Paradigms and Compilers for Parallel
Processing: Guest Editor’s Introduction

BOLESLAW K. SZYMANSKI

Department of Computer Science and Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180;

e-matl: szymansk@cs.rpi.edu

This is an introduction to a special issue devoted to the
current research in the area of foundations of parallel
scientific computing. In recent vyears, high-perfor-
mance computing underwent a deep transformation.
The declining share of the parallel processing market
held by traditional supercomputers and the waning
popularity of the single-instruction multiple-data
(SIMD) machines, together with the increasing role of
clusters of workstations. created the conditions for the
rapid spread of parallel computing in government and
industry. The emphasis shifted from record-breaking
performance for any price to price-performance opti-
mization. The successful companies, such as Silicon
Graphics or IBM, use the performance gains driven
by the general market to improve the performance of
their parallel machines. In contrast, companies that
relied on processors designed specifically for their ar-
chitectures, like Kendall Square Research or the
Thinking Machine Corporation. were less successful
in staying in the computer design market. Parallel
processing has been becoming ubiquitous at all levels
of computing technology. In microprocessor design,
superscalar techniques (executing multiple instrue-
tions at the same time) are now a standard.

It is important to realize that despite these trends,
parallel computing captures a small fraction of the
overall information technology industry. The parallel
computer industry constitutes about 0.5% of the LS.
information technology market. Such a small percent-
age of the overall market indicates a narrow user base
that can be easily saturated with new products. In
addition, parallel computing has been highly depen-

Received March 1996

Revised March 1997

© 1997 by John Wiley & Sons, Ine.

Scientific Programming. Vol. 6. pp. 159-162 (1997)
CCC 1058-9244/97/020159-04

dent on government policies; institutions and govern-
ment-supported universities traditionally constituted
more than one half of all users.

The weaknesses of parallel machines stem from the
following two factors:

1. Narrow application base: Parallel architectures
are best suited to solve large and highly tuned.,
course-grained, and/or data-parallel problems.

2. Rapid change of hardware: Every new genera-
tion of parallel architectures differs from the
previous one, forcing the users to redevelop their
applications, Often, porting and tuning an ap-
plication to a new architecture can take as long
as the time needed to introduce a new architec-
ture, making the ported code obsolete at the
moment it is ready for use.

Part of the difficulty in making parallel computing
widespread and popular has been the lack of standards
in parallel programming interfaces. As discussed be-
low, such standards are emerging and gaining wide-
spread acceptance.

Several different architectural approaches to paral-
lel processing are slowly converging to a similar solu-
tion. The workstations interconnected through a fast
network, when dedicated to a single application, be-
have like a multiprocessor. The modern shared mem-
ory multiprocessor relies on an interconnection net-
work between the global memoryv and local processor
caches, and therefore behaves similarly to the distrib-
uted memory multiprocessor. Finally, distributed
memory machines through extensive use of message
caching, faster interconnection networks. and smaller
communication latencies approach in their behavior
shared memory machines with local caches. The over-
all trend is to use powerful computing nodes intercon-
nected through a high-speed network of large capacity.
The associated trend is to rely on standard, commodity



160 SZYMANSKI

off-the-shelf components to improve the price-perfor-
mance ratio of such architectures.

Parallel programmers face a daunting challenge.
especially with increasing large and complex applica-
tions. They must identify parallelism in an application,
extract. and translate that parallelism innto their codes.
design and implement communication and synchroni-
zation that preserve the program semantics. and foster
the efficiency of parallel execution. All these steps inust
be guided by the currently available architectures
Whlch may t“h&nve tomorrow, making some of the
designs subopmndl or inefficient. Not ﬂuprmnﬂ}\
Sll('h an (’nVlronnwnt para”?l pl“(,)g! dH\IIlng hda E‘YI}C“
rienced a long and difficult maturation process. Yet,
two basic paradigms emerged: data parallelism and

message passing. The first one is popular because of

its simplicity. In this paradigm there is a single pro-
gram (and therefore a single thread of execution)
which is replicated on many processors and each copy
operates on a separate part of the data. A SIMD version
of this approach requires hardware support and is
considered useful only for a limited range of applica-
tions. Its loosely synchronized counterpart. often re-
ferred to as a single-program multiple-data (SPMD)
paradigm. is more universal. SPMD parallel compura-
tion execution consists of two stages:

1. The computational stage. when copies of the
same program are executed in parallel on each

processor locally. The execution can differ in

the conditional branches taken. the number of

loop iterations executed, etc.

