), the frequency of connection to the new topics (NewTopicFreq), the number of
direct ancestors (AncestorCount), and the ratio between the ancestors and the community members (AncestorRatio).
Table 5 shows the result for two clustering algorithms with low scalability problems: an unweighted variant of
the Clauset–Newman–Moore algorithm maximizing the modularity of clusters (Greedy) [9] and a density-stable
propagation mimicking the fluid interactions (Fluid) [31]. The modularity-based Greedy algorithm was unable to
find an adequate number of communities in densely connected topic networks and resulted in a very poor result.
The Fluid algorithm was able to predict the number of new topics and their ancestors with more precision, but its
scores were not high enough to be comparable with the proposed method’s accuracy of over 0.9.

The overall performance metrics do not show significant changes in the trend over the years. Accuracy, AUC,
and F1 in Fig. 1 all share the same pattern over the years, with AUC having a higher average. The sudden drop
in y = 2010 can be attributed to the sudden increase in false positives, having 0.0405 compared to 0.0088 in the
previous year. This is reflected in precision values showing the sharpest change.
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Fig. 1. Binary classification accuracy of logistic regression with y = [2000, 2019] over 20 domains.

Table 6

Changes in the average TP, FP, FN, precision, and recall of the classification results before and after y = 2016

Year TP FP FN Precision Recall

<2016 91.21 7.27 8.79 0.9588 0.9028

2016 95.13 11.25 4.87 0.9371 0.9480

>2016 89.04 12.75 4.98 0.9221 0.9450

Fig. 2. Changes in the F1 of the classification results using mutual_info_classif as the scoring function with f = [1, . . . , 15] in the x-axis, with
the results of classifications using the excluded features shown in the second y-axis.

The precision and recall intersect around y = 2016 with the changes in the average values of false positive (FP)
and false negative results (FN) lowering the precision while increasing recall. There are clear differences in average
FP and FN values before and after y = 2016 over all tested topic networks as shown in Table 6. True positives (TP)
increase along with the increase in FP, indicating that the trained model classifies more topics as new in recent years.
This average result over 20 datasets suggests a possible shift in the overall topic co-occurrence patterns in a specific
year, where the neighborhoods of existing topics become more structurally similar to those of new topics over time.

Experimenting on a different number of features showed that four feature selection functions are statistically
similar. ANOVA test was run on the Acc, AUC, precision, recall, and F1 of the classification results with f =
1, . . . , 14 using four functions. All 70 ANOVA tests resulted in p-value > 0.9, indicating the differences between
the four functions are statistically nonexistent. The result from mutual_info_classif function is used for further
analysis.

Figure 2 shows the performance changes with varying number of features selected f as bars, while training done
on the features excluded by the feature selection process are shown as an line. The number of features used during
the training improves the classification performance by a small margin while providing F1 over 0.91 using only one
feature. The most significant features are Mean PageRank and Node Count, which were selected for 49% and 50.5%
of the 400 classification runs in the experiment. These two features were selected for runs with f > 1, as well.
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Fig. 3. Ten sample visualizations for the 2-dimensional PCA results with y = 2010 and f = 15, x-axis and y-axis respectively showing the first
and second PCA feature values. Each dot within a figure represents one of the classified topics within each topic network with shaded labels
(grey = true, black = false), showing horizontal separations between the different labels.

Table 7

Ratio of variance explained by 2-dimensional PCA with different f selected using mutual_info_classif

f 5 10 15

Explained by 1st component 0.8696 0.6613 0.4925

Explained by 2nd component 0.0742 0.2104 0.2719

Variance Unexplained 0.0562 0.1283 0.2356

The classification results also showed that the result is not dependent on the features. F1 remained at 0.9289 with
using only one feature during the training, and F1 only reaches below 0.9 when 9 out of 15 most significant features
were excluded during the training. This indicates that majority of the topic subgraph features are closely correlated
to the emergence of a new topic among them, and significant dimension reduction can be done without performance
loss.

The PCA results also indicate the possibility of dimension reduction; with 2-dimensional PCA on all 15 features,
the first component was able to explain 49.25% of the result while 27.19% were explained by the second component
alone. PCA results of all 20 domains showed more horizontal separations with the first component as the x-axis,
with ten randomly selected topics from various fields shown in Fig. 3 where each topic is shaded by its classification
result. Clusters of binary labels can be seen in all ten scatterplots. 23.56% of the result remains unexplained by
either component, which is likely due to the inclusion of the features with weaker classification strengths. This is
shown by the PCA results in Table 7 with feature selections, where lower f results in more variance explanations.

