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The 1995 High Performance Functional Comput-
ing Conference was held on April 9-11, in Denver,
Colorado. The meeting, sponsored by Lawrence
Livermore National Laboratory and Colorado
State University, included a keynote address by
Guy Steele on *“What Good is Functional Program-
ming?,”’ 19 contributed papers* (from 38 submis-
sions), and a lively panel discussion led by Jack
Dennis, titled “Nondeterminacy in Functional
Programming: An Essential Feature or a Program-
mer’s Nightmare?”” Among these articles, we
found several that we believe will interest readers of
this journal. This is not surprising, since scientific
applications dominate high-performance comput-
ing, and functional language researchers increas-
ingly use these applications to test their ideas. We
hope readers will agree that the ideas presented in
this special issue illustrate many benefits of func-
tional languages in scientific programming.

WHY FUNCTIONAL LANGUAGES?

A functional language enables a computation to
be specified entirely in the realm of formulas and
equations, rather than the step-by-step proce-
dures of conventional programs. One uses built-
in operations and function definitions to describe
a computation as a formula that relates values to
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results, Equations associated with the formula de-
fine needed functions and data values.

Referential transparency is the important char-
acteristic distinguishing the functional approach
from the familiar imperative paradigm. The two
expressions

f(x,y, Z) +f(xvy~, z)
leta = flx,y, z)ina + a

have the same value because a and f(z, ¥, z) may
substitute for each other freely. Definitions in a
functional program associate permanent values
with names (rather than temporary values subject
to change at a later time), which means that ex-
pressions that appear to be equal (because they
combine values in the same way) are, in fact, equal.

As a consequence, functions produce values but
introduce no side effects. We may abbreviate an
expression by associating a name to be used in its
place, and the name retains this value throughout
its existence—this is single assignment. The name
is bound to a value, not to a memory location, so
there is no aliasing to cause coherence problems.

In the imperative paradigm, computation pro-
ceeds by altering values stored in memory loca-
tions, following a determinate sequence. In the
functional approach, a formula denotes a value
within the context of a collection of equations. Re-
cursion, which can establish values in new con-
texts, replaces the notion of an iterative sequence
of states.

Since functions are central in the functional ap-
proach, some languages treat them on par with
other values; higher-order functions take func-
tions as parameters and yield functions as results.
Some languages support currying, i.e., partial
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evaluation of functions. A function, presented with
some of its arguments, defines a new function
whose inputs are the unspecified arguments. This
curried form is a more specialized and potentially
more efficient function.

Another common feature of functional lan-
guages is type inference. Instead of requiring the
programmer to provide the type of each name ex-
plicitly, it is possible to infer the types of some
values from the types of input values and the trans-
formations done by the operations, then build on
such inferences to determine the types of all {or
nearly all) of the expressions in a program without
reference to explicit type declarations. When such
languages contain intrinsic operations that can
deal with multiple types of data, defined func-
tions can inherit this polymorphic character,
which can greatly extend the notion of reusable
code,

These language features yield important bene-
fits. First, programs may be reasoned about in a
straightforward way because function definitions
are mathematically sound, and side effects and
aliasing do not get in the way. The long-sought
goal of proving nontrivial programs to be correct
is achievable with functional languages.

Second, programs are more concise because of
their formulas often refer to large data aggregates
rather than individual units. Higher-order func-
tions, type inference, and polymorphism also con-
tribute to conciseness. This is important because
smaller programs are easier to write and maintain
than larger ones.

Third, compilers can automatically parallelize
programs to exploit multiple processor machines.
The lack of imperative sequencing, side effects,
and aliasing problems leaves data dependency as
the only mechanism constraining the order of oper-
ations. No complex analysis is required to uncover
potential parallelism.

THE SELECTED PAPERS

The growing relevance of the functional approach
in hiding machine dependencies and providing
portability, while successfully exploiting parallel
systems, has energized research in the functional
approach to high performance on parallel ma-
chines. We hope some of this energy. as seen in
the HPFC Conference, will stimulate the imagi-
nation of readers of this special issue of Scientific
Programming.

“Integrating Imperative and Functional Pro-
gramming in Real-World Applications,”” by Tom
DeBoni, John Feo, and Doug Peters, discusses par-
allelizing a legacy code for molecular dynamics. In
the original Fortran 77 program, a kernel con-
tained 30% of the source lines but accounted for
90% of the execution time. They rewrote the kernel
in Sisal, and integrated the new, highly parallel
version with the rest of program through Sisal’s
foreign language interface. Results show useful
speedup with modest effort.

“Functional Implementations of the Jacobi
Eigensolver,”” by Wim Béhm and Bob Hiromoto,
is a description of the development of versions of
this algorithm in the Id language, and their execu-
tion in the Monsoon dataflow machine simulation
environment. They show that this algorithm is ef-
ficiently expressible in Id’s functional paradigm,
and that a version using fewer features {in Sisal)
is also expressible and efficiently executable. Of
note is their improvement in the sweep of Sameh’s
technique for groupwise parallel rotations from
0(n* to O(n?).

““Static Mapping of Functional Programs: An
Example in Signal Processing,”” by Jack Dennis,
views signal-processing programs as modules ex-
changing streams of data. Composed modules can
be mapped statically onto multiprocessors 10 ex-
ploit the inherent parallelism in these applications.
Each module becomes a set of threads to run on a
group of processing elements. The article discusses
performance for conventional DSP hardware and
for a parallel architecture.

In “Fast Digit-Index Permutations,” by Dorothy
Bollman, Jaime Seguel, and John Feo, a tensor sum
approach provides a unifying framework for digit-
reversal algorithms within fast Fourier transform
(FFT) computations. The authors obtain a new algo-
rithm for the general class of digit-index permutations
whose parallel-time complexity is O {log log n). This,
along with their earlier work in using a tensor product
formulation for the combining phase in FFT algo-
rithms, yields a complete set of tools for designing,
modifying, and implementing high-performance
FFTs in functional languages.

“Update-in-place Analysis for True Multidi-
mensional Arrays,”” by Steven Fitzgerald and Rod
Oldehoeft, introduces a new, more general method
for update-in-place analysis that is applicable to
multidimensional arrays as well as the vector-of-
vectors storage layout used in the current Sisal.
This analysis avoids excessive copying in func-
tional languages with single-assignment seman-
tics. Multidimensional arrays have several expres-



sivity and performance advantages. The new
method also works for individual functions as well
as whole programs.

““Compiler-Enforced Cache Coherence Using a
Functional Language,”” by Rich Wolski and David
Cann, discusses support for correct, determinate
execution on a parallel system with no hardware
support for cache coherence. Strict language se-
mantics helps elimination of stale cache data, and
automated data management allows alignment
and partitioning to avoid false sharing. Tnis com-
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puter hardware was so difficult to deal with that
efforts to produce compilers for imperative lan-
guages were never successful; the analysis of po-
tentially interfering execution sequences was sim-
ply too difficult. On the other hand, efforts to
produce compilers for functional languages suc-
ceeded in short order, indicating that the func-
tional approach can yield time-to-market benefits,
in addition to the high-performance benefits and
program correctness benefits discussed in other
articles in this issue.



