Reviews

DSSLIB(tm)—A Library of Parallelized and Optimized Linear Algebra Subroutines for SPARC Computers.
Available from Dakota Scientific Software, Inc., 2241 Cedar Drive, Rapid City, SD 57702-3245. e-mail:

sales@scisoft.com.

DETAILED SUMMARY

Cost: 3995 for a single CPU or $4,995 one-time
charge for a 10-CPU license; includes 1 year of
support and 1 year of software upgrades; license
can be upgraded for $1,000 per additional 10
CPUs. Optional support beyond the first year is
available for 15% of the cost of the license.

Hardware and software requirements: SPARC
and SPARC-compatible computers; SunOS 4.1,
Solaris 1.0, or Solaris 2.x operating system; works
with FORTRAN 1.x, 2.x, or 3.x; iMPact optional.

Licensing: Single-CPU licenses are node
locked; 10-CPU licenses or larger are floating li-
censes.

Capabilities:

1. Automatically parallelizes large computa-
tions over available CPUs to significantly in-
crease speed.

2. 100% compatible with LAPACK, LIN-
PACK, FFTPACK, VFFTPACK, and Basic
Linear Algebra Subprograms (BLAS) levels
1, 2, and 3 so that many programs can par-
allelize with no source code change or re-
compilation.

3. Two modes of parallelization for optimal
parallel performance on either dedicated or
shared machines.

4. Optimized for SPARC-compatible CPUs to
speed up computations that do not parallel-
ize.

5. 64-bit compatibility package simplifies the
process of using SPARCs as the develop-

Reviewed September 1994

© 1995 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 4, pp. 45—-49 (1995)
CCC 1058-9244/95/010045-05

ment platform for applications intended for
a supercomputer.

Environmental considerations: Requires ap-
proximately 9 megabytes of disk space.

Performance: Runs LAPACK, BLAS and LIN-
PACK up to four times faster than the netlib ver-
sion when running on a single-CPU workstation.
Performance is considerably higher than when us-
ing the automatic parallelism to run a computa-
tion on more than 1 CPU.

REVIEW TEXT

DSSLIB is a library of parallelized and optimized
linear algebra subroutines based on LAPACK
2.0, LINPACK, FFTPACK, VFFTPACK, and
BLAS levels 1, 2, and 3. The significant benefits
of DSSLIB are its high speed and its ease of use.
The major drawback to DSSLIB is that it is only
helpful on applications that are floating-point in-
tensive and it will not improve other types of appli-
cations.

LAPACK, LINPACK, FFTPACK, VFFT-
PACK, and the Basic Linear Algebra Subpro-
grams (BLAS) are public domain linear algebra
libraries used in thousands of scientific software
packages, both public domain and proprietary.
Popular software that can be accelerated with
DSSLIB include IMSL/Math and IMSL/Stat from
Visual Numerics, NAG from Numerical Analysis
Group, and IDL from Research Systems. The
company is developing interfaces to some third-
party Fortran 90 compilers to allow Fortran 90
vector and matrix operations use the fast subrou-
tines in DSSLIB. Information about using the
public domain versions of these libraries can be
retrieved by sending the following mail message to
netlib@ornl.gov: send index.

46 REVIEWS

Of course, the primary consideration in choos-
ing parallel software is speed. DSSLIB delivers
speed in two ways: optimization and paralleliza-
tion. The result is good performance even on
problems that are too small to effectively parallei-
ize. For example, on a SPARCstation 10 the LIN-
PACK 1000 x 1000 benchmark runs 2.5 times
faster on a single CPU and well over 6 times faster
on 3 CPUs. On a SPARCstation 5, DSSLIB runs
the LINPACK benchmark 60% faster than libSci
from CraySoft. Although DSSLIB contains signifi-
cant improvements in most subroutines, little or
no improvement is apparent in subroutines deal-
ing with symmetric, Hermitian, or triangular ma-
trices stored in packed-storage mode.

The subroutines in DSSLIB are optimized for
the SuperSPARC, microSPARC, hyperSPARC,
and SPARC CPUs. According to the company,
DSSLIB aggressively uses characteristics of the
hardware architecture that allow multiple instruc-
tions to proceed simultaneously. It is obvious that
writing code so that it can do multiple concurrent
operations will greatly improve speed. It is even
more obvious that most scientists do not want to
think about low-level hardware and compiler de-
tails while writing their code. We have found that
the level of optimization in DSSLIB allows us to
get very good performance without concern for
low-level hardware detail.

In addition to optimization, the DSSLIB sub-
routines ave parallelized. When a program calls
one of the parallel subroutines then DSSLIB de-
termines how many CPUs to use, how to partition
the data, and divides the work among the avail-
able CPUs. This process of parallelizing a compu-
tation is automatic and no change is required ei-
ther in the code or in the way that a program is
run. DSSLIB has two modes of parallelism, one
that gives peak performance on a dedicated ma-
chine and the other that is best when there are
multiple jobs running concurrently. DSSLIB,
Sun’s iMPact, and CraySoft’s libSci all show ex-
cellent performance on dedicated parallel ma-
chines. However the Sun and CraySoft parallelism
is very resource-intensive and they both suffer
great performance degradation in shared environ-
ments. We have found that DSSLIB maintains
high performance in both environments.

