
Semantic Web 2 (2011) 11–21 11
DOI 10.3233/SW-2011-0025
IOS Press

The OWL API: A Java API
for OWL ontologies
Editor(s): Pascal Hitzler, Kno.e.sis Center, Wright State University, Dayton, USA
Solicited review(s): Jérôme Euzenat, INRIA Grenoble Rhône-Alpes, France; Peter Haase, Fluid Operations, Walldorf, Germany; Frederick
Maier, Kno.e.sis Center, Wright State University, Dayton, USA

Matthew Horridge and Sean Bechhofer *

School of Computer Science, Kilburn Building, Oxford Road, University of Manchester, M13 9PL,
United Kingdom
E-mail: first.second@manchester.ac.uk

Abstract. We present the OWL API, a high level Application Programming Interface (API) for working with OWL ontologies.
The OWL API is closely aligned with the OWL 2 structural specification. It supports parsing and rendering in the syntaxes
defined in the W3C specification (Functional Syntax, RDF/XML, OWL/XML and the Manchester OWL Syntax); manipulation
of ontological structures; and the use of reasoning engines. The reference implementation of the OWL API, written in Java,
includes validators for the various OWL 2 profiles – OWL 2 QL, OWL 2 EL and OWL 2 RL. The OWL API has widespread
usage in a variety of tools and applications.

Keywords: OWL, API, Java, reasoning, application development

1. Introduction

The Web Ontology Language OWL has been a W3C
Recommendation [34] since 2004, with OWL 2 [43]
refining and extending the original specification. A
pre-requisite for the success and adoption of languages
is the existence of tooling, and OWL is no exception,
with a wide range of (free, open-source and commer-
cial) tools now available. These tools support the cre-
ation and editing of OWL ontologies, reasoning over
ontologies, and the use of ontologies in applications.

In this paper, we discuss the OWL API, a high level
Application Programming Interface (API) that sup-
ports the creation and manipulation of OWL Ontolo-
gies. The OWL API has been available since 2003, and
has undergone a number of design revisions, in partic-
ular tracking the evolution of OWL itself. Key aspects
of the OWL API include an axiom-centric abstraction,
first class change support, general purpose reasoner in-

*Corresponding author.

terfaces, validators for the various OWL 2 profiles, and
support for parsing and serialising ontologies in a va-
riety of syntaxes. The OWL API also has a flexible
design that allows third parties to provide alternative
implementations for all major components. The OWL
API is implemented in Java and is available as open
source under an LGPL licence1.

Since its initial development in 2003 [7], the OWL
API has been used in multiple development projects,
including Protégé-4 [26], SWOOP [23], the NeOn
Toolkit [17]2, OWLSight3, OntoTrack [27], the Pellet
reasoner [38]4 and a number of online validation and
conversion services5. Work on early versions of the
OWL API contributed valuable implementation expe-
rience [3] to the WebOnt Working Group6, facilitating

1http://owlapi.sourceforge.net
2http://www.neon-toolkit.org/
3http://pellet.owldl.com/ontology-browser/
4http://clarkparsia.com/pellet
5http://owl.cs.manchester.ac.uk
6http://www.w3.org/2001/sw/WebOnt

1570-0844/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved

12 M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies

the production of the OWL Recommendation. Across
all versions, the OWL API has over 34,000 downloads
(with 500+ downloads per month over the last year),
reinforcing our view that it has played, and continues
to play, a key role in promoting the uptake and use of
OWL.

2. OWL API design philosophy

The original inspiration for the OWL API came
from observations of the impact made by the provision
of the XML Document Object Model (DOM) [42].
The DOM, along with freely available implementa-
tions (such as the Java implementations in Sun’s JDK
[40]) allowed a large number of developers to use and
manipulate XML in applications, which in turn facili-
tated the widespread adoption of XML. Our belief was
that a similar effort would prove of great benefit to the
adoption of OWL.

The provision of an OWL API can allow developers
to work at an appropriate level of abstractions, isolat-
ing them from potential issues related to, for example,
serialisation and parsing of data structures. This was a
particular consideration with OWL, given OWL’s close
relationship with RDF [25] and its triple-based repre-
sentation.

In order to provide this “high level view”, the de-
sign of the OWL API is directly based on the OWL
2 Structural Specification [32]. An ontology is sim-
ply viewed as a set of axioms and annotations as de-
picted in Fig. 1. The names and hierarchies of inter-
faces for entities, class expressions and axioms in the
OWL API correspond closely to the structural specifi-
cation, relating the high level OWL 2 specification di-
rectly to the design of the OWL API. The OWL API
supports loading and saving ontologies is a variety of
syntaxes. However, none of the model interfaces in the
OWL API reflect, or are biased to any particular con-
crete syntax or model. For example, unlike other APIs
such as Jena [11], or the Protégé 3.X API, the repre-
sentation of class expressions and axioms is not at the
level of RDF triples.

3. Detailed design principles

Although aspects of the API design have evolved
since its original inception and implementation, a num-
ber of basic design principles have endured. These are
outlined below, but can be summarised as:

Fig. 1. A UML diagram showing the management of ontologies in
the OWL API. The OWLOntology interface provides accessors
for efficiently obtaining the axioms contained within an ontology.
The method of storing axioms is provided by different implementa-
tions of the OWLOntology interface. The design of the API makes
it possible to mix and match implementations, for example, an in-
memory ontology could be used together with one that is stored in
a database and one that is stored in some kind of triple store. The
OWL API reference implementation provides an efficient in-mem-
ory storage solution.

