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Fundamentally, agriculture is about sustainably cul-
tivating the environment to meet societal needs. How-
ever, neither the environment nor society are static or
uniform. Instead, they vary across regions and time,
and they form complex interaction networks. For in-
stance, changing cultural norms may require an adjust-
ment of practices even though these may not strictly be
optimal from an agronomic perspective. Conversely,
society has to adapt to changes in the environment,
e.g., to ensure the long-term sustainability of natural
resources. Decision-makers also need to account for
regional aspects and interactions between neighboring
regions that, to date, are often considered in isolation.

For example, the Ogallala Aquifer [2] is a part of the
U.S. High Plains Aquifer System, spans eight states
of the Great Plains, and provides water for a third of
all irrigated land in the United States, while also sup-
plying drinking water for millions of Americans. De-
spite various initiatives, the aquifer is still depleting
as reductions in water usage due to precision agri-
culture are offset by new demands, such as biofuel
and increasing environmental stress. While the Ogal-
lala Aquifer is unique in its role for the U.S., it is
prototypical for the complex intertwined relationships
across the biotic, abiotic, and cultural factors that char-
acterize agriculture like no other domain. While the
aquifer’s water levels are rising in Nebraska, they are
declining in Kansas, New Mexico, and parts of Texas.
A changing climate will further exaggerate these re-
gional differences. The usage of water also differs
among states ranging from serving the irrigation needs
of rural America and the drinking water needs of ur-
ban America. Even water use rights differ among the

states, e.g., granting Texans unrestricted rights to the
water beneath their properties.

In the past, such conflicting interests and a soci-
etal consensus around topics such as environmental
sustainability, tail docking, or genetically engineered
foods have been addressed via commissions, elections,
and regulations to reach joint explanations of new
norms. Increasingly, decision-making in agriculture is
too rapid, too multivariate, and too interlinked to be
satisfactorily settled in such ways. Instead, more and
more decisions are left to machine learning models and
their supporting sensor networks that provide a wide
range of heterogeneous data at multiple scales. How-
ever, current artificial intelligence models and preci-
sion agriculture techniques alone cannot readily cap-
ture the breadth of conflicting actors, interests, envi-
ronmental factors, and regional differences while im-
proving climate adaptation and sustainable intensifica-
tion. And most importantly, they cannot provide expla-
nations.

The discussion just provided makes it apparent that
modern and sustainable agricultural decision making
needs to be based not only on multi-faceted and multi-
sourced, and thus highly heterogeneous data, but also
needs to be supported by artificially intelligent deci-
sion support systems that can flexibly adapt to contex-
tual factors based on knowledge about situational pa-
rameters, their relevance, and their implications.

To further illustrate this point, consider U.S. agri-
culture, which is a flourishing and robust industry con-
tributing US$390 billion per year in annual revenue
from agricultural commodities [3]. The top 10 com-
modities contributing 77% of this revenue among oth-

1570-0844/$35.00 © 2021 – IOS Press. All rights reserved.



544 P. Hitzler et al. / Advancing agriculture through semantic data management

ers include corn, soybean, wheat, chickens, cattle, and
hay. Most of these crops are grown over very large
acres with varied climate, soil, irrigation water, soil
nutrition, pests, extent of technology, and level of in-
telligence used in crop production decision making.
As an example, corn and soybean alone captures 41%
of total cultivated farmland (1.5 million km2), with
an annual operating cost of US$48 billion [4,5]. Over
the last two decades, precision agriculture technolo-
gies have been systematically integrated for crop pro-
duction, with current machines being bigger, wider and
faster. These developments in agriculture, improved
genetics, and enhancements in technology design have
helped to increase farm productivity and yields. How-
ever, today’s grand challenge as highlighted by the
United States Department of Agriculture is to increase
food production by 40% while cutting the environmen-
tal footprint by 40%.

Total farmland in the U.S. has steadily decreased
from 3.8 million km2 in 2000 to 3.6 million km2 in
2019 [6]. In order to increase food production from
limited farmlands, radical changes in decision making
based on integrated digital data needs to be utilized
to take every plant to its optimal yield potential. One
of the key impediments to accomplish this task has
been the gaps in site-specific decision making. Deci-
sion making for agricultural ecosystems to drive deci-
sions has been becoming increasingly complex since
it utilizes diverse data layers including soil, topogra-
phy, water, crop, machine, pest, disease, and changing
environment. However, these vast spatial and temporal
digital data layers have not yet been utilized to develop
AI decision making algorithms, because data layers
are lacking integrability, spatial and temporal density,
completeness, accuracy, accessibility, and availability
due to privacy.

