
Semantic Web 13 (2022) 829–893 829
DOI 10.3233/SW-212871
IOS Press

Semantics and canonicalisation of
SPARQL 1.1
Jaime Salas * and Aidan Hogan
DCC, Universidad de Chile; IMFD, Chile
E-mails: jaime.os.salas@gmail.com, ahogan@dcc.uchile.cl

Editor: Guilin Qi, Southeast University, China
Solicited reviews: Meng Wang, Southeast University, China; Guohui Xiao, Free University of Bozen-Bolzano, Italy; three anonymous
reviewers

Abstract. We define a procedure for canonicalising SPARQL 1.1 queries. Specifically, given two input queries that return the
same solutions modulo variable names over any RDF graph (which we call congruent queries), the canonicalisation procedure
aims to rewrite both input queries to a syntactically canonical query that likewise returns the same results modulo variable re-
naming. The use-cases for such canonicalisation include caching, optimisation, redundancy elimination, question answering, and
more besides. To begin, we formally define the semantics of the SPARQL 1.1 language, including features often overlooked in
the literature. We then propose a canonicalisation procedure based on mapping a SPARQL query to an RDF graph, applying alge-
braic rewritings, removing redundancy, and then using canonical labelling techniques to produce a canonical form. Unfortunately
a full canonicalisation procedure for SPARQL 1.1 queries would be undecidable. We rather propose a procedure that we prove
to be sound and complete for a decidable fragment of monotone queries under both set and bag semantics, and that is sound but
incomplete in the case of the full SPARQL 1.1 query language. Although the worst case of the procedure is super-exponential,
our experiments show that it is efficient for real-world queries, and that such difficult cases are rare.

Keywords: SPARQL, RDF, query, semantics, caching, canonicalisation, congruence, equivalence

1. Introduction

The Semantic Web provides a variety of standards and techniques for enhancing the machine-readability of Web
content in order to increase the levels of automation possible for day-to-day tasks. RDF [54] is the standard frame-
work for the graph-based representation of data on the Semantic Web. In turn, SPARQL [24] is the standard querying
language for RDF, composed of basic graph patterns extended with expressive features that include path expressions,
relational algebra, aggregation, federation, among others.

The adoption of RDF as a data model and SPARQL as a query language has grown significantly in recent years
[4,26]. Prominent datasets such as DBpedia [35] and Wikidata [61] contain in the order of hundreds of millions or
even billions of RDF triples, and their associated SPARQL endpoints receive millions of queries per day [37,52].
Hundreds of other SPARQL endpoints are likewise available on the Web [4]. However, a survey carried out by
Buil-Aranda et al. [4] found that a large number of SPARQL endpoints experience performance issues such as
latency and unavailability. The same study identified the complexity of SPARQL queries as one of the main causes

*Corresponding author. E-mail: jaime.os.salas@gmail.com.

1570-0844 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:jaime.os.salas@gmail.com
mailto:ahogan@dcc.uchile.cl
mailto:jaime.os.salas@gmail.com
https://creativecommons.org/licenses/by/4.0/

830 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

of these problems, which is perhaps an expected result given the expressivity of the SPARQL query language
where, for example, the decision problem consisting of determining if a solution is given by a query over a graph is
PSPACE-hard for the SPARQL language [44].

One way to address performance issues is through caching of sub-queries [41,62]. The caching of queries is done
by evaluating a query, then storing its result set, which can then be used to answer future instances of the same query
without using any additional resources. The caching of sub-queries identifies common query patterns whose results
can be returned for queries that contain said query patterns. However, this is complicated by the fact that a given
query can be expressed in different, semantically equivalent ways. As a result, if we are unable to verify if a given
query is equivalent to one that has already been cached, we are not using the cached results optimally: we may miss
relevant results.

Ideally, for the purposes of caching, we could use a procedure to canonicalise SPARQL queries. To formalise
this idea better, we call two queries equivalent if (and only if) they return the same solutions over any RDF dataset.
Note however that this notion of equivalence requires the variables of the solutions of both queries to coincide. In
practice, variable names will often differ across queries, where we would still like to be able to cache and retrieve
the results for queries whose results are the same modulo variable names. Hence we call two queries congruent
if they return the same solutions, modulo variable names, over any RDF dataset; in other words, two queries are
congruent if (and only if) there exists a one-to-one mapping from the variables in one query to the variables of the
other query that makes the former equivalent to the latter.

In this paper, we propose a procedure by which congruent SPARQL queries can be “canonicalised”. We call such
a procedure sound if the output query is congruent to the input query, and complete if the same output query is given
for any two congruent input queries.

Example 1.1. Consider the following two SPARQL queries asking for names of aunts:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x. }
?x :sister ?y . ?y :name ?z .

}

SELECT DISTINCT ?z WHERE {
{ ?a :name ?z . ?c :mother ?p . ?p :sister ?a . }
UNION
{ ?a :name ?z . ?c :father ?p . ?p :sister ?a . }

}

Both queries are equivalent: they always return the same results for any RDF dataset. Now rather consider a third
SPARQL query:

SELECT DISTINCT ?n WHERE {
?a :name ?n . ?b :name ?n .
{ ?v1 :mother ?v2 . ?v2 :sister ?a . } UNION
{ ?v3 :father ?v4 . ?v4 :sister ?a . }

}

Note that the pattern ?b :name ?n . in this query is redundant. This query is not equivalent to the former two
because the variable that is returned is different, and thus the solutions (which contain the projected variable), will
not be the same. However all three queries are congruent; for example, if we rewrite ?n to ?z in the third query, all
three queries become equivalent.

Canonicalisation aims to rewrite all three (original) queries to a unique, congruent, output query.

The potential use-cases we foresee for a canonicalisation procedure include the following:

Query caching: As aforementioned, a canonicalisation procedure can improve caching for SPARQL endpoints.
By capturing knowledge about query congruence, canonicalisation can increase the cache hit rate. Similar
techniques could also be used to identify and cache frequently appearing (congruent) sub-queries [41].

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 831

Views: In a conceptually similar use case to caching, our canonical procedure can be used to describe views [9].
In particular, the canonicalisation procedure can be used to create a key that uniquely identifies each of the
views available.

Log analysis: SPARQL endpoint logs can be analysed in order to understand the importance of different SPARQL
features [7,52], to build suitable benchmarks [52], to understand how users build queries incrementally [7,64],
etc. Our canonicalisation procedure could be used to pre-process and group congruent queries in logs.

Query optimisation: Canonicalisation may help with query optimisation by reducing the variants to be considered
for query planning, detecting duplicate sub-queries that can be evaluated once, removing redundant patterns
(as may occur under query rewriting strategies for reasoning [33]), etc.

Learning over queries: Canonicalisation can reduce superficial variance in queries used to train machine learning
models. For example, recent question answering systems learn translations from natural language questions
to queries [10], where canonicalisation can be used to homogenise the syntax of queries used for training.

Other possible but more speculative use-cases involve signing or hashing SPARQL queries, discovering near-
duplicate or parameterised queries (by considering constants as variables), etc. Furthermore, with some adaptations,
the methods proposed here could be generalised to other query languages, such as to canonicalise SQL queries,
Cypher queries [3], etc.

A key challenge for canonicalising SPARQL queries is the prohibitively high computational complexity that it
entails. More specifically, the query equivalence problem takes two queries and returns true if and only if they
return the same solutions for any dataset, or false otherwise. In the case of SPARQL, this problem is intractable
(NP-complete) even when simply permitting joins (with equality conditions). Even worse, the problem becomes
undecidable when features such as projection and optional matches are added [45]. Since a canonicalisation proce-
dure can be directly used to decide equivalence, this means that canonicalisation is at least as hard as the equivalence
problem in computational complexity terms, meaning it will likewise be intractable for even simple fragments and
undecidable when considering the full SPARQL language. There are thus fundamental limitations in what can be
achieved for canonicalising SPARQL queries.

With these limitations in mind, we propose a canonicalisation procedure that is always sound, but only complete
for a monotone fragment of SPARQL under set or bag semantics. This monotone fragment permits unions and
joins over basic graph patterns, some examples of which were illustrated in Example 1.1. We further provide sound,
but incomplete, canonicalisation of the full SPARQL 1.1 query language, whereby the canonicalised query will be
congruent to the input query, but not all pairs of congruent input queries will result in the same output query. In
the case of incomplete canonicalisation, we are still able to find novel congruences, in particular through canonical
labelling of variables, which further allows for ordering operands in a consistent manner. Reviewing the aforemen-
tioned use-cases, we believe that this “best-effort” form of canonicalisation is still useful, as in the case of caching,
where missing an equivalence will require re-executing the query (which would have to be done in any case), or
in the case of learning over queries, where incomplete canonicalisation can still increase the homogeneity of the
training examples used.

As a high-level summary, our procedure combines four main techniques for canonicalisation.

1. The first technique is to convert SPARQL queries to an algebraic graph, which abstracts away syntactic
variances, such as the ordering of operands for operators that are commutative, and the grouping of operands
for operators that are associative.

2. The second technique is to apply algebraic rewritings on the graph to achieve normal forms over combinations
of operators. For example, we rewrite monotone queries – that allow any combination of join, union, basic
graphs patterns, etc. – into unions of basic graph patterns; this would rewrite the first and third queries shown
in Example 1.1 into a form similar to the second query.

3. The third technique is to apply redundancy elimination within the algebraic graph, which typically involves
the removal of elements of the query that do not affect the results; this technique would remove the redundant
?b :name ?n . pattern from the third query of Example 1.1.

4. The fourth and final technique is to apply a canonical labelling of the algebraic graph, which will provide
consistent labels to variables, and which in turn allows for the (unordered) algebraic graph to be serialised
back into the (ordered) concrete syntax of SPARQL in a canonical way.

832 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

We remark that the techniques do not necessarily follow the presented order; in particular, the second and third
techniques can be interleaved in order to provide further canonicalisation of queries.

This paper extends upon our previous work [50] where we initially outlined a sound and complete procedure for
canonicalising monotone SPARQL queries. The novel contributions of this extended paper include:

– We close a gap involving translation of monotone queries under bag semantics that cannot return duplicates
into set semantics.

– We provide a detailed semantics for SPARQL 1.1 queries; formalising and understanding this is a key prereq-
uisite for canonicalisation.

– We extend our algebraic graph representation in order to be able to represent SPARQL 1.1 queries, offering
partial canonicalisation support.

– We implement algebraic rewriting rules for specific SPARQL 1.1 operators, such as those relating to filters; we
further propose techniques to canonicalise property path expressions.

– We provide more detailed experiments, which now include results over a Wikidata query log, a comparison
with existing systems from the literature that perform pairwise equivalence checks, and more detailed stress
testing.

We also provide extended proofs of results that were previously unpublished [51], as well as providing extended
discussion and examples throughout.

The outline of the paper is then as follows. Section 2 provides preliminaries for RDF, while Section 3 provides a
detailed semantics for SPARQL. Section 4 provides a problem statement, formalising the notion of canonicalisation.
Section 5 discusses related works in the areas of systems that support query containment, equivalence, and congru-
ence. Sections 6 and 7 discuss our SPARQL canonicalisation framework for monotone queries, and SPARQL 1.1,
respectively. Section 8 presents evaluation results. Section 9 concludes.

2. RDF data model

We begin by introducing the core concepts of the RDF data model over which the SPARQL query language will
later be defined. The following is a relatively standard treatment of RDF, as can be found in various papers from the
literature [22,28]. We implicitly refer to RDF 1.1 unless otherwise stated.

2.1. Terms and triples

RDF assumes three pairwise disjoint sets of terms: IRIs (I), literals (L) and blank nodes (B). Data in RDF are
structured as triples, which are 3-tuples of the form (s, p, o) ∈ IB× I× IBL denoting the subject s, the predicate p,
and the object o of the triple.1 There are three types of literals: a plain literal s is a simple string, a language-tagged
literal (s, l) is a pair of a simple string and a language tag, and (s, d) is a pair of a simple string and an IRI (denoting
a datatype).

In this paper we use Turtle/SPARQL-like syntax, where :a, xsd:string, etc., denote IRIs; _:b, _:x1, etc.,
denote blank nodes; "a", "xy z", etc., denote plain literals; "hello"@en, "hola"@es, etc., denote language-
tagged literals; and "true"^^xsd:boolean, "1"^^xsd:int, etc., denote datatype literals.

2.2. Graph

An RDF graph G is a set of RDF triples. It is called a graph because each triple (s, p, o) ∈ G can be viewed as a

directed labelled edge of the form s
p−→ o, and a set of such triples forms a directed edge-labelled graph.

1In this paper we concatenate set names to denote their union; e.g., IBL is used as an abbreviation for the union I ∪ B ∪ L.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 833

2.3. Simple entailment and equivalence

Blank nodes in RDF have special meaning; in particular, they are considered to be existential variables. The
notion of simple entailment [22,25] captures the existential semantics of blank nodes (among other fundamental
aspects of RDF). This same notion also plays a role in how the SPARQL query language is defined.

Formally, let α : B → IBL denote a mapping that maps blank nodes to RDF terms; we call such a mapping
a blank node mapping. Given an RDF graph G, let bnodes(G) denote all of the blank nodes appearing in G. Let
α(G) denote the image of G under α; i.e., the graph G but with each occurrence of each blank node b ∈ bnodes(G)

replaced with α(b). Given two RDF graphs G and H , we say that G simple-entails H , denoted G |= H , if and only
if there exists a blank node mapping α such that α(H) ⊆ G [22,25]. Furthermore, if G |= H and H |= G, then we
say that they are simple equivalent, denoted G ≡ H .

Deciding simple entailment G |= H is known to be NP-complete [22]. Deciding the simple equivalence G ≡ H

is likewise known to be NP-complete.
We remark that the RDF standard defines further entailment regimes that cover the semantics of datatypes and

the special RDF and RDFS vocabularies [25]; we will not consider such entailment regimes here.

2.4. Isomorphism

Given that blank nodes are defined as existential variables [25], two RDF graphs differing only in blank node
labels are thus considered isomorphic [19,28].

Formally, if a blank node mapping of the form α : B → B is one-to-one, we call it a blank node bijection. Two
RDF graphs G and H are defined as isomorphic, denoted G � H , if and only if there exists a blank node bijection
α such that α(G) = H ; i.e., the two RDF graphs differ only in their blank node labels. We remark that if G � H ,
then G ≡ H ; however, the inverse does not always hold as we discuss in the following.

Deciding the isomorphism G � H is known to be GI-complete [28] (as hard as graph isomorphism).

2.5. Leanness and core

Existential blank nodes may give rise to redundant triples. In particular, an RDF graph G is called lean if and only
if there does not exist a proper subgraph G′ � G of it such that G′ |= G; otherwise G is called non-lean. Non-lean
graphs can be seen, under the RDF semantics, as containing redundant triples. For example, given an RDF graph
G = {(:x,:y,:z), (:x,:y,_:b)}, the second triple is seen as redundant: it states that :x has some value on :y,
but we know this already from the first triple, so the second triple says nothing new.

The core of an RDF graph G is then an RDF graph G′ such that G′ ≡ G and G′ is lean; intuitively it is a version
of G without redundancy. For example the core of the aforementioned graph would be G′ = {(:x,:y,:z)}; note
that G′ ≡ G and G′ is lean, but G′ 	� G. The core of a graph is unique modulo isomorphism [22]; hence we refer
to the core of a graph.

Deciding whether or not an RDF G is lean is known to be CONP-complete [22]. Deciding if G′ is the core of G

is known to be DP-complete [22].

2.6. Merge

Blank nodes are considered to be scoped to a local RDF graph. Hence when combining RDF graphs, applying a
merge (rather than union) avoids blank nodes with the same name in two (or more) graphs clashing. Given two RDF
graphs G and G′, and a blank node bijection α such that bnodes(α(G)) ∩ bnodes(G′) = ∅, we call α(G) ∪ G′ an
RDF merge, denoted G � G′. The merge of two graphs is unique modulo isomorphism.

3. SPARQL 1.1 semantics

We now define SPARQL 1.1 in detail [24]. We will begin by defining a SPARQL dataset over which queries
are evaluated. We then introduce an abstract syntax for SPARQL queries. Thereafter we discuss the evaluation of
queries under different semantics.

834 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 1

Studies that define the semantics of features in SPARQL (1.1), including Monotone (basic graph patterns, joins, UNION, un-nested SELECT
DISTINCT), Filters, Optionals, Negation (OPTIONAL & !BOUND, MINUS, FILTER (NOT) EXISTS), Named Graphs (GRAPH, FROM
(NAMED)), Paths, Federation (SERVICE), Assignment (BIND, VALUES), Aggregation (GROUP BY and aggregate functions), Sub Queries
(nested SELECT), Solution Modifiers (LIMIT, OFFSET, ORDER BY), Query Forms (CONSTRUCT, ASK, DESCRIBE), Expressions and Func-
tions (e.g., +, BOUND, COUNT, IF), Bag Semantics; we denote by “*” partial definitions or discussion

Paper Year Mon Filt Opt Neg NGra Path Fed Assn Agg SubQ SolM Form Exp Bag

Perez et al. [43,44] 2006 � � � * *

Polleres [46] 2007 � � � * � * * *

Alkhateeb et al. [2] 2009 � � � * � *

Arenas and Pérez [5] 2012 � � � * * � � * * �
Polleres and Wallner [47] 2013 � � � � � � � � � * * �
Kaminski et al. [32] 2017 � � � � � � � � * * �
Salas and Hogan 2021 � � � � � � � � � � � � * �

Table 2

SPARQL property path syntax

The following are path expressions

p a predicate (IRI)

!(p1| . . .|pk|^pk+1| . . .|^pn) any (inv.) predicate not listed

and if e, e1, e2 are path expressions the following are also path expressions:

^e an inverse path

e1/e2 a path of e1 followed by e2

e1|e2 a path of e1 or e2

e* a path of zero or more e

e+ a path of one or more e

e? a path of zero or one e

(e) brackets used for grouping

These definitions extend similar preliminaries found in the literature. However, our definitions of the semantics of
SPARQL 1.1 extend beyond the core of the language and rather aim to be exhaustive, where a clear treatment of the
full language is a prerequisite for formalising the canonicalisation of queries using the language. Table 1 provides
a summary of prior works that have defined the semantics of SPARQL features. We exclude works that came after
one of the works shown and use a subset of the features of that work (even if they may contribute novel results
about those features). Some SPARQL 1.0 features, such as UNION, FILTER and OPTIONAL, have been featured
in all studies. In terms of SPARQL 1.1, the most extensive formal definitions have been provided by Polleres and
Wallner [47], and by Kaminski et al. [32]. However, both works omit query features: Polleres and Wallner [47]
omit federation and aggregation, whereas Kaminski et al. [32] omit named graphs, federation, and non-SELECT
query forms. Compared to these previous works, we aim to capture the full SPARQL 1.1 query language, with one
simplification: we define functions and expressions abstractly, rather than defining all of the many built-ins that
SPARQL 1.1 provides (e.g., +, BOUND, COUNT, IF, etc.)

3.1. Query syntax

Before we introduce an abstract syntax for SPARQL queries, we provide some preliminaries:

– A triple pattern (s, p, o) is a member of the set VIBL × VI × VIBL (i.e., an RDF triple allowing variables in
any position and literals as subject).

– A basic graph pattern B is a set of triple patterns. We denote by vars B := ⋃
(s,p,o)∈B V ∩ {s, p, o} the set of

variables used in B.
– A path pattern (s, e, o) is a member of the set VIBL × P × VIBL, where P is the set of all path expressions

defined by Table 2.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 835

– A navigational graph pattern N is a set of paths patterns and triple patterns (with variable predicates). We
denote by vars N := ⋃

(s,e,o)∈N V ∩ {s, e, o} the set of variables used in N .
– A term in VIBL is a built-in expression. Let ⊥ denote an unbound value and ε an error. We call φ a built-in

function if it takes a tuple of values from IBL ∪ {⊥, ε} as input and returns a single value in IBL ∪ {⊥, ε}
as output. An expression φ(R1, . . . , Rn), where each R1, . . . , Rn is a built-in expression, is itself a built-in
expression.

– An aggregation function ψ is a function that takes a bag of tuples from IBL as input and returns a value in
IBL ∪ {⊥, ε} as output. An expression ψ(R1, . . . , Rn), where each R1, . . . , Rn is a built-in expression, is an
aggregation expression.

– If R is a built-in expression, and � is a boolean value indicating ascending or descending order, then (R,�) is
an order comparator.

We then define the abstract syntax of a SPARQL query as shown in Table 3. Note that we abbreviate OPTIONAL
as OPT, FILTER EXISTS as FE, and FILTER NOT EXISTS as FNE. Otherwise mapping from SPARQL’s con-
crete syntax to this abstract syntax is straightforward, with the following exceptions:

– For brevity, we consider the following SPARQL 1.1 operators to be represented as functions:

∗ boolean operators: ! for negation, && for conjunction, || for disjunction;
∗ equality and inequality operators: =, <, >, <=, >=, !=;
∗ numeric operators: unary + and - for positive/negative numbers; binary + and - for addition/subtraction, *

for multiplication and / for division;

for example, replacing ?a+?b, we assume addition to be defined as a function SUM(?a,?b).
– We combine FROM and FROM NAMED into one feature, FROM, so they can be evaluated together.
– A query such as DESCRIBE <x> <y> in the concrete syntax can be expressed in the abstract syntax with an

empty pattern DESCRIBE{x,y}({}).
– Aggregates without grouping can be expressed with GROUP{}(Q)(D). We assume that every query in the

abstract syntax with a group-by pattern uses AGG – possibly AGG{}(Q) – to generate a graph pattern (and
“flatten” groups).

– Some aggregation functions in SPARQL take additional arguments, including a DISTINCT modifier, or a
delimiter in the case of CONCAT. For simplicity, we assume that these are distinct functions, e.g., COUNT(·)
versus COUNTDISTINCT(·).

– SPARQL allows SELECT * to indicate that values for all variables should be returned. Otherwise SPARQL
requires that at least one variable be specified. A SELECT * clause can be written in the abstract syn-
tax as SELECTV (Q) where Q is a graph pattern on V . Also the abstract syntax allows empty projections
SELECT{}(Q), which greatly simplifies certain definitions and proofs; this can be represented in the concrete
syntax as SELECT ?empty, where ?empty is a fresh variable not appearing in the query.

– In the concrete syntax, SELECT allows for built-in expressions and aggregation expressions to be specified.
We only allow variables to be used. However, such expressions can be bound to variables using BIND or AGG.2

– In the concrete syntax, ORDER BY allows for using aggregation expressions in the order comparators. Our ab-
stract syntax does not allow this as it complicates the definitions of such comparators. Ordering on aggregation
expressions can rather be achieved using sub-queries.

– We use [Q1SERVICE�
x Q2] to denote SERVICE, where � = true indicates the SILENT keyword is invoked,

and � = false indicates that it is not.
– We do not consider SERVICE with variables as it has no normative semantics in the standard [48].

Aside from the latter point, these exceptions are syntactic conveniences that help simplify later definitions.

2In our proposed abstract syntax and the concrete syntax, the ordering of variables in the SELECT is not meaningful, though in practice
engines may often present variables in the results following the same order in which they are listed by the SELECT clause.

836 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 3

Abstract SPARQL syntax

– B is a basic graph pattern. ∴ B is a graph pattern on vars B.

– N is a navigational graph pattern. ∴ N is a graph pattern on vars N .

– Q1 is a graph pattern on V1.
– Q2 is a graph pattern on V2.

∴ [Q1ANDQ2] is a graph pattern on V1 ∪ V2;
∴ [Q1UNIONQ2] is a graph pattern on V1 ∪ V2;
∴ [Q1OPTQ2] is a graph pattern on V1 ∪ V2;
∴ [Q1MINUSQ2] is a graph pattern on V1.

– Q is a graph pattern on V .
– Q1 is a graph pattern on V1.
– Q2 is a graph pattern on V2.
– v is a variable not in V .
– R is a built-in expression.

∴ FILTERR(Q) is a graph pattern on V ;
∴ [Q1FEQ2] is a graph pattern on V1;
∴ [Q1FNEQ2] is a graph pattern on V1;
∴ BINDR,v(Q) is a graph pattern on V ∪ {v}.

– Q is a graph pattern on V .
– M is a bag of solution mappings on VM = ⋃

μ∈M dom(μ).
∴ VALUESM(Q) is a graph pattern on V ∪ VM.

– Q is a graph pattern on V .
– x is an IRI.
– v is a variable.

∴ GRAPHx(Q) is a graph pattern on V .
∴ GRAPHv(Q) is a graph pattern on V ∪ {v}.

– Q1 is a graph pattern on V1.
– Q2 is a graph pattern on V2.
– x is an IRI.
– � is a boolean value.

∴ [Q1SERVICE�
x Q2] is a graph pattern on V1 ∪ V2.

– Q is a graph pattern on V .
– Q′ is a group-by pattern on (V ′, V).
– V ′′ is a set of variables.
– A is an aggregation expression
– � is a (possibly empty) set of pairs {(A1, v1), . . . , (An, vn)}, where A1, . . . , An

are aggregation expressions, v1, . . . , vn are variables not appearing in V ∪ V ′ such
that vi 	= vj for 1 � i < j � n, and where vars � = {v1, . . . , vn}

∴ Q is a group-by pattern on (∅, V).
∴ Q′ is a graph pattern on V ′.
∴ GROUPV ′′ (Q) is a group-by pattern on (V ′′, V).
∴ HAVINGA(Q′) is a group-by pattern on (V ′, V).
∴ AGG�(Q′) is a graph pattern on (V ′ ∪ vars �, V).

– Q is a graph pattern or sequence pattern on V .
– � is a non-empty sequence of order comparators.
– k is a non-zero natural number.

∴ Q is a graph pattern and sequence pattern on V

∴ ORDER�(Q) is a sequence pattern on V .
∴ DISTINCT(Q) is a sequence pattern on V .
∴ REDUCED(Q) is a sequence pattern on V .
∴ OFFSETk(Q) is a sequence pattern on V .
∴ LIMITk(Q) is a sequence pattern on V .

– Q is a sequence pattern on V that does not contain the same blank node b in two
different graph patterns.
– V ′ is a set of variables.
– B is a basic graph pattern.
– X is a set of IRIs and/or variables.

∴ SELECTV ′ (Q) is a query and a graph pattern on V ′.
∴ ASK(Q) is a query.
∴ CONSTRUCTB(Q) is a query.
∴ DESCRIBEX(Q) is a query.

– Q is a query but not a from query
– X and X′ are sets of IRIs

∴ FROMX,X′ (Q) is a from query and a query.

3.2. Datasets

SPARQL allows for indexing and querying more than one RDF graph, which is enabled through the notion of a
SPARQL dataset. Formally, a SPARQL dataset D := (G, {(x1,G1), . . . , (xn,Gn)}) is a pair of an RDF graph G

called the default graph, and a set of named graphs of the form (xi,Gi), where xi is an IRI (called a graph name)
and Gi is an RDF graph; additionally, graph names must be unique, i.e., xj 	= xk for 1 � j < k � n. We denote by
GD the default graph G of D and by D∗ = {(x1,G1), . . . , (xn,Gn)} the set of all named graphs in D. We further
denote by GD[xi] the graph Gi such that (xi,Gi) ∈ D∗ or the empty graph if xi does not appear as a graph name
in D∗.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 837

3.3. Services

While the SPARQL standard defines a wide range of features that compliant services must implement, a number
of decisions are left to a particular service. First and foremost, a service chooses what dataset to index. Along these
lines, we define a SPARQL service as a tuple S = (D,R,A,�, describe), where:

– D is a dataset;
– R is a set of supported built-in expressions;
– A is a set of supported aggregation expressions;
– � is a total ordering of RDF terms and ⊥;
– describe is a function used to describe RDF terms.