– Interfaces providing read-only access to the model
structure.

– Change/manipulation through explicit change op-
erations.

– Independence from concrete serialisations (in
particular triple based representations).

– A clear separation between components provid-
ing particular functionalities, such as representa-
tion, manipulation, parsing, rendering.

– Separation of assertion and inference.

3.1. Model

The OWL API’s model provides access to an OWL
ontology through a number of Interfaces and Class def-
initions. The model interfaces are read-only, in that
they do not provide explicit functionality for change of
the underlying data structures (see Section 3.2).

Following the OWL 2 Structural Specification, the
model provides an axiom-centric view on OWL on-
tologies (see Fig. 1), with an OWLOntology con-
taining a number of OWLAxiom objects. Convenience
methods are also available that will answer questions
of containment such as “does Ontology O contain class
C?”, where containment is taken to mean that the on-
tology contains an axiom referring to C. This supports
what we might call locality of information, in that all
assertions about classes are associated with a particu-
lar ontology. As OWL operates in an open web con-
text, different ontologies can make different assertions
about the same classes and properties.

M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies 13

Although this “axiom-centric” view differs from the
original OWL API design, which provided a “frame-
oriented” model, the desire to provide a level of ab-
straction that insulates developers and applications
from underlying syntactic presentations, in particular
RDF or triple-based representations has been a corner-
stone of the OWL API’s approach.

The model data structures make extensive use of the
Visitor pattern [14] which allows separation of data
structure from functionality. The Visitor makes it eas-
ier to add functionality to a class hierarchy (and is par-
ticularly suited to situations where data structures rep-
resent abstract syntax). The Visitor pattern does, how-
ever, have the drawback that change to the data struc-
ture can be expensive as it may require changes to the
Visitor implementations. For the OWL API, however,
where the data structures are stable, the pattern is a
good fit.

The specification of the data model is largely
through Java Interfaces, enabling the use of alternative
implementation strategies. The reference implementa-
tion provides data structures for efficient in-memory
representations of ontologies. For many purposes this
is sufficient. For example, recent versions of the Na-
tional Cancer Institute (NCI) ontology can comfort-
ably fit into around 700MB of memory (100MB of
memory without annotations). However, the API has
been designed so that it is possible to provide other
storage mechanisms for ontologies such as relational
databases or triple stores and to “mix and match” stor-
age implementations, so that an ontology imports clo-
sure could contain in-memory representations of on-
tologies, ontologies persisted in secondary storage in
the form of custom databases, and ontologies stored in
triple stores.

While the API does not include these alternative
storage mechanisms out of the box, third parties have
developed such solutions. An exemplar solution, called
OWLDB, has been developed by Kleb et al. [24]. Their
solution stores ontologies in a relational database, us-
ing a “native” mapping of OWL constructs (as opposed
to a mapping to triples) to a custom database schema.
A similar approach is taken by Redmond in [36].

3.1.1. Ontology management
Besides the model interfaces for representing en-

tities, class expressions and axioms, it is necessary
to allow applications to manage ontologies. Figure 1
shows a high level overview of this picture. The
OWLOntology interface provides a point for ac-
cessing the axioms contained in an ontology. As

discussed above, different implementations of the
OWLOntology interface can provide different stor-
age mechanisms for ontologies.

The OWLOntologyManager provides a central
point for creating, loading, changing and saving on-
tologies, which are instances of the OWLOntology
interface. Each ontology is created or loaded by an
ontology manager. Each instance of an ontology is
unique to a particular manager, and all changes to an
ontology are applied via its manager.

This centralised management design allows client
applications to have a single access point to ontolo-
gies, to provide redirection mechanisms and other cus-
tomisations for loading ontologies, and allows client
applications to monitor all changes that are applied to
any loaded ontologies. The manager also hides much
of the complexity associated with choosing the appro-
priate parsers and renderers for loading and saving on-
tologies.

3.2. Change

The core Ontology model interfaces are read-only,
with issues of change (additions and removals of ax-
ioms) handled through the use of explicit change ob-
jects. Class OWLOntologyChange provides a top
level change object with further subclasses defined that
encapsulate particular changes. Change enactment is
then provided through a further use of the Visitor pat-
tern, with OWLOntologyChangeVisitor objects
enacting changes.

This use of explicit change objects follows the Com-
mand design pattern [14] which encapsulates a change
request as an object. Changes are then enacted by a
Visitor object.

This use of the Command pattern facilitates sup-
port for operations such as undo or redo, and the en-
capsulation of changes as operations provides a mech-
anism with which to track changes and support ver-
sion management. Change objects also provide a con-
venient place for storing metadata about the changes,
for example the user who requested the change – in-
formation which is again crucial in supporting the on-
tology management and editing process.