Comprehensively addressing agricultural needs such
as those described above can be achieved by refine-
ment and application of a broad range of Semantic
Web technologies. We discuss some of the main pil-
lars.

Semantic data integration As we have seen above,
to address modern agricultural needs it is necessary to
integrate large-scale, multi-sourced data from (some-
times sporadic) data streams in order to make this in-
tegrated data available for analysis. The Semantic Web
field has provided research and solutions for this for
decades [7], but they need to be tailored to the specifics
of agriculture, and they need to scale both in terms
of data size and speed. Complex temporal and spa-

tial aspects play a major role, both of which are top-
ics that have so far not received sufficient attention in
research and solutions around ontologies, linked data,
and knowledge graphs.

Semantic data enrichment Large volumes of relevant
data, such as air quality, weather, or land use data, are
already available, and sometimes even in the form of
knowledge graphs. Additional large volumes of data
are or will soon be created by agricultural sensor net-
works and autonomous agricultural machinery. In or-
der to make use of this data, it needs to be anno-
tated with sufficient semantic metadata to facilitate au-
tomated data integration and analysis at the required
speed and in different and possibly changing envi-
ronments of data streams. The same piece of data-
producing equipment will be used in many different
agricultural and data contexts, meaning different re-
quirements on content, precision and resolution of the
streamed data. We need to work towards an under-
standing of the exact requirements in each context, and
towards conceptually and technologically scalable and
sustainable solutions on how to meet different meta-
data requirements cost-efficiently in different scenar-
ios and at scale.

Semantic sustainable data management Data solu-
tions will have to be in place that can be utilized long-
term, and this requires emphasis on aspects that ap-
pear to be underrepresented in Semantic Web research.
What are good and scalable solutions to evolve an on-
tology (as knowledge graph schema) while maintain-
ing access and usability of legacy data [1,9]? How to
make decisions which data to keep long-term and in
what format? How to develop data integration solu-
tions that easily adapt to data, sensor and requirements
contexts that change and evolve over time? Can our
current ways of knowledge engineering cope with ef-
fects of semantic aging?

Knowledge-adaptive data analytics Collecting and
integrating relevant data is a central aspect, as outlined
above. However, in order to utilize this data, analytics
capabilities need to be able to make use of a context in
a flexible way. This includes, ideally, geographic and
environmental factors, as well as socio-cultural factors
such as local preferences, guidelines, and policies, and
some of these may change more or less rapidly over
time. Data analytics, currently dominantly reliant on
machine learning methods, is at this time ill-equipped
to make significant use of relevant and changing back-
ground context, and more research efforts are required



P. Hitzler et al. / Advancing agriculture through semantic data management 545

on this front. From a Semantic Web context, a lead
question is how to make systematic use of semantically
rich and evolving metadata, for machine learning and
analytics.

Semantic explainability [8,10] Furthermore, analyt-
ics solutions will have to be trusted by farmers, who
may query system recommendations, in particular if
they may not align with past experience or practice.
Explanations of data analytics results will have to
be provided in terms understandable by laypersons,
which means that they have to be at a suitable level of
abstraction from the raw data. While explainability, in
particular in the context of machine learning, is being
researched, the nature of the explanations is often in
very basic terms, e.g. by highlighting parts of the in-
put data that contributed most to the system’s output.
In these cases, it is still left to the human user to make
sense of this. It would be much more helpful to have
explanations expressed in terms that have more direct
and immediate meaning within a particular domain.

The arguments just laid out provide us with some
guidelines as to where the Semantic Web field needs to
evolve to address the agricultural – and other similarly
complex – challenges. It is necessary to develop solu-
tions that are fit for long-term complex and changing
settings, and that seamlessly interface with data ana-
lytics. Much of the current Semantic Web research, in
contrast, is driven by short-term projects and individ-
ual capabilities, disregarding the additional complexi-
ties introduced by a complex application setting such
as agriculture.
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