2. The data exchange stage. when all processors
concurrently engage in exchanging nonlocal
data.

It should be noted that the data exchange stage is
very smiple in the case of shared memory machines
(when it can be enforced by use of locks or barriers).
By reordering the computation and properly selecting
the frequency of synchronization. partial interleaving
of computation and commmication stages can be
achieved. The SPMD model matches well the needs
of scientific computing which often requires applyving
basically the same algorithm at many points of a com-
putdnonal domain. \P\iD parallel programs are con-
ceptually simple because of a single program executing
on all processors. but they are more complex rhen
SIMD programs.

For complicated applications. running a single pro-
gram across all parallel processors may be unnecessar-
ilv restrictive. In particular. dynamically changing
programs with unpredictable execution times result in
poorly balanced parallel computations when imple-

mented in SPMD paradigm. This is because SPMD
processes svnchronize at the dara exchange stage. and
none of the processes can proceed to the next computa-
tional stage until all others reach the data exchange
stage.

The memory distributed machines use message
passing for exchanging data between different proces-
sors. The SPMD model may shield the user from speci-
fying the detailed data movements thanks to data dis-
tribution directives {rom which a compiler gen%ralcs
the message-passing statements. However, the users
which decide to write the message-passing statements
themselves have full control over the program execu-
tion. In particular. the user may define how many and
which processors svnchronize at the given instance of
parallel execution. This approach gives the user a lot
of flexibility at the cost of requiring the user to make a
very intricate and detailed df‘st'ription of the program.
The programs tend to be longer and nore complex
than their SPMD counterparts. and therefore more
error prone. However. once debugged and runed up.
the programs are more efficient. The {lexibility of the
messaging-passing model makes it applicable for a
variety of problems. As discussed below. the standard
library of functions for message passing, MPL is be-
coming a universal tool for parallel software devel-
opment.

There is a lot of research parallel programming
languages with different flavors to choose from. start-
ing fmm functional. dataflow to object oriented, logi-
ca].‘ ete. However. the majority of running scientific
parallel programs were written in Forfran. Since the
1950s. this language was a favorite choice for writers
of seientific programs and particularly for generations
of graduate students in applied sciences, Over the
vears. Fortran underwent a remarkable transforma-
tion. from one of the first languages at all to the first
language with a well-defined standard (Fortran 06)
to the structured programming of Fortran 77, to data
parallel and object-oriented Fortran 90, and finally
to the newest standard of high-performance Fortran
(LIPF). Each generation brought with it new features
and set a new standard for the manufacturers of hard-
ware and compilers. Critics of HPF argue that the
HPF language is not general enough. [n particular.
1IPF does not allow for (i\namwaﬂx defined align-
ments and distribution that are permitted in some
other languages (HPF+. Vienma Fortran). However,
standardization of the language features is extremely
important for users. compilers. and tool writers be-
cause it protects their software investments against
changes in the architecture. In that respect. the intro-
duetion of Fortran 90 and then TIPF is an important
step forward toward more stable parallel sofiware.



HPF can be seen as the flagship of the data-parallelism
camp. On the other hand, the supporters of message
passing-based parallel programming achieved stan-
dardization of their approach in the message-passing
interface (MPI).

Parallel processing is at a critical point of its evolu-
tion. After a long period of intense support by govern-
ment and academia, it slowly moves to derived the
bulk of its support {rom the commercial world. Such a
move brings with it a change of emphasis from record-
breaking performance to price performance and sus-
tained speed of program execution. The winning archi-
tectures are not only fast, but also economically sound.
As a result, there is a clear trend towards widening
the base of parallel processing both in hardware and
software. On the hardware side, that means using off-
the-shelf commercially available components (proces-
sors, interconnection switches) which benefit from a
rapid pace of the technological advancement fueled
by the large customer base. The other effect is the
convergence of different architectures thanks to
spreading the successful solutions among all of them.
Workstations interconnected by a fast network ap-
proach the performance of parallel machines. Shared
memory machines with multileve] caches and sophisti-
cated prefetching strategies execute programs with ef-
ficiency similar to that of distributed memory ma-
chines.

On the software side. the widening base of the users
relies on standardization of parallel programming
tools. By protecting the programmer’s investment in
software. standardization promotes development of li-
braries. tools. and application kits that in turn attract
more end-users to parallel processing. It appears that
parallel programming is ending a long period of craft
design and is entering a stage of industrial develop-
ment of parallel software.

The articles included in this issue were selected
from 15 submissions. Although the selected articles
cover a range of topics. they share a common theme
which is widening the applicability of parallel pro-
cessing. The first article. “Towards Architecture-
Adaptable Parallel Programming.” by Santhosh
Kumaran and Michael J. Quinn from Oregon State
University. focuses on the divide-and-conquer ap-
proach to designing parallel software portable across a
range of parallel architectures. For the price of limited
generality at the level of the program design methodol-
ogy. the authors simplify porting an application to a
new platform. Their system provides the user with
divide-and-conquer templates for expressing parallel-
ism. It also automatically selects the efficient parallel
algorithm for the specified architecture.

The newly developed multithreaded architectures

PARADIGMS AND COMPILERS 161

provide a means for escaping the limitation of the
data-parallelism paradigm. The idea of mixing data
and task parallelism is not new. However. without
multithreading support. it is very difficult to imple-
ment. In “Data-Parallel Programming in a Mult-
threaded Environment.” Matthew Haines (the Univer-
sity of Wyoming) and Piyush Mehrotra and David
Cronk (ICASE) discuss a run-time based package that
supports parallel program execution on a multi-
threaded architecture. Their package handles the
problem of relative indexing and collective communi-
cation among the thread groups, thereby enabling dif-
ferent groups of threads representing different tasks
of a parallel application to run concurrently.

As discussed above. global address space, supported
by shared memory machines, is an atiractive abstrac-
tion for parallel programming. However, straightfor-
ward shared memorv implementation is not scalable.
So-called distributed shared memory (DSM) is an im-
portant alternative that combines a shared memory
programming model with the scalability of distributed
memory machines. In “Implementation and Perfor-
mance of DSMPL ™™ Luis M. Silva and Jodo G. Silva
(the University of Coimbra) and Simon Chapple
(Quadstone Ltd.) report on their experience with the
parallel library called DSMPL. The authors imple-
mented DSMPI on top of MP1 to provide DSM abstrac-
tion to the library users. The article compares effi-
ciency of programs using DSMPI with those using MP1
directly. The test programs were run on a network of
workstations and a Cray T3D. The results indicate
that for several applications DSMPI library overhead
is negligible.

Adaptive parallelism in which the number of pro-
cessors running an application changes at execution
time is explored in “"Run-Time and Compiler Support
for Programming in Adaptive Parallel Environments™
by Guy Edjlali. Gagan Agrawal, Alan Sussman, Jim
Humphries, and Joel Saltz (the University of Mary-
land). The authors developed a run-time library that
enables the user to redistribute data and computation
when the number of participating processors changes.
Tt also supports recomputation of loop boundaries and
communication patterns for redistributed computa-
tion. The authors discuss how their library can be
integrated with an HPF compiler. The reported results
indicate that the approach is effective if the changes
in the number of executing processors are infrequent.
The library is targeted for parallel computation on a
network of mnondedicated workstations which is
quickly becoming an important parallel computing
engine.

The last article focuses on fundamental issues in
any transforming parallel compiler design, which is



162 SZYMANSKI

the representation of complex range sets arising when
the arrays are traversed through complicated subscript

expressions. The article entitled ~Precise Analysis of

Array Usage in Seientific Programs™ was written by
M. Manjunathaiah and Denis A. Nicole (University of
Southampton). It introduces a new technique for an
exact representation of the results of binary operations
on array sections. Array sections define which array
elements are written or read by the program state-
ments. Sections that are regular, simple, or convex can
be compactly represented through shape descriptors.
However, some operations on sections. most notably
union, may create the sections that cannot be repre-
sented by shape descriptors. The technique presented
in this article enables a compact and exact representa-
tion of the union result.

In preparation of this special issue, article review
was an important stage, both for the selection of the
best submissions as well as for improving the pub-
lished articles. Many thanks are due to the following

volunteers for their timely and thoughtful reviews:
Peter Berezany (Kuropean Center of Excellence for
Parallel Computation), Zbigniew Chamski and Mi-
chael F. O'Boyle (University of Manchester), Raja Das
{Georgia Institute of Technology), Susan F. Hummel
(Polytechnic University), Wesley Kaplow [AT&T Bell
Laboratories), Charles H. Koelbel (Rice University),
David R. Kohr (Argonne National Laboratory), San-
deep Kumar {North Carolina State University), Lenore
M. R. Mullin (University at Albany), David O"Hallaron
{Carnegie Mellon Universitv). Patricia Pinea (Alle-
gheny College). Yuan Shi (Temple University). David
Skillicorn (Oxford University), Mark A. Sweany
(Michigan Technological University). Parimala Thu-
lasiraman and Xinan Tang (McGill University), David
Wonnacott {Haverford University), Ewa Dcelman,
Mukkai Krishnamoorthy, David Musser, Mohan Nib-
hanapudi, Charles Norton, Peter Tannenbaum, Wes-
lev Tuner, and Louis Ziantz (Rensselaer Polytechnic
Instirute).