All ontology changes are applied through an ontol-
ogy manager. This means that it is possible to apply a
list of ontology changes, which make multiple changes
to multiple ontologies, as a single unit. This works
well for applications such as ontology editors, where
an edit operation such as entity name change (entity
IRI change) can involve the addition and removal of

14 M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies

multiple axioms from multiple ontologies—it is possi-
ble to group the changes together to form one “editor
operation” and apply these changes at one time.

3.3. Inference and reasoning

A key aspect of OWL is the provision of a seman-
tics that defines precisely what entailment means with
respect to OWL ontologies, and provides formal de-
scriptions of properties such as consistency. The im-
plementation of these semantics is a non-trivial mat-
ter. By separating reasoning functionality, we can re-
lieve implementors of the burden of this, while allow-
ing those who do provide such implementations to be
explicit about this in their advertised functionality. In
addition, as is discussed in some detail in [7], separa-
tion of assertion and inference is important in the im-
plementation of OWL, particularly when developing
user applications, as users may need explicit indication
as to why, for example, hierarchical relationships are
present.

The OWLReasoner interface provides access to
functionality relating to the process of reasoning with
OWL ontologies, supporting tasks such as consistency
checking, computation of class or property hierarchies
and axiom entailment. Of course, providing method
signatures does not go all the way to advertising the
functionality of an implementation – there is no guar-
antee that a component implementing the interface
necessarily implements the semantics correctly. How-
ever, signatures and extensive detailed documentation
of reasoner interfaces go some way towards provid-
ing an expectation of the operations that are being sup-
ported. From a client perspective, the benefits of hav-
ing a well defined reasoner interface cannot be over-
stated. The ability to exchange one reasoner imple-
mentation for another in a client application, and know
that, in terms of query answering, each reasoner im-
plementation should exhibit the same behaviour is a
major advantage. Collections of test data (such as the
OWL Test Cases [10]) can allow systematic testing and
a level of confidence as to whether the implementation
is, in fact, performing correctly.

The reasoner interfaces have been designed so as to
enable reasoners to expose functionality that provides
incremental reasoning support. The OWL API allows
a reasoner to be initialised so that it listens for on-
tology changes and either immediately processes the
changes or queues them in a buffer which can later be
processed. This design caters for the scenario where a
reasoner is used within an ontology editor and, at some

point, must respond when prompted to edits of the on-
tology, or situations where a reasoner should respond
to ontology changes as they arrive.

A number of existing implementations including
the CEL [1], FaCT++ [41], HermiT [31], Pellet [38],
and Racer Pro [16] and SnoRocket reasoners7 pro-
vide OWL API wrappers. These reasoning engines are
thus easily integrated into OWL API based applica-
tions such as Protégé-4 or the NeOn Toolkit.

3.4. Querying

Out of the box, the OWL API does not provide
any specialised ontology query answering compo-
nents such as functionality for answering conjunctive
queries, or SPARQL based queries. The implementa-
tion and maintenance of such components is beyond
the scope of the OWL API reference implementation.
However, the OWLReasoner interface goes a long
way in providing basic query support that meets the
needs of many client applications. For example, using
an implementation of the OWLReasoner interface, a
client may query the computed class and property hier-
archies, determine the instances and sub/super classes
of complex class expressions, and can determine the
property characteristics of object and data properties.
All of this query functionality is based around entail-
ment checking functionality, which is also directly ex-
posed via the reasoner interface. In the same way that
the OWL API has pushed towards pseudo standardisa-
tion of OWL reasoner functionality through the defini-
tion of well known reasoner interfaces, it may well be
the case that a future version of the API will provide
“standard” query interfaces for processing conjunctive
queries and SPARQL queries.

3.5. Parsing and rendering OWL ontologies

A benefit of aligning the OWL API with the OWL 2
structural specification is that there is no commitment
to a particular concrete syntax. Conforming [39] OWL
implementations or tools must support RDF/XML, but
there are several other syntaxes that exist which are
optimised for different purposes. For example, Tur-
tle syntax [8] provides a “compact and natural text
form” of RDF serialisation. The Manchester OWL
Syntax [18] provides a human readable serialisation
for OWL ontologies.

7http://research.ict.csiro.au/software/snorocket

M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies 15

The OWL API includes out of the box support for
reading and writing ontologies in several syntaxes, in-
cluding RDF/XML, Turtle, OWL/XML, OWL Func-
tional Syntax, The Manchester OWL Syntax, KRSS
Syntax8 and the OBO flat file format9. Due to the un-
derlying design of the API, it is possible for the im-
ports closure of an ontology to contain ontologies that
were parsed from ontology documents written in dif-
ferent syntaxes.

The reference implementation of the OWL API uses
a registry of parsers and renderers, supporting the ad-
dition of custom syntaxes. The appropriate parser is
automatically selected at runtime when an ontology is
loaded. By default, ontologies are saved back into the
format from which they were parsed, but it is possible
to override this in order to perform syntax conversion
tasks and “save as” operations in editors for example.