We will denote by DS the dataset of a particular service. The latter two elements will be described in more detail
as they are used. The SPARQL standard does define some minimal requirements on the set of built-in expressions,
the set of aggregation expressions, the ordering of terms, etc., that a standards-compliant service should respect. We
refer to the SPARQL standard for details on these requirements [24].

3.4. Query evaluation

The semantics of a SPARQL query Q can be defined in terms of its evaluation over a SPARQL dataset D, denoted
Q(D) which returns solution mappings that represent “matches” for Q in D.

3.4.1. Solution mappings
A solution mapping μ is a partial mapping from variables in V to terms IBL. We denote the set of all solution

mappings by M. Let dom(μ) denote the domain of μ, i.e., the set of variables for which μ is defined. Given
{v1, . . . , vn} ⊆ V and {x1 . . . , xn} ⊆ IBL ∪ {⊥}, we denote by {v1/x1, . . . , vn/xn} the mapping μ such that
dom(μ) = {vi | xi /∈ {⊥, ε}} for 1 � i � n and μ(vi) = xi for vi ∈ dom(μ). We denote by μ∅ the empty solution
mapping (such that dom(μ∅) = ∅).

We say that two solution mappings μ1 and μ2 are compatible, denoted μ1 ∼ μ2, if and only if μ1(v) = μ2(v)

for every v ∈ dom(μ1)∩dom(μ2). We say that two solution mappings μ1 and μ2 are overlapping, denoted μ1 ∗μ2,
if and only if dom(μ1) ∩ dom(μ2) 	= ∅.

Given two compatible solution mappings μ1 ∼ μ2, we denote by μ1 ∪ μ2 their combination such that dom(μ1 ∪
μ2) = dom(μ1) ∪ dom(μ2), and if v ∈ dom(μ1) then (μ1 ∪ μ2)(v) = μ1(v), otherwise if v ∈ dom(μ2) then
(μ1 ∪ μ2)(v) = μ2(v). Since the solution mappings μ1 and μ2 are compatible, for all v ∈ dom(μ1) ∩ dom(μ2), it
holds that (μ1 ∪ μ2)(v) = μ1(v) = μ2(v), and thus μ1 ∪ μ2 = μ2 ∪ μ1.

Given a solution mapping μ and a triple pattern t , we denote by μ(t) the image of t under μ, i.e., the result of
replacing every occurrence of a variable v in t by μ(v) (generating an unbound ⊥ if v /∈ dom(μ)). Given a basic
graph pattern B, we denote by μ(B) the image of B under μ, i.e., μ(B) := {μ(t) | t ∈ B}. Likewise, given a
navigational graph pattern N , we analogously denote by μ(N) the image of N under μ.

Blank nodes in SPARQL queries can likewise play a similar role to variables though they cannot form part of the
solution mappings. Given a blank node mapping α, we denote by α(B) the image of B under α and by bnodes(B)

the set of blank nodes used in B; we define α(N) and bnodes(N) analogously.
Finally, we denote by R(μ) the result of evaluating the image of the built-in expression R under μ, i.e., the results

of replacing all variables v in R (including in nested expressions) with μ(v) and evaluating the resulting expression.
We denote by μ |= R that μ satisfies R, i.e., that R(μ) returns a value interpreted as true.

3.4.2. Set vs. bag vs. sequence semantics
SPARQL queries can be evaluated under different semantics, which may return a set of solution mappings M , a

bag of solution mappings M, or a sequence of solution mappings M. Sets are unordered and do not permit duplicates.
Bags are unordered and permit duplicates. Sequences are ordered and permit duplicates.

Given a solution mapping μ and a bag of solution mappings M, we denote by M(μ) the multiplicity of μ in M,
i.e., the number of times that μ appears in M; we say that μ ∈ M if and only if M(μ) > 0 (otherwise, if M(μ) = 0,
we say that μ /∈ M). We denote by |M| = ∑

μ∈MM(μ) the (bag) cardinality of M. Given two bags M and M′,

838 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

we say that M ⊆ M′ if and only if M(μ) � M′(μ) for all μ ∈ M. Note that M ⊆ M′ and M′ ⊆ M if and only if
M = M′.

Given a sequence M of length n (we denote that |M| = n), we use M[i] (for 1 � i � n) to denote the ith solution
mapping of M, and we say that μ ∈ M if and only if there exists 1 � i � n such that M[i] = μ. We denote by
M[i . . . j] (for 1 � i � j) the sub-sequence (M[i], M[i + 1], . . . , M[j − 1], M[j]) of elements i to j of M, inclusive,
in order; if i = j , then M[i . . . j] is defined to be (M[i]); if i > n, then M[i . . . j] is defined to be the empty sequence
(); otherwise if j > n, then M[i . . . j] is defined to be M[i . . . n]. Given two sequences M1 and M2, we denote by
M1M2 their concatenation. For a sequence M of length n > 0, we define the deletion of index i � n, denoted
del(M, i), as the concatenation M[1 . . . i − 1]M[i + 1 . . . n] if 1 < i � n, or M[2 . . . n] if i = 1, or M[1 . . . n − 1]
otherwise. We call j a repeated index of M if there exists 1 � i < j such that M[i] = M[j]. We define dist(M) to be
the fixpoint of recursively deleting repeated indexes from M. We say that M′ is contained in M, denoted M′ ⊆ M, if
and only if we can derive M′ by recursively removing zero-or-more indexes from M. Note that M′ ⊆ M and M ⊆ M′
if and only if M = M′.

Next we provide some convenient notation to convert between sets, bags and sequences. Given a sequence M of
length n, we denote by bag(M) the bag that preserves the multiplicity of elements in M (such that bag(M)(μ) := |{i |
1 � i � n and M[i] = μ}|). Given a set M , we denote by bag(M) the bag such that bag(M)(μ) = 1 if and only
if μ ∈ M; otherwise bag(M)(μ) = 0. Given a bag M, we denote by set(M) := {μ | μ ∈ M} the set of elements
in M; we further denote by seq(M) a random permutation of the bag M (more formally, any sequence seq(M)

satisfying bag(seq(M)) = M). Given a sequence M, we use set(M) as a shortcut for set(bag(M)), and given a set
M , we use seq(M) as a shortcut for seq(bag(M)). Finally, given a set M , a bag M and a sequence M, we define that
set(M) = M , bag(M) = M and seq(M) = M.

We continue by defining the semantics of SPARQL queries under set semantics. Later we cover bag semantics,
and subsequently discuss aggregation features. Finally we present sequence semantics.

3.5. Query patterns: Set semantics

Query patterns evaluated under set semantics return sets of solution mappings without order or duplicates. We
first define a set algebra of operators and then define the set evaluation of SPARQL graph patterns.

3.5.1. Set algebra
The SPARQL query language can be defined in terms of a relational-style algebra consisting of unary and binary

operators [18]. Here we describe the operators of this algebra as they act on sets of solution mappings. Unary
operators transform from one set of solution mappings (possibly with additional arguments) to another set of solution
mappings. Binary operators transform two sets of solution mappings to another set of solution mappings. In Table 4,
we define the operators of this set algebra. This algebra is not minimal: some operators (per, e.g., the definition of
left-outer join) can be expressed using the other operators.

3.5.2. Navigational graph patterns
Given an RDF graph G, we define the set of terms appearing as a subject or object in G as follows: so(G) :=

{x | ∃p, y : (x, p, y) ∈ G or (y, p, x) ∈ G}. We can then define the evaluation of path expressions as shown in

Table 4

Set algebra, where M , M1, and M2 are sets of solution mappings; V is a set of variables and v is a variable; and R is a built-in expression

M1 �� M2 := {μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2 and μ1 ∼ μ2} Natural join

M1 ∪ M2 := {μ | μ ∈ M1 or μ ∈ M2} Union

M1 � M2 := {μ1 ∈ M1 | �μ2 ∈ M2 : μ1 ∼ μ2} Anti-join

M1 − M2 := {μ1 ∈ M1 | �μ2 ∈ M2 : μ1 ∼ μ2 and μ1 ∗ μ2} Minus

M1 �� M2 := (M1 �� M2) ∪ (M1 � M2) Left-outer join

πV (M) := {μ′ | ∃μ ∈ M : μ ∼ μ′ and dom(μ′) = V ∩ dom(μ)} Projection

σR(M) := {μ ∈ M | μ |= R} Selection

βR,v(M) := {μ ∪ {v/R(μ)} | μ ∈ M} Bind

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 839

Table 5

Path expressions where G is an RDF graph, p, p1 . . . pn are IRIs, and e, e1, e2 are path expressions

p(G) := {(s, o) | (s, p, o) ∈ G} Predicate

!(p1| . . .|pn)(G) := {(s, o) | ∃q : (s, q, o) ∈ G and q /∈ {p1, . . . , pn}} Negated property set

!(^p1| . . .|^pn)(G) := {(s, o) | ∃q : (o, q, s) ∈ G and q /∈ {p1, . . . , pn}} Negated inverse property set

!(p1| . . .|pk|^pk+1| . . .|^pn)(G) := !(p1| . . .|pk)(G) ∪ !(^pk+1| . . .|^pn)(G) Negated (inverse) property set

^e(G) := {(s, o) | (o, s) ∈ e(G)} Inverse

e1/e2(G) := {(x, z) | ∃y : (x, y) ∈ e1(G) and (y, z) ∈ e2(G)} Concatenation

e1|e2(G) := e1(G) ∪ e2(G) Disjunction

e+(G) := {(y1, yn+1) | for 1 � i � n : ∃(yi , yi+1) ∈ e(G)} One-or-more

e*(G) := e+(G) ∪ {(x, x) | x ∈ so(G)} Zero-or-more

e?(G) := e(G) ∪ {(x, x) | x ∈ so(G)} Zero-or-one

Table 5 [34], which returns a set of pairs of nodes connected by a path in the RDF graph G that satisfies the given
path expression.

Given a navigational graph pattern N , we denote by paths(N) := {e ∈ P | ∃s, o : (s, e, o) ∈ N} the set of path
expressions used in N (including simple IRIs, but not variables). We define the path graph of G under N , which
we denote by GN , as the set of triples that materialise paths of N in G; more formally GN := {(s, e, o) | e ∈
paths(N) and (s, o) ∈ e(G)}.
3.5.3. Service federation

The SERVICE feature allows for sending graph patterns to remote SPARQL services. In order to define this
feature, we denote by ω a federation mapping from IRIs to services such that, given an IRI x ∈ I, then ω(x) returns
the service S hosted at x or returns ε in the case that no service exists or can be retrieved. We denote by S.Q(DS)

the evaluation of a query Q on a remote service S . When a service of the query evaluation is not indicated (e.g.,
Q(D)), we assume that it is evaluated on the local service. Finally, we define that ε.Q(Dε) invokes a query-level
error ε – i.e., the evaluation of the entire query fails – while ε.Q∗(Dε) returns a set with the empty solution mapping
{μ∅}.3

3.5.4. Set evaluation
The set evaluation of a SPARQL graph pattern transforms a SPARQL dataset D into a set of solution mappings.

The base evaluation is given in terms of B(D) and N(D), i.e., the evaluation of a basic graph pattern B and a
navigational graph pattern N over a dataset D, which generate sets of solution mappings. These solution mappings
can then be transformed and combined using the aforementioned set algebra by invoking the corresponding pattern.
The set evaluation of graph patterns is then defined in Table 6. We remark that for the definition of FE (filter exists)
and FNE (filter not exists), there is some ambiguity about what μ(Q2) precisely means when Q2 involves variables
mentioned outside of a basic graph pattern or a path expression; this is a known issue for the SPARQL 1.1 standard
[27,32,42,55], which we will discuss in more detail in Section 3.10.

3.6. Query patterns: Bag semantics

Query patterns evaluated under bag semantics return bags of solution mappings. Like under set semantics, we
first define a bag algebra of operators and then define the bag evaluation of SPARQL graph patterns.

3.6.1. Bag algebra
The bag algebra is analogous to the set algebra, but further operates over the multiplicity of solution mappings.

We define this algebra in Table 7.

3We remark that {μ∅} is the join identity; i.e., {μ∅} �� M = M . On the other hand {} is the join zero; i.e., {} �� M = {}.

840 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 6

Set evaluation of graph patterns where D is a dataset; B is a basic graph pattern; N is a
navigational graph pattern; Q, Q1 and Q2 are graph patterns; V is a set of variables; R is a
built-in expression; v is a variable; M is a set of solution mappings; and x is an IRI

B(D) := {μ | ∃α : μ(α(B)) ⊆ GD and dom(μ) = vars B and dom(α) = bnodes(B)}
N(D) := {μ | ∃α : μ(α(N)) ⊆ GN

D
∪ GD and dom(μ) = vars N and dom(α) = bnodes(N)}

[Q1ANDQ2](D) := Q1(D) �� Q2(D)

[Q1UNIONQ2](D) := Q1(D) ∪ Q2(D)

[Q1FEQ2](D) := {μ ∈ Q1(D) | (μ(Q2))(D) 	= ∅} (see † below)

[Q1FNEQ2](D) := {μ ∈ Q1(D) | (μ(Q2))(D) = ∅} (see † below)

[Q1MINUSQ2](D) := Q1(D) − Q2(D)

[Q1OPTQ2](D) := Q1(D) �� Q2(D)

SELECTV (Q)(D) := πV (Q(D))

FILTERR(Q)(D) := σR(Q(D))

BINDR,v(Q)(D) := βR,v(Q(D))

VALUESM(Q)(D) := Q(D) �� M

GRAPHx(Q)(D) := Q((GD[x],D∗))

GRAPHv(Q)(D) := ⋃
(xi ,Gi)∈D∗ βxi ,v(Q((Gi,D

∗)))

[Q1SERVICEfalsex Q2](D) := Q1(D) �� ω(x).Q2(Dω(x))

[Q1SERVICEtruex Q2](D) := Q1(D) �� ω(x).Q∗
2(Dω(x))

† μ(Q2) is not well-defined in all cases. Please see Section 3.10 for discussion.

Table 7

Bag algebra where M, M1, and M2 are bags of solution mappings; μ, μ′, μ1 and μ2 are solution mappings; V is a set of variables and v is a
variable; and R is a built-in expression; for legibility, we use iverson bracket notation where [φ] = 1 if and only if φ holds; otherwise, if φ is
false or undefined, then [φ] = 0

M1 �� M2(μ) := ∑
(μ1,μ2)∈M1×M2

M1(μ1) · M2(μ2) · [μ1 ∼ μ2 and μ1 ∪ μ2 = μ] Natural join

M1 ∪ M2(μ) := M1(μ) + M2(μ) Union

M1 � M2(μ) := M1(μ) · [�μ′ ∈ M2 : μ ∼ μ′] Anti-join

M1 − M2(μ) := M1(μ) · [�μ′ ∈ M2 : μ ∼ μ′ and μ ∗ μ′] Minus

M1 �� M2(μ) := ((M1 �� M2) ∪ (M1 � M2))(μ) Left-outer join

πV (M)(μ) := ∑
μ′∈MM(μ′) · [dom(μ′) = V ∩ dom(μ) and μ ∼ μ′] Projection

σR(M)(μ) := M(μ) · [μ |= R] Selection

βR,v(M)(μ) := ∑
μ′∈MM(μ′) · [μ′ ∪ {v/R(μ′)} = μ] Bind

3.6.2. Bag evaluation
The bag evaluation of a graph pattern is based on the bag evaluation of basic graph patterns and navigational

graph patterns, as defined in Table 8, where the multiplicity of each individual solution is based on how many blank
node mappings satisfy the solution. With the exceptions of FE and FNE – which are also defined in Table 8 – the
bag evaluation of other graph patterns then follows from Table 6 by simply replacing the set algebra (from Table 4)
with the bag algebra (from Table 7). Note that VALUESM(Q) can now also accept a bag of solutions, and that there
are again issues with the definition of FE and FNE that will be discussed in Section 3.10. The set evaluation of paths
(from Table 5) is again used with the exception that some path expressions in navigational patterns are rewritten
(potentially recursively) to analogous query operators under bag semantics. Table 9 lists these rewritings.

3.7. Group-by patterns: Aggregation

Let (μ,M) denote a solution group, where μ is a solution mapping called the key of the solution group, and M

is a bag of solution mappings called the bag of the solution group. Group-by patterns then return a set of solution
groups M := {(μ1,M1), . . . , (μn,Mn)} as their output. We now define their semantics along with the AGG graph
pattern, which allows for converting a set of solution groups to a set of solution mappings.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 841

Table 8

Bag evaluation of graph patterns where D is a dataset; B is a basic graph pattern; N is
a navigational graph pattern; Q1, Q2 are graph patterns

B(D)(μ) := |{α | μ(α(B)) ⊆ GD and dom(α) = bnodes(B)}| · [dom(μ) = vars B]
N(D)(μ) := |{α | μ(α(N)) ⊆ GN

D
and dom(α) = bnodes(N)}| · [dom(μ) = vars N]

[Q1FEQ2](D)(μ) := Q1(D)(μ) · [(μ(Q2))(D) 	= ∅] (see † below)

[Q1FNEQ2](D)(μ) := Q1(D)(μ) · [(μ(Q2))(D) = ∅] (see † below)
† μ(Q2) is not well-defined in all cases. Please see Section 3.10 for discussion.

Table 9

Bag evaluation of navigational patterns where D is a dataset, N is a navigational pattern, and x is a fresh
blank node

N(D) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(o, e, s)} ∪ (N \ {(s,^e, o)})(D) if there exists (s,^e, o) ∈ N

{(s, e1, x), (x, e2, o)} ∪ (N \ {(s, e1/e2, o)})(D) if there exists (s, e1/e2, o) ∈ N

[[{(s, e1, o)}UNION{(s, e2, o)}]ANDN \ {(s, e1|e2, o)}](D) if there exists (s, e1|e2, o) ∈ N

N(D) under set semantics otherwise

Table 10

Aggregation algebra under bag semantics, where M and M′ are bags of solution mappings; V is a set of variables and v is a variable; A is an
aggregation expression; and M is a set of solution groups; we recall that M is the set of all solution mappings

γV (M) := {(μ,M′) | μ ∈ πV (M) and ∀μ′ ∈ M : M′(μ′) = M(μ′) · [πV ({μ′}) = {μ}]} Group (bag)

σ ′
A

(M) := {(μ,M) ∈ M | M |= A} Selection (aggregation)

β ′
A,v

(M) := {(μ ∪ {v/A(M)}, βA(M),v(M)) | (μ,M) ∈ M} Bind (aggregation)

ζ(M) := {μ | (μ,M) ∈ M} Flatten

Table 11

Evaluation of group-by patterns where D is a dataset, Q is a graph pattern or group-by pattern, V is a set
of variables, v1, . . . , vn are variables, and A,A1, . . . , An are aggregation expressions

GROUPV (Q)(D) := γV (Q(D))

HAVINGA(Q)(D) := σ ′
A

(Q(D))

AGG{(A1,v1),...,(An,vn)}(Q)(D) := ζ(β ′
A1,v1

(. . . (β ′
An,vn

(Q(D))) . . .)) note: AGG{}(Q)(D) := ζ(Q(D))

3.7.1. Aggregation algebra
We define an aggregation algebra in Table 10 under bag semantics with four operators that support the genera-

tion of a set of solution groups (aka., group by), the selection of solution groups (aka., having), the binding of new
variables in the key of the solution group, as well as the flattening of a set of solution groups to a set of solution map-
pings by projecting their keys. Note that analogously to the notation for built-in expressions, given an aggregation
expression A, we denote by A(M) the result of evaluating A over M, and we denote by M |= A the condition that
M satisfies A, i.e., that A(M) returns a value interpreted as true. The aggregation algebra can also be defined under
set semantics: letting M denote a set of solution mappings, we can evaluate γV (bag(M)) before other operators.

3.7.2. Aggregation evaluation
We can use the previously defined aggregation algebra to define the semantics of group-by patterns in terms of

their evaluation, per Table 11.

3.8. Sequence patterns and semantics

Sequence patterns return sequences of solutions as their output, which allow duplicates and also maintain an
ordering. These sequence patterns in general refer to solution modifiers that allow for ordering solutions, slicing
the set of solutions, and removing duplicate solutions. We will again first define an algebra before defining the
evaluation of sequence patterns.

842 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 12

Sequence algebra, where M and M′ are sequences of solutions, and � is a non-empty sequence of order comparators

order�(M) := M′ such that bag(M′) = bag(M) and M′[i] �� M′[j] for all 1 � i < j � |M′| Order by

distinct(M) := dist(M) Distinct

reduced(M) := M′ such that M′ ⊆ M and set(M) = set(M′) Reduced

Table 13

Evaluation of sequence patterns where � is
a non-empty sequence of order comparators,
and k is a (non-zero) natural number

ORDER�(Q)(D) := order�(seq(Q(D)))

DISTINCT(Q)(D) := distinct(seq(Q(D)))

REDUCED(Q)(D) := reduced(seq(Q(D)))

OFFSETk(Q)(D) := seq(Q(D))[(k + 1) . . . ∞]
LIMITk(Q)(D) := seq(Q(D))[1 . . . k]

3.8.1. Sequence algebra
Sequences deal with some ordering over solutions. We assume a total order � over IBL ∪ {⊥} to be defined by

the service (see Section 3.3), i.e., over the set of all RDF terms and unbounds. Given a non-empty sequence of order
comparators � := ((R1,�1), . . . , (Rn,�n)), we define the total ordering �� of solutions mappings as follows:

– μ1 =� μ2 if and only if Ri(μ1) = Ri(μ2) for all 1 � i � n;
– otherwise let j denote the least value 1 � j � n such that Rj (μ1) 	= Rj (μ2); then:

∗ Rj (μ1) < Rj (μ2) and �k implies μ1 <� μ2;
∗ Rj (μ1) > Rj (μ2) and �k implies μ1 >� μ2;
∗ Rj (μ1) < Rj (μ2) and not �k implies μ1 >� μ2;
∗ Rj (μ1) > Rj (μ2) and not �k implies μ1 <� μ2.

In Table 12, we present an algebra composed of three operators for ordering sequences of solutions based on
order comparators, and removing duplicates.

3.8.2. Sequence evaluation
Using the sequence algebra, we can then define the evaluation of sequence patterns as shown in Table 13.

3.9. Safe and possible variables

We now characterise different types of variables that may appear in a graph pattern in terms of being always
bound, never bound, or sometimes bound in the solutions to the graph pattern. This characterisation will become
important for rewriting algebraic expressions [53]. Specifically, letting Q denote a graph pattern, recall that we
denote by vars Q all of the variables mentioned (possibly nested) in Q; furthermore:

– we denote by svars(Q) the safe variables of Q, defined to be the set of variables v ∈ V such that, for all
datasets D, if μ ∈ Q(D), then v ∈ dom(μ);

– we denote by pvars(Q) the possible variables of Q, defined to be the set of variables v ∈ vars Q such that there
exists a dataset D and a solution μ ∈ Q(D) where v ∈ dom(μ).

Put more simply, svars(Q) denotes variables that are never unbound in any solution, while pvars(Q) denotes vari-
ables that may be unbound but are bound in at least one solution over some dataset.4

4It may be tempting to think that svars(Q) ⊆ pvars(Q), but if Q never returns results (e.g., Q = [Q′MINUSQ′]), then svars(Q) = V and
pvars(Q) = ∅ per the previous definitions.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 843

Example 3.1. Consider the query (pattern) Q:

SELECT * WHERE {
{ { ?s :sister ?x } UNION { ?s :brother ?y } }
MINUS { ?s :twin ?z }

}

Now:

– vars Q = {?s,?x,?y,?z};
– svars(Q) = {?s};
– pvars(Q) = {?s,?x,?y}.
Unfortunately, given a graph pattern Q, deciding if v ∈ svars(Q) or v ∈ pvars(Q) is undecidable for the full

SPARQL 1.1 language as it can answer the question of the satisfiability of Q, i.e., whether or not Q has any solution
over any dataset; specifically, v /∈ vars Q is safe in Q if and only if Q is unsatisfiable, while v /∈ vars Q is possible
in BIND1,v(Q) if and only if Q is satisfiable. For this reason we resort to syntactic approximations of the notions
of safe and possible variables. In fact, when we say that Q1 is a graph pattern on V1, we can consider V1 to be a
syntactic over-approximation of the possible variables of Q (called “in-scope” variables by the standard [24]), which
ensures no clashes of variables in solutions (e.g., defining BIND1,v(Q) when Q can bind v). Later (in Table 21) we
will define a syntactic over-approximation of safe variables to decide when it is okay to apply rewriting rules that
are invalid in the presence of unbound variables.

3.10. Issues with (NOT) EXISTS

The observant reader may have noticed that in Table 6 and Table 8, in the definitions of [Q1FEQ2] (FILTER
EXISTS) and [Q1FNEQ2] (FILTER NOT EXISTS), we have used the expression μ(Q2). While we have defined
this for a basic graph pattern B and a navigational graph pattern N – replace any variable v ∈ dom(μ) appearing in
B or N , respectively, with μ(v) – per the definition of the syntax, Q2 can be any graph pattern. This leaves us with
the question of how μ(SELECTV (Q′)) or μ([Q′

1MINUSQ′
2]), for example, is defined. Even in the case where Q2 is

a basic graph pattern, it is unclear how we should handle variables that are replaced with blank nodes, or predicate
variables that are replaced with literals. The standard does not define such cases unambiguously [27,32,42,55]. The
precise semantics of [Q1FEQ2] and [Q1FNEQ2] thus cannot be defined until the meaning of μ(v) – which the
standard calls substitution – is clarified. We provide an example illustrating one issue that arises.

Example 3.2. We will start with a case that is not semantically ambiguous. Take a query:

SELECT DISTINCT * WHERE {
{ ?x :sister ?y }
FILTER NOT EXISTS { ?y :sister ?z }

}

To evaluate it on a dataset D, we take each solution μ ∈ {(?x,:sister,?y)}(D) from the left of the FILTER
NOT EXISTS and keep the solution μ in the final results of the query if and only if the evaluation of the pattern
{(μ(?y),:sister,?z)}(D) is empty.

We next take an example of a query that is syntactically valid, but semantically ill-defined.

SELECT DISTINCT * WHERE {
{ ?x :sister ?y }
FILTER NOT EXISTS { SELECT ?y WHERE { ?y :sister ?z } }

}

Given a solution μ from the left, if we follow the standard literally and replace “every occurrence of a variable v

in [the right pattern] by μ(v) for each v in dom(μ)”, the result is a pattern SELECT{μ(?y)}(μ(Q2)). For example, if
μ(?y) = :a, then the right pattern, in concrete syntax, would become:

844 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

SELECT :a WHERE { :a :sister ?z }

which is syntactically invalid.

A number of similar issues arise from ambiguities surrounding substitution, and while work is underway to clarify
this issue, at the time of writing, various competing proposals are being discussed [32,42,55]. We thus postpone
rewriting rules for negation until a standard semantics for substitution is agreed upon.