5.2. Classifying new topics with incremental learning

Figure 4 shows that one of the within-domain incremental learning models resulted in consistently better results
compared to the baseline cold approach with the LR algorithm, where the model is re-initialized each year. The
partial approach resulted in an average of 0.0101 higher F1, showing that there is a temporal consistency over
the topic networks for new topic identification. The performance gain increases rapidly during the first 2 years of
incremental learning from 0.0078 in y = 2001 to 0.0127 in y = 2002, and an average of 0.0117 differences was



S. Jung and A. Segev / Analyzing the generalizability of the network-based topic emergence identification method 435

Fig. 4. F1 of classification results for within-domain incremental learning over the years.

Table 8

P-values between within-domain incremental learning approach and the baseline

LR SVM

Pairs Cold/Partial Cold/Warm Cold/Partial Cold/Warm

F1 1.76E-09 6.92E-01 2.37E-11 7.37E-01

Acc 2.76E-08 6.84E-01 5.98E-09 7.11E-01

Precision 1.80E-05 7.43E-01 7.46E-10 7.44E-01

Recall 3.02E-02 7.09E-01 9.56E-03 6.50E-01

Fig. 5. Changes in the F1 between partial and cold for different combinations of epochs and num_topics with the averaged F1 for partial as the
bar graph in the second axis.

observed until 2015 before being reduced to 0.0072 on average afterward. The performance increase validates the
incremental learning within a single dataset, while the degree of improvement can vary over time.

The warm approach showed very similar results to the cold approach, on the other hand. No apparent performance
increase can be attributed to the evolving nature of topic networks; the connections between predefined topic subsets
change every year. The initial training results were overwritten when the ML model is re-trained with such datasets
with major shifts, losing any previous training in the process. Using SVM instead of LR resulted in the same
outcome, with partial with 0.0114 higher F1 and warm showing similar values to the baseline, showing statistically
insignificant differences for other metrics as well, as shown in Table 8. The warm approach is statistically identical
to the non-incremental learning and hence was removed from further analysis.

Analysis of the different combinations of epochs and num_topics in Eq. (5) showed the incremental learning can
be done with sample sizes smaller than 200. num_topics as low as 10 resulted in similar performance improvements
with 5 true and 5 false data rows with both classification algorithms as shown by Fig. 5, indicating the method can be
used even with domains with sparse topic correlations. The differences were more pronounced with smaller epochs,
showing higher improvement with lower epochs. This can be attributed to the fact that inadequately trained models
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Fig. 6. F1 improvements over the cold baseline for individual domains trained using LR, with F1 in the second axis.

Fig. 7. F1 improvements over the cold baseline for individual domains trained using SVM, with F1 in the second axis.

have more performance enhancement available to them. More epochs resulted in higher absolute performance scores
including accuracies and F1, indicating it is still beneficial to train with a larger number of epochs.

Different domains resulted in different incremental learning performances. Figure 6 and Fig. 7 show the relative
F1 improvement of partial approach using epochs = 100 and num_rows = 200, each reaching p = 0.000 for
statistical significance. F1 and improvements are reversely correlated, showing moderate to weak correlation with
coefficient corr = −0.5848 for LR and corr = −0.2758 for SVM. This is in sync with the higher performance
gains with lower epochs; more improvements are made when possible. While SVM resulted in a higher average
improvement of 0.0072 over LR’s 0.0055, two of the domain-topics cadmium and air_polution showed negative
results. LR showed a more consistent performance improvement for all domains, making it a more generalizable
one compared to more dataset-sensitive SVM. Consistent improvement for 20 datasets spanning across 14 domains
topics ranging from business, chemistry, law to medicine indicates that sequential incremental learning can be done
in any field of research to improve new topic identifications.

The between-domain showed that incremental learning can be done over different topics as well. F1 differences
in Table 9 show the performance gain from between-domain learning is smaller than that of within-domain learn-
ing, with one negative value for 48 of the experiment iterations. The performance improvement is also not as sta-
tistically significant because of the larger variance in F1 between 380 domain pairs. The t-test for between do-
main F1 results showed an average p-value of 0.6623 for all experiment iterations with baseline cold approach
(epochs = [10, 10, 500] with alg = [SVM, LR]), indicating that there is no inherent difference between the domain
pairs. The partial approach showed significant differences between the domain pairs with a lower number of epochs,
reaching an average p-value of 2.1481e10−5 using SVM and 6.1439e10−9 using LR each with epochs = 10.