3.6. Axioms versus triples

APIs for dealing with OWL are generally based on a
high level API that allows client code to abstract away
from the potentially messy details of different serial-
isation syntaxes. The OWL API, however, takes ab-
straction to the level of axioms, which is a somewhat
higher level of abstraction than a triple based abstrac-
tion provided by APIs such as Jena. Aside from the
fact that there are non-triple based serialisation syn-
taxes that can easily be handled by the OWL API, there
are good reasons for abstracting away from triples: (1)
The OWL 2 Specification itself is specified at the level
of axioms. The OWL API is thus closely aligned with
this specification; (2) It is arguable that it is more ef-
ficient and less error prone to deal with OWL ontolo-
gies at the level of axioms, rather than at the level of
triples. In particular, applying changes to ontologies or
finding the usage of a given entity within an ontology
can be clearer in client code. For example, consider an
annotated property assertion axiom:

ObjectPropertyAssertion(
Annotation(rdfs:comment ‘‘Added by MH’’)
:worksWith :Matthew :Sean)

This axiom is a single object in the API. It can be
added to or removed from an ontology in a single op-
eration. In a triple based representation, this simple ax-
iom requires six triples to represent it. Adding or re-
moving the axiom therefore requires the complete and

8http://dl.kr.org/krss-spec.ps
9http://www.geneontology.org/GO.format.obo-1_2.shtml

correct identification and manipulation of the triples
that represent this axiom. These kinds of problems are
exacerbated when axioms contain complex class ex-
pressions, which may require many complex patterns
of triples in their triple based representations, includ-
ing those necessary to represent lists of objects. In
essence, in order to maintain a valid OWL 2 ontol-
ogy, client code must enforce that the addition and re-
moval of triples must correspond to adding and remov-
ing those triples that correspond exactly to axioms; (3)
Many operations, such as reading and comparing frag-
ments of ontologies only make sense at the axiomatic
level. For example, reasoner implementers tend to care
about axioms—the semantics of OWL 2 DL is not de-
fined at the triple level. Similarly, structurally compar-
ing two ontologies or sets of axioms can be difficult
and error prone if they are represented as triples. One
reason for this is because the OWL 2 structural speci-
fication treats many collections as sets, so ordering is
not important when it comes to comparisons. For ex-
ample, the classes in a DisjointClasses axiom
are essentially unordered. However, many collections
are represented as RDF lists, where order is important
for comparison.

4. Evolution

Three versions of the OWL API have been devel-
oped. The first version [7] drew on earlier experiences
in the implementation of OilEd [5], one of the first
user tools to use Description Logic reasoning services
(through use of the DIG protocol) to assist users in
the construction of OIL and DAML+OIL ontologies.
Although OilEd was widely used (with over 10,000
download requests), the underlying implementation
suffered from problems, not least of which was the lack
of a separation between interface and implementation.
The first version of the OWL API addressed a num-
ber of these concerns, while carrying forward other de-
sign decisions such as extensive use of the Visitor pat-
tern [14].

A key change in Version 2 of the OWL API was the
introduction of Java Generics10, which enabled tighter
control over method typing, ensuring that, for exam-
ple the result of a query for equivalent classes is re-
turned as a set of class expressions. Version 2 also
tracked proposed changes in OWL (known at that point

10http://download.oracle.com/javase/1.5.0/docs/guide/language/
generics.html

16 M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies

as OWL 1.1 [35]), arising from the work of the OWL
Working Group including the addition of qualified car-
dinality restrictions. In particular, there was a shift
from frame-based data structures to an axiom oriented
model.

Version 3, the latest release, sees an alignment
of method and class names with those used in the
OWL 2 Structural Specification [32]. This potentially
introduces backwards compatibility issues with ear-
lier releases of the OWL API, but our decision was
that alignment with the specification brought suffi-
cient benefits to outweigh these. For example, the
W3C specifications can now themselves serve as addi-
tional documentation for the code-base. After reading
the OWL 2 specification documents, users should be
able to easily identify the correspondence between the
OWL API and the specification. Although the name
changes are largely syntactic, allowing the use of find
and replace scripts to address most incompatibilities,
one area of substantive change is in the modelling of
axiom annotations, which has been changed to keep in
line with the OWL 2 specification. In particular axiom
annotations are now embedded in axioms, thus hav-
ing an effect on structural identity. In keeping with the
OWL 2 Recommendation, entities in OWL ontologies
are now identified using IRIs.

5. Additional functionality

Here we discuss some of the enhanced functional-
ity that is available in the core OWL API download
supporting tasks such as profile validation, explanation
and modularity.

5.1. Profile validation

The OWL 2 specification defines OWL profiles that
correspond to syntactic subsets of the OWL 2 lan-
guage. The profiles are defined in the OWL 2 profiles
document, namely OWL 2 EL, OWL 2 QL and OWL 2
RL. Each profile is designed to trade some expressive
power for efficiency of reasoning. For example, the
OWL 2 EL profile trades expressivity for the benefit of
polynomial time subsumption testing. Similarly, rea-
soning for the OWL 2 RL profile can be implemented
using a rule engine.

For those using these profiles, and tools that sup-
port them, it can be necessary to determine whether or
not an ontology falls into one of the profiles or not.
The OWL API contains an API to deal with ontology

profiles. Various profile related interfaces are available
that provide functionality to ask whether an ontology
is within a profile. When doing this, a profile report
is generated that specifies whether an ontology and
its imports closure fall into a given profile, and if not
details why this is the case. The profile API allows
complete programmatic access by client software, with
fine-grained objects that represent specific reasons for
profile violations.