3.11. Queries

A query accepts a set, bag or sequence of solution modifiers, depending on the semantics selected (and features
supported). In the case of a SELECT query, the output will likewise be a set, bag or sequence of solution modifiers,
potentially projecting away some variables. An ASK query rather outputs a boolean value. Finally, CONSTRUCT
and DESCRIBE queries output an RDF graph. We will define the evaluation of these queries in terms of solution
sequences, though the definitions generalise naturally to bags and sets (through bag(·) and set(·)). First we give
preliminary notation. Given a sequence of solution mappings M, we denote by πV (M) a projection that preserves
the input order of solution mappings (and such that bag(πV (M)) = πV (bag(M))). Given a dataset D and a set of
RDF terms X, we assume a function describe(X,D) that returns an RDF graph “describing” each term x ∈ X to be
defined by the service (see Section 3.3); as a simple example, describe(X,D) may be defined as the set of triples in
GD that mention any x ∈ X. The evaluation of queries is then shown in Table 14.

3.12. Dataset modifier

Queries are evaluated on a SPARQL dataset D, where dataset modifiers allow for changing the dataset considered
for query evaluation. First, let X and X′ denote (possibly empty or overlapping) sets of IRIs and let D denote a
SPARQL dataset. We then denote by D(X,X′) := (

⊎
x∈X GD[x], {(x′,GD[x′]) | x′ ∈ X′}) a new dataset formed

from D by merging all named graphs of D named by X to form the default graph of D(X,X′), and by selecting all
named graphs of D named by X′ as the named graphs of D(X,X′). We define the semantics of dataset modifiers in
Table 15.

3.13. Non-determinism

A number of features can lead to non-determinism in the evaluation of graph patterns as previously defined. When
such features are used, there may be more than one possible valid result for the graph pattern on a dataset. These
features are as follows:

– Built-in expressions and aggregation expressions may rely on non-deterministic functions, such as rand() to
generate a random number, SAMPLE to randomly sample solutions from a group, etc.

Table 14

Evaluation of queries where D is a dataset, Q is a sequence pattern or graph pattern, V is a set of variables, B is a
basic graph pattern, and X is a set of IRIs and/or variables

SELECTV (Q)(D) := πV (Q(D))

ASK(Q)(D) := true if set(Q(D)) 	= ∅; false otherwise

CONSTRUCTB(Q)(D) := ⊎
μ∈Q(D){μ(s, p, o) ∈ IB × I × IBL | (s, p, o) ∈ B}

DESCRIBEX(Q)(D) := describe(X′,D) where X′ := {x′ ∈ IBL | x′ ∈ X, or ∃x ∈ X ∩ V, μ ∈ Q(D) : μ(x) = x′}

Table 15

Evaluation of dataset modifiers
where X and X′ are sets of IRIs

FROMX,X′ (Q)(D) := Q(D(X, X′))

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 845

– REDUCED(Q)(D) permits a range of multiplicities for solutions (between those for Q(D) under bag semantics
and DISTINCT(Q)(D)).

– The use of sequence patterns without an explicit ORDER�(Q) gives a non-deterministic ordering (e.g., with
OFFSETk(Q) and/or LIMITk(Q)).

In non-deterministic cases, we can say that Q(D) returns a family of (potentially infinite) valid sets/bags/se-
quences of solutions, denoting the space of possible results for evaluating the graph pattern. In practice any such
set/bag/sequence of solutions can be returned. If Q(D) returns a singleton family for all datasets D, we consider
Q to be deterministic (even if using a non-deterministic feature), where it returns the set/bag/sequence of solu-
tions rather than the singleton; for example, we assume that REDUCED(Q) is deterministic if Q cannot generate
duplicates.

3.14. Relationships between the semantics

The SPARQL standard is defined in terms of sequence semantics, i.e., it is assumed that the solutions returned
have an order. However, unless the query explicitly uses the sequence algebra (and in particular ORDER BY), then
the semantics is analogous to bag semantics in the sense that the ordering of solutions in the results is arbitrary. Like-
wise when a query does not use the sequence algebra or the aggregation algebra, but invokes SELECT DISTINCT
(in the outermost query), ASK, CONSTRUCT or DESCRIBE, then the semantics is analogous to set semantics. Note
however that when the aggregate or sequence algebra is included, set semantics is not the same as bag semantics
with DISTINCT. Under set semantics, intermediate results are treated as sets of solutions. Under bag semantics,
intermediate results are treated as bags of solutions, where final results are deduplicated. If we apply a count ag-
gregation, for example, then set semantics will disregard duplicate solutions, while bag semantics with distinct will
consider duplicate solutions (the distinct is applied to the final count, with no effect).

3.15. Query containment and equivalence

Query containment states that the results of one graph pattern are contained in the other. To begin, take two
deterministic graph patterns Q1 and Q2. We say that Q1 is contained in Q2 under set, bag or sequence semantics,
denoted Q1 � Q2, if and only if for every dataset D, it holds that Q1(D) ⊆ Q2(D).

If Q1 and Q2 are non-deterministic, then under set semantics we assume that Q1(D) and Q2(D) will return a
family of sets of solutions. If for every dataset D, and for all M1 ∈ Q1(D), there exists an M2 ∈ Q1(D) such that
M1 ⊆ M2, then we say that Q1 is contained in Q2 under set semantics, again denoted Q1 � Q2. On the other
hand, if Q1 is deterministic, and Q2 is non-deterministic, then Q1 � Q2 if and only if for every dataset D and for
all M ∈ Q2(D), it holds that Q1(D) ⊆ M . Conversely if Q2 is deterministic, and Q1 is non-deterministic, then
Q1 � Q2 if and only if for every dataset D and for all M1 ∈ Q1(D), it holds that M1 ⊆ Q2(D). Containment can
be defined analogously for bags or sequences.

Query equivalence is a relation between graph patterns that states that the results of one graph pattern are equal
to the other. Specifically, given two graph patterns Q1 and Q2 (be they deterministic or non-deterministic), we say
that they are equivalent under set, bag or sequence semantics, denoted Q1 ≡ Q2, if and only if for every dataset D,
it holds that Q1(D) = Q2(D). We remark that if Q1 and Q2 are deterministic, then Q1 ≡ Q2 ⇔ Q1 � Q2 ∧Q2 �
Q1 under the corresponding semantics. If they are non-deterministic, then Q1 ≡ Q2 ⇒ Q1 � Q2 ∧ Q2 � Q1, but
Q1 ≡ Q2 � Q1 � Q2 ∧ Q2 � Q1.5

Example 3.3. In Fig. 1 we provide examples of query containment and equivalence. The leftmost query finds the
maternal grandparents of :Bob while the latter three queries find both maternal and paternal grandparents. Hence
the first query is contained in the latter three queries, which are themselves equivalent.

5For example, if Q1(D) = {{μ1, μ2}, {μ1}} and Q2(D) = {{μ1, μ2}, {μ2}}, this is consistent with Q1 and Q2 being contained in each other,
but not with their being equivalent.

846 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Fig. 1. Examples of query containment and equivalence.

Fig. 2. Example of query congruence.

Regarding equivalence of non-deterministic graph patterns, we highlight that any change to the possible space of
results leads to a non-equivalent graph pattern. For example, for a graph pattern Q, it holds that DISTINCT(Q) �
REDUCED(Q) � Q, and if Q cannot return duplicates (e.g., Q is a basic graph pattern without blank nodes), then
DISTINCT(Q) ≡ REDUCED(Q) ≡ Q. However, if Q may give duplicates, then DISTINCT(Q) 	≡ REDUCED(Q) 	≡
Q 	≡ DISTINCT(Q) under bag or sequence semantics. Likewise, for example, replacing a function like RAND() in
Q with a constant like 0.5 changes the semantics of Q, generating a non-equivalent graph pattern.

While the previous discussion refers to graph patterns (which may include use of (sub)SELECT), we remark
that containment and equivalence can be defined for ASK, CONSTRUCT and DESCRIBE in a natural way. For two
deterministic ASK queries Q1 and Q2, we say that Q1 is contained in Q2, denoted Q1 � Q2, if and only if for
any dataset D, it holds that Q1(D) implies Q2(D); i.e., for any dataset which Q1 returns true, Q2 also returns true.
For two deterministic CONSTRUCT queries or DESCRIBE queries Q1 and Q2, we say that Q1 is contained in Q2,
denoted Q1 � Q2, if and only if for any dataset D, it holds that Q2(D) |= Q1(D) under simple entailment. Two
queries Q1 and Q2 are then equivalent, denoted Q1 ≡ Q2 if and only if Q1 � Q2 and Q2 � Q1. Containment and
equivalence of non-deterministic queries are then defined as before.

3.16. Query isomorphism and congruence

Many use-cases for canonicalisation prefer not to distinguish queries that are equivalent up to variable names.
We call a one-to-one variable mapping ρ : V → V a variable renaming. We say that Q1 and Q2 are isomorphic,
denoted Q1 � Q2 if and only if there exists a variable renaming ρ such that ρ(Q1) = Q2. Note that in the case of
SELECT queries, isomorphism does not imply equivalence as variable naming matters to the solutions produced.
For this reason we introduce the notion of query congruence. Formally we say that two graph patterns Q1 and Q2
are congruent, denoted Q1 ∼= Q2, if and only if there exists a variable renaming ρ such that ρ(Q1) ≡ Q2. It is not
difficult to see that isomorphism implies congruence.

Example 3.4. We provide an example of non-equivalent but congruent queries in Fig. 2. If we rewrite the variable
?gp to ?x in the first query, we see that the two queries become equivalent.

Like equivalence and isomorphism, congruence is reflexive (Q ∼= Q), symmetric (Q1 ∼= Q2 ⇔ Q2 ∼= Q1) and
transitive (Q1 ∼= Q2 ∧ Q2 ∼= Q3 ⇒ Q1 ∼= Q3); in other words, congruence is an equivalence relation. We remark
that congruence is the same as equivalence for ASK, CONSTRUCT and DESCRIBE queries since the particular
choice of variable names does not affect the output of such queries in any way.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 847

3.17. Query classes

Based on a query of the form SELECTV (Q), we define eleven syntactic query classes corresponding to classes
that have been well-studied in the literature.

– basic graph patterns (BGPs): Q is a BGP and V = vars Q.
– unions of basic graph patterns (UBGPs): Q is a graph pattern using BGPs and UNION and V = vars Q.
– conjunctive queries (CQs): Q is a BGP.
– unions of conjunctive queries (UCQs): Q is a graph pattern using BGPs and UNION.
– monotone queries (MQs): Q is a graph pattern using BGPs, UNION and AND.6

– non-monotone queries (NMQs): Q is a graph pattern using BGPs, UNION, AND and MINUS.
– navigational graph patterns (NGPs): Q is an NGP and V = vars Q.
– unions of navigational graph patterns (UNGPs): Q is a graph pattern using NGPs and UNION and V = vars Q.
– conjunctive path queries (CPQs): Q is an NGP.
– unions of conjunctive path queries (UCPQs): Q is a graph pattern using NGPs and UNION.
– monotone path queries (MPQs): Q is a graph pattern using NGPs, UNION and AND.
– non-monotone path queries (NMPQs): Q is a graph pattern using NGPs, UNION, AND and MINUS.

These query classes are evaluated on an RDF graph (the default graph) rather than an RDF dataset, though results
extend naturally to the RDF dataset case. Likewise, since we do not consider the sequence algebra, we have the
(meaningful) choice of set or bag semantics under which to consider the tasks; furthermore, since the aggregation
algebra is not considered, set and distinct-bag semantics coincide.

Unlike UCQs, which are strictly unions of joins (expressed as basic graph patterns), MQs further permit joins
over unions. As such, UCQs are analogous to a disjunctive normal form. Though any monotone query (under set
semantics) can be rewritten to an equivalent UCQ, certain queries can be much more concisely expressed as MQs
versus UCQs, or put another way, there exist MQs that are exponentially longer when rewritten as UCQs. For
example, the first three queries of Fig. 1 are MQs, but only the third is a UCQ; if we use a similar pattern as the third
query to go search back n generations, then we would require 2n BGPs with n triple patterns each; if we rather use
the most concise MQ, based on the second query, we would need 2n BGPs with one triple pattern each.

CPQs and UCPQs are closely related to the query fragments of conjunctions of 2-way regular paths queries
(C2RPQs) and unions of conjunctions of 2-way regular paths queries (UC2RPQs), but additionally allow negated
property sets and variables in the predicate position [34]. NMQs are semantically related to the fragment with BGPs,
projection, UNION, AND, OPTIONAL and FILTER!bound as studied by Pérez et al. [44].

3.18. Complexity

We here consider four decision problems:

QUERY EVALUATION Given a solution μ, a query Q and a graph G, is μ ∈ Q(G)?
QUERY CONTAINMENT Given two queries Q1 and Q2, does Q1 � Q2 hold?
QUERY EQUIVALENCE Given two queries Q1 and Q2, does Q1 ≡ Q2 hold?
QUERY CONGRUENCE Given two queries Q1 and Q2, does Q1 ∼= Q2 hold?

In Table 16, we summarise known complexity results for these four tasks considering both bag and set semantics
along with a reference for the result. The results refer to combined complexity, where the size of the queries and
data (in the case of EVALUATED) are included. The “Full” class refers to any SELECT query using any of the
deterministic SPARQL features,7 while BGP′, UBGP′, NGP′ and UNGP′ refer to BGPs, UBGPs, NGPs and UNGPs

6Here we use “monotone queries” to refer to a syntactic class of queries, per the work of Sagiv and Yannakakis [49], rather than a semantic class
of queries [6]. All monotone queries are (semantically) monotonic [6], but there may be monotonic SPARQL queries that are not (syntactically)
monotone.

7We assume that built-in and aggregation expressions can be evaluated using at most polynomial space, as is the case for SPARQL.

848 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 16

Complexity of SPARQL tasks on core fragments (considering combined complexity for EVALUATION)

EVALUATION CONTAINMENT EQUIVALENCE CONGRUENCE

Set semantics

BGP′ PTIME [44] PTIME [1]* PTIME [1]* GI-complete [1,12]*

UBGP′ PTIME [44]* PTIME [1,49]* PTIME [1,49]* GI-hard, NP

CQ NP-complete [44] NP-complete [11]* NP-complete [11]* NP-complete

UCQ NP-complete [44] NP-complete [11]* NP-complete [11]* NP-complete

MQ NP-complete �P
2 -complete [49]* �P

2 -complete [49]* �P
2 -complete

NMQ PSPACE-complete [44] Undecidable [60]* Undecidable [60]* Undecidable

NGP′ PTIME [34] PSPACE-complete [34] PSPACE GI-hard, EXPSPACE

UNGP′ PTIME [34] PSPACE-complete [34] PSPACE GI-hard, EXPSPACE

CPQ NP-complete [34] EXPSPACE-complete [34] NP-hard, EXPSPACE NP-hard, EXPSPACE

UCPQ NP-complete [34] EXPSPACE-complete [34] NP-hard, EXPSPACE NP-hard, EXPSPACE

MPQ NP-hard [34]* EXPSPACE-hard [34]* �P
2 -hard �P

2 -hard

NMPQ PSPACE-hard Undecidable Undecidable Undecidable

Full PSPACE-hard Undecidable Undecidable Undecidable

Bag semantics

BGP′ PTIME PTIME [1]* PTIME [1]* GI-complete

CQ NP-complete NP-hard, Decidability open GI-complete [12]* GI-complete

UCQ NP-complete Undecidable [30]* GI-complete [17]* GI-complete

MQ NP-complete Undecidable GI-hard GI-hard

NMQ PSPACE-complete Undecidable Undecidable [45]* Undecidable

Full PSPACE-hard Undecidable Undecidable Undecidable

without blank nodes, respectively.8 We do not present results for query classes allowing paths under bag semantics
as we are not aware of work in this direction; lower bounds can of course be inferred from the analogous fragment
without paths under bag semantics.

An asterisk implies that the result is not explicitly stated, but trivially follows from a result or technique used.
These cases include analogous results for relational settings, upper-or-lower bounds from tasks with obvious re-
ductions to or from the stated problem, etc. We may omit references in case a result directly follows from other
results in the table. A less obvious case is that of CONGRUENCE, which has not been studied in detail. However,
with the exception of queries without projection (nor blank nodes), the techniques used to prove equivalence apply
analogously for CONGRUENCE, which is similar to resolving the problem of non-projected variables whose names
may differ across the input queries without affecting the given relation. In the case of BGPs (without projection nor
blank nodes), it is sufficient to find an isomorphism between the input queries; in fact, without projection, since the
input graph is a set of triples,9 BGPs cannot produce duplicates, and thus results for set and bag semantics coincide.

Some of the more notable results include:

– The decidability of CONTAINMENT of CQs under bag semantics is a long open problem [12].
– EQUIVALENCE (and CONGRUENCE) of CQs and UCQs are potentially easier under bag semantics (GI-

complete) than under set semantics (NP-complete) as the problem under bag semantics relates to isomorphism,
rather than homomorphic equivalence under set semantics.

– Although UCQ and MQ classes are semantically equivalent (each UCQ has an equivalent MQ and vice versa),
under set semantics the problems of CONTAINMENT and EQUIVALENCE (and CONGRUENCE) are potentially
harder for MQs than UCQs; this is because MQs are more concise.

8Blank nodes act like projection, where their complexity then follows that of *CQs and *CPQs.
9This is also known as bag–set semantics, where the data form a set of tuples, but the query is evaluated under bag semantics [12].

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 849

– While CONTAINMENT for NMQs is undecidable under set semantics (due to the undecidability of FOL sat-
isfiability), the same problem for UCQs under bag semantics is already undecidable (it can be used to solve
Hilbert’s tenth problem).

These results – in particular those of CONGRUENCE – form an important background for this work.

4. Problem

With these definitions in hand, we now state the problem we wish to address: given a query Q, we wish to compute
a canonical form of the query can(Q) such that can(Q) ∼= Q (sound), and for all queries such that Q′ ∼= Q, it holds
that can(Q) = can(Q′) (complete). In other words, we aim to compute a syntactically canonical form for the class
of queries congruent to Q where the canonical query is also in that class.

With this canonicalisation procedure, we can decide the congruence Q ∼= Q′ by deciding the equality can(Q) =
can(Q′). We can thus conclude from Table 16 that canonicalisation is not feasible for queries in NMQ as it could be
used to solve an undecidable problem. Rather we aim to compute a sound and complete canonicalisation procedure
for MQs (which can decide a �P

2 −complete problem, per Table 16) under both bag and set semantics, and a sound
procedure for the full language under any semantics. This means that for two queries Q and Q′ that fall outside
the MQ class, with a sound but incomplete canonicalisation procedure, can(Q) = can(Q′) implies Q ∼= Q′, but
can(Q) 	= can(Q′) does not necessarily imply Q � Q′.

Indeed, even in the case of MQs, deciding can(Q) = can(Q′) is likely to be a rather inefficient way to decide
Q ∼= Q′. Our intended use-case is rather to partition a set of queries Q = {Q1, . . . , Qn} into the quotient set Q/∼=,
i.e., to find all sets of congruent queries in Q. This is useful, for example, in the context of caching applications where
Q represents a log or stream of queries, where given Qj , we wish to know if there exists a query Qi (i < j) that is
congruent in order to reuse its results. Rather than applying pairwise congruence checks, we can canonicalise queries
and use their canonical forms as keys for partitioning. While these pairwise checks do not affect the computational
complexity, in practice most queries are small and relatively inexpensive to canonicalise, where the O(|Q|2) cost
of pairwise checks can dominate, particularly for a large set of queries Q. We will later analyse this experimentally.
As per the introduction, canonicalisation is also potentially of interest for analysing logs, optimising queries, and/or
learning over queries.

5. Related works

In this section, we discuss implementations of systems relating to containment, equivalence and canonicalisation
of SPARQL queries.

A number of systems have been proposed to decide the containment of SPARQL queries. Among these, Letelier
et al. [36] propose a normal form for quasi-well-designed pattern trees – a fragment of SPARQL allowing restricted
use of OPTIONAL over BGPs – and implement a system called SPARQL Algebra for deciding containment and
equivalence in this fragment based on the aforementioned normal form. The problem of determining equivalence of
SPARQL queries can also be addressed by reductions to related problems. Chekol et al. [14] have used a μ-calculus
solver and an XPath-equivalence checker to implement SPARQL containment/equivalence checks. These works
implement pairwise checks.

Some systems have proposed isomorphism-based indexing of sub-queries. In the context of a caching system,
Papailiou et al. [41] apply a canonical labelling algorithm (specifically Bliss [31]) on BGPs in order to later find iso-
morphic BGPs with answers available; their approach further includes methods for generalising BGPs such that it is
more likely that they will be reused later. More recently, Stadler et al. [57] propose a system called JSAG for solving
the containment of SPARQL queries. The system computes normal forms for queries, before representing them as
a graph and applying subgraph isomorphism algorithms to detect containments. Such approaches do not discuss
completeness, and would appear to miss containments for CQs under set semantics (and distinct-bag semantics),
which require checking for homomorphisms rather than (sub-graph) isomorphisms.

850 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

We remark that in the context of relational database systems, there are likewise few implementations of query
containment, equivalence, etc., as also observed by Chu et al. [15,16], who propose two systems for deciding the
equivalence of SQL queries. Their first system, called Cosette [16], translates SQL into logical formulae, where
a constraint solver is used to try to find counterexamples for equivalence; if not found, a proof assistant is used
to prove equivalence. Chu et al. [15] later proposed the UDP system, which expresses SQL queries – as well as
primary and foreign key constraints – in terms of unbounded semiring expressions, thereafter using a proof assistant
to test the equivalence of those expressions; this approach is sound and complete for testing the equivalence of
UCQs under both set and bag semantics. Zhou et al. [65] recently propose the EQUITAS system, which converts
SQL queries into FOL-based formulae, reducing the equivalence problem to a satisfiability-modulo-theories (SMT)
problem, which allows for capturing complex selection criteria (inequalities, boolean expressions, cases, etc.). Aside
from targeting SQL, a key difference with our approach is that such systems apply pairwise checks.

In summary, while problems relating to containment and equivalence have been well-studied in the theoretical
literature, relatively few practical implementations have emerged, perhaps because of the high computational costs,
and indeed the undecidability results for the full SPARQL/SQL language. Of those that have emerged, they either
offer sound and complete checks in a pairwise manner for query fragments, such as UCQs (e.g., [15]), or they offer
sound but incomplete canonicalisation focused on isomorphic equivalence (e.g., [41]). To the best of our knowledge,
the approach that we propose here, which we call QCan, is the only one that allows for canonicalising queries with
respect to congruence, and that is sound and complete for monotone queries under both set and bag semantics. Our
experiments will show that despite high theoretical computational complexity, QCan can be deployed in practice
to detect congruent equivalence classes in large-scale, real-world query logs or streams, which are dominated by
relatively small and simple queries.

6. Canonicalisation of monotone queries

In this section, we will first describe the different steps of our proposed canonicalisation process for monotone
queries (MQs), i.e., queries with basic graph patterns, joins, unions, outer projection and distinct (see Section 3.17).
In fact, we consider a slightly larger set of queries that we call extended monotone queries (EMQs), which are
monotone queries that additionally support property paths using the (non-recursive) features “/” (followed by), “^”
(inverse) and “|” (disjunction); property paths using such queries can be rewritten to monotone queries. We will
cover the (sound but incomplete) canonicalisation of other features of SPARQL 1.1 later in Section 7.

As mentioned in the introduction, the canonicalisation process consists of: algebraic rewriting of parts of the
query into normal forms, the representation of the query as a graph, the minimisation of the monotonic parts of
the query by leaning and containment checks, the canonical labelling of the graph, and finally the mapping back
to query syntax. We describe these steps in turn and then conclude the section by proving that canonicalisation is
sound and complete for EMQs.

6.1. UCQ normalisation

In this section we describe the rules used to rewrite EMQs into a normal form based on unions of conjunctive
queries (UCQs). We first describe the steps we apply for rewriting property paths into monotone features (where
possible), thus converting EMQs into MQs. We then describe the rewriting of MQs into UCQ normal form. We
subsequently describe some postprocessing of variables to ensure that those with the same name are correlated and
that variables that are always unbound are removed. Finally we extend the normal form to take into account set vs.
bag semantics.

6.1.1. Property path elimination
Per Table 9, property paths that can be rewritten to joins and unions are considered to be equivalent to their

rewritten form under both bag and set semantics. We make these equivalences explicit by rewriting such property

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 851

paths to joins and unions; i.e.:

(o,^e, s) ⇒ (s, e, o)

(s, e1/e2, o) ⇒ (s, e1, x), (x, e2, o)

(s, e1|e2, o) ⇒ [
(s, e1, o)UNION(s, e2, o)

]

where x denotes a fresh blank node. The exact rewriting is provided in Table 9. These rewritings may be applied
recursively, as needed. If the input query is an EMQ, then the output of the recursive rewriting will be an MQ, i.e.,
a query without property paths.

Example 6.1. Consider the following query based on Example 1.1 looking for names of aunts.

SELECT DISTINCT ?z WHERE {
?x ^(:mother|:father) ?w .
?x :sister/:name ?z .

}

This query will be rewritten to:

SELECT DISTINCT ?z WHERE {
?w (:mother|:father) ?x .
?x :sister _:y . _:y :name ?z .

}

And then recursively to:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x . }
?x :sister _:y . _:y :name ?z .

}

In this case we succeed in removing all property paths; however, property paths with * or + cannot be rewritten to
other query features in this way.

6.1.2. Union normalisation
Pérez et al. [44] establish that, under set semantics, joins and unions in SPARQL are commutative and associative,

and that joins distribute over unions. We summarise these results in Table 17. Noting that under set semantics, the
multiplicity of joins and unions is given by the multiplication and addition of natural numbers, respectively; that
both multiplication and addition are commutative and associative; and that multiplication distributes over addition;
the same results also apply under bag semantics.

Another (folklore) result of interest is that BGPs can be rewritten to equivalent joins of their triple patterns.
However, care must be taken when considering blank nodes in BGPs; otherwise the same blank node in two different
triple patterns might be matched to two different terms, breaking the equivalence. Along these lines, let η : B → V
denote a one-to-one mapping of blank nodes to variables; we assume that η will rewrite blank nodes to fresh
variables not appearing elsewhere in a query. Given a basic graph pattern B = {t1, . . . , tn} and a mapping η such

Table 17

Equivalences given by Pérez et al. [44] for set semantics

Join is commutative [Q1ANDQ2] ≡ [Q2ANDQ1]
Union is commutative [Q1UNIONQ2] ≡ [Q2UNIONQ1]
Join is associative [Q1AND[Q2ANDQ3]] ≡ [[Q1ANDQ2]ANDQ3]
Union is associative [Q1UNION[Q2UNIONQ3]] ≡ [[Q1UNIONQ2]UNIONQ3]
Join distributes over union [Q1AND[Q2UNIONQ3]] ≡ [[Q1ANDQ2]UNION[Q1ANDQ3]]

852 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

that η(B) = {t ′1, . . . , t ′n} – where t ′i = η(ti) for 1 � i � n – the following holds:

B ≡ SELECTvars B

([{
t ′1

}
AND

[
. . . AND

{
t ′n

}]])

i.e., a BGP B is equivalent to the result of rewriting its blank nodes to fresh variables, joining the individual triple
patterns, and projecting only the variables originally in B. This equivalence again holds under bag semantics since
the multiplicity of a solution μ ∈ B(D) under bag semantics is defined in SPARQL as the number of blank node
mappings satisfying the solution μ.

These known results give rise to a UCQ normal form for MQs [44]. More specifically, given a pattern
[Q1AND[Q2UNIONQ3]], we can rewrite this to [[Q1ANDQ2]UNION[Q1ANDQ3]]; in other words, we translate joins
of unions to (equivalent) patterns involving unions of joins. Also, as Schmidt et al. [53] observe, [QANDQ] ≡ Q

and [QUNIONQ] ≡ Q under set semantics. Hence we can abstract the commutativity and associativity of both joins
and unions by introducing two new syntactic operators:

AND(Q1, . . . ,Qn) := [
Q1AND[. . . ANDQn]

]

UNION(Q1, . . . ,Qn) := [
Q1UNION[. . . UNIONQn]

]

Given the aforementioned equivalences, the arguments of AND(·) and UNION(·) can be considered as a set of
operands under set semantics and a bag of operands under bag semantics (wherein duplicate operands may affect
the multiplicities of results).