The statistical significance diminished with larger epochs, with p = 0.0076 for SVM and 0.0523 for LR with
epochs = 50 to p > 0.1 for both with epochs = 100. Such changes in the p-values indicate that incremental learning
over different domains is harder than incremental learning done within a single domain; the common knowledge
between-domain can be acquired with less training compared to the more detailed underlying knowledge within-
domain. This is supported by the observation that there are no significant differences between incremental learning
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Table 9

Differences in F1 of between-domain incremental learning approach and the baseline

Within the same MainType Between different MainTypes

Alg Epochs y = 2000 y = 2005 y = 2010 y = 2015 y = 2000 y = 2005 y = 2010 y = 2015

SVM 10 0.0018 0.0033 0.0022 0.0006 0.0055 0.0003 0.0017 0.0028

50 0.0023 0.0026 0.0012 0.0018 0.0029 0.0013 0.0000 0.0027

100 0.0054 0.0037 0.0035 0.0039 0.0059 0.0027 0.0029 0.0057

LR 10 0.0047 0.0041 0.0016 0.0028 0.0029 0.0105 0.0011 −0.0006

50 0.0037 0.0030 0.0028 0.0020 0.0040 0.0029 0.0038 0.0012

100 0.0058 0.0052 0.0046 0.0025 0.0020 0.0045 0.0035 0.0031

done over domain pairs sharing the same MainType and the ones that do not. The common knowledge captured by
partial approach is the basic knowledge common to different domains.

5.3. Limitations of the proposed approach

The fields of study are retrospectively updated within the MAG dataset and therefore are prone to be identified
after the fact. This leads to a small portion of topics seemingly appearing far earlier than they did in the actual
research communities due to some archaic publications. The pan-domain topic assignment tends to result in less
domain-specific topics to be found as well, resulting in poor performances on time-sensitive topics. Quality of the
emerging topics such as expected popularity and lifespan are not measured hence outlier topics are not distinguished
from genuine topics that are introduced to the field.

6. Conclusion

Topic models derived from processing unstructured documents can capture the number of topics shared through-
out a given document collection and can be used to detect and track changes in such topics over time. The text-based
approaches however have an innate limitation of requiring textual data for modeling topics, inhibiting the effective
prediction of topic evolutions where such data are nonexistent. The network-based topic emergence identification
is an alternative approach utilizing the network structure to model topics, validating the assumption that new topics
can be distinguished by the structural properties of their neighborhoods in the past with classification accuracy up
to 0.9.

Binary classification on 20 domains showed that the proposed method can be applied to bibliographic datasets
representing a specific subset of the domains. The proposed method performed better on topic-specific publications
compared to the publications with varying topics of interest. The proposed method is independent of the dataset, and
scheduled retirement of the MAG at the end of 2021 would not affect this approach. Topic assignment to document
is a well-studied field, and the method can be applied to any form of dataset containing topic-assigned publications.
Series of feature selections showed that the proposed method retained F1 over 0.9 with only 6 features; the majority
of 15 topic subgraph features were found to be closely correlated to the emergence of a new topic within them.
Analysis of temporal changes in the classification results showed an underlying topic co-occurrence pattern across
diverse research domains; the neighborhoods of existing topics become more structurally similar to those of new
topics in more recent years.

Incremental learning is shown to positively affect results of the proposed method. Consistent performance im-
provements were observed for incremental learning within each of the 20 domains over time, showing the method
can adapt to various domains, such as business, chemistry, law, and medicine. Iterations of the experiment also re-
vealed that the proposed method can be used even with sparsely correlated domains, retaining similar performance
and performance improvements with 10 data instances. The knowledge between different datasets was also found
to be transferable with incremental learning between different datasets, albeit to a smaller degree. The common
knowledge spanning across different research domains was captured in the early stages of the training, resulting in
significant performance improvements only with a smaller number of epochs run during the training.
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Future work will include the validation of the method’s generalizability with incremental learning results. The
gradual shifts in structural patterns over time can be captured to add explainability to the results, and underlying
common structural properties of new topics’ neighborhoods will be identified to be incorporated into the prospective
new topic prediction, along with the feature selection results. Different definitions of new topics will be used to test if
the proposed method works with not only any novel topics but also long-lasting topics or topics with rapid growth. A
set of approaches will be made to generate likely neighborhood candidates for the new topic in the future, including
community detections and deep neural network optimizations conscious of the properties correlated to the new topic
prediction. Amalgamation with semantic detection methods would allow a more accurately tagged document set,
resulting in a higher quality topic network generation
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