An OWL API based Web based application that per-
forms profile validation on an ontology and its imports
closure is available online11. Each item in the detailed
validation report can be accessed programmatically, al-
lowing client software to customise report rendering,
or offer more advanced functionality such as repair
suggestions that would take an ontology back into the
desired profile.

5.2. Explanation

In recent years, explanation of entailments has been
a “hot topic”. Many of the afore mentioned ontology
development environments now feature the ability to
generate explanations for unwanted or surprising en-
tailments that arise during editing or browsing ontolo-
gies. Many of these explanation facilities are based on
justifications [2,22,37], which are minimal sets of ax-
ioms that are sufficient for an entailment to hold. The
OWL API ships with code for generating these expla-
nations, making it easy to add basic explanation ser-
vices to client applications.

5.3. Modularity

Many applications require the ability to work with
well defined portions of an ontology, that are usually
called modules. The OWL API contains basic func-
tionality for extracting syntactic-locality based mod-
ules [12] from ontologies. These kinds of modules are
based on the notion of conservative-extensions [15],
and guarantee to preserve entailments from an ontol-
ogy over a given signature.

6. Other frameworks

There have been a number of similar initiatives to
provide application interfaces aimed at OWL. HP’s
Jena Toolkit [11] supplies ontology interfaces that pro-

11http://owl.cs.manchester.ac.uk/validator

M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies 17

vides convenience wrappers around RDF interfaces.
Comparisons of the OWL API and Jena’s triple-based
approach for some tasks are explored in [4].

The KAON [9] toolkit is an open-source ontology
management infrastructure targeted for business appli-
cations12. The KAON toolkit includes an API for deal-
ing with RDF graphs and the KAON ontology lan-
guage, which is a proprietary extension of RDFS. The
APIs in the KAON tool suite therefore differ from the
OWL API in that KAON does not provide support for
dealing with OWL or OWL 2 ontologies, and the OWL
API does not provide direct support for dealing with
RDF Graphs.

KAON2 [30] is the successor to KAON, and is an
infrastructure for managing OWL-DL, SWRL, and F-
Logic ontologies. The ontology model supported in
KAON2 is less expressive than that described by OWL
2 since an important focus of KAON is performance
reasoning on knowledge bases with simple ontologies
and large A-Boxes. Despite this, many of our under-
lying design considerations conceptually follow the
KAON2 design.

The Protégé-OWL API is the API on which Protégé-
OWL [26] is based. The API is is influence by a mix-
ture of the native Protégé frame-based API and the
Jena API. In contrast to the OWL API’s axiom ori-
ented view, it therefore provides what amounts to a
frame-based ontology API for OWL ontologies. Since
Protégé-OWL is built on top of this API, it is mainly
used by Protégé-OWL plugin developers, although it
can be used for 3rd party application development.

7. Download, takeup and usage

The OWL API is available as open source under the
LGPL licence and can be downloaded from Source-
forge13. Statistics taken from sourceforge shown in
Fig. 2 indicate a steady increase in downloads and web
traffic14. Since version 1 was released, the OWL API
has had over 34,000 downloads from the Sourceforge
website. It should be noted that this count does not in-
clude copies of the API that are now distributed with
widely used tools such as Protégé-4, the NeOn Toolkit,
Pellet and HermiT.

12Available at http://kaon.semanticweb.org
13http://owlapi.sourceforge.net
14Note that the figures for project web traffic are only available

from mid-2007.

Some examples of the kinds of applications and ser-
vices that have been developed using the OWL API are
discussed below. As the code-base is freely available,
we fully expect there to be further third-party usage of
the OWL API that we are not explicitly aware of.

Protégé-4 [19] is an open source OWL ontology
editor that was initially designed and developed at the
University of Manchester. Protégé-4 uses the OWL
API to underpin all ontology management tasks, from
loading and saving ontologies, to manipulating ontolo-
gies during editing, to interacting and offering a choice
of OWL reasoners. Virtually all of the functionality
provided by the OWL API is utilised by Protégé-4.

The NeOn Toolkit2 [17] is an Eclipse based ontol-
ogy development environment that was developed as
part of the NeOn project. While early versions of the
toolkit were written on top of KAON215, in 2010, the
project moved to the OWL API16.

OWLSight3 is a web based ontology browser writ-
ten by Clark & Parsia that uses the Pellet reasoner. The
browser is written using the Google Web Toolkit, with
the OWL API being used to read and access ontolo-
gies.

The Ontology Browser17 dynamically generates
documentation for ontologies and is based on the
OWLDoc software. The OWL API is used for load-
ing and accessing ontologies and interfacing with the
FaCT++ reasoner.

OntoTrack [27] is a browsing and editing tool for
OWL ontologies that is developed at Ulm University.
The OWL API is used for loading and accessing on-
tologies for rending into a graph.

The SKOS API18 [21] is a Java interface and im-
plementation for SKOS [29], built on top of the OWL
API. It adopts a similar approach to the OWL API,
providing an abstract data model for SKOS that avoids
commitment to particular concrete syntaxes. SKOSEd,
a SKOS editor is implemented as a plugin in to
Protégé-4.

The OWLlink API [33] implements the OWLlink
protocol on top of the OWL API. Besides providing an
API to access remote OWLlink reasoning engines, it
turns any OWL API aware reasoner into an OWLlink
server. In essence OWLlink and the OWLlink API re-
place the DIG [6] protocol.

15http://kaon2.semanticweb.org
16http://www.neon-project.org/nw/NeOn_Toolkit_-_Latest_

Major_Release
17http://owl.cs.manchester.ac.uk/browser
18http://skosapi.sourceforge.net/

18 M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies

Fig. 2. Sourceforge statistics for downloads and web traffic.

A number of online services19 are implemented us-
ing the OWL API.

Syntax Converter A web based application that
converts ontologies written in one OWL syntax to an-
other OWL syntax. Syntax is converted from one for-
mat to another by loading and saving ontologies using
the OWL API.

Ontology Repository A repository of ontologies
used for reasoner and tools testing. The loading and se-
rialising makes use of the OWL API parsers and ren-
derers, while the metrics for each ontology are com-
puted by the OWL API’s Metrics API.

Validator Uses the various profile validators to de-
termine if an ontology and its imports closure is within
a specific profile. The validator returns validation re-
ports in a variety of human readable syntaxes. The val-
idator makes use of the Profiles API, which is part of
the OWL API.

Module Extractor Allows locality based modules
to be extracted from ontologies. The extractor makes
use of OWL API modularisation code, which currently
provides Syntactic Locality Based Modules [20].

Metrics Allows ontologies to be submitted and re-
turns a report about the number and types of axioms in
an ontology and its imports closure. This application
uses the Metrics API, which is part of the OWL API.

8. Limitations

As discussed above, the OWL API has proved to
be a popular and useful code library. The design de-
cisions made in the development of the OWL API do,

19http://owl.cs.manchester.ac.uk

however, impact on its suitability for application us-
age. The most crucial of these is that the OWL API is
primarily designed to be an application that supports
manipulation of OWL ontologies at a particular level
of abstraction – which is not the RDF level. Thus the
API is perhaps less suitable for those wishing to explic-
itly exploit the layering of OWL on RDF. In addition,
the original design of the OWL API was “tuned” to tar-
get the OWL DL species. Although OWL Full ontolo-
gies can be manipulated using the OWL API, alterna-
tive frameworks such as Jena may be more suitable if
OWL Full aspects are to be exploited in an application.

The reference implementation supplied with the
OWL API downloads uses an in-memory representa-
tion. This places some restriction on the size of on-
tologies that can be processed using the OWL API. In
practice, we have not found this to be a serious issue.
Table 1 shows load times (in seconds) and memory
consumption (in megabytes) after loading for several
well known large ontologies. For comparison, the load
times and memory consumption for the Jena API are
also given, showing comparable performance.

9. Summary

The OWL API provides a collection of powerful and
flexible interfaces supporting the use of OWL ontolo-
gies within applications. The model explicitly supports
the recent OWL 2 Recommendation. Common inter-
faces to reasoning engines are defined, facilitating the
use of inference within applications. The distribution
includes a reference, main-memory implementation,
and provides support for parsing and rendering ontolo-
gies in a variety of concrete syntaxes along with OWL

M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies 19

Table 1

Load times and memory usage for well known large ontologies. The OWL API is compared with Jena

Ontology Axioms Triples Load Time Memory

NCI 1,093,733 1,449,558 19.0 s 638 Mb OWLAPI

36.3 s 600 Mb Jena

FMA 1,651,533 1,686,457 26.5 s 831 Mb OWLAPI

43.8 s 482 Mb Jena

SNOMED 1,036,800 3,355,279 30.1 s 770 Mb OWLAPI

59.4 s 875 Mb Jena

2 Profile validators. The API is in widespread usage,
with a growing user community.

The overview presented here is necessarily brief –
space constraints prevent us from providing in depth
descriptions of the design and details of the code base.
Further detailed documentation is available from the
OWL API Sourceforge site13 along with tutorial pre-
sentations, examples and full javadoc documenta-
tion for the code base. There is also an active mailing
list for developers20.

Acknowledgements

The OWL API has required extensive programming
and design effort, and the level of sophistication and
robustness achieved would have been difficult, if not
impossible, without key contributions from a num-
ber of people. The authors would like to acknowledge
those who have contributed to the OWL API since
the first version was designed and developed by Sean
Bechhofer, Raphael Volz and Philip Lord in 2003 [7].
In particular, those who have made significant contri-
butions (in alphabetical order) include: Ron Alford21,
Nick Drummond22, Birte Glimm23 (reasoner interface
design), Luigi Iannone22, Aditya Kalyanpur24, Pavel
Klinov22, Boris Motik23 (reasoner interface and gen-
eral design), Olaf Noppens25 (reasoner interface de-
sign and parsing contributions), Ignazio Palmisano22

(concurrency support), Timothy Redmond26, Angus
Roberts22, Nicolas Rouquette27, Thomas Schneider22

20http://sourceforge.net/mailarchive/forum.php?forum_name=
owlapi-developer

21Clark & Parsia
22The University of Manchester
23Oxford University
24IBM TJ Watson Research Center, New York
25Ulm University
26Stanford University
27JPL, NASA

(modularity support), Evren Sirin21 (reasoner interface
design, explanation code), Mike Smith21, and Daniele
Turi22.

Thanks also go to past and present members of the
Information Management Group (IMG) and the Bio-
Health Informatics Group (BHIG) at the University of
Manchester, and all of the OWL API users who have
posted bug reports and feedback on the OWL API pub-
lic mailing list.

Development of the OWL API has been funded
from a number of sources, including the EU funded
WonderWeb project28; the JISC funded CO-ODE
project29 and the EU funded TONES project30.

References

[1] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a
polynomial-time reasoner for life science ontologies. In U. Fur-
bach and N. Shankar, editors, Proceedings of the 3rd Interna-
tional Joint Conference on Automated Reasoning (IJCAR’06),
volume 4130 of Lecture Notes in Artificial Intelligence, pages
287–291. Springer-Verlag, 2006.

[2] F. Baader and B. Hollunder. Embedding defaults into termino-
logical knowledge representation formalisms. Journal of Auto-
mated Reasoning, 14(1):149–180, 1995.

[3] S. Bechhofer. OWL Web Ontology Language Parsing OWL in
RDF/XML. W3C Working Group Note, World Wide Web Con-
sortium, January 2004. http://www.w3.org/TR/owl-parsing.

[4] S. Bechhofer and J.J. Carroll. Parsing OWL DL: Trees or
triples? In Proceedings of the World Wide Web Conference,
WWW2004, pages 266–275. ACM Press, 2004.

[5] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A
reason-able ontology editor for the semantic web. In Proceed-
ings of KI2001, Joint German/Austrian conference on Artificial
Intelligence, volume 2174 of LNAI, pages 396–408. Springer-
Verlag, September 2001.

[6] S. Bechhofer, R. Möller, and P. Crowther. The DIG description
logic interface. In Proceedings of DL2003 International Work-
shop on Description Logics, September 2003.

28http://wonderweb.semanticweb.org/ EU IST-2201-33052
29http://www.co-ode.org
30http://www.tonesproject.org/ FP6-7603

20 M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies

[7] S. Bechhofer, R. Volz, and P. Lord. Cooking the semantic web
with the OWL API. In Fensel et al. [13].

[8] D. Beckett and T. Berners-Lee. Turtle – Terse RDF Triple Lan-
guage. Team Submission, World Wide Web Consortium, 2008.
http://www.w3.org/TeamSubmission/turtle/.

[9] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B.
Motik, D. Oberle, C. Schmitz, S. Staab, L. Stojanovic, N. Sto-
janovic, R. Studer, G. Stumme, Y. Sure, J. Tane, R. Volz, and
V. Zacharias. KAON – towards a large scale semantic web. In
K. Bauknecht, A. Min Tjoa, and G. Quirchmayr, editors, EC-
Web 2002, volume 2455 of Lecture Notes in Computer Science,
pages 304–313. Springer, September 2002.

[10] J. Carroll and J. De Roo. OWL Web Ontology Language Test
Cases. W3C Recommendation, World Wide Web Consortium,
2004. http://www.w3.org/TR/owl-test/.

[11] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
and K. Wilkinson. Jena: Implementing the semantic web rec-
ommendations. In S. Feldman, M. Uretsky, M. Najork, and
C. Wills, editors, Proceedings of the 13th International World
Wide Web Conference on Alternate Track Papers & Posters,
New York, NY, USA, pages 74–83, May 2004. ACM.

[12] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler.
Just the right amount: Extracting modules from ontologies. In
WWW 2007, Proceedings of the 16th International World Wide
Web Conference, Banff, Canada, pages 717–727, May 8–12,
2007.

[13] D. Fensel, K. Sycara, and J. Mylopoulos, editors. Proceedings
of the 2nd International Semantic Web Conference, ISWC2003,
volume 2870 of Lecture Notes in Computer Science. Springer,
October 2003.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software, Profes-
sional Computing Series. Addison-Wesley, 1995.

[15] S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontol-
ogy? A case for conservative extensions in description logic. In
P. Doherty, J. Mylopoulos, and C.A. Welty, editors, The 10th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2006), Lake District, United
Kingdom. AAAI Press, June 2006.

[16] V. Haarslev and R. Möller. RACER system description. In In-
ternational Joint Conference on Automated Reasoning (IJCAR
2001), volume 2083 of Lecture Notes In Computer Science,
pages 701–705, 2001.

[17] P. Haase, H. Lewen, R. Studer, D. Thanh Tran, M. Erdmann,
M. d’Aquin, and E. Motta. The NeOn ontology engineering
toolkit. In J. Korn, editor, WWW 2008 Developers Track, April
2008.

[18] M. Horridge and P.F. Patel-Schneider. OWL 2 Web Ontol-
ogy Language Manchester Syntax. W3C Working Group Note,
World Wide Web Consortium, 2009. http://www.w3.org/TR/
owl2-manchester-syntax/.

[19] M. Horridge, D. Tsarkov, and T. Redmond. Supporting early
adoption of OWL 1.1 with Protégé-OWL and FaCT++. In
B. Cuenca Grau, P. Hitzler, C. Shankey, and E. Wallace, edi-
tors, OWL: Experiences and Directions (OWLED), volume 216
of CEUR Workshop Proceedings. CEUR-WS.org, November
2006.