The UCQ normal form for MQs is then of the form SELECTV (UNION(Q1, . . . ,Qn)), where each Qi (1 � i � n)
is of the form AND({ti,1}, . . . , {ti,m}), where each ti,j (1 � k � m) is a triple pattern. Given that duplicate triple
patterns in a join do not affect the multiplicity of results, we can further remove these duplicates such that in our
normal form, ti,j 	= ti,k for 1 � j < k � m. For this reason, in the case of UCQs, we can analogously consider each
Q1, . . . ,Qn to be a set of triple patterns without blank nodes.

Example 6.2. We show a case where the multiplicity of union operands changes the multiplicity of results under
bag semantics. Consider the following MQ Q:

SELECT ?s ?o WHERE {
{ ?s :p ?o } UNION { ?s :p ?o }
{ ?s :p ?o } UNION { ?s :p ?o }
}

Assume a dataset D with a default graph {(:s,:p,:o)}. Let μ = {?s/:s,?o/:o}. Note that Q(D)(μ) = 4 since
each union generates μ twice, where the multiplicity of the join is then the product of both. We can describe the
multiplicity of μ as (1 + 1)(1 + 1) = 4.

If we rewrite this query to a UCQ, in the first step, pushing the first join inside the union, we generate:

SELECT ?s ?o WHERE {
{ ?s :p ?o { ?s :p ?o } UNION { ?s :p ?o } }
UNION

{ ?s :p ?o { ?s :p ?o } UNION { ?s :p ?o } }
}

We may now describe the multiplicity of μ as 1(1 + 1) + 1(1 + 1) = 4. In the next step, we have:

SELECT ?s ?o WHERE {
{ { ?s :p ?o . ?s :p ?o } UNION { ?s :p ?o . ?s :p ?o } }
UNION

{ { ?s :p ?o . ?s :p ?o } UNION { ?s :p ?o . ?s :p ?o } }
}

The multiplicity of this query is described as (1 ·1+1 ·1)+ (1 ·1+1 ·1) = 4. Since BGPs are sets of triple patterns,
we should remove the duplicates. Subsequently unnesting the unions, the query then becomes:

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 853

SELECT ?s ?o WHERE {
{ ?s :p ?o . }
UNION { ?s :p ?o . }
UNION { ?s :p ?o . }
UNION { ?s :p ?o . }

}

The multiplicity is then 1 + 1 + 1 + 1 = 4. In this case, the duplicate union operands are needed to preserve the
original multiplicities of the query.

As was previously mentioned, the UCQ normal form may be exponentially larger than the original MQ; for
example, a relatively concise EMQ of the form {(x, (p1|q1)/ . . . /(pn|qn), y)} would be rewritten to an MQ with a
join of n unions with two triple patterns each, and then to a UCQ with a union of 2n BGPs (for each combination of
pi and qi), with each BGP containing n triple patterns.

Example 6.3. Let us take the output query of Example 6.1 and apply the UCQ normal form.

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x . }
?x :sister _:y . _:y :name ?z .

}

Blank nodes are rewritten to variables, and then join is distributed over union, giving the following query:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . ?x :sister ?y . ?y :name ?z . }
UNION
{ ?w :father ?x . ?x :sister ?y . ?y :name ?z . }

}

If we were to consider the names of aunts or uncles (:sister|:brother) then we would end up with four
unions of BGPs with four triple patterns each. If we were to consider the names of children (:son|:daughter)
of aunts or uncles, we would end up with eight unions of BGPs with five triple patterns each. In this way, the UCQ
rewriting may result in a query that is exponentially larger than the input.

6.1.3. Unsatisfiability normalisation
We recall that a graph pattern Q is considered unsatisfiable if and only if there does not exist a dataset D such

that Q(D) is non-empty; i.e., the graph pattern never generates solutions. There is one trivial case of unsatisfiability
for UCQs that must be taken into account: when subjects are literals. Specifically, SPARQL allows literal subjects
even though they are disallowed in RDF graphs; this was to enable forwards-compatibility with a possible future
generalisation of RDF to allow literal subjects, which has not happened as of RDF 1.1. As such, BGPs with any
literal subject are unsatisfiable.

Lemma 6.1. Let Q denote a BGP. Q is unsatisfiable if and only if it contains a literal subject.

Please see Appendix A.1.1 for the proof.
Moving to UCQs, it is not difficult to see that a union is satisfiable if and only if one of its operands is satisfiable,

or, equivalently, that it is unsatisfiable if and only if all of its operands are unsatisfiable.

Lemma 6.2. Let Q = UNION(Q1, . . . ,Qn). Q is unsatisfiable if and only if all of Q1, . . . ,Qn are unsatisfiable.
Further assume that Qk is unsatisfiable and let Q′ = UNION(Q1, . . . ,Qk−1,Qk+1, . . . ,Qn) denote Q removing
the operand Qk . It holds that Q ≡ Q′.

Please see Appendix A.1.2 for the proof.
To deal with CQs of the form SELECTV (Q), where Q is a BGP containing a triple pattern with a literal sub-

ject, we simply replace this CQ with an arbitrary but canonical unsatisfiable query Q∅; for example, Q∅ :=
SELECT{?u}({("uns",?u,?u)}). In the case of UCQs, we remove operand BGPs that are unsatisfiable; if all
operands are unsatisfiable, we replace the entire UCQ with the canonical query Q∅. If Q∅ is produced, canoni-
calisation can stop.

854 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Example 6.4. Take the CQ:

SELECT DISTINCT ?x WHERE { "x" :x ?x }

We replace this with the canonical query:

SELECT ?u WHERE { "uns" ?u ?u }

Next take the UCQ:

SELECT ?x WHERE { { "x" :x ?x } UNION { ?x :x "x" } }

We will rewrite this to

SELECT ?x WHERE { ?x :x "x" }

by removing the unsatisfiable operand.

6.1.4. Variable normalisation
The same variable may sometimes occur in multiple query scopes such that replacing an occurrence of the variable

in one scope with a fresh variable does not change the query results. We say that such variable occurrences are not
correlated. There is one case where this issue may arise in UCQs. We call a variable v a union variable if it occurs
in a union Q = UNION(Q1, . . . ,Qn) (n > 1). An occurrence of v does not correlate with other occurrences of v

in different operands of the same union unless v is correlated outside of Q in a query.10 In the particular case of
UCQs, occurrences of non-projected union variables in different operands of the union do not correlate.

Lemma 6.3. Let Q = SELECTV (UNION(Q1, . . . ,Qn)) denote a UCQ. Let λ1, . . . , λn denote variable-to-variable
mappings such that for 1 � i � n, λi : V → V where dom(λi) = vars Qi \ V , and, for all v ∈ dom(λi), it holds
that λi(v) /∈ vars Q and there does not exist λj (1 � i < j � n) and v′ ∈ dom(λj) such that λi(v) = λj (v

′). In
other words, each variable-to-variable mapping rewrites each non-projected variable of each union operand to a
fresh variable. Then the following equivalence holds:

SELECTV

(
UNION(Q1, . . . ,Qn)

)

≡ SELECTV

(
UNION

(
λ1(Q1), . . . , λn(Qn)

))

Please see Appendix A.1.3 for the proof.
These non-correlated variables give rise to non-trivial equivalences based on the “false” correspondences between

variables with the same name that have no effect on each other. We address such cases by differentiating union
variables that appear in multiple operands of the union but not outside the union.

Example 6.5. We take the output of Example 6.3:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . ?x :sister ?y . ?y :name ?z . }
UNION
{ ?w :father ?x . ?x :sister ?y . ?y :name ?z . }

}

The variable ?z correlates across both operands because both occurrences correlate with the same external appear-
ance of ?z in the SELECT clause. Conversely, the variables ?w, ?x and ?y do not correlate across both operands
of the union as they do not correlate with external occurrences of the same variable. Hence we differentiate ?w, ?x
and ?y in both operands:

10If considering the direct results of a query pattern, then the naming of variables matters as they are bound in the solutions.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 855

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z . }
UNION
{ ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }

}

The resulting query is equivalent to the original query, but avoids “false correspondences” of variables.

Next we apply a simple rule to remove variables that are always unbound in projections. Left unattended, such
variables could otherwise constitute a trivial counterexample for the completeness of canonicalisation. We recall
from Section 3.9 the notation pvars(Q) to denote the possible variables of a graph pattern, i.e., the variables that are
bound to some RDF term in some solution of Q over some dataset D.

Lemma 6.4. Let Q be a graph pattern, let V ′ be a set of variables, and let V ′′ be a set of variables such that
pvars(Q) ∩ V ′′ = ∅. It holds that:

SELECTV ′(Q) ≡ SELECTV ′∪V ′′(Q)

Please see Appendix A.1.4 for the proof.
We deal with such cases by removing variables that are always unbound from the projection.11

Example 6.6. Take a query:

SELECT DISTINCT ?w ?z WHERE {
?w :mother ?m .

}

We can remove the variable ?z without changing the semantics of the query as it will always be unbound, no matter
what dataset is considered. In practice engines may return solution tables with blank columns for variables like ?z,
but our definitions do not allow such columns (such columns can easily be added in practice if required).

6.1.5. Set vs. bag normalisation
The presence or absence of DISTINCT (or REDUCED) in certain queries does not affect the solutions that are

generated because no duplicates can occur. In the case of UCQs, this can occur under two specific conditions. The
first such case involves CQs.

Lemma 6.5. Let Q denote a satisfiable BGP. It holds that:

DISTINCT
(

SELECTV (Q)
) ≡ SELECTV (Q).

if and only if vars Q ⊆ V and bnodes(Q) = ∅.

Please see Appendix A.1.5 for the proof.
The second case involves unions.

Lemma 6.6. Let Q1, . . . ,Qn denote satisfiable BGPs and let Q = Q1 ∪ · · · ∪ Qn denote the set union of their
triple patterns. It holds that:

DISTINCT
(

SELECTV

(
UNION(Q1, . . . ,Qn)

))

≡ SELECTV

(
UNION(Q1, . . . ,Qn)

)

if and only if vars Q ⊆ V , bnodes(Q) = ∅ and vars Qi 	= vars Qj for all 1 � i < j � n.

11In concrete SPARQL syntax, a SELECT query must specify either * or at least one variable. Allowing an empty projection in the abstract
syntax avoids having to deal explicitly with the empty projection case, simplifying matter. When mapping from abstract syntax to concrete syntax
we can simply add a fresh canonical variable to the SELECT clause in order to represent empty projections.

856 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Please see Appendix A.1.6 for the proof.
The same equivalences trivially hold for REDUCED, which becomes deterministic when no duplicate solutions are

returned. We deal with all such equivalences by simply adding DISTINCT in such cases (or replacing REDUCED
with DISTINCT).12

Example 6.7. Take a query such as:

SELECT ?w ?x ?y ?z WHERE {
?w :mother ?x . ?x :sister ?y . ?y :name ?z .

}

Since the query is a BGP with all variables projected and no blank nodes, no duplicates can be produced, and
thus we can add a DISTINCT keyword to ensure that canonicalisation will detect equivalent or congruent queries
irrespective of the inclusion or exclusion of DISTINCT or REDUCED in such queries. If the query were to not
project a single variable, such as ?z, then duplicates become possible and adding DISTINCT would change the
semantics of the query.

An example of a case involving union is as follows:

SELECT ?w ?x ?y ?z ?n WHERE {
{ ?w :parent ?x . ?x :name ?n . }
UNION { ?w :father ?y . ?y :name ?n . }
UNION { ?w :mother ?z . ?z :name ?n . }

}

First we note that the individual basic graph patterns forming the operands of the UNION do not contain blank nodes
and have all of their variables projected; hence they cannot lead to duplicates by themselves. Regarding the union,
the set of variables is different in each operand, and hence no duplicates can be given: the first operand will (always
and only) produce unbounds for ?y, ?z in its solutions; the second will produce unbounds for ?x, ?z; and the third
will produce unbounds for ?x, ?y. Hence no operand can possibly duplicate a solution from another operand. Since
the query cannot produce duplicates, we can add DISTINCT without changing its semantics. If we were instead
to project {?w,?n}, then adding DISTINCT would change the semantics of the query as the three operands may
produce the same solution, and individual BGPs may duplicate solutions.

6.1.6. Summary
Given an EMQ Q, we denote by U(Q) the process described herein involving the application of:

1. property path elimination (§6.1.1);
2. union normalisation (§6.1.2);
3. unsatisfiability normalisation (§6.1.3);
4. variable normalisation (§6.1.4);
5. set vs. bag normalisation (§6.1.5).

6.2. Graph representation

Given an EMQ as input, the previous steps either terminate with a canonical unsatisfiable query, or provide us
with a satisfiable query in UCQ normal form, with blank nodes replaced by fresh variables, non-correlated variables
differentiated, variables that are always unbound removed from the projection (while ensuring that the projection
is non-empty), and the DISTINCT keyword invoked in cases where duplicate solutions can never be returned.
Before continuing, we first review an example that illustrates the remaining syntactic variations and redundancies
in congruent UCQs that are left to be canonicalised.

12The choice to add rather than remove DISTINCT is for convenience: it allows us to later keep track of queries that can be normalised under
set semantics. However, if performance were a focus, removing DISTINCT might lead to slightly more efficient queries where the planner will
not invoke unnecessary deduplication.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 857

Example 6.8. Consider the following UCQs:

SELECT DISTINCT ?n WHERE {
{ ?w :mother ?x . ?x :sister ?y , ?z . ?y :name ?n }
UNION
{ ?a :father ?b . ?b :sister ?c . ?c :name ?n . ?d ?e ?n }
}

SELECT DISTINCT ?z WHERE {
{ ?a :name ?z . ?b :sister ?a . ?c :father ?b . }
UNION
{ ?d :name ?z . ?e :sister ?d . ?f :mother ?e . }
UNION
{ ?g :name ?z . ?h :sister ?g . :Jo :mother ?h . }
}

These queries are congruent, but differ in:

1. the ordering of triple patterns within BGPs;
2. the ordering of BGPs within the UCQ;
3. the naming of variables;
4. a redundant triple pattern in each BGP of the first query (those containing ?z and ?d, ?e);
5. the redundant third BGP in the second query.

We are left to canonicalise such variations.

Our overall approach to address such variations is to encode queries as RDF graphs that we call representational
graphs (r-graphs). This representation will allow for identifying and removing redundancies, and for canonically
labelling variables such that elements of the query can be ordered deterministically.

We first establish some notation. Let λ() denote a function that returns a fresh blank node, and λ(x) denote a
function that returns a fresh blank node unique to x. Let ι(·) denote an id function such that:

– if x ∈ IL, then ι(x) = x;
– if x ∈ VB, then ι(x) = λ(x);
– if x is a natural number then

ι(x) = "x"^^xsd:integer;
– if x is a boolean value then

ι(x) = "x"^^xsd:boolean;
– otherwise ι(x) = λ().

We assume that natural numbers and boolean values produce datatype literals in canonical form (for example, we
assume that ι(2) = "2"^^xsd:integer rather than, say, "+02"^^xsd:integer).

Table 18 then provides formal definitions for transforming a UCQ Q in abstract syntax into its r-graph R(Q); we
assume that a BGP is expressed as a join of its triple patterns. Note that for brevity, when we write ι(·), we assume
that the same blank node is used for the current expression as was assigned in the parent expression. The result is
then deterministic modulo isomorphism. In order to capture the intuition, we provide a more visual depiction of

Table 18

Definitions for representational graphs R(Q) of a UCQ Q, where “a” abbreviates rdf:type, B is a basic graph pattern, Q1, . . . ,Qn,Q′ are
graph patterns, V is a set of variables, and (s, p, o) is a triple pattern

· R(·)
AND(Q1, . . . ,Qn) {(ι(·),:arg, ι(Q1)), . . . , (ι(·),:arg, ι(Qn)), (ι(·),a,:And)} ∪ R(Q1) ∪ · · · ∪ R(Qn)

UNION(Q1, . . . ,Qn) {(ι(·),:arg, ι(Q1)), . . . , (ι(·),:arg, ι(Qn)), (ι(·),a,:Union)} ∪ R(Q1) ∪ · · · ∪ R(Qn)

SELECTV (Q′) {(ι(·),:arg, ι(Q′)), (ι(·),a,:Select)} ∪ ⋃
v∈V {(ι(·),:var, ι(v))} ∪ R(Q′)

DISTINCT(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),a,:Distinct)} ∪ R(Q′)
(s, p, o) {(ι(·),:s, ι(s)), (ι(·),:p, ι(p)), (ι(·),:o, ι(o)), (ι(·),a,:TP)}

858 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

this transformation of UCQs in Table 19, where dashed nodes of the form x are replaced with ι(x) , and the graph
extended with R(x). We further provide the following example.

Example 6.9. We present an example of a UCQ and its r-graph in Fig. 3. For clarity (in particular, to avoid
non-planarity), we embed the types of nodes into the nodes themselves; e.g., the lowermost node expands to
_:u1 :Unionrdf:type . Given an input query Q′

1 that varies from Q1 in the naming of variables, applying the
same process, the r-graph for Q1 and Q′

1 would be isomorphic, varying only in blank node labels.

Part of the benefit of this graph representation is that it abstracts away the ordering of the operands of query
operators where such order does not affect the semantics of the operator. This representation further allows us to
leverage existing tools to eliminate redundancy and later canonically label variables.

6.3. Minimisation

The minimisation step removes two types of redundancies: redundant triple patterns in BGPs, and redundant
BGPs in unions. It is important to note that such redundancies only apply in the case of set semantics [49]; under
bag semantics, these “redundancies” affect the multiplicity of results, and thus cannot be removed without changing
the query’s semantics.

6.3.1. BGP minimisation
The first type of redundancy we consider stems from redundant triple patterns. Consider a BGP Q (without blank

nodes, for simplicity). We denote by ρ : V → VIBL a partial mapping from variables to variables and RDF
terms, whose domain is denoted by dom(ρ). Now, for a given mapping ρ such that dom(ρ) = vars Q, it holds that
ρ(Q) ≡ DISTINCT(SELECTvars ρ(Q)(Q)) if and only if ρ(Q) ⊆ Q. This is due to a classical result by Chandra and
Merlin [11], where ρ is a homomorphism of Q onto itself: Q and ρ(Q) are homomorphically equivalent.

One may note a correspondence to RDF entailment (see Section 2.5), which is also based on homomorphisms,
where the core of an RDF graph represents a redundancy-free (lean) version of the graph. We can exploit this
correspondence to remove redundancies in BGPs by computing their core. However, care must be taken to ensure
that we do not remove variables from the BGP that are projected; we achieve this by temporarily replacing them
with IRIs so that they cannot be eliminated during the core computation.

Example 6.10. Consider the following query, Q:

SELECT DISTINCT ?z WHERE {
{ :Jo :mother ?x . }
UNION { ?w :father ?x. ?x :sister ?y . }
UNION { ?c :mother ?d . ?d :sister ?y . }
?d ?p ?e . ?e :name ?f . ?x :sister ?y . ?y :name ?z .

}

Though perhaps not immediately obvious, this query is congruent with the three queries of Example 1.1. After
applying UCQ normal forms and creating the base r-graph for Q, we end up with an r-graph analogous to the
following query with a union of three BGPs:

SELECT DISTINCT ?z WHERE {
{ :Jo :mother ?x1 . ?d1 ?p1 ?e1 . ?e1 :name ?f1 .

?x1 :sister ?y1 . ?y1 :name ?z . }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 .

?d2 ?p2 ?e2 . ?e2 :name ?f2 .
?x2 :sister ?y2 . ?y2 :name ?z . }

UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 .
?d3 ?p3 ?e3 . ?e3 :name ?f3 .
?x3 :sister ?y3 . ?y3 :name ?z . }

}

We then replace the blank node for the projected variable ?z with a fresh IRI, and compute the core of the sub-
graph for each BGP (the graph induced by the BGP node with type :And and any node reachable from that node

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 859

Table 19

Mapping UCQs to r-graphs

SPARQL �→ Representational graph
x for x ∈ IL �→ x

x for x ∈ B �→ _:bx

x for x ∈ V �→ _:vx

(x, y, z) �→
ι(·) x:s

:TP

rdf:type

y

:p

z

:o

AND(Q1, . . . , Qn) �→
ι(·) Q1:arg

:And

rdf:type

. . .

:arg

Qn

:arg

UNION(Q1, . . . , Qn) �→
ι(·) Q1:arg

:Union

rdf:type

. . .

:arg

Qn

:arg

SELECT{v1,...,vn}(Q) �→

ι(·) Q:arg

:Select

rdf:type

v1

:var

. . .

:var

vn

:var

DISTINCT(Q) �→
ι(·) Q:arg

:Distinct

rdf:type

860 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Fig. 3. UCQ (above) and its r-graph (below).

Fig. 4. BGP (above) and its r-graph (below) with the sub-graph removed during the core computation shown dashed (and in blue).

in the directed r-graph). Figure 4 depicts the sub-r-graph representing the third BGP (omitting the :And -typed
node for clarity: it will not affect the core). Dashed nodes and edges are removed from the core per the blank node
mapping:

{_:vx3/_:vd3,_:t35/_:t32, _:t33/_:t32,_:vp3/:sister,

:ve3/:vy3,_:t34/_:t36,_:vf3/:vz, . . .}

with the other nodes mapped to themselves. Observe that the projected variable :vz is now an IRI, and hence it
cannot be removed from the graph.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 861

If we consider applying this core computation over all three conjunctive queries, we would end up with an r-graph
corresponding to the following query:

SELECT DISTINCT ?z WHERE {
{ :Jo :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z . }
UNION
{ ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }
UNION
{ ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?y3 :name ?z . }

}

We see that the projected variable is preserved in all BGPs. However, we can still see (inter-BGP) re-
dundancy with respect to the first and third BGPs (the first is contained in the third), which we address
now.

6.3.2. Union minimisation
After removing redundancy from the individual BGPs, we may still be left with a union containing redundant

BGPs as highlighted by the output of Example 6.10, where the first BGP is contained in the third BGP: when we
take the union, the names of :Jo’s aunts returned by the first BGP will already be contained in the third, and since
we apply distinct/set semantics, the duplicates (if any) will be removed. Hence we must now apply a higher-level
normalisation of unions of BGPs in order to remove such redundancy. Specifically, we must take into consideration
the following equivalence [49]; let Q := UNION(Q1, . . . ,Qn) and Q′ := UNION(Q1, . . . , Qk−1,Qk+1, . . . Qn);
then:

DISTINCT
(

SELECTV (Q)
) ≡ DISTINCT

(
SELECTV

(
Q′))

if and only if SELECTV (Qk) � SELECTV (Qj) for i � j � n, i � k � n, j 	= k. 13 To resolve such equivalences,
we remove from Q:

1. all Qk (1 � k � n) such that there exists Qj (1 � j < k � n) such that SELECTV (Qj) ≡ SELECTV (Qk);
and

2. all Qk (1 � k � n) where there exists Qj (1 � j � n) such that SELECTV (Qj) � SELECTV (Qk) (and
SELECTV (Qj) 	≡ SELECTV (Qk));

i.e., we first remove all but one BGP from each group of equivalent BGPs and then remove all BGPs that are properly
contained in another (considering in both cases the projected variables V).

To implement condition (1), let us first assume that all BGPs contain all projected variables. Note that in the
previous step we have removed all redundancy from the CQs and hence it is sufficient to check for isomorphism
between them; we can thus take the current r-graph Gj for each Qj and apply iso-canonicalisation of Gj , removing
any other Qk (k > j) whose Gk is isomorphic. Thereafter, to implement step (2), we can check the simple entailment
Gk |= Gj (j 	= k), where if such an entailment holds, we can remove Gk (and thus Qk); more specifically, we can
implement this entailment check using a boolean SPARQL ASK query encoding Gj and evaluated over Gk (which
will return true if the entailment holds). Note that in both processes, we should preserve projected variables in V ,
meaning they should only be mapped to each other; to ensure this, we can simply maintain the unique IRIs created
for them earlier.

Per this process, the first BGP in the output of Example 6.10 is removed as it is contained in the third BGP, with
the projected variable corresponding in both. We now take another example.

Example 6.11. Consider the following UCQ, where each BGP contains the lone projected variable:

13One may observe that this relates to the aforementioned rule for unsatisfiability in the case of UCQs; however, while the unsatisfiability rule
applies in the case of both bag and set semantics, this rule only applies in the case of set semantics.

862 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

SELECT DISTINCT ?n WHERE {
{ ?m1 :cousin ?n . } UNION { ?n :cousin ?m2 . }
UNION { ?n :cousin ?x3 . } UNION { ?x4 ?y4 ?n . }
UNION { ?w5 ?x5 ?n . ?n ?y5 ?z5 . }
UNION { ?x6 :name ?n . }

}

If we consider the first two BGPs, they do not contribute the same results to ?n; however, had we left the blank
node _:vn to represent ?n, their r-graphs would be isomorphic whereas temporarily grounding :vn ensures they
are no longer isomorphic. On the other hand, the r-graphs of the second and third BGP will remain isomorphic and
thus one will be removed (for the purposes of the example, let’s arbitrarily say the third is removed). There are no
further isomorphic CQs and thus we proceed to containment checks.

The fourth BGP maps to (i.e., contains) the first BGP, and thus the first BGP will be removed. This containment
check is implemented by creating the following ASK query from the r-graph for the fourth BGP:

ASK WHERE {
_:and4 a :And ; :arg _:tp41 .
_:tp41 a :TP ; :s _:x4 ; :p _:y4 ; :o :vn .

}

and applying it to the r-graph of the first BGP:

_:and1 a :And ; :arg _:tp11 .
_:tp11 a :TP ; :s _:m1 ; :p :cousin ; :o :vn .

This returns true and hence the first BGP is removed. Likewise the fourth BGP maps to the fifth BGP and also the
sixth BGP and hence the fifth and sixth BGPs will also be removed. This leaves us with an r-graph representing the
following UCQ query:

SELECT DISTINCT ?n WHERE {
{ ?n :cousin ?m2 . } UNION { ?x4 ?y4 ?n . }

}

This UCQ query is redundancy-free.

Now we drop the assumption that all CQs contain the same projected variables in V , meaning that we can
generate unbounds. To resolve such cases, we can partition the BGP operands Q = {Q1, . . . ,Qn} of the union
into sets of queries {Q1, . . . ,Qm} based on the projected variables they contain. More formally, given two graph
patterns Q1 and Q2, let Q1 ∼V Q2 denote the equivalence relation such that pvars(Q1) ∩ V = pvars(Q2) ∩ V .
Then {Q1, . . . ,Qm} is the quotient set of Q by ∼V . We can then apply the same procedure as described previously,
checking equivalence and containment within each such set Q1, . . . ,Qm.