Just as one expects to get high-speed from par-
allel software, one also expects that using parallel
software is difficult and error prone. With
DSSLIB, we found that everything from the instal-
lation to actual use in our production environment
is reasonably easy. The ease of use comes from

three factors: compatibility with netlib, documen-
tation, and a 64-bit development option. Each of
these factors is briefly described below.

DSSLIB interfaces are 100% compatible with
the standard netlib interfaces. (The standard
LAPACK 2.0 has different workspace require-
ments than LAPACK 1.1 but DSSLIB has made
algorithmic adjustments to be compatible with
programs that use either LAPACK 1.1 or LA-
PACK 2.0.) This compatibility allowed us to par-
allelize our programs by relinking with DSSLIB.
No source code changes were required, nor did we
do anything differently in running our programs.
In addition to our programs based on the standard
libraries, we also parallelized an image processing
program written in a proprietary interpreted lan-
guage called IDL. The original IDL program did
not use BLAS, so we did make source code
changes. Most of the processing was in a 2-D dis-
crete cosine transform subroutine, and we were
able to parallelize that subroutine in under 3
hours.

The manual that comes with DSSLIB is very
good. It is clear, complete, and well written. The
documentation of each subroutine includes an ex-
ample program with sample input and output.
Many of the subroutines also come with references
to related subroutines, tips on using the subrou-
tines more effectively, and warnings about com-
mon programming errors. The on-line documen-
tation consists of man pages for the subroutines.
These are good, but not of the same quality as the
written manual. There is no interactive capability
similar to the Interactive Documentation Facility
in Visual Numerics’ IMSL products, so users will
need the printed documentation for help on unfa-
miliar topics.

The 64-bit development option is for people
who use workstations as a development platform
for 64-bit supercomputers. The naming conven-
tion used by the standard libraries is that subrou-
tines whose names begin with S or C process single
precision real numbers and subroutines whose
names begin with D or Z process double precision
numbers. Single precision on a SPARC or most
UNIX workstations is 32 bits, but single precision
on a mainframe or supercomputer is 64 bits. This
means that moving a 64-bit application from a
Sun to a Cray requires the user to change the
names of all of the subroutines. For example, the
user must change calls from DGEMM (64-bit
SPARC matrix multiply) to SGEMM (64-bit Cray
matrix multiply). The 64-bit development option
is a version of DSSLIB in which the S and C sub-

routines process 64-bit data. No name changes
are required when the user moves to or from a 64-
bit computer. This feature is an interesting one,
and it is not available on the other libraries that we
have, but it is not useful unless you work on main-
frames or supercomputers.

The ease of use allows DSSLIB to fulfill its
promise of ‘‘parallelizing your application within
minutes,”” but this ease of use exacts a perfor-
mance penalty on some applications. DSSLIB
only parallelizes those operations that are per-
formed by one of its predefined subroutines. It is
not a general-purpose parallelization system like
Express(tm) or Linda(tm). DSSLIB does an excel-
lent job of parallelizing an application dominated
by solving linear systems, eigenproblems, solu-
tions to least-squares problems, and other linear
algebra operations. DSSLIB will not help an ap-
plication dominated by 1/0, sorting, or non-
mathematical computations. DSSLIB is also not
helpful on applications dominated by computa-
tionally trivial operations, even if there are many

REVIEWS 47

of those operations. For example, we have an im-
age processing program that spends most of its
time manipulating 3 X 3 matrices of integers and
the rest of its time with 4 X 4 matrices of reals.
These operations are so cheap that we do them
with our own in-line code rather than use
DSSLIB.

In summary, we have found that DSSLIB gives
us a fast and easy way to parallelize our numeri-
cally intensive applications, especially those
based on LAPACK, BLAS, LINPACK, FFT-
PACK, or VFFTPACK. It is not a general-purpose
parallel system, and it is useful only for numeri-
cally-intensive applications.

Jeremy Week

South Dakota School of Mines and Technology
501 E. St. Joseph Street

Rapid City, SD 57701-3995

e-mail:jcw6998@silver.sdsmt.edu
voice: 1{605)343-6496

A Comparative Study of Parallel Programming Languages: The Salishan Problems, by John Feo, Ed.,
North-Holland (Elsevier), Amsterdam, 1992, $120.00, 386 pp.

As parallel computing moves out of research labs
and into the supercomputing mainstream, the
problem of programming parallel machines is re-
ceiving greater attention. The designers and man-
ufacturers of a parallel machine are usually willing
to spend hundreds of hours coding for it at the
assembly level. Their users, on the other hand,
rarely enjoy having to invest an order-of-magni-
tude more time to get reasonable performance out
of their new machine than they would spend pro-
gramming a conventional workstation or vector
supercomