High Performance Fortran Comes of Age:
Guest Editors’ Introduction

ROBERT SCHREIBER' AND PIYUSH MEHROTRA?

'HP Labs 3L-5, Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, CA 94304-1126; e-mail: schreibr@hpl.hp.com
*ICASE, MS 403, NASA Langley Research Center, Hampton, VA 23681-0001; e-mail: pm@icase.edu

The High Performance Fortran (HPF) language
was defined in 1992-1993 to address the need for
high-level, portable, parallel programming for data
parallel algorithms. The language provides directives
which allow programmers to control the distribution
of data across the processors of the underlying parallel
machine. Computation is expressed in a distribution-
independent manner using the Fortran 90 array syn-
tax and the language extensions and directives pro-
vided by HPF. An HPF programmer expresses the
parallel computation in a global index space without
any explicit communication. It is the compiler’s
responsibility to analyze the code and generate the
complex, low-level details of communication required
for sharing data on the target machine. The specifica-
tion of HPF version 1.0 was published in 1993, in
Scientific Programming, volume 2, numbers 1-2. In-
formation on the current effort to develop a revision,
version 2.0, is available at http://www.crpc.
rice.edu/HPFF/home.html.

The first commercial compilers for High Perfor-
mance Fortran (HPF) are now available, and more
are expected shortly. In addition, research groups have
developed prototype implementations including ad-
vanced optimization and user interface capabilities. It
is therefore an opportune time to consider the techno-
logies required to make HPF usable and efficient. This
special issue of Scientific Programming includes arti-
cles by researchers and commercial organizations de-
scribing their implementations of compilers and other
HPF tools.

The first three papers describe important HPF im-
plementations. In their paper A Linear Algebra Frame-
work for Static HPF Code Distribution, C. Ancourt,

© 1997 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 6, pp. 1-2 (1997)
CCC 1058-9244/97/010001-02

F. Coelho, F. Irigoin, and R. Kervell describe an ele-
gant approach to some fundamental problems of HPI’
implementation on a distributed-memory multicom-
puter: local memory allocation, enumeration of the
data to be sent, received, and updated by the partici-
pating parallel processors, and message vectorization.
These techniques, in which iteration spaces and data
references are represented as systems of linear equa-
tions and inequalitics, which are solved parametri-
cally, are the basis of the HPF compiler developed at
the School of Mines of Paris.

The compilation techniques used in the Portland
Group HPF compiler, which is one of the more success-
ful and widely available HPF implementations, are
described in PGHPF— An Optimizing HPF Compiler
for Distributed Memory Machines by Z. Bozkus,
[.. Meadows, S. Nakamoto, V. Schuster, and M.
Young. The authors present some of the optimizations
performed by their compiler and also its performance
on five benchmark codes.

In their paper Kemari: a Portable HPF System for
Distributed Memory Parallel Processors, T. Kamachi,
A. Miiller, R. Riihl, Y. Seo, K. Suehiro, and M. Tamura
describe a compiler being jointly developed by re-
search groups in Switzerland and Japan and the NEC
Corporation. The compiler is part of an overall pro-
gramming environment which provides support for
debugging and for performance monitoring and analy-
sis. They also describe language extensions such as
iteration mapping, overlap areas, and generalized dis-
tributions that they have implemented in their system,
to support both structured and unstructured pro-
grams. Some variants of these extensions are being
considered for HPF 2.0. They also describe several
optimizations and present the compiler’s performance
on several benchmark codes.

One may already conclude that the sun never sets
on efforts to implement HPI" well.



2 SCHREIBER AND MEHROTRA

Building on a long and distinguished record of re-
search in parallel architectures and software at Carne-
gie Mellon University, D. R. O’Hallaron, J. Webb, and
1. Subhlok have developed a compiler for Fx, a dialect
of HPF. Their paper Performance Issues in LIPF Imple-
mentations of Sensor-Based Applications discusses the
use of Fx for typical computations in signal and image
processing. showing that the implementations of inde-
pendent loops, reductions, and index permutations
play a critical role in obtaining good performance.

While HPF allows programmers to specify the map-
ping of data to processors in detail, it would be even
better if an HPF compiler could assign well-chosen
mappings as a program optimization. Indeed, all HP¥
compilers must do this for compiler-generated tempo-
raries. In DDT: A Research Tool for Automatic Data
Distribution in HPF, F.. Ayguadé, ]J. Garcia, M. Gir-
ones, M. Luz Grande, and J. Labarta of the Polytechnic
University of Catalonia discuss the state of the art of
automated mappings, propose some heuristic solution
for the interarray axis alignment and the static and
dynamic array distribution problems, and illustrate
their capabilities on an important application, alter-
nating direction iterative methods.

I.. M. Liebrock and K. Kennedy also consider the
problem of automatic data mapping. Their paper, Au-
tomatic Data Distribution for Composite Grid Appli-
cations, examines the issues that arise when an appli-
cation uses a large number of small finite-element
meshes, and they are not big enough to allow efficient

data parallel execution on one grid at a time, with
each grid mapped to all processors. Their solution uses
the topology of the interactions between the grids to
determine an alignment of the grids to a single tem-
plate that preserves locality and allows for an automat-
ically determined and efficient implementation.

Programmers who find HPF’s multidimensional
array mapping capabilities confusing should be very
interested in the tool for visualizing these mappings
that has been developed at Johannes Keppler Univer-
sity in Linz, and is described in Visualization of Dis-
tributed Data Structures for HPF-Like Languages, by
R. Koppler, S. Grabner, and J. Volkert. The toolkit
they have developed allows one to examine data map-
pings, and to estimate and view load distribution and
communication volume,

The special issue concludes with two case studies
of HPF programming. In their paper Scientific Pro-
gramming with High Performance Fortran, E. De
Sturler and V. Strumpen illustrate the process of port-
ing Fortran 77 codes to HPF, using the xHPF compiler
and taking two simple kernels and a small application
as examples. The short note entitled Experiences in
Data-Parallel Programming by T. W. Clark, R. v.
Hanxleden, and K. Kennedy deseribes their experi-
ences in converting a molecular dynamics program
into ForTraN D, a precursor of IIPF. In decribing
the trdnbformdtlom they point out several issues that
should be kept in mind while developing programs
to be parallelized by compilers for languages such

as HPT.