Example 6.12. Take the following UCQ, where the BGPs now contain different projected variables:

SELECT DISTINCT ?v ?w WHERE {
{ ?v :cousin ?w . } UNION { ?w :cousin ?v . }
UNION { ?v :cousin ?x3 . } UNION { ?v :cousin ?y4 . }
UNION { :a :b :c . } UNION { ?x6 ?y6 ?z6 . }

}

Let {Q1, . . . ,Q6} denote the six BGPs, respectively. Further let V = {?v,?w} denote the set of pro-
jected variables. Partitioning the BGPs by the projected variables, we end up with three sets of BGPS:
{{Q1,Q2}, {Q3,Q4}, {Q5,Q6}} given by {?v,?w}, {?v} and {}, respectively. Within each group we apply the
previous conditions. Thus, for example, we do not remove Q1 even though it would be naively contained in, for
example, Q3 (where ?x3 in Q3 would map to the IRI :vw in Q1). Rather, Q1, Q2, Q3 (or Q4), and Q6 would be
maintained, resulting in the query:

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 863

SELECT DISTINCT ?v ?w WHERE {
{ ?v :cousin ?w . } UNION { ?w :cousin ?v . }
UNION { ?v :cousin ?x3 . } UNION { ?x6 ?y6 ?z6 . }

}

The first two BGPs can return multiple solutions, where none can have an unbound; the third BGP will return the
same solutions for ?v as the first CQ but ?w will be unbound each time; the fourth CQ will return a single tuple
with an unbound for ?v and ?w if and only if the RDF graph is not empty.

The result of this process will be an r-graph for a redundancy-free UCQ. On this r-graph, we apply some minor
post-processing: (i) we replace the temporary IRIs for projected variables with their original blank nodes to allow
for canonical labelling in a subsequent phase; and (2) we remove unary AND or UNION operators from the r-graph,
reconnecting child and parent.

6.3.3. Summary
Given a UCQ Q being evaluated under set semantics (with distinct), we denote by M(Q) the result of minimising

the UCQ, involving the two procedures:

1. BGP minimisation (§6.3.1);
2. union minimisation (§6.3.2).

Given a UCQ Q being evaluated under bag semantics (without distinct), we define that M(Q) = Q. If bag
semantics is selected, the UCQ can only contain a syntactic form of redundancy: exact duplicate triple patterns
in the same BGP, which are implicitly removed since we model BGPs as sets of triple patterns. Any other form of
redundancy mentioned previously – be it within or across BGPs – will affect the multiplicity of results [12]. Hence if
bag semantics is selected, we do not apply any redundancy elimination other than removing duplicate triple patterns
in BGPs.

6.4. Canonical labelling

The second-last step of the canonicalisation process consists of applying a canonical labelling to the blank nodes
of the RDF graph output from the previous process [28]. Specifically, given an RDF graph G, we apply a canonical
labelling function L(·) such that L(G) � G and for all RDF graphs G′, it holds that G � G′ if and only if
L(G) = L(G′); in other words, L(·) bijectively relabels the blank nodes of G in a manner that is deterministic
modulo isomorphism, meaning that any isomorphic graph will be assigned the same labels. This is used to assign
a deterministic labelling of query variables represented in the r-graph as blank nodes; other blank nodes presenting
query operators will also be labelled as part of the process but their canonical labels are not used.

6.5. Inverse mapping

The final step of the canonicalisation process is to map from the canonically labelled r-graph to query syntax.
More specifically, we define an inverse r-mapping, denoted R−(G), to be a partial mapping from RDF graphs to
query expressions such that R−(R(Q)) = Q; i.e. converting Q to its r-graph and then applying the inverse r-mapping
yields the query Q again.14 We can achieve this by applying the inverse of Table 18, where canonical blank nodes in
RDF term or variable positions (specifically, the objects of triples in the r-graph with predicate :s, :p, :o, or :el)
are mapped to canonical variables or blank nodes using a fixed, total, one-to-one mapping ξ : B → VB [50].15

To arrive at a canonical concrete syntax, we order the operands of commutative operators using a syntactic or-
dering on the canonicalised elements, and then serialise these operands in their lexicographical order. This then
concludes the canonicalisation of EMQs.

14Here we assume the use of UNION(·), etc., to abstract away the ordering of operands of commutative operators.
15Inverting Table 19, we can define ξ as ξ(_:vx) = ?x, ξ(_:bx) = _:x, and so forth for all blank nodes and variables. For the case of

EMQs, all blank nodes are mapped to variables since blank nodes in BGPs were replaced earlier by variables.

864 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

6.6. Soundness and completeness

Given an EMQ as input, we prove soundness – i.e., that the output query is congruent to the input query – and
completeness – i.e., that the output for two input queries is the same if and only if the input queries are congruent –
for the proposed canonicalisation scheme.

6.6.1. Soundness
We begin the proof of soundness by showing that the UCQ normalisation preserves congruence.

Lemma 6.7. For an EMQ Q, it holds that:

U(Q) ∼= Q.

Please see Appendix A.1.7 for the proof.
Next we prove that the canonical labelling of blank nodes in the r-graph does not affect the properties of the

inverse r-mapping.

Lemma 6.8. Given a UCQ Q, it holds that:

R−(
L
(

R(Q)
)) ∼= Q.

Please see Appendix A.1.8 for the proof.
Finally we prove that the minimisation of UCQs through their r-graphs preserves congruence.

Lemma 6.9. Given a UCQ Q, it holds that:

R−(
M

(
R(Q)

)) ∼= Q.

Please see Appendix A.1.9 for the proof.
The following theorem then establishes soundness; i.e., that the proposed canonicalisation procedure preserves

congruence of EMQs.

Theorem 6.1. For an EMQ Q, it holds that:

R−(
L
(

M
(

R
(

U(Q)
)))) ∼= Q.

Please see Appendix A.1.10 for the proof.

6.6.2. Completeness
We now establish completeness: that for any two EMQs, they are congruent if and only if their canonicalised

queries are equal. We will prove this by proving lemmas for various cases.
We begin by stating the following remark, which will help us to abbreviate some proofs.

Remark 6.1. The following hold:

1. if Q1 � Q2, then U(Q1) � U(Q2).
2. if U(Q1) � U(Q2), then R(U(Q1)) � R(U(Q2));
3. if R(U(Q1)) � R(U(Q2)), then

M(R(U(Q1))) � M(R(U(Q2)));
4. if M(R(U(Q1))) � M(R(U(Q2))), then

L(M(R(U(Q1)))) = L(M(R(U(Q2))));
5. if L(M(R(U(Q1)))) = L(M(R(U(Q2)))), then

R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))).

Thus, if any premise 1–5 is satisfied, it holds that R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))).

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 865

In order to prove the result for various cases, our goal is thus to prove isomorphism of the input queries, the
queries in UCQ normal form, the r-graphs of the queries, or the minimised r-graphs.

Our first lemma deals with unsatisfiable UCQs, which is a corner-case specific to SPARQL.

Lemma 6.10. Let Q1 and Q2 denote UCQs. If Q1 and Q2 are unsatisfiable (which implies Q1 ∼= Q2), then:

R−(
L
(

M
(

R
(

U(Q1)
)))) = R−(

L
(

M
(

R
(

U(Q2)
))))

.

Please see Appendix A.1.11 for the proof.
In practice, if a UCQ Q is unsatisfiable, then the canonicalisation process can stop after U(Q) yields Q∅. We state

the result in this way to align the process for both satisfiable and unsatisfiable cases. We can now focus on cases
where both queries are satisfiable.

We will start with satisfiable CQs evaluated under set semantics (with distinct).

Lemma 6.11. Let Q1 and Q2 denote satisfiable BGPs and V1 and V2 sets of variables. Further let Q′
1 =

DISTINCT(SELECTV1(Q1)) and likewise let Q′
2 = DISTINCT(SELECTV2(Q2)). If Q′

1
∼= Q′

2 then

R−(
L
(

M
(

R
(

U
(
Q′

1

))))) = R−(
L
(

M
(

R
(

U
(
Q′

2

)))))
.

Please see Appendix A.1.12 for the proof.
We move to CQs evaluated under bag semantics (without distinct; the result also considers cases where the CQ

cannot return duplicates).

Lemma 6.12. Let Q1 and Q2 denote satisfiable BGPs and V1 and V2 sets of variables. Further let Q′
1 =

SELECTV1(Q1) and Q′
2 = SELECTV2(Q2). If Q′

1
∼= Q′

2 then

R−(
L
(

M
(

R
(

U
(
Q′

1

))))) = R−(
L
(

M
(

R
(

U
(
Q′

2

)))))
.

Please see Appendix A.1.13 for the proof.
We now move to UCQs evaluated under set semantics (with distinct).

Lemma 6.13. Let Q1 and Q2 denote satisfiable UCQs with distinct. If Q1 ∼= Q2 then

R−(
L
(

M
(

R
(

U(Q1)
)))) = R−(

L
(

M
(

R
(

U(Q2)
))))

.

Please see Appendix A.1.14 for the proof.
We next consider UCQs under bag semantics (without distinct; again, this also holds in the case that the UCQs

cannot return duplicates).

Lemma 6.14. Let Q1 and Q2 denote satisfiable UCQs without distinct. If Q1 ∼= Q2 then

R−(
L
(

M
(

R
(

U(Q1)
)))) = R−(

L
(

M
(

R
(

U(Q2)
))))

.

Please see Appendix A.1.15 for the proof.
Finally we consider what happens when one (U)CQ has distinct, and the other does not but is congruent to the

first query.

Lemma 6.15. Let Q denote a satisfiable UCQ without distinct. Let Q′ = DISTINCT(Q). If Q ∼= Q′, then:

R−(
L
(

M
(

R
(

U(Q)
)))) = R−(

L
(

M
(

R
(

U
(
Q′))))).

Please see Appendix A.1.16 for the proof.
Having stated all of the core results, we are left to make the final claim of completeness.

866 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Theorem 6.2. Given two EMQs Q1 and Q2, if Q1 ∼= Q2 then

R−(
L
(

M
(

R
(

U(Q1)
)))) = R−(

L
(

M
(

R
(

U(Q2)
))))

.

Please see Appendix A.1.17 for the proof.
Finally we can leverage soundness and completeness for the following stronger claim.

Theorem 6.3. Given two EMQs Q1 and Q2, it holds that Q1 ∼= Q2 if and only if

R−(
L
(

M
(

R
(

U(Q1)
)))) = R−(

L
(

M
(

R
(

U(Q2)
))))

.

Please see Appendix A.1.18 for the proof.

6.6.3. Complexity
With respect to the complexity of the problem of computing the canonical form of (E)MQs in SPARQL, a solution

to this problem can be trivially used to decide the equivalence of MQs, which is �P
2 −complete.

With respect to the complexity of the algorithm R−(L(M(R(U(·))))), for simplicity we will assume as input an
MQ Q such that all projected variables are contained in the query,16 which will allow us to consider the complexity
at the level of triple patterns. We will denote by n the number of triple patterns in Q.

Letting n = km, then the largest query that can be produced by U(Q) is when we have as input:

Q = AND
(

UNION
({t1,1}, . . . , {t1,k}

)
,

. . . ,

UNION
({tm,1}, . . . , {tm,k}

))

which will produce a query with a union of km BGPs, each of size m:

U(Q) = UNION
({t1,1, . . . , t1,k}

× . . .

× {tm,1, . . . , tm,k}
)

Thus U(Q) may produce a UCQ with mkm triple patterns in total. Given n = km, when n > 2, then km is maximised
in the general case when k = �e� = 3 (e is Euler’s number) and m = n/k = n/3. We thus have at most O(mkm) =
O((n/3)3n/3) = O(n3n/3) triple patterns for U(Q) in the worst case, with at most O(3n/3) BGPs, and the largest
BGP having at most O(n) triple patterns. We remark that the complexity of the other steps for U(Q) is trivially
upper-bounded by O(n3n/3).

With respect to R(·), the number of triples in the r-graph is O(j) on j the number of triple patterns in the input
query, giving us O(n3n/3) for the R(·) step in R(U(·)), i.e., applying R(·) on the result of U(·).

With respect to M(·), first we consider BGP minimisation, which requires computing the core of each BGP’s
r-graph G. Letting j denote the number of unique subject and objects in G being minimised, which is also an
upper bound for the number of blank nodes, we will assume a brute-force O(jj) algorithm that searches over every
mapping of blank nodes to terms in G, looking for the one that maps to the fewest unique terms (this mapping
indicates the core [28]). Note that the number of triples in the r-graph for each BGP is bounded by O(n), and so
is the number of unique subjects and objects. Furthermore, the number of BGPs is bounded by O(3n/3). Thus the
cost of minimising all BGPs is O(3n/3ncn) for some constant c > 1. We must also check containment between each
pair of BGP r-graphs (G′,G′′) in order to apply UCQ minimisation. Again, assuming the number of subjects and

16Other cases are not difficult to manage, but require considering the length of a property path, the number of projected variables not appearing
the query, etc., in the input, which we consider to be inessential to the complexity, and to our discussion here.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 867

objects in G′ ∪ G′′ to be bounded by j , we can assume a brute-force O(jj) algorithm that considers all mappings.
Given O(3n/3) BPGs, we have O((3n/3)2) = O(32n/3) pairs of BGPs to check, giving us a cost of O(32n/3ncn).
Adding both BGP and UCQ minimisation costs, we have O(ncn(3n/3 + 32n/3)) = O(ncn32n/3) for the M(·) step in
M(R(U(·))). We can then reduce O(ncn32n/3) to O(2cn log n) by converting both bases to 2 and removing the constant
factors.17

With respect to L(·), letting j denote the number of triples in the input, we will assume a brute-force O((cj)!)
algorithm, for some constant c > 0, that searches over all ways of canonically labelling blank nodes from the set
{_:x1, . . . ,_:xb}, where b is the number of blank nodes (in O(j)). We remark that the total size of the r-graph
is still bounded by O(n3n/3), as the minimisation step does not add to the size of the r-graph. Since the number of
blank nodes is bounded by O(n3n/3), the cost of the L(·) step in L(M(R(U(·)))) is O((cn3n/3)!) for some constant
c > 0.

Finally, given a graph with j triples, then R−(·) is possible in time O(j log j), where some sorting is needed
to ensure a canonical form. Given an input r-graph of size O(n3n/3), we have a cost of O(n3n/3 log n3n/3) =
O(n3n/3(log n + (n/3) log 3)) = O(n23n/3) for the R−(·) step in R−(L(M(R(U(·))))).

Putting it all together, the complexity of canonicalising an MQ Q with n triple patterns using the procedure
R−(L(M(R(U(Q))))) is as follows:

O
(
n3n/3 + n3n/3 + 2cn log n + (

cn3n/3)! + n23n/3)

which we can reduce to O((cn3n/3)!), with the factorial canonical labelling of the complete exponentially-sized
UCQ r-graph yielding the dominant term.

Overall, this complexity assumes worst cases that we expect to be rare in practice, and our analysis assumes
brute-force methods for finding homomorphisms, computing cores, labelling blank nodes, etc., whereas we use
more optimised methods. For example, the exponentially-sized UCQ r-graphs form a tree-like structure connecting
each BGP, where it would be possible to canonically label this structure in a more efficient manner than suggested
by this worst-case analysis. Thus, though the method has a high computational cost, this does not necessarily imply
that it will be impractical for real-world queries. Still, we can conclude that the difficult cases for canonicalisation
are represented by input queries with joins of unions, and that minimisation and canonical labelling will likely have
high overhead. We will discuss this further in the context of experiments presented in Section 8.

7. Canonicalisation of SPARQL 1.1 queries

While the previous section describes a sound and complete procedure for canonicalising EMQs, many SPARQL
1.1 queries in practice use features that fall outside of this fragment. Unfortunately we know from Table 16 that
deciding equivalence for the full SPARQL 1.1 language is undecidable, and thus that an algorithm for sound and
complete canonicalisation (that is guaranteed to halt) does not exist. Since completeness is not a strong requirement
for certain use-cases (e.g., for caching, it would imply a “cache miss” that would otherwise happen without canon-
icalisation), we rather aim for a sound canonicalisation procedure that supports all features of SPARQL 1.1. Such
a procedure supports all queries found in practice, preserving congruence, but may produce different canonicalised
output for congruent queries.

7.1. Algebraic rewritings

We now describe the additional rewritings we apply in the case of SPARQL 1.1 queries that are not EMQs, in
particular for filters, for distinguishing local variables, and for property paths (RPQs). We further describe how
canonicalisation of monotone sub-queries is applied based on the previous techniques.

17With ncn = (2log n)cn = 2cn log n, and 32n/3 = (2log 3)2n/3 = 22n/3 log 3, then ncn32n/3 = 2cn log n+2n/3 log 3 ∈ O(2cn log n).

868 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 20

Equivalences given by Schmidt et al. [53] for filters under set semantics

Pushing filters inside/outside union [FILTERR(Q1)UNIONFILTERR(Q2)] ≡ FILTERR([Q1UNIONQ2])
Filter conjunction FILTERR1 (FILTERR2 (Q1)) ≡ FILTERR1∧R2 (Q)

Filter disjunction [FILTERR1 (Q)UNIONFILTERR2 (Q)] ≡ FILTERR1∨R2 (Q)

Pushing filters inside/outside join [FILTERR(Q1)ANDQ2] ≡ FILTERR([Q1ANDQ2]) if vars R ⊆ svars(Q1)

Pushing filters inside/outside optional [FILTERR(Q1)OPTQ2] ≡ FILTERR([Q1OPTQ2]) if vars R ⊆ svars(Q1)

Table 21

Syntactic approximation of safe variables where B is a basic graph pattern; N is a navigational graph pattern; Q′, Q1 and Q2 are graph patterns;
x is an IRI, v is a variable; V is a set of variables; R s a built-in expression; M is a bag of solution mappings; � is a set of aggregation
expression–variable pairs; and Q′′ is a group-by pattern

Q = B ∴ svars(Q) = vars B

Q = N ∴ svars(Q) = vars N

Q ∈ {[Q1ANDQ2], [Q1SERVICEfalsex Q2]} ∴ svars(Q) = svars(Q1) ∪ svars(Q2)

Q = [Q1UNIONQ2] ∴ svars(Q) = svars(Q1) ∩ svars(Q2)

Q ∈ {[Q1FEQ2], [Q1FNEQ2], [Q1MINUSQ2], [Q1OPTQ2], [Q1SERVICEtruex Q2]} ∴ svars(Q) = svars(Q1)

Q ∈ {SELECTV (Q′), GROUPV (Q′)} ∴ svars(Q) = svars(Q′) ∩ V

Q ∈ {FILTERR(Q′), BINDR,v(Q′), GRAPHx(Q′)} ∴ svars(Q) = svars(Q′)
Q = GRAPHv(Q′) ∴ svars(Q) = svars(Q′) ∪ {v}
Q = VALUESM(Q′) ∴ svars(Q) = svars(Q′) ∪ svars(M)

Q ∈ {HAVINGA(Q′′), AGG�(Q′′)} ∴ svars(Q) = svars(Q′′)

7.1.1. Filter normalisation
Schmidt et al. [53] propose a number of rules for filters, which form the basis for optimising queries by applying

filters as early as possible to ensure that the number of intermediate results are reduced. We implement the rules
shown in Table 20. It is a folklore result that such rewritings further hold in the case of bag semantics, where they are
used by a wide range of SPARQL engines for optimisation purposes: intuitively, filters set to zero the multiplicity of
solutions that do not pass in the case of both bag or set semantics, and preserve the multiplicity of other solutions.

With respect to the latter two rules, we remark that this holds only if the variables of the filter expression R

are contained within the safe variables of Q1, i.e., the variables that must be bound in any solution of Q1 over any
dataset. While we defined this notion semantically in Section 3.9, in order to apply such rules in practice, Schmidt et
al. [53] define safe variables syntactically. We extend their syntactic definitions to cover more features of SPARQL
1.1, as shown in Table 21. These syntactic definitions do not cover all cases, but rather under-approximate the set of
safe variables; as was mentioned in Section 3.9, deciding if a variable is (semantically) safe or not is undecidable.
By conservatively under-approximating safe variables, we will apply rewritings in a subset of the cases in which
they may actually apply, choosing soundness over completeness in the face of undecidability.

In our case, rather than decomposing filters with disjunction or conjunction, we join them together, creating larger
filter expressions that can be normalised.

Example 7.1. Consider the following query:

SELECT DISTINCT ?x ?y ?z WHERE {
{ ?x :sibling ?y FILTER(?x != ?y) }
OPTIONAL { ?x :twin ?z FILTER(?x != ?z) }
FILTER(isIRI(?x)) FILTER(strlen((str(?x))) > 4)

}

We will rewrite this as follows:

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 869

SELECT DISTINCT ?x ?y ?z WHERE {
{ ?x :sibling ?y
FILTER(isIRI(?x) && ?x != ?y && strlen((str(?x))) > 4)

}
OPTIONAL { ?x :twin ?z FILTER(?x != ?z) }

}

Note that the FILTER inside the optional cannot be moved: if there is a solution μ such that μ(?x) = μ(?z),
having the filter inside the OPTIONAL may result in ?z being unbound, while having it outside would always filter
the solution entirely.

7.1.2. Local variable normalisation
Like in the case of union variables, we identify another case where the correspondences between variables in

different scopes is coincidental; i.e., where variables with the same name do not correlate. Specifically, we call a
variable v local to a graph pattern Q on V (see Table 3) if v ∈ vars Q and v /∈ V . Much like in the case of union
variables, we can simply rename local variables to distinguish them from variables with the same name in other
scopes.

Example 7.2. Consider the following query looking for the names of aunts of people without a father or without a
mother.

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?m . ?m :sister ?y . ?y :name ?z .
MINUS { ?w :father ?f }

}
UNION
{ ?w :father ?f . ?f :sister ?y . ?y :name ?z .
MINUS { ?w :mother ?m }

}
}

In this case, we distinguish the union variables. However, the variables ?f and ?m are local to the first and second
MINUS clauses, respectively, and thus we can also differentiate them as follows:

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?m1 . ?m1 :sister ?y1 . ?y1 :name ?z .
MINUS { ?w1 :father ?f1 }

}
UNION
{ ?w2 :father ?f2 . ?f2 :sister ?y2 . ?y2 :name ?z .
MINUS { ?w2 :mother ?m2 }

}
}

The resulting query is equivalent to the original query, but avoids “false correspondences” of variables.

7.1.3. UCQ normalisation
We continue to apply many of the rules of UCQ normalisation described in Section 6.1. Most of these rules were

stated in a general way, and thus apply when other (non-EMQ) features are used in the subqueries of the union and
join operators (or outside such operators). There are, however, certain caveats to consider in the more general case:

– In the case of variable normalisation, deciding the set of possible variables becomes undecidable for the full
language. It suffices for soundness (but not completeness) to use an overapproximation; given a graph pattern
Q on V , we can thus simply take V as the set of possible variables.

– In the case of unsatisfiability normalisation, there are now many other possible causes of unsatisfiable graph
patterns; unfortunately, deciding if a pattern is unsatisfiable or not for the full language is undecidable [60]. We
currently only remove BGPs with literal subjects, as before for EMQs.

– In the case of set vs. bag normalisation, deciding whether or not a query can return duplicate solutions is
undecidable (noting that UNION(Q,Q) cannot return duplicates if and only if Q is unsatisfiable). Currently we
only apply this normalisation in EMQs, though this could be extended in future to consider other cases (such
as C2RPQs).

870 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 22

Equivalences given by Pérez et al. [44] for set semantics and well-designed patterns

Join can be pushed into optional [Q1AND[Q2OPTQ3]] ≡ [[Q1ANDQ2]OPTQ3]
Join can be pushed into optional [[Q1OPTQ2]ANDQ3] ≡ [[Q1ANDQ3]OPTQ2]
Filter expression can be pushed into optional FILTERR([Q1OPTQ2]) ≡ [FILTERR(Q1)OPTQ2]

7.1.4. Well-designed pattern normalisation
As mentioned in Section 3, SPARQL allows the querying of optional data, that is, values are returned if they are

matched by a graph pattern, or are unbound otherwise. Well-designed patterns denote a class of graph patterns where
for each sub-pattern of the form Q = [Q1OPTQ2] it follows that all variables that appear both outside of Q and in
Q2 must also appear in Q1. We can check for well-designedness in linear time over the size of the query pattern
and the number of optional sub-patterns it contains. A classical result for SPARQL is that well-designed patterns
can avoid leaps in computational complexity for the evaluation of queries when adding (unrestricted) OPTIONAL.
Furthermore, well-designed patterns permit additional normal forms involving OPTIONAL to be applied [44], per
Table 22. We exploit these rules to capture additional equivalences involving such patterns.

Example 7.3. Let us consider the query Q1:

SELECT DISTINCT ?x ?y ?n WHERE {
{ ?x :father ?y }
OPTIONAL { ?y :firstname ?n }

?x :firstname ?n .
}

This query is not well-designed due to the variable ?n appearing on the right but not the left of an OPTIONAL,
while also appearing outside the OPTIONAL.

On the other hand, the following query Q2 contains a well-designed pattern inside its WHERE:

SELECT DISTINCT ?x ?y ?n1 ?n2 WHERE {
{ ?x :father ?y }
OPTIONAL { ?y :firstname ?n2 }

?x :firstname ?n1 .
}

Thus we can rewrite it to:

SELECT DISTINCT ?x ?y ?n1 ?n2 WHERE {
{ ?x :father ?y . ?x :firstname ?n1 }
OPTIONAL { ?y :firstname ?n2 }

}

per the second rule of Table 22.
Note that if we were to try to apply the same rule on the non-well-designed pattern in Q1, we would get:

SELECT DISTINCT ?x ?y ?n WHERE {
{ ?x :father ?y . ?x :firstname ?n }
OPTIONAL { ?y :firstname ?n }

}

This query is not equivalent to Q1: it returns the first names (?n) of children (?x) with some father (?y); in other
words, the OPTIONAL is redundant. On the other hand, Q1 returns the first names (?n) of children (?x) with some
father (?y) that does not have a first name or has a first name the same as the child (?n); this is because in the
original query, the variable ?n is potentially bound to the father’s first name (if it exists) before the join on the
child’s first name is applied.

We note that for queries with well-designed patterns, these rules are not sufficient for the purposes of complete-
ness; we will show an example of incompleteness later in Section 7.5.4. Per the results of Pichler and Skritek [45],
equivalence considering projection and well-designed patterns is already undecidable.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 871

7.1.5. Summary
Given a SPARQL 1.1 query Q, we denote by A(Q) the process involving the application of:

1. filter normalisation (§7.1.1);
2. local variable normalisation (§7.1.2);
3. UCQ normalisation (§7.1.3);
4. well-designed pattern normalisation (§7.1.4).

7.2. Graph representation

We extend the graph representation defined for EMQs in Section 7.2 so as to cover all SPARQL 1.1 query features.
This extension is provided in Table 23 (we again include the EMQ features for reference).

The reader may have noted that we omitted three details from Table 23: how to represent built-in and aggregate
expressions, and property paths. We now discuss these representations in turn.

7.2.1. Expressions
We recall that a term in VIBL is a built-in expression, and that if φ takes a tuple of values from IBL ∪ {⊥, ε} as

input and returns a single value in IBL∪{⊥, ε} as output, then an expression φ(R1, . . . , Rn), where each R1, . . . , Rn

is a built-in expression, is itself a built-in expression. If a built-in expression R is simply a term R ∈ VIBL, then we
use ι(R) to represent the expression, where R(R) = ∅. Otherwise, if R = φ(R1, . . . , Rn) and either φ has at most
one argument, or φ is an commutative function – i.e., the order of arguments is not meaningful – then:

R(R) = {(
ι(R),a,:BIExp

)
,
(
ι(R),:func, ι(φ)

)}

∪
n⋃

i=1

({(
ι(R),:arg, ι(Ri)

)} ∪ R(Ri)
)

where ι(φ) is an IRI that is assumed to uniquely identify the function, and ι(R), ι(Ri) are fresh blank nodes. If φ

has more than one argument and is not commutative – i.e., if the order of argument is meaningful – then for each
Ri , we additionally add a triple (ι(Ri),:ord, ι(i)) to the above transformation.

As previously remarked, we consider operators (e.g., &&, +, =, etc.) to be represented by functions. We assume
that commutative (and associative) operators – e.g., ?a+?b+?c, are represented as commutative n-ary functions –
e.g., SUM(?a,?b,?c). This allows for the representational graphs to abstract away details regarding the ordering of
operands of commutative functions. We further remark that [Q1FEQ2] and [Q1FNEQ2] are considered to be filters
in the concrete syntax; given that they do not use a built-in expression, we have rather defined their representation
in Table 18.

With respect to aggregation expressions, we recall that if ψ is a function that takes a bag of tuples from IBL
and returns a value in IBL ∪ {⊥, ε}, then an expression A = ψ(R1, . . . , Rn), where each R1, . . . , Rn is a built-in
expression, is an aggregation expression. An expression A of this form can be represented as:

R(A) = {(
ι(A),a,:AggExp

)
,
(
ι(A),:func, ι(ψ)

)}

∪
n⋃

i=1

({(
ι(A),:arg, ι(Ri)

)} ∪ R(Ri)
)

where ι(ψ) is an IRI that uniquely identifies the function ψ , and ι(A), ι(Ri) are fresh blank nodes.18

7.2.2. Property paths
Because property paths without inverses and negated property sets are regular expressions, and any regular ex-

pression can be transformed into a finite automaton, and a finite automaton has a graph-like structure, we opt to

18Though not necessary for SPARQL, :ord triples can be added if the order of operands matters, as before for built-in expressions.

872 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Table 23

Definitions for representational graphs R(Q) of graph patterns Q, where “a” abbreviates rdf:type, B is a basic graph pattern, N is a naviga-
tional graph pattern, Q1, . . . , Qn,Q′ are graph patterns, c is an RDF term, e is a non-simple property path (not an IRI), k is a non-zero natural
number, v is a variable, w is a variable or IRI, x is an IRI, y is a variable or property path, μ is a solution mapping, � is a boolean value, V is a
set of variables, X is a set of variables and/or IRIs, Y and Y ′ are sets of IRIs, R is a built-in expression, A is an aggregate expression, M is a bag
of solution mappings, � is a set of aggregate expression–variable pairs, and � is a non-empty sequence of order comparators

· R(·)
B {(ι(·),a,:And)} ∪ ⋃

(s,p,o)∈B {(ι(·),:arg, ι((s, p, o))} ∪ R((s, p, o))

N {(ι(·),a,:And)} ∪ ⋃
(s,y,o)∈N {(ι(·),:arg, ι((s, y, o))} ∪ R((s, y, o))

AND(Q1, . . . ,Qn) {(ι(·),:arg, ι(Q1)), . . . , (ι(·),:arg, ι(Qn)), (ι(·),a,:And)} ∪ R(Q1) ∪ · · · ∪ R(Qn)

UNION(Q1, . . . ,Qn) {(ι(·),:arg, ι(Q1)), . . . , (ι(·),:arg, ι(Qn)), (ι(·),a,:Union)} ∪ R(Q1) ∪ · · · ∪ R(Qn)

[Q1MINUSQ2] {(ι(·),:left, ι(Q1)), (ι(·),:right, ι(Q2)), (ι(·),a,:Minus)} ∪ R(Q1) ∪ R(Q2)

[Q1OPTQ2] {(ι(·),:left, ι(Q1)), (ι(·),:right, ι(Q2)), (ι(·),a,:Optional)} ∪ R(Q1) ∪ R(Q2)

FILTERR(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:exp, ι(R)), (ι(·),a,:Filter)} ∪ R(Q′) ∪ R(R)

[Q1FEQ2] {(ι(·),:left, ι(Q1)), (ι(·),:right, ι(Q2)), (ι(·),a,:Exists)} ∪ R(Q1) ∪ R(Q2)

[Q1FNEQ2] {(ι(·),:left, ι(Q1)), (ι(·),:right, ι(Q2)), (ι(·),a,:NotExists)} ∪ R(Q1) ∪ R(Q2)

BINDR,v(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:exp, ι(R)), (ι(·),:var, ι(v)), (ι(·),a,:Bind)} ∪ R(Q′) ∪ R(R)

VALUESM(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:vals, ι(M)), (ι(·),a,:Values)} ∪ R(Q′) ∪ R(M)

GRAPHw(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:graph, ι(w))} ∪ R(Q′)
[Q1SERVICE�

x Q2] {(ι(·),:left, ι(Q1)), (ι(·),:right, ι(Q2)), (ι(·),:srv, x), (ι(·),:sil, ι(�)), (ι(·),a,:Service)} ∪
R(Q1) ∪ R(Q2)

GROUPV (Q′) {(ι(·),:arg, ι(Q′)), (ι(·),a,:GroupBy)} ∪ ⋃
v∈V {(ι(·),:var, ι(v))} ∪ R(Q′)

HAVINGA(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:exp, ι(A)), (ι(·),a,:Having)} ∪ R(Q′) ∪ R(A)

AGG�(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:exp, ι(�)), (ι(·),a,:Aggregate)} ∪ R(Q′) ∪ R(�)

ORDER�(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:exp, ι(�)), (ι(·),a,:OrderBy)} ∪ R(Q′) ∪ R(�)

DISTINCT(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),a,:Distinct)} ∪ R(Q′)
REDUCED(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),a,:Reduced)} ∪ R(Q′)
OFFSETk(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:off, ι(k)), (ι(·),a,:Offset)} ∪ R(Q′)
LIMITk(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:limit, ι(k)), (ι(·),a,:Limit)} ∪ R(Q′)
SELECTV (Q′) {(ι(·),:arg, ι(Q′)), (ι(·),a,:Select)} ∪ ⋃

v∈V {(ι(·),:var, ι(v))} ∪ R(Q′)
ASK(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),a,:Ask)} ∪ R(Q′)
CONSTRUCTB(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:cons, ι(B)), (ι(·),a,:Construct)} ∪ R(Q′) ∪ R(B)

DESCRIBEX(Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:desc, ι(X)), (ι(·),a,:Describe)} ∪ R(Q′) ∪ R(X)

FROMY,Y ′ (Q′) {(ι(·),:arg, ι(Q′)), (ι(·),:from, ι(Y)), (ι(·),:fromn, ι(Y ′)), (ι(·),a,:From)} ∪ R(Q′) ∪ R(Y) ∪ R(Y ′)
(s, p, o) {(ι(·),:s, ι(s)), (ι(·),:p, ι(p)), (ι(·),:o, ι(o)), (ι(·),a,:TP)}
(s, e, o) {(ι(·),:s, ι(s)), (ι(·),:p, ι(e)), (ι(·),:o, ι(o)), (ι(·),a,:NP)} ∪ R(e)

e minimal DFA with ι(e) as start node; see Section 7.2.2

X {(ι(·),a,:IriVarSet)} ∪ ⋃
x∈X{(ι(·),:el, x)}

Y {(ι(·),a,:IriSet)} ∪ ⋃
y∈Y {(ι(·),:el, y)}

M {(ι(·),a,:SolBag)} ∪ (
⋃

μ∈M{(ι(·),:sol, ι((μ,M(μ))))} ∪ R((μ,M(μ))))

(μ, k) {(ι(·),a,:Binding), (ι(·),:num, ι(k))} ∪ (
⋃

v∈dom(μ){(ι(·),:el, ι((v, μ(v))))} ∪ R((v, μ(v)))

(v, c) {(ι(·),:var, ι(v)), (ι(·),:val, ι(c))}
R see Section 7.2.1

A see Section 7.2.1

� {(ι(·),a,:ABindSet)} ∪ (
⋃

(A,v)∈�{(ι(·),:arg, ι((A, v)))} ∪ R((A, v)))

(A, v) {(ι(·),:exp, ι(A)), (ι(·),:var, ι(v))} ∪ R(A)

� {(ι(·),a,:OBExpSeq)} ∪ (
⋃|�|

k=1{(ι(·),:arg, ι((�[k], k)))} ∪ R((�[k], k)))

((R, �), k) {(ι(·),:exp, ι(R)), (ι(·),:asc, ι(�)), (ι(·),:ord, ι(k))} ∪ R(R)

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 873

Fig. 5. NFA, DFA and minimal DFA produced for the RPQ (:p∗/:p∗)∗.

represent property paths based on finite automata. This approach allows us to apply known normal forms for finite
automata, providing, in turn, a normal form for RPQs, i.e., property paths without inverses or negated property sets;
it further provides partial canonicalisation in the case of full property paths. Another benefit of this approach is that
the automaton can be converted straightforwardly into RDF and used for the graph representation.

Given an RPQ, we apply the following process:

1. we construct a non-deterministic finite automaton (NFA) based on Thompson’s construction for transforming
regular expressions to NFAs [59];

2. we convert this NFA into a deterministic finite automaton (DFA) by a standard subset expansion (the resulting
DFA may be exponential on the number of states in the NFA);

3. we perform a minimisation of the DFA using Hopcroft’s algorithm [29], which produces a canonical DFA such
that all regular expressions that express the same language will produce the same DFA (modulo isomorphism
on states).

We now provide an example to illustrate the process.

Example 7.4. Consider an RPQ (:p*/:p*)*. In Fig. 5 we provide an example of the corresponding NFA
produced by Thompson’s algorithm, the DFA produced by subset expansion, and the minimal DFA produced by
Hopcroft’s algorithm.

The minimal DFA produced by Hopcroft’s algorithm for the RPQ e can then be encoded as an r-graph R(e) where
each state is assigned a fresh blank node, and transitions are labelled with their predicate IRI.

In order to generalise this process to full property paths, we must also support inverses and negated property
sets. For inverses, we initially attempt to eliminate as many inverses as possible; for example, ^(^:p)* would
be rewritten to simply :p* Thereafter, any remaining inverses or negated property sets are represented with a
canonical IRI; for example, ^:p* becomes :p-inv*. Thus the property path again becomes a regular expression,
and is converted into a DFA using the aforementioned process. It is worth noting that the resulting DFA may not
be canonical, and may thus miss equivalences between property paths (e.g., :p*/^p*, ^:p*/p* and (:p|^p)*
should all be equivalent, but are not when represented as :p*/:p-inv*, :p-inv*/:p* and (:p|:p-inv)*,
respectively). The r-graph can then be computed as before, where for a negated property set e = !(p1| . . .|pn),
we also add:

R(e) = {(
ι(e),a,:notOneOf

)
,

(
ι(e),:arg, ι(p1)

)
, . . . ,

(
ι(e),:arg, ι(pn)

)}
.

We will discuss the inverse mapping from the minimal DFA back to a path expression in Section 7.4.

874 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

7.3. Minimisation and canonicalisation

Minimisation is applied only to BGPs and UBGPs that are contained within the larger query in the r-graph,
considering any variable appearing outside of the BGP or union as a projected variable. We apply canonicalisation
on the entire r-graph as before, computing a deterministic labelling for blank nodes.

7.4. Inverse mapping

The inverse mapping is defined analogously such that R−(R(Q)) = Q, with one exception: property paths. This
is because we do not represent property paths syntactically in the r-graph, but rather convert them to a minimal
DFA, from which we must construct the property path once again. In order to construct the property path from the
minimal DFA, we convert it into a regular expression by using the state elimination method [8], from which we can
retrieve a normalised RPQ. Finally the inverse and negated property set IRIs are substituted accordingly (if present).

Example 7.5. Consider the following DFA:

1 2

:d

:a
3

:c

:b-inv

The first step consists in transforming this DFA into an equivalent NFA by introducing a new initial state q0 and
a single accepting state qf . We add an ε transition from q0 to q1, and from all accepting states to qf .

1 2

:d

:a
3

:c

:b-inv

0

ε

f

ε

To eliminate a state qa we have to replace all transitions that pass through qa . Assuming there exists a path be-
tween qi and qj that passes through qa , we define the new transition eij as eij = (eia/e

∗
a/eaj)|e′

ij . In this expression,
we have eia , the transition from qi to qa , followed by zero or more instances of ea , which represents any self-loops
in qa , or ε if no such self-loops exist. This is then followed by eaj , the transition from qa to qj . Finally, we have
to consider the fact that there may have already been a path from qi to qj , denoted here by e′

ij ; hence we append
. . . |e′

ij to the expression to include the existing transition.
We now eliminate q1 following this process. Since q1 has no self-loops and there are no existing paths between

q0 and q2, these terms are excluded from the expression. Then e02 = (e01/e
∗
1/e12)|e02 = ε/:a = :a, and e03 =

(e01/e
∗
1/e13)|e03 = ε/:c = :c.

0

2

:d

:a

3

:c

:b-inv

f

ε

Next we eliminate q2. In this case, q2 does have a self-loop, and there exists a transition between q0 and q3 so the
expression is as follows: e03 = (e02/e

∗
2/e23)|e03 = (:a/:d∗/:b-inv) | :c.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 875

0 3
(:a/:d∗/:b-inv)|:c

f
ε

We now eliminate q3. In this case:

0 f
(:a/:d∗/:b-inv) | :c

Finally, we substitute the IRI :b-inv for the inverse expression ^:b, yielding (:a/:d∗/^:b)|:c.

7.5. Soundness, completeness and incompleteness

Given a SPARQL 1.1 query Q, the canonicalisation procedure is then defined by R−(L(M(R(A(Q))))). We now
discuss some formal properties of this procedure.

7.5.1. Soundness and completeness for EMQs
First we look at the case of EMQs, and ask if the extended canonicalisation procedure is sound and complete for

this fragment.

Lemma 7.1. Given two EMQs Q1 and Q2, it holds that Q1 ∼= Q2 if and only if

R−(
L
(

M
(

R
(

A(Q1)
)))) = R−(

L
(

M
(

R
(

A(Q2)
))))

.

Please see Appendix A.2.1 for the proof.

7.5.2. Soundness for SPARQL 1.1
Next we show that the process is sound for queries in the full SPARQL 1.1 query language.

Lemma 7.2. For a SPARQL 1.1 query Q, it holds that:

R−(
L
(

M
(

R
(

A(Q)
)))) ∼= Q.

Please see Appendix A.2.2 for the proof.

7.5.3. Complexity
In terms of the complexity of (partially) canonicalising queries with these additional features, if we assume that

the size of the input query Q is in O(n), where n is the number of unique triple patterns and path patterns in Q, then
the complexity remains bounded by that of canonicalising monotone queries: O(2cn log n) for some constant c > 0.
This assumes that features of the query that do not involve triple or path patterns (e.g., BIND, VALUES, FILTER,
etc.) are of bounded size and bounded in number, while path expressions are of bounded length. This may be an
oversimplification.

We may rather consider the “token length” of the query, which is the number of terminals – RDF terms, variables,
keywords, etc. – appearing in the syntax of the query. In this case, we must additionally consider the costs of com-
puting a normal form for RPQs. Given an RPQ of length l, which includes the number of non-parenthetical symbols
(including IRIs, *, +, |, /) Thompson’s construction creates an NFA of size O(l). Subset expansion may then create
a DFA with O(2l) states that remains exponential after minimisation. This will result in an exponentially-sized rep-
resentation of the RPQ. Minimisation is only applied on (U)BGPs, and thus does not apply on this representation.
However, canonical labelling will occur on this representation, where assuming again a brute-force method in the
order of O(b!) for b the number of blank nodes, we now have a complexity of O(2l !) for canonicalising the RPQ
representation graph of a property path of length l, and given that we may have n such property paths, where n is
the number of triple patterns and path expressions, this generates a cost of O((cn2l)!) for canonically labelling a
navigational graph pattern, which we can add to the cost for monotone queries: O((cn2l)! + (cn3n/3)!), where l

is the length of the longest property path, n is the number of triple patterns and path patterns, and c > 0 is some
constant to account for the additional “syntactic” blank nodes that appear in the r-graph.

876 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

7.5.4. Incompleteness for SPARQL 1.1
We provide some examples of incompleteness to illustrate the limitations of the canonicalisation process for the

full SPARQL 1.1 language.
We start with filters, which, when combined with a particular graph pattern, may always be true, may never be

true, may contain redundant elements, etc.; however, detecting such cases can be highly complex.

Example 7.6. Consider the following example:

SELECT ?o
WHERE {
:Ed ?p ?o .
FILTER(!isIRI(?p))

}

The FILTER here will always return false as the predicate in an RDF graph must always be an IRI. Thus the query is
unsatisfiable and thus ideally would be rewritten to Q∅; however, we do not consider the semantics of filter functions
(other than boolean combinations).

Note that reasoning about filters is oftentimes far from trivial. Consider the following example:

SELECT ?o
WHERE {
:Ed ?p ?o .
FILTER(!contains(":",str(?p)))

}

This query is unsatisfiable because predicates must be IRIs, and IRIs must always contain a colon (to separate the
scheme from the hierarchical path) [20].

Next we consider issues with property paths.

Example 7.7. Consider the following example:

SELECT ?anc
WHERE {
:Ed :parent*/:parent* ?anc .

}

Clearly this is equivalent to:

SELECT ?anc
WHERE {
:Ed :parent* ?x . ?x :parent* ?anc .

}

But also to:

SELECT ?anc
WHERE {
:Ed :parent* ?anc .

}

Currently we rewrite concatenation, inverse and disjunction in paths (not appearing within a recursive expression)
to UCQ features. This means that we currently capture equivalence between the first and second query, but not the
first and third.

Other examples are due to inverses, or negated property sets; consider for example:

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 877

SELECT ?anc
WHERE {
:Ed :parent|!(:parent) ?anc .

}

This is equivalent to:

SELECT ?anc
WHERE {
:Ed ?p ?anc .

}

However, we do not consider the semantic relation between the expressions !(:parent) and :parent.

Incompleteness can also occur due to negation, which is complicated by the ambiguities surrounding NOT EX-
ISTS as discussed in Section 3.10. We have postponed algebraic rewritings involving negation until this issue is
officially resolved.

Incompleteness can also occur while normalising well-designed query patterns with OPTIONAL.

Example 7.8. Consider the query Q1:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .
OPTIONAL { :Ed :email ?email } } .
{ :Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } }

}

Since AND is commutative, this is equivalent to Q2:

SELECT ?anc
WHERE {
{ :Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } } .
{ :Ed :parent ?anc .
OPTIONAL { :Ed :email ?email } }

}

If we rewrite each well-designed pattern by pushing the OPTIONAL operators outside, we obtain the following
equivalent query for Q1:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .
:Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } }

OPTIONAL { :Ed :email ?email }
}

and, analogously, for Q2:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .
:Bob :parent ?anc .
OPTIONAL { :Ed :email ?email } }

OPTIONAL { :Bob :address ?address }
}

However, in the general case it does not hold that [[Q1OPTQ2]OPTQ3] ≡ [[Q1OPTQ3]OPTQ2], and thus we do not
capture these equivalences.

878 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

We could list an arbitrary number of ways in which arbitrary features can give rise to unsatisfiability or redun-
dancy, or where queries using seemingly different features end up being equivalent. We could likewise provide an
arbitrary number of rewritings and methods to deal with particular cases. However, any such method for canonical-
ising SPARQL 1.1 queries will be incomplete. Furthermore, many such “corner cases” would be rare in practice,
where dealing with them might have limited impact. We then see two interesting directions for future work to
address these limitations:

1. Use query logs or other empirical methods to determine more common cases that this query canonicalisation
framework may miss and implement targeted methods to deal with such cases.

2. Extend the query fragment for which sound and complete canonicalisation is possible; an interesting goal, for
example, would be to explore EMQs with full property paths (such queries are similar to C2RPQs [34], for
which containment and related problems are decidable).

8. Experiments

In these experiments, we wish to address two principal questions, as follows:

Q1: How is the performance of the canonicalisation procedure in terms of runtime? Which aspects of the proce-
dure take the most time? What kinds of queries are most expensive?

Q2: How many more additional congruent queries can the procedure find in real-world logs versus baseline
methods? Which aspects of the procedure are most important for increasing the number of congruent queries
detected?

With respect to the first question, we might expect poor performance given that the worst-case of the algorithm
is super-exponential. However, this is a worst-case analysis with respect to the size of the query, where queries in
practice are often relatively small and simple. Hence our hypothesis is that although there exist queries for which
canonicalisation is not computationally feasible in theory, it should run efficiently (in fractions of a second) for the
majority of real-world queries in practice (as found in public query logs).

With respect to the second question, most of our expected use-cases benefit from being able to find a wider range
of congruent, real-world queries, as found in public query logs; for example, in the case of caching, finding more
congruent queries will translate into higher cache hit rates. Thus it is of interest to see how many additional congruent
queries our canonicalisation procedure can find from public query logs when compared with baseline (syntactic)
methods, and in particular, which parts of the procedure have the most impact in terms of finding more congruent
queries. In general, we hypothesise that canonical labelling will be an important component as variable naming
would likely be a common variation in real-world queries; on the other hand, we hypothesise that minimisation will
be less impactful in terms of finding more congruent queries as we expect few real-world queries to contain the
types of redundancy dealt with in Section 6.3.

We thus design a number of experiments over real-world and synthetic queries in order to address these questions
and evaluate our expectations.

8.1. Implementation: QCan

We have implemented the canonicalisation procedure in a system that we call QCan written in Java. The system
uses Jena ARQ [38] for query parsing and processing. Algebraic rewritings are implemented on top of the query
algebra that Jena ARQ provides. Constructing the r-graph is likewise implemented on top of Jena. Minimisation
is conducted by using the blabel system [28] to compute the core of RDF graphs representing BGPs, thereafter
implementing containment checks across BGPs using ASK queries evaluated in Jena. Finally canonical labelling is
implemented using blabel [28]. All other aspects of the procedure are implemented directly in QCan, including the
steps involving the representation and manipulation of property paths as automata. The source code of QCan, along
with a suite of congruence test-cases, are available online at: http://github.com/RittoShadow/QCan. The machine
used for these experiments has 12 Intel® Xeon® 1.9GHz processors, and runs on Devuan GNU/Linux 2.1, with a
maximum heap size of 10GB.

http://github.com/RittoShadow/QCan

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 879

8.2. Real-world query logs

In order to test our algorithm in a real-world setting, we used two query log datasets: the LSQ dataset [52],19

which itself contains queries from DBpedia, Linked Geo Data, RKB Explorer/Endpoint and Semantic Web Dog
Food logs; and Wikidata logs [37] (Interval 7; organic queries).20 With respect to the datasets:

– DBpedia [35] (DBP) is an RDF dataset extracted principally from Wikipedia, with the main source of content
being info-boxes.

– LinkedGeoData [56] (GEO) is an RDF dataset that contains spatial data extracted from the OpenStreetMap [23]
project.

– The RKB Endpoint (REN) and Explorer (REX) datasets [21] primarily pertain to cultural and heritage data
from the British Museum.

– Semantic Web Dog Food (SWDF) [39] was a dataset that is now part of the Scholarlydata dataset [40], con-
taining information about scholarly publications and conferences.

– Wikidata [61] (WD) is a collaboratively-edited knowledge graph that complements the projects of Wikimedia
with central, structured content.

All of these datasets have public SPARQL endpoints that receive queries from users over the Web. These queries
have been published as the Wikidata and LSQ logs for research purposes. Table 24 contains the distribution of fea-
tures in each of the query sets in our real-world setting. In total we consider 2.8 million queries for our experiments.
Despite the fact that BGPs are equivalent to joins of triple patterns, we only count as “AND” those joins for features
other than triple patterns. We further gather together under “MODS” the solution modifiers ORDER BY, LIMIT,
OFFSET and projection. We observe that BGPs are present in almost all queries, which is an expected result. Fea-
tures new to SPARQL 1.1 are used more rarely in the LSQ logs, but this is likely because these logs predate the
release of the standard; such features are quite widely used in the more recent Wikidata logs. The large use of SER-
VICE on Wikidata relates to the use of the custom label service offered by the endpoint as a syntactic convenience
to help choose language preferences. With respect to the use of property paths, many are quite simple, usually used
to find objects of a certain class or its transitive subclasses. Further details of these queries can be found in analyses
by Saleem et al. [52], Malyshev et al. [37], Bonifati et al. [7], etc.

Table 24

Distribution of queries using SPARQL features in the query logs; we mark features new to SPARQL 1.1 with an asterisk

Feature DBP GEO REN REX SWDF WD All

BGP 424,328 842,794 169,425 335,450 112,398 861,383 2,745,778

DISTINCT 192,168 5,477 147,575 210,058 57,195 538,878 1,151,351

AND 58,952 78,575 19,355 34,180 54,702 751,243 997,007

MODS 4,576 412,343 40,957 80,655 60,199 321,239 919,969

OPT 31,211 19,914 9,741 23,587 27,824 343,838 456,115

FILTER 200,001 125,849 8,974 14,938 4,716 92,807 447,285

SERVICE* 0 0 0 0 0 406,990 406,990

UNION 89,766 49,299 1,653 5,550 32,459 57,029 235,756

PATHS* 0 0 96 192 37 268,530 268,855

BIND* 0 0 0 19,641 15,307 71,102 106,050

AGG* 0 0 0 16,444 10,268 42,777 69,489

VALUES* 0 174 0 0 83 55,037 55,294

MINUS* 0 0 0 192 25 5,700 5,917

TOTAL 424,362 842,794 169,617 335,833 112,470 868,993 2,754,069

19https://aksw.github.io/LSQ/
20https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

https://aksw.github.io/LSQ/
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

880 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Fig. 6. Runtimes for each step of the canonicalisation algorithm.

8.2.1. Canonicalisation runtimes
We now present the runtimes for canonicalising the queries of the aforementioned logs. All queries in all six logs

were successfully canonicalised. The results in Fig. 6 indicate that the fastest queries to canonicalise take around
0.00025 seconds, median times vary from 0.00084 seconds (REN) up to 0.00206 seconds (WD), while max times
vary from 0.12 seconds (SWDF) up to 71 seconds (WD). The slowest part of the process, on average, tended to be
the canonical labelling, though in the case of REN and REX, the graph construction was slightly slower on average.

Figure 7 shows the runtimes for the canonicalisation of the queries in the aforementioned logs, limited to those
that contain features introduced in SPARQL 1.1. Notably the ranges of runtimes of DBP, GEO, REN, and REX are
much more stable, and present much less variance than the same runtimes for the full datasets. On the other hand,
SWDF and WD present similar minimum and maximum runtimes than the full datasets, but the runtimes in the
interquartile range are far more stable than those in the full datasets. This suggests that the addition of queries with
features introduced in SPARQL 1.1 do not add a significant overhead to the performance of the algorithm.

Figure 8 shows that the WD set of queries produces the largest r-graphs, with the largest graph containing 3,456
nodes (WD). This is consistent with the results in Fig. 6 since the total runtimes for WD queries can be much higher
than those of the other query sets.

The results in Fig. 9 show the runtimes for all query sets grouped by the features they use (at least once, possibly
in conjunction with other features). We include SPARQL 1.0 features along with property paths for those logs using
such features. These results indicate that queries containing UNION tend to take a longer time to process; i.e., it
is the most computationally challenging feature to deal with in these queries. This is an expected result since the
rewriting step may cause an exponential blow-up on the number of basic graph patterns in a monotone fragment of
a query. Since most real world queries are not in a UCQ form, but rather contain combinations of joins and unions,
it is likely that any query that contains unions will produce larger r-graphs than those without any unions. We also
see that OPTIONAL is an expensive feature, particularly for the GEO dataset. However, looking into the GEO results

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 881

Fig. 7. Runtimes for each step of the canonicalisation algorithm (considering queries with some SPARQL 1.1 feature).

Fig. 8. R-graph sizes (number of nodes) for each set of queries; the value on the right indicates the maximum size.

in more detail, most of the queries with OPTIONAL appear to come from a single agent – an application using the
SPARQL endpoint as a backend – and also feature numerous disjunctive filters (using bound(·) over multiple
OPTIONAL clauses) that are rewritten into UNION, which is then the underlying reason that the queries are slower.
This result – relating to the requests of a single prolific agent – can thus be considered something of an outlier.

8.2.2. Duplicates found
We now look at the number of duplicates found, where we compare the following methods:

RAW The raw query string is used, without any kind of normalisation.
PARSE The raw query string is parsed using Jena ARQ into its query algebra, and then serialised back into concrete

SPARQL syntax.

882 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Fig. 9. Runtimes for queries grouped by selected features.

Table 25

Total number of duplicates found by each method

Query set RAW PARSE LABEL REWRITE FULL

DBP 250,940 251,283 251,315 251,315 251,315

GEO 723,116 736,331 739,695 739,700 739,702

REN 142,032 143,523 144,007 144,007 144,008

REX 299,892 301,419 301,910 301,910 301,911

SWDF 53,061 53,263 53,388 53,388 53,388

WD 683,132 686,453 687,654 687,751 687,760

LABEL The raw query string is parsed using Jena ARQ into its query algebra, the r-graph is constructed and
canonically labelled, and then serialised back into concrete SPARQL syntax.

REWRITE The raw query string is parsed using Jena ARQ into its query algebra, the query is rewritten per the
algebraic rules, the r-graph is constructed and canonically labelled, and then serialised back into concrete
SPARQL syntax.

FULL The raw query string is parsed using Jena ARQ into its query algebra, the query is rewritten per the alge-
braic rules, the r-graph is constructed, minimised, canonically labelled, and then serialised back into concrete
SPARQL syntax.

Tables 25 and 26 denote the total number of duplicate (congruent) queries found, and the most duplicates found
for a single query. In general, there is a high number of exact duplicate query strings, possibly from the same query
being sent many times to refresh the results. Thereafter, the number of duplicates found either remains the same or
increases in each successive algorithm. In particular, excluding duplicate query strings (RAW), the highest increase
occurs with PARSE and thereafter LABEL, with WD being the query set for which the most additional duplicates

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 883

Table 26

Most duplicates of a single query found by each method

Query set RAW PARSE LABEL REWRITE FULL

DBP 5,464 5,514 5,514 5,514 5,514

GEO 22,582 31,379 40,744 40,744 40,744

REN 3,814 3,814 3,814 3,814 3,814

REX 14,690 14,910 14,910 14,910 14,910

SWDF 2,388 2,633 4,938 4,938 4,938

WD 232,339 232,339 232,339 232,339 232,339

Table 27

UCQ features supported by SPARQL Algebra (SA), Alternating Free two-way μ-calculus (AFMU), Tree Solver (TS) and Jena-SPARQL-API
Graph-isomorphism (JSAG); note that ABGP denotes Acyclic Basic Graph Patterns

Method ABGP BGP Projection Union

SA � �
AFMU � � �
TS � � �
JSAG � � � �
QCan � � � �

are found with these methods, where the duplicates detected increase by a few thousand in each step. In the other
query sets this increase is less pronounced. In addition, there is almost no difference beyond LABEL, meaning that
algebraic rewritings and minimisation find very few additional congruent queries in these logs.

8.3. Comparison with existing systems

In this section, we compare the runtime performance of our algorithm with existing systems that can perform
pairwise SPARQL containment checks. We provide an overview of these tools in Table 27. In our experiments,
we consider SA [36] and JSAG [58] as they support cyclic queries. The queries used are part of the test suite
designed by Chekol et al. [13] as part of their experiments. These correspond to two sets of queries: one of CQs
without projection, and one of UCQs with projection. As discussed in Section 5, the SA and JSAG systems are not
analogous to ours. We focus on query equivalence and congruence, and not on containment; conversely, SA and
JSAG support containment. On the other hand, we compute a canonical form of a query, whereas SA and JSAG
focus on pairwise checks (though JSAG offers indexing approaches based on constants in the query and isomorphic
DAGs). Our approach is sound and complete for UCQs under both bag and set semantics; conversely, SA only
considers set semantics, while JSAG focuses on detecting sub-graph isomorphisms between algebraic expressions
under bag semantics. In the case of CQs without projection, checking containment is tractable (see Table 16), and
quite trivial, requiring checking that one BGP is set-contained in the other.

Figure 10 shows the runtimes for our comparison of both containment checkers and our method (QCan). Note
that there are no values for SA with UCQs because the UCQ set uses projection and SA does not support queries
with projection. The results indicate that most queries for SA and JSAG take between one and ten milliseconds,
whereas most queries under our method take between ten and one hundred milliseconds. In terms of the slowest
queries, our method is faster than JSAG but slower than SA.

In general, the conclusion is that our method is slower for testing equivalence than existing containment checkers,
but this is perhaps not surprising as our approach addresses the more difficult problem of first computing a canonical
form for both input queries, and further considers congruence rather than the more trivial case of equivalence where
variable names are fixed. Furthermore, once these canonical forms are computed, equivalence classes of congruent
queries can be found in constant time using simple data structures (e.g., (ideal) hashing of the canonical query
strings). If we estimate that our system is 10 times slower to canonicalise two queries than these systems can
perform a pairwise check (per Fig. 10), QCan will begin to outperform these systems for partitioning a set of 11
or more queries by equivalence (or congruence); in the case of 11 queries, these systems must perform

(11
2

) = 55

884 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Fig. 10. Runtimes for JSAG, SA and QCan.

pairwise checks (in the worst case), while QCan will canonicalise 11 queries and partition them in constant time (in
the best and the worst case). The time savings thereafter grow quadratically.

8.4. Stress test

With the exception of some outliers, most queries that we have evaluated thus far have been canonicalised in
fractions of a second. On the other hand, we know that our algorithms are super-exponential in the worst case. Such
cases may occur when we have monotone queries that are in conjunctive normal form (i.e., consisting of joins of
unions), in which case our UCQ normal form can be exponential in size, upon which we perform further poten-
tially exponential processes. In order to stress-test our method and explore such worst cases, we run the following
experiment.

For this experiment, we generate queries of the form AND(U1, . . . , Um) where each union pattern is of the form
Ui = UNION(t1, . . . , tk), and each triple pattern is of the form tj = (sj ,:pj , oj), where sj and oj are variables
randomly selected from a predetermined set of m + k variables, and :pj is an IRI randomly selected from a
predetermined set of m IRIs. The UCQ normal form for this query will consist of a union of km BGPs, each
containing m triple patterns. Finally, we project a random subset of the set of variables that appear in the query,
making sure to project at least one variable.

Figure 11 shows the times for each step of the canonicalisation procedure on the synthetic UCQs. On the x-axis
we increase k (the base of the exponent), while across the different series we increase m (the exponent). The y-axis is
shown in log scale. We see that for the UCQ rewriting, graph construction and minimisation steps, the higher series
(representing an increasing exponent) diverge further and further as the x-axis increases (representing an increasing
base). On the other hand, the differences in times for canonical labelling are less pronounced since the minimisation
process reduces the r-graphs significantly due to the regular construction of the queries. The slowest queries tested
(k = 9, m = 4) take around 4.1 hours to canonicalise considering all steps. Increasing k and/or m further would
quickly lead to unmanageable runtimes and, eventually, out-of-memory exceptions.

These results illustrate the poor worst-case behaviour of our canonicalisation procedure, particularly when con-
sidering queries with joins of many unions. However, as shown by the results presented in Section 8.2, virtually no
queries in our real-world setting caused this worst-case behaviour.

9. Conclusion

In this paper, we have presented a formal semantics of SPARQL 1.1 and a canonicalisation procedure that pro-
duces a deterministic query string modulo congruence (equivalence modulo variable naming). This procedure in-

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 885

Fig. 11. Times for UCQ stress tests.

volves the application of algebraic rewritings of the query, the representation of the query as a graph, the minimisa-
tion of the query in order to remove redundancy, and finally the canonical labelling of the graph in order to produce
canonical variable names based on the structure of the graph. We have proven this procedure to be sound and com-
plete with respect to “extended monotone queries” under bag and set semantics, i.e., queries that can be rewritten
to the features involving BGPs, joins, unions, projection, and distinct. We have further extended this procedure to
provide sound and incomplete canonicalisation of the queries under the full SPARQL 1.1 language.

Despite the super-exponential worst-case complexity of our procedure, the experimental results indicate that our
method is efficient for most queries, running in a fraction of a second – in the median case – over millions of queries
from real-world logs; the slowest query to canonicalise took just over a minute. Such results are achieved because
most real-world queries tend to be relatively small and simple. In this analysis, we determined that the canonical
labelling is the step that takes the longest time on average. We further found that the UNION feature is the most
costly to canonicalise in general, with OPTIONAL also proving costly in some cases. Comparing the performance
of our method for finding equivalent queries versus existing containment checkers, we find that our method is indeed
slower, but produces a canonical form that thereafter allows for constant-time detection of congruent queries in large
sets of queries. Running stress-tests over queries featuring joins of unions of increasing size, we have confirmed that
our procedure quickly becomes inefficient, taking hours to canonicalise four joins of unions with nine triple patterns
each.

We have further confirmed that our procedure allows for detecting additional congruent queries over real-world
logs versus baseline methods. We first observed that the vast majority of congruent queries are actually syntactically
identical in terms of raw query strings, likely due to clients reissuing precisely the same query in order to intermit-
tently refresh results. Of our canonical procedures, canonical labelling is the most important for finding additional
congruent queries. On the other hand, minimisation and algebraic rewritings – though necessary to ensure complete-
ness for monotone queries – lead to finding only a very small fraction of additional congruent queries. This would
tend to suggest that in a practical caching system, where completeness can be traded for efficiency, it may be suf-

886 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

ficient to apply canonical labelling without algebraic rewritings and minimisation. However, minimisation may be
useful in cases where completeness is an important criterion. Also, in certain setting, queries with redundancy may
be automatically generated; an interesting use-case along these lines is that of ontology-based data access (OBDA)
[63], where rewritings may produce queries (typically UCQs) with redundancies that are inefficient to evaluate over
large graphs.

With respect to future directions, a natural continuation of this work is to explore larger fragments of SPARQL 1.1
for which sound and complete canonicalisation can be performed. In particular, we have already begun to investigate
such procedures for a fragment akin to UC2RPQs. At first glance, this should be analogous to the minimisation and
canonicalisation of basic graph patterns and unions, where property paths are represented as automata and we can
check for containment of automata to find redundant path patterns. However, we have already found that this requires
entailment of paths with inverses, which is not as straightforward as checking for containment [34].

SPARQL 1.2 is on the horizon. We believe that the formal semantics of SPARQL 1.1 defined herein may serve
as a useful reference for the standardisation effort. If the semantics of FILTER (NOT) EXISTS is clarified as
part of SPARQL 1.2, it would also be of interest to (partially) capture equivalences between the negation features
of SPARQL. With respect to new features, our canonicalisation procedure should be extensible to SPARQL 1.2
following similar processes, though such canonicalisation cannot be complete.

Finally, we are currently exploring use-cases for our canonicalisation procedure in the context of two ongoing
projects: one relating to caching, and one relating to query answering. Regarding caching, we have seen that most
congruences in real-world query logs are exact (syntactic) duplicates; however, rather than considering congruencies
between full queries, a more promising approach for caching is to mine common sub-queries, where canonicalisation
can be used for such purposes. In the context of question answering, we can also use canonicalisation in order to
normalise training data for sequence-to-sequence models that translate natural language to SPARQL queries. An
important future line of research is then to explore and evaluate the benefits of SPARQL canonicalisation in the
context of these and further use-cases.

Online material We provide code and other material online at: http://github.com/RittoShadow/QCan. A demo is
available at: http://qcan.dcc.uchile.cl.

Acknowledgements

This work was supported by Fondecyt Grant No. 1181896 and by ANID – Millennium Science Initiative Program
– Code ICN17_002. We would also like to thank the reviewers of the conference and journal versions of this paper
for useful comments that helped to improve this work.

Appendix. Proofs

A.1. Proofs for Section 6

Herein we provide the proofs for the lemmas and theorems enumerated in the body of the paper.

A.1.1. Proof for Lemma 6.1
First assume that Q does not contain a literal subject. Define G to be the result of replacing all variables in Q

with an IRI, say :x. Observe that G is a valid RDF graph. Define D to be the dataset with the default graph G. Let
μ denote the solution such that dom(μ) = vars Q and μ(v) = :x for all v ∈ dom(μ). Observe that μ ∈ Q(D).
Hence there exists a dataset D such that Q(D) is non-empty: Q is satisfiable.

Next assume that Q contains a literal subject. Take any blank node mapping α and solution mapping μ. Observe
that μ(α(Q)) will still contain a literal subject, and hence for any RDF graph G, blank node mapping α and solution
mapping μ, it holds that μ(α(Q)) � G as G cannot contain a triple with a literal subject. Hence Q cannot have any
solution over any dataset, Q is unsatisfiable, and the result holds.

http://github.com/RittoShadow/QCan
http://qcan.dcc.uchile.cl

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 887

A.1.2. Proof for Lemma 6.2
Recall: UNION(Q1, . . . ,Qn)(D) = ⋃n

i=1 Qi(D) (with union being bag or set union depending on the semantics).
The result is (always) empty if and only if all Qi(D) are (always) empty. Removing any Qk such that Qk(D) is
(always) empty will not affect the results of the query. Thus the result holds.

A.1.3. Proof for Lemma 6.3
Take any Qi (1 � i � n). Given any dataset D, for any solution μ ∈ Qi(D), there must exist a corresponding so-

lution λi(μ) ∈ λi(Qi)(D) with the same multiplicity, where dom(λi(μ)) = λi(dom(μ)), and λi(μ)(λi(v)) =
μ(v), i.e., a solution that is the same but with variables renamed per λi . Furthermore, SELECTV (Qi)(D) =
SELECTV (λi(Qi))(D) as by definition λi does not rewrite variables in V . We now have:

SELECTV

(
UNION(Q1, . . . ,Qn)

)

≡ UNION
(

SELECTV (Q1), . . . , SELECTV (Qn)
)

≡ UNION
(

SELECTV

(
λ1(Q1)

)
, . . . , SELECTV

(
λn(Qn)

))

≡ SELECTV

(
UNION

(
λ1(Q1), . . . , λn(Qn)

))

which concludes the proof.

A.1.4. Proof for Lemma 6.4
Let V = pvars(Q) denote the possible variables of Q; then, for any dataset D, if μ ∈ Q(D) then dom(μ) ⊆

V . For each solution μ ∈ Q(D), the projection SELECTV ′(Q)(D) produces a solution μ′ such that dom(μ′) ⊆
V ′ ∩ dom(μ) and μ ∼ μ′, while the projection SELECTV ′∪V ′′(Q) produces a solution μ′′ such that dom(μ′′) =
(V ′ ∪ V ′′) ∩ dom(μ) and μ ∼ μ′′. But since dom(μ) ⊆ V and V ∩ V ′′ = ∅, this means that dom(μ) ∩ V ′′ = ∅.
Hence dom(μ′′) = (V ′ ∪ V ′′) ∩ dom(μ) = V ′ ∩ dom(μ) = dom(μ′). Further given that μ ∼ μ′, μ ∼ μ′′,
dom(μ′) = dom(μ′′) ⊆ dom(μ), we can conclude that μ′ = μ′′. We have thus shown a one-to-one mapping from
solutions of the form μ′ to μ′′ such that μ′ = μ′′, and thus the result holds.

A.1.5. Proof for Lemma 6.5
First we prove that if vars Q = V and bnodes(Q) = ∅, then DISTINCT(SELECTV (Q)) ≡ SELECTV (Q). It

suffices to show that SELECTvars Q(Q) cannot produce duplicate results, which we will now prove by contradiction.
Assume a dataset D such that there exists a solution μ where SELECTvars Q(Q)(D)(μ) > 1; i.e., the solution appears
more than once. Since all variables are projected, SELECTvars Q(Q) ≡ Q. For μ to be duplicated, there must then
exist multiple blank node mappings α such that dom(α) = bnodes(Q) and μ(α(Q)) ⊆ D (see Table 8), but since
bnodes(Q) = ∅, there is only the single empty mapping α, and hence we have a contradiction. The case vars Q � V

follows from this result and Lemma 6.4.
Next we prove that if vars Q � V or bnodes(Q) 	= ∅, and Q is satisfiable, then DISTINCT(SELECTV (Q)) 	≡

SELECTV (Q). It suffices to show that there exists a dataset D for which SELECTV (Q) can produce duplicates if
V 	= vars Q or bnodes(Q) 	= ∅. Let μ denote a solution mapping such that dom(μ) = V and for all v ∈ dom(μ),
μ(v) = :x. Let μ′ and μ′′ denote two solution mappings such that dom(μ′) = dom(μ′′) = vars Q \ V and for
all v ∈ vars Q \ V , μ′(v) = :y and μ′′(v) = :z. Let α′ and α′′ denote two blank node mappings such that
dom(α′) = dom(α′′) = bnodes(Q) and for all b ∈ bnodes(Q), α′(b) = :y and α′′(b) = :z. Consider a dataset
D whose default graph is defined as μ(μ′(α′(Q))) ∪ μ(μ′′(α′′(Q))); this is a valid RDF graph as Q is satisfiable
and thus does not contain literal subjects. We see that SELECTV (Q)(D)(μ) � 2, where the mapping to :y and the
mapping to :z (be they blank node mappings or solution mappings) are counted in the multiplicity of μ. Thus there
exists a dataset D for which SELECTV (Q) can produce duplicate solutions, which concludes the proof.

A.1.6. Proof for Lemma 6.6
As before, we first prove that if blank nodes are not present (bnodes(Q) = ∅), all variables are projected

(vars Q ⊆ V) and no BGP has the same set of variables (vars Qi 	= vars Qj for all 1 � i < j � n), then
SELECTV (UNION(Q1, . . . , Qn)) cannot produce duplicate results. We know from Lemma 6.5 that if blank nodes
are not present and all variables are projected, then no individual BGP in Q1, . . . ,Qn can produce duplicate results.

888 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Hence we are left to check for duplicates produced by unions of BGPs. We will assume for the purposes of contra-
diction that there exists a dataset D and a solution μ such that μ ∈ Qi(D) and μ ∈ Qj(D) where 1 � i < j � n.
However, μ ∈ Qi(D) implies that dom(μ) = vars Qi , while dom(μ) = vars Qj implies that dom(μ) = vars Qj .
Given the assumption that vars Qi 	= vars Qj , it follows that dom(μ) 	= dom(μ): a contradiction. It then holds
as a consequence that if vars Q = V , bnodes(Q) = ∅ and vars Qi 	= vars Qj for all 1 � i < j � n, then
DISTINCT(SELECTV (UNION(Q1, . . . ,Qn))) ≡ SELECTV (UNION(Q1, . . . ,Qn)). The special case of vars Q � V

follows from this result and Lemma 6.4.
In the other direction, we are left to show that if vars Q � V , or bnodes(Q) 	= ∅, or there exist 1 �

i < j � n such that vars Qi = vars Qj , then it follows that DISTINCT(SELECTV (UNION(Q1, . . . ,Qn))) 	≡
SELECTV (UNION(Q1, . . . , Qn)). First, if vars Q � V or bnodes(Q) 	= ∅, then Lemma 6.5 tells us that an individ-
ual basic graph pattern with a blank node or non-projected variable can produce duplicates. Hence we assume that
vars Q ⊆ V and bnodes(Q) = ∅, and show that if there exists 1 � i < j � n such that vars Qi = vars Qj ,
then duplicates can always arise for the query SELECTV (UNION(Q1, . . . , Qn)). Let μ be a solution such that
dom(μ) = vars Qi = vars Qj and μ(v) = :x for all v ∈ dom(μ). Consider a dataset D whose default graph
is defined as μ(Qi) ∪ μ(Qj); again this is an RDF graph as Qi and Qj are assumed to be satisfiable. Now
μ ∈ Qi(D) and μ ∈ Qj(D), and since all variables are projected, we conclude that μ will be duplicated in
SELECTV (UNION(Q1, . . . , Qn))(D). The result holds.

A.1.7. Proof for Lemma 6.7
This follows from the fact that each step preserves the congruence of Q, as follows:

1. property path elimination: by definition, Table 9;
2. union normalisation: proven by Pérez et al. [44];
3. unsatisfiability normalisation: Lemmas 6.1, 6.2;
4. variable normalisation: Lemmas 6.3, 6.4;
5. set vs. bag normalisation: Lemmas 6.5, 6.6.

Since congruence is an equivalence relation, it is transitive, and thus the composition of multiple steps where each
preserves congruence also preserves congruence. The result thus holds.

A.1.8. Proof for Lemma 6.8
By definition, we have that R−(R(Q)) � Q, where R−(·) relies on a one-to-one mapping of blank nodes to vari-

ables (namely ξ). Since L(·) performs a one-to-one mapping of blank nodes to blank nodes in R(Q), thus producing
an isomorphic graph to R(G), we can conclude that R−(L(R(Q))) produces a query that is isomorphic to R−(R(Q)).
Hence we have that R−(L(R(Q))) � R−(R(Q)) � Q. Further given that isomorphism implies congruence, we have
that R−(L(R(Q))) ∼= R−(R(Q)) ∼= Q. The result then holds per the transitivity of congruence.

A.1.9. Proof for Lemma 6.9
We consider two cases.
SET SEMANTICS: Minimising CQs by computing their cores is a classical technique based on the idea that two

CQs are equivalent if and only if they are homomorphically equivalent (with corresponding projected variables [11]).
Likewise the minimisation of UCQs is covered by Sagiv and Yannakakis [49], who (unlike in the relational algebra
but analogous to SPARQL) allow UCQs with existential variables; however, their framework assumes that each CQ
covers all projected variables. Hence the only gap that remains is the minimisation of SPARQL UCQs where BGPs
may not contain all projected variables. This result is quite direct since for a set of variables V , two BGPs Q1 and Q2

such that vars Q1 ∩ V 	= vars Q2 ∩ V , and any dataset D, it holds that SELECTV (Q1)(D) ∩ SELECTV (Q2)(D) = ∅
since for any solution μ1 ∈ SELECTV (Q1)(D) it holds that dom(μ1) = vars Q1 ∩ V , while for any solution
μ2 ∈ SELECTV (Q2)(D) it holds that dom(μ2) = vars Q2 ∩ V , and vars Q1 ∩ V 	= vars Q2 ∩ V . Hence, checking
containment within partitions of BPGs formed by the projected variables they contain does not miss containments.
The result for set semantics then follows from Sagiv and Yannakakis [49].

BAG SEMANTICS: UCQs are not minimised; thus the result follows directly from R−(R(Q)) ∼= Q.

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 889

A.1.10. Proof for Theorem 6.1
The result holds as a direct corollary of Lemmas 6.7, 6.8, 6.9, and the transitivity of congruence, which is an

equivalence relation.

A.1.11. Proof for Lemma 6.10
If Q1 and Q2 are unsatisfiable, then per Lemmas 6.1, 6.2, U(Q1) = Q∅ and U(Q2) = Q∅, recalling that Q∅

denotes the canonical unsatisfiable query. Thus U(Q1) = U(Q2) and the result holds per premise 2 of Remark 6.1
since equality implies isomorphism.

A.1.12. Proof for Lemma 6.11
Since Q′

1 and Q′
2 are satisfiable, and evaluated under set semantics, we know from the result of Chandra and

Merlin [11] that Q′
1 ≡ Q′

2 if and only if both are homomorphically equivalent with respect to homomorphisms
that are the identity on projected variables. Now M(R(U(Q′

1))) computes the core of each BGP, which is known
to be unique modulo isomorphism [22]. Thus if Q′

1 ≡ Q′
2 and both are satisfiable, we have that M(R(U(Q′

1))) �
M(R(U(Q′

1))). On the other hand, if Q′
1

∼= Q′
2, we know that there exists a variable renaming such that ρ(Q′

1) ≡ Q′
2;

combining this with the fact that M(R(U(Q′
1))) � M(R(U(ρ(Q′

1)))), and the fact that congruence is an equivalence
relation, we know that Q′

1
∼= Q′

2 implies M(R(U(Q′
1))) � M(R(U(Q′

2))). The result then holds from premise 4 of
Remark 6.1.

A.1.13. Proof for Lemma 6.12
Given a satisfiable BGP Q, and SELECTV (Q) such that V \ vars Q 	= ∅, then U(SELECTV (Q)) will remove the

unbound variables (V \ vars Q) from V per Lemma 6.4, and thus U(SELECTV (Q)) = U(SELECTV ∩vars Q(Q)). As
part of U(Q), during union normalisation, blank nodes are rewritten to variables. This leaves us with cases where
V ⊆ vars Q and Q does not contain blank nodes.

If V1 = vars Q1, then Q′
1 cannot return duplicates (Lemma 6.5), and since Q′

1
∼= Q′

2, then Q′
2 cannot return

duplicates, and thus V2 = vars Q2. Thus U(Q′
1) and U(Q′

2) will add distinct in both cases, and the result follows
from Lemma 6.11.

This leaves us with the case that V1 ⊆ vars Q1. In this case, Q′
1 will return duplicates for certain datasets

(Lemma 6.5), and must be evaluated under bag semantics. Given that Q′
1

∼= Q′
2, this likewise means that Q′

2 returns
duplicates. Under bag semantics, and assuming that Q′

1 and Q′
2 are satisfiable, then Theorem 5.2 of Chaudhuri and

Vardi [12] tells us that Q′
1 ≡ Q′

2 if and only if Q′
1 � Q′

2 with an isomorphism that is the identity on projected
variables. Noting that Q′

1
∼= Q′

2 implies that there exists a variable renaming ρ such that ρ(Q′
1) ≡ Q′

2, it follows
that there exists ρ such that ρ(Q′

1) � Q′
2, or put more simply, that Q′

1 � Q′
2 (without the restriction on projected

variables). The result then follows from premise 1 of Remark 6.1.

A.1.14. Proof for Lemma 6.13
We show that given a satisfiable UCQ Q evaluated under set semantics, the minimisation function M(R(U(Q)))

will produce an r-graph corresponding to a minimal UCQ that is unique, modulo isomorphism, for the set of UCQs
congruent to Q. The minimisation of CQs (i.e., unary UCQs) is covered by Lemma 6.11. The minimisation of
(non-unary) UCQs is based on Corollary 4 of Sagiv and Yannakakis [49], where we minimise the UCQ while
maintaining this equivalence relation, more specifically, such that each BGP in the input UCQ will be contained
in some BGP of the output UCQ (with a containment homomorphism that is the identity on projected variables).
Note that this minimisation includes the removal of all unsatisfiable BGPs (per Lemma 6.2; if all are removed, then
Lemma 6.10 applies as the UCQ is unsatisfiable). There are, however, two non-deterministic elements to consider
in this minimisation:

– The containment only considers projected variables as fixed. Hence the naming of other variables (and blank
nodes) in BGPs does not matter. However, this issue is resolved prior to minimisation by U(·), which maps
blank nodes to fresh (non-projected) variables, and then renames non-projected variables in each BGP to fresh
variables, per Lemma 6.3, such that the naming of variables is deterministic modulo isomorphism.

– We non-deterministically choose one BGP from each quotient set of equivalent BGPs with the same projected
variables. However, since BGPs were previously minimised, all equivalent BGPs are isomorphic, and hence
the choice is deterministic modulo isomorphism.

890 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

Thus, given a satisfiable UCQ Q evaluated under set semantics, M(R(U(Q))) will produce an r-graph correspond-
ing to a minimal UCQ that is unique, modulo isomorphism, for the set of UCQs congruent to Q. Returning to the
claim, we note that Q1 and Q2 are satisfiable UCQs evaluated under set semantics (with distinct), that Q1 ∼= Q2,
and thus we have that M(R(U(Q1))) � M(R(U(Q2))): the result holds per premise 4 of Remark 6.1.

A.1.15. Proof for Lemma 6.14
Under bag semantics, U(·) removes all unsatisfiable operands from the UCQ and M(·) acts as the identity (no

minimisation is applied). Per the results for CQs, any minimisation of BGPs (aside from the implicit removal of
duplicate triple patterns) will reduce the multiplicity of results on some datasets. Likewise removing satisfiable
BGPs will reduce the multiplicities for any dataset where the removed BGP generates solutions. This leaves one
source of non-determinism (the same as in the case for set semantics) per Lemma 6.3: that non-projected variables
across BGPs may have the same label whereas the query is equivalent if they have distinct labels. As before for
set semantics, U(·), maps blank nodes to fresh (non-projected) variables in the case of bag semantics. This implies
that if Q1 ∼= Q2 then – letting Q′

1 and Q′
2 denote the result of removing unsatisfiable BGPs from Q1 and Q2 and

distinguishing variables per Lemma 6.3 – Q′
1 � Q′

2.
There are then two cases to consider:

1. Either Q1 or Q2 cannot return duplicates, per the conditions of Lemma 6.6, but given that Q1 ∼= Q2, then
this implies that both Q1 and Q2 cannot return duplicates, which means that both satisfy the conditions of
Lemma 6.6, and thus both will have distinct invoked by U(·).

2. Both Q1 and Q2 may return duplicates, i.e., they do not satisfy the conditions of Lemma 6.6, and in neither
case will distinct be invoked by U(·).

Thus it holds that U(Q1) � U(Q2), satisfying premise 2 of Remark 6.1, and the result follows.

A.1.16. Proof for Lemma 6.15
Since Q′ cannot return duplicates and Q ∼= Q′, it holds that Q cannot return duplicates, and hence Q must satisfy

the conditions of Lemma 6.5. Thus U(Q) will add distinct, and we have that U(Q) � U(Q′). The result then follows
per premise 2 of Remark 6.1.

A.1.17. Proof for Theorem 6.2
First we remark that for any EMQ Q, the first steps of U(Q) – property path and union normalisation – yield a

UCQ. We denote by Q′
1 and Q′

2 the UCQs derived from Q1 and Q2. We now consider the cases:

1. If Q′
1 or Q′

2 are unsatisfiable, then both are unsatisfiable, and the result holds from Lemma 6.10.
2. Otherwise (Q′

1 and Q′
2 are satisfiable):

(a) If Q′
1 and Q′

2 both use distinct, the result holds from Lemma 6.13.
(b) If neither Q′

1 nor Q′
2 use distinct, the result holds from Lemma 6.14.

(c) If Q′
1 uses distinct, and Q′

2 does not, then Q′
1

∼= Q′
2 implies that Q′

2 cannot produce duplicates (since Q′
1

cannot). From this it follows that Q′
1

∼= Q′
2

∼= DISTINCT(Q′
2). Now given that Q′

1
∼= DISTINCT(Q′

2), it
follows from Lemma 6.13 that R−(L(M(R(U(Q′

1))))) = R−(L(M(R(U(DISTINCT(Q′
2)))))) (noting that Q′

1
and DISTINCT(Q′

2) use distinct). Further given that Q′
2

∼= DISTINCT(Q′
2), it follows from Lemma 6.15

that R−(L(M(R(U(Q′
2))))) = R−(L(M(R(U(DISTINCT(Q′

2)))))). We have R−(L(M(R(U(Q′
1))))) =

R−(L(M(R(U(Q′
2))))).

(d) Otherwise, if Q′
1 does not use distinct, and Q′

2 uses distinct, the result follows from the previous case and
the symmetry of congruence.

This concludes the proof.

A.1.18. Proof for Theorem 6.3
Let Q′

1 denote R−(L(M(R(U(Q1))))), and Q′
2 denote R−(L(M(R(U(Q2))))).

Q′
1 = Q′

2 implies Q1 ∼= Q2: follows from Theorem 6.1 (soundness), which tells us that Q1 ∼= Q′
1 and Q′

2
∼= Q2,

from which we have that Q1 ∼= Q′
1 = Q′

2
∼= Q2, and thus that Q1 ∼= Q2 by transitivity.

Q1 ∼= Q2 implies Q′
1 = Q′

2: is given in Theorem 6.2 (completeness).

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 891

A.2. Proofs for Section 7

A.2.1. Proof for Theorem 7.1
The result holds from observing that given an EMQ Q, each step of the process returns precisely the same

result as in the case of monotone canonicalisation. In particular, A(Q) applies filter normalisation and local variable
normalisation in addition to U(·), but neither filters nor local variables appear in EMQs. Extensions to other functions
do not affect EMQs in any way. Hence given an EMQ Q, it holds that R−(L(M(R(A(Q))))) = R−(L(M(R(U(Q))))).
The result then follows from Theorem 6.3.

A.2.2. Proof for Theorem 7.2
We show that each step preserves congruence.
In A(Q) we apply filter normalisation, local variable normalisation, and UCQ normalisation. Each step preserves

query equivalence, and thus congruence.
Next we compute the r-graph, and apply minimisation. However, if the query is not in UCQ normal form, we

only apply minimisation on BGPs and UBGPs contained in the query, considering any variables external to the
(U)BGP as being “projected”, and thus fixed. More formally, taking a UBGP Q′ inside a larger query Q, and letting
V ′ denote the variables of Q used both inside and outside Q, observe that we can replace Q′ with SELECTV ′(Q′)
inside Q without changing the semantics of Q as variables of vars Q′ not in V ′ are not used elsewhere in Q, and
since Q is a query, it must contain a SELECT, ASK, CONSTRUCT or DESCRIBE clause, whose results will not change
if a variable not mentioned in the clause is projected away. Now since SELECTV ′(Q′) is a UCQ, the minimisation
process preserves congruence per Theorem 7.2.

Regarding the r-graph, by definition R−(R(Q)) = Q, with the exception of property paths, but in the latter case
it is clear that R−(R(Q)) ∼= Q since the r-graph representation of RPQs relies on well-known automata techniques
– Thompson’s construction, subset expansion, Hopcroft’s algorithm and state elimination – that will produce an
equivalent RPQ (similar automata-based techniques were also used by Kostylev et al. [34] for their analysis of the
containment of property paths). Thus R−(L(M(R(A(Q))))) ∼= R−(M(R(A(Q)))) ∼= R−(R(A(Q))) ∼= R−(R(Q)) ∼=
Q, and the result holds per the transitivity of the ∼= relation.

References

[1] F.N. Afrati, M. Damigos and M. Gergatsoulis, Query containment under bag and bag-set semantics, Inf. Process. Lett. 110(10) (2010),
360–369. doi:10.1016/j.ipl.2010.02.017.

[2] F. Alkhateeb, J.-F. Baget and J. Euzenat, Extending SPARQL with regular expression patterns (for querying RDF), Web Semantics 7(2)
(2009), 57–73. doi:10.1016/j.websem.2009.02.002.

[3] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter and D. Vrgoč, Foundations of modern query languages for graph databases, ACM
Computing Surveys 50(5) (2017), 68. doi:10.1145/3104031.

[4] C.B. Aranda, A. Hogan, J. Umbrich and P. Vandenbussche, SPARQL Web-querying infrastructure: Ready for action? in: International
Semantic Web Conference (ISWC), Vol. 8219, Springer, 2013, pp. 277–293. doi:10.1007/978-3-642-41338-4_18.

[5] M. Arenas and J. Pérez, Federation and navigation in SPARQL 1.1, in: Reasoning Web Summer School, LNCS, Vol. 7487, Springer, 2012,
pp. 78–111. doi:10.1007/978-3-642-33158-9_3.

[6] M. Arenas and M. Ugarte, Designing a query language for RDF: Marrying open and closed worlds, ACM Trans. Database Syst. 42(4)
(2017), 21:1–21:46. doi:10.1145/3129247.

[7] A. Bonifati, W. Martens and T. Timm, An analytical study of large SPARQL query logs, VLDB J. 29(2–3) (2020), 655–679. doi:10.1007/
s00778-019-00558-9.

[8] J.A. Brzozowski and E.J. McCluskey, Signal flow graph techniques for sequential circuit state diagrams, in: IEEE Transactions on Elec-
tronic Computers, 1963, pp. 67–76. doi:10.1109/PGEC.1963.263416.

[9] R. Castillo and U. Leser, Selecting materialized views for RDF data, in: International Conference on Web Engineering (ICWE), Workshops,
F. Daniel and F.M. Facca, eds, Lecture Notes in Computer Science, Vol. 6385, Springer, 2010, pp. 126–137. doi:10.1007/978-3-642-16985-
4_12.

[10] N. Chakraborty, D. Lukovnikov, G. Maheshwari, P. Trivedi, J. Lehmann and A. Fischer, Introduction to Neural Network based Approaches
for Question Answering over Knowledge Graphs, 2019, CoRR, http://arxiv.org/abs/1907.09361 abs/1907.09361.

[11] A.K. Chandra and P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: Symposium on Theory of
Computing (STOC), J.E. Hopcroft, E.P. Friedman and M.A. Harrison, eds, ACM, 1977, pp. 77–90. doi:10.1145/800105.803397.

[12] S. Chaudhuri and M.Y. Vardi, Optimization of Real Conjunctive Queries, in: Principles of Database Systems (PODS), ACM Press, 1993,
pp. 59–70. doi:10.1145/153850.153856.

https://doi.org/10.1016/j.ipl.2010.02.017
https://doi.org/10.1016/j.websem.2009.02.002
https://doi.org/10.1145/3104031
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-33158-9_3
https://doi.org/10.1145/3129247
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1109/PGEC.1963.263416
https://doi.org/10.1007/978-3-642-16985-4_12
https://doi.org/10.1007/978-3-642-16985-4_12
http://arxiv.org/abs/1907.09361
http://arxiv.org/abs/abs/1907.09361
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/153850.153856

892 J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1

[13] M.W. Chekol, J. Euzenat, P. Genevès and N. Layaïda, SPARQL Query Containment Under SHI Axioms, in: AAAI Conference on Artificial
Intelligence, AAAI Press, 2012.

[14] M.W. Chekol, J. Euzenat, P. Genevès and N. Layaïda, Evaluating and benchmarking SPARQL query containment solvers, in: International
Semantic Web Conference (ISWC), H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann, J.X. Parreira, L. Aroyo, N.F. Noy, C. Welty and
K. Janowicz, eds, Lecture Notes in Computer Science, Vol. 8219, Springer, 2013, pp. 408–423. doi:10.1007/978-3-642-41338-4_26.

[15] S. Chu, B. Murphy, J. Roesch, A. Cheung and D. Suciu, Axiomatic foundations and algorithms for deciding semantic equivalences of SQL
queries, Proc. VLDB Endow. 11(11) (2018), 1482–1495. doi:10.14778/3236187.3236200.

[16] S. Chu, C. Wang, K. Weitz and A. Cheung, Cosette: An automated prover for SQL, in: Conference on Innovative Data Systems Research
(CIDR), 2017, www.cidrdb.org.

[17] S. Cohen, W. Nutt and A. Serebrenik, Rewriting aggregate queries using views, in: SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), ACM Press, 1999, pp. 155–166. doi:10.1145/303976.303992.

[18] R. Cyganiak, A relational algebra for SPARQL, 2005, http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-170.pdf.
[19] R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1 Concepts and Abstract Syntax, 2014. http://www.w3.org/TR/rdf11-concepts/.
[20] M. Dürst and M. Suignard, in: Internationalized Resource Identifiers (IRIs), Vol. 3987, 2005, pp. 1–46. https://tools.ietf.org/html/rfc3987.

doi:10.17487/RFC3987.
[21] H. Glaser, I. Millard and A. Jaffri, RKBExplorer.com: A knowledge driven infrastructure for linked data providers, in: European Semantic

Web Conference (ESWC), Lecture Notes in Computer Science, Vol. 5021, Springer, 2008, pp. 797–801. doi:10.1007/978-3-540-68234-
9_61.

[22] C. Gutierrez, C.A. Hurtado, A.O. Mendelzon and J. Pérez, Foundations of Semantic Web databases, J. Comput. Syst. Sci. 77(3) (2011),
520–541. doi:10.1016/j.jcss.2010.04.009.

[23] M.M. Haklay and P. Weber, OpenStreetMap: User-generated street maps, IEEE Pervasive Comput. 7(4) (2008), 12–18. doi:10.1109/MPRV.
2008.80.

[24] S. Harris, A. Seaborne and E. Prud’hommeaux, 2013, SPARQL 1.1 Query Language, http://www.w3.org/TR/sparql11-query/.
[25] P. Hayes and P.F. Patel-Schneider, RDF 1.1 Semantics, 2014, http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.
[26] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data Space, Vol. 1, Morgan & Claypool, 2011, pp. 1–136. ISBN

9781608454310.
[27] D. Hernández, C. Gutiérrez and R. Angles, The Problem of Correlation and Substitution in SPARQL – Extended Version, 2018, CoRR,

http://arxiv.org/abs/1801.04387 abs/1801.04387.
[28] A. Hogan, Canonical forms for isomorphic and equivalent RDF graphs: Algorithms for leaning and labelling blank nodes, ACM TOW 11(4)

(2017), 22:1–22:62. doi:10.1145/3068333.
[29] J. Hopcroft, An n log n algorithm for minimizing states in a finite automaton, in: Theory of Machines and Computations, Elsevier, 1971,

pp. 189–196. doi:10.1016/B978-0-12-417750-5.50022-1.
[30] Y.E. Ioannidis and R. Ramakrishnan, Containment of conjunctive queries: Beyond relations as sets, ACM Trans. Database Syst. 20(3)

(1995), 288–324. doi:10.1145/211414.211419.
[31] T.A. Junttila and P. Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs, in: Workshop on Algorithm Engi-

neering and Experiments (ALENEX), SIAM, 2007. doi:10.1137/1.9781611972870.13.
[32] M. Kaminski, E.V. Kostylev and B.C. Grau, Query nesting, assignment, and aggregation in SPARQL 1.1, ACM Trans. Database Syst. 42(3)

(2017), 17:1–17:46. doi:10.1145/3083898.
[33] E. Kharlamov, D. Hovland, M.G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz, G. Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, M.

Giese, H. Lie, Y.E. Ioannidis, Y. Kotidis, M. Koubarakis and A. Waaler, Ontology based data access in statoil, J. Web Semant. 44 (2017),
3–36. doi:10.1016/j.websem.2017.05.005.

[34] E.V. Kostylev, J.L. Reutter, M. Romero and D. Vrgoc, SPARQL with property paths, in: International Semantic Web Conference (ISWC),
Lecture Notes in Computer Science (LNCS), Vol. 9366, Springer, 2015, pp. 3–18. doi:10.1007/978-3-319-25007-6_1.

[35] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer and C. Bizer,
DBpedia – a large-scale, multilingual knowledge base extracted from Wikipedia, Semantic Web 6(2) (2015), 167–195. doi:10.3233/SW-
140134.

[36] A. Letelier, J. Pérez, R. Pichler and S. Skritek, Static analysis and optimization of semantic web queries, ACM Trans. Database Syst. 38(4)
(2013), 25:1–25:45. doi:10.1145/2500130.

[37] S. Malyshev, M. Krötzsch, L. González, J. Gonsior and A. Bielefeldt, Getting the most out of wikidata: Semantic technology usage in
Wikipedia’s knowledge graph, in: Proceedings, Part II, The Semantic Web – ISWC 2018 – 17th International Semantic Web Conference,
Monterey, CA, USA, October 8–12, 2018, 2018, pp. 376–394. doi:10.1007/978-3-030-00668-6_23.

[38] B. McBride, Jena: A Semantic Web toolkit, IEEE Internet Computing 6(6) (2002), 55–59. doi:10.1109/MIC.2002.1067737.
[39] K. Möller, T. Heath, S. Handschuh and J. Domingue, Recipes for Semantic Web Dog Food – the ESWC and ISWC Metadata Projects, in:

International Semantic Web Conference (ISWC), Lecture Notes in Computer Science, Vol. 4825, Springer, 2007, pp. 802–815. doi:10.1007/
978-3-540-76298-0_58.

[40] A.G. Nuzzolese, A.L. Gentile, V. Presutti and A. Gangemi, Conference linked data: The ScholarlyData project, in: International Semantic
Web Conference (ISWC), Lecture Notes in Computer Science 9982 (2016), 150–158. doi:10.1007/978-3-319-46547-0_16.

[41] N. Papailiou, D. Tsoumakos, P. Karras and N. Koziris, Graph-aware, workload-adaptive SPARQL query caching, in: ACM SIGMOD
International Conference on Management of Data, T.K. Sellis, S.B. Davidson and Z.G. Ives, eds, ACM, 2015, pp. 1777–1792. doi:10.
1145/2723372.2723714.

https://doi.org/10.1007/978-3-642-41338-4_26
https://doi.org/10.14778/3236187.3236200
http://www.cidrdb.org
https://doi.org/10.1145/303976.303992
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-170.pdf
http://www.w3.org/TR/rdf11-concepts/
https://tools.ietf.org/html/rfc3987
https://doi.org/10.17487/RFC3987
https://doi.org/10.1007/978-3-540-68234-9_61
https://doi.org/10.1007/978-3-540-68234-9_61
https://doi.org/10.1016/j.jcss.2010.04.009
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://arxiv.org/abs/1801.04387
http://arxiv.org/abs/abs/1801.04387
https://doi.org/10.1145/3068333
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1145/211414.211419
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1145/3083898
https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.1007/978-3-319-25007-6_1
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.1145/2500130
https://doi.org/10.1007/978-3-030-00668-6_23
https://doi.org/10.1109/MIC.2002.1067737
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-319-46547-0_16
https://doi.org/10.1145/2723372.2723714
https://doi.org/10.1145/2723372.2723714

J. Salas and A. Hogan / Semantics and canonicalisation of SPARQL 1.1 893

[42] P.F. Patel-Schneider and D. Martin, EXISTStential aspects of SPARQL, in: ISWC 2016 Posters & Demonstrations Track, CEUR Workshop
Proceedings, Vol. 1690, CEUR-WS.org, 2016.

[43] J. Pérez, M. Arenas and C. Gutiérrez, Semantics and Complexity of SPARQL, in: International Semantic Web Conference (ISWC), LNCS,
Vol. 4273, Springer, 2006, pp. 30–43. doi:10.1007/11926078_3.

[44] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complexity of SPARQL, ACM Trans. Database Syst. 34(3) (2009). doi:10.1145/
1567274.1567278.

[45] R. Pichler and S. Skritek, Containment and equivalence of well-designed SPARQL, in: Principles of Database Systems (PODS), ACM,
2014, pp. 39–50. doi:10.1145/2594538.2594542.

[46] A. Polleres, From SPARQL to rules (and back), in: International Conference on World Wide Web (WWW), C.L. Williamson, M.E. Zurko,
P.F. Patel-Schneider and P.J. Shenoy, eds, 2007, pp. 787–796. doi:10.1145/1242572.1242679.

[47] A. Polleres and J.P. Wallner, On the relation between SPARQL1.1 and answer set programming, J. Appl. Non Class. Logics 23(1–2) (2013),
159–212. doi:10.1080/11663081.2013.798992.

[48] E. Prud’hommeaux and C. Buil-Aranda, SPARQL 1.1 Federated Query, 2013, https://www.w3.org/TR/sparql11-federated-query/.
[49] Y. Sagiv and M. Yannakakis, Equivalences among relational expressions with the union and difference operators, J. ACM 27(4) (1980),

633–655. doi:10.1145/322217.322221.
[50] J. Salas and A. Hogan, Canonicalisation of monotone SPARQL queries, in: International Semantic Web Conference (ISWC), D. Vrandecic,

K. Bontcheva, M.C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl, eds, Lecture Notes in Computer Science,
Vol. 11136, Springer, 2018, pp. 600–616. doi:10.1007/978-3-030-00671-6_35.

[51] J. Salas and A. Hogan, Canonicalisation of Monotone SPARQL Queries, http://aidanhogan.com/qcan/extended.pdf.
[52] M. Saleem, M.I. Ali, A. Hogan, Q. Mehmood and A.N. Ngomo, LSQ: The Linked SPARQL Queries Dataset, International Semantic Web

Conference (ISWC), Vol. 9367, Springer, 2015, pp. 261–269. doi:10.1007/978-3-319-25010-6_15.
[53] M. Schmidt, M. Meier and G. Lausen, Foundations of SPARQL query optimization, in: International Conference on Database Theory

(ICDT), L. Segoufin, ed., ACM, 2010, pp. 4–33. doi:10.1145/1804669.1804675.
[54] G. Schreiber and Y. Raimond, RDF 1.1 Primer, 2014, http://www.w3.org/TR/rdf11-primer/.
[55] A. Seaborne and P.F. Patel-Schneider, SPARQL EXISTS report, 2019.
[56] C. Stadler, J. Lehmann, K. Höffner and S. Auer, LinkedGeoData: A core for a web of spatial open data, Semantic Web 3(4) (2012), 333–354.

doi:10.3233/SW-2011-0052.
[57] C. Stadler, M. Saleem, A.N. Ngomo and J. Lehmann, Efficiently pinpointing SPARQL query containments, in: International Conference

on Web Engineering (ICWE), T. Mikkonen, R. Klamma and J. Hernández, eds, Lecture Notes in Computer Science, Vol. 10845, Springer,
2018, pp. 210–224. doi:10.1007/978-3-319-91662-0_16.

[58] C. Stadler, M. Saleem, A.N. Ngomo and J. Lehmann, Efficiently pinpointing SPARQL query containments, in: International Conference
Web Engineering (ICWE), Lecture Notes in Computer Science, Vol. 10845, Springer, 2018, pp. 210–224. doi:10.1007/978-3-319-91662-
0_16.

[59] K. Thompson, Regular expression search algorithm, Commun. ACM 11(6) (1968), 419–422. doi:10.1145/363347.363387.
[60] B. Trakhtenbrot, The impossibility of an algorithm for the decidability problem on finite classes, in: Proceedings of the USSR Academy of

Sciences, Vol. 70, 1950, pp. 569–572.
[61] D. Vrandecic and M. Krötzsch, Wikidata: A free collaborative knowledgebase, Commun. ACM 57(10) (2014), 78–85. doi:10.1145/2629489.
[62] G.T. Williams and J. Weaver, Enabling fine-grained HTTP caching of SPARQL query results, in: The Semantic Web – ISWC 2011 – 10th

International Semantic Web Conference, Proceedings, Part I, Bonn, Germany, October 23–27, 2011, L. Aroyo, C. Welty, H. Alani, J. Taylor,
A. Bernstein, L. Kagal, N.F. Noy and E. Blomqvist, eds, 2011, pp. 762–777. doi:10.1007/978-3-642-25073-6_48.

[63] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati and M. Zakharyaschev, Ontology-based data access: A survey, in:
International Joint Conference on Artificial Intelligence (IJCAI), ijcai.org, 2018, pp. 5511–5519. doi:10.24963/ijcai.2018/777.

[64] X. Zhang, M. Wang, M. Saleem, A.N. Ngomo, G. Qi and H. Wang, Revealing secrets in SPARQL session level, in: International Semantic
Web Conference (ISWC), LNCS, Vol. 12506, Springer, 2020, pp. 672–690. doi:10.1007/978-3-030-62419-4_38.

[65] Q. Zhou, J. Arulraj, S.B. Navathe, W. Harris and D. Xu, Automated verification of query equivalence using satisfiability modulo theories,
Proc. VLDB Endow. 12(11) (2019), 1276–1288. doi:10.14778/3342263.3342267.

https://doi.org/10.1007/11926078_3
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1145/1242572.1242679
https://doi.org/10.1080/11663081.2013.798992
https://www.w3.org/TR/sparql11-federated-query/
https://doi.org/10.1145/322217.322221
https://doi.org/10.1007/978-3-030-00671-6_35
http://aidanhogan.com/qcan/extended.pdf
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1145/1804669.1804675
http://www.w3.org/TR/rdf11-primer/
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.1007/978-3-319-91662-0_16
https://doi.org/10.1007/978-3-319-91662-0_16
https://doi.org/10.1007/978-3-319-91662-0_16
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/2629489
https://doi.org/10.1007/978-3-642-25073-6_48
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1007/978-3-030-62419-4_38
https://doi.org/10.14778/3342263.3342267

	Introduction
	RDF data model
	Terms and triples
	Graph
	Simple entailment and equivalence
	Isomorphism
	Leanness and core
	Merge

	SPARQL 1.1 semantics
	Query syntax
	Datasets
	Services
	Query evaluation
	Solution mappings
	Set vs. bag vs. sequence semantics

	Query patterns: Set semantics
	Set algebra
	Navigational graph patterns
	Service federation
	Set evaluation

	Query patterns: Bag semantics
	Bag algebra
	Bag evaluation

	Group-by patterns: Aggregation
	Aggregation algebra
	Aggregation evaluation

	Sequence patterns and semantics
	Sequence algebra
	Sequence evaluation

	Safe and possible variables
	Issues with (NOT) EXISTS
	Queries
	Dataset modifier
	Non-determinism
	Relationships between the semantics
	Query containment and equivalence
	Query isomorphism and congruence
	Query classes
	Complexity

	Problem
	Related works
	Canonicalisation of monotone queries
	UCQ normalisation
	Property path elimination
	Union normalisation
	Unsatisfiability normalisation
	Variable normalisation
	Set vs. bag normalisation
	Summary

	Graph representation
	Minimisation
	BGP minimisation
	Union minimisation
	Summary

	Canonical labelling
	Inverse mapping
	Soundness and completeness
	Soundness
	Completeness
	Complexity

	Canonicalisation of SPARQL 1.1 queries
	Algebraic rewritings
	Filter normalisation
	Local variable normalisation
	UCQ normalisation
	Well-designed pattern normalisation
	Summary

	Graph representation
	Expressions
	Property paths

	Minimisation and canonicalisation
	Inverse mapping
	Soundness, completeness and incompleteness
	Soundness and completeness for EMQs
	Soundness for SPARQL 1.1
	Complexity
	Incompleteness for SPARQL 1.1

	Experiments
	Implementation: QCan
	Real-world query logs
	Canonicalisation runtimes
	Duplicates found

	Comparison with existing systems
	Stress test

	Conclusion
	Acknowledgements
	Appendix. Proofs
	Proofs for Section 6
	Proof for Lemma 6.1
	Proof for Lemma 6.2
	Proof for Lemma 6.3
	Proof for Lemma 6.4
	Proof for Lemma 6.5
	Proof for Lemma 6.6
	Proof for Lemma 6.7
	Proof for Lemma 6.8
	Proof for Lemma 6.9
	Proof for Theorem 6.1
	Proof for Lemma 6.10
	Proof for Lemma 6.11
	Proof for Lemma 6.12
	Proof for Lemma 6.13
	Proof for Lemma 6.14
	Proof for Lemma 6.15
	Proof for Theorem 6.2
	Proof for Theorem 6.3

	Proofs for Section 7
	Proof for Theorem 7.1
	Proof for Theorem 7.2

	References