[20] E. Jiménez-Ruiz, B. Cuenca Grau, U. Sattler, T. Schneider,
and R. Berlanga Llavori. Safe and economic re-use of ontolo-
gies: A logic-based methodology and tool support. In S. Bech-
hofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, editors,

Proceedings of the 5th European Semantic Web Conference
(ESWC 2008), Tenerife, Spain, volume 5021 of Lecture Notes
in Computer Science, pages 185–199. Springer, June 2008.

[21] S. Jupp, S. Bechhofer, and R. Stevens. A flexible API and ed-
itor for SKOS. In Proceedings of the 6th European Semantic
Web Conference (ESWC), Heraklion, Crete, volume 5554 of
Lecture Notes in Computer Science, pages 506–520. Springer,
2009.

[22] A. Kalyanpur. Debugging and Repair of OWL Ontologies. PhD
thesis, The Graduate School of the University of Maryland,
2006.

[23] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and
J. Hendler. Swoop: A web ontology editing browser. Web Se-
mantics: Science, Services and Agents on the World Wide Web,
4(2):144–153, 2006. Semantic Grid – The Convergence of
Technologies.

[24] J. Kleb, J. Henss and S. Grimm. A database backend for OWL.
In R. Hoeksta and P.F. Patel-Schneider, editors, OWL: Experi-
ences and Directions (OWLED 2009), CEUR Workshop Pro-
ceedings. CEUR-WS.org, October 2009.

[25] G. Klyne and J.J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C Recommenda-
tion, World Wide Web Consortium, 2004. http://www.w3.org/
TR/owl-guide/.

[26] H. Knublauch, R.W. Fergerson, N.F. Noy, and M.A. Musen.
The Protégé OWL plugin: An open development environment
for semantic web applications. In McIlraith et al. [28].

[27] T. Liebig and O. Noppens. OntoTrack: Combining browsing
and editing with reasoning and explaining for OWL Lite on-
tologies. In McIlraith et al. [28], pages 244–258.

[28] S. McIlraith, D. Plexousakis, and F. van Harmelen, editors.
ISWC 04 The International Semantic Web Conference 2004,
Hiroshima, Japan, volume 3298 of Lecture Notes in Computer
Science, 2004.

[29] A. Miles and S. Bechhofer. SKOS Simple Knowledge
Organization System Reference. W3C Recommendation,
World Wide Web Consortium, 2009. http://www.w3.org/TR/
skos-reference/.

[30] B. Motik, A. Maedche, and R. Volz. A conceptual model-
ing approach for building semantics-driven enterprise applica-
tions. In Proceedings of the International Conference on On-
tologies, Databases and Applications of SEmantics ODBASE
2002, LNCS. Springer, 2002.

[31] B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning
in description logics using hypertableaux. In Proceedings of
the 21st International Conference on Automated Deduction
(CADE-21), volume 4603 of Lecture Notes in Artificial Intelli-
gence, pages 67–83. Springer, 2007.

[32] B. Motik, P.F. Patel-Schneider, and B. Parsia. OWL 2 Web
Ontology Language Structural Specification and Functional-
Style Syntax. W3C Recommendation, World Wide Web Con-
sortium, 2009. http://www.w3.org/TR/owl2-syntax/.

[33] O. Noppens, M. Luther, and T. Liebig. The OWLlink API
teaching OWL components a common protocol. In E. Sirin,
editor, OWL: Experiences and Directions (OWLED 2010),
2010.

[34] P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web On-
tology Language semantics and abstract syntax. W3C Recom-
mendation, 10 February 2004.

[35] P.F. Patel-Schneider and I. Horrocks. OWL 1.1 Web On-
tology Language Overview. Member Submission, World

M. Horridge and S. Bechhofer / The OWL API: A Java API for OWL ontologies 21

Wide Web Consortium, 2006. http://www.w3.org/Submission/
owl1-overview/.

[36] T. Redmond. An open source database backend for the OWL
API and Protégé 4. In E. Sirin, editor, OWL: Experiences and
Directions (OWLED 2010), 2010.

[37] S. Schlobach and R. Cornet. Non-standard reasoning services
for the debugging of description logic terminologies. In IJCAI
International Joint Conference on Artificial Intelligence, 2003.

[38] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz.
Pellet: A practical OWL-DL reasoner. Journal of Web Seman-
tics, 5(2), 2007.

[39] M. Smith, I. Horrocks, M. Krötzsch, and B. Glimm. OWL 2
Web Ontology Language Conformance. W3C Recommenda-
tion, World Wide Web Consortium, 2009. http://www.w3.org/
TR/owl2-conformance/.

[40] Sun Microsystems, Inc. JavaTM Platform. http://java.sun.com/
j2se/.

[41] D. Tsarkov and I. Horrocks. FaCT++ description logic rea-
soner: System description. In Proceedings of the International
Joint Conference on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence,
pages 292–297. Springer, 2006.

[42] W3C DOM Working Group. Document Object Model.
http://www.w3.org/DOM/.

[43] W3C OWL Working Group. OWL 2 Web Ontology
Language Document Overview. W3C Recommendation,
World Wide Web Consortium, 2009. http://www.w3.org/TR/
owl2-overview/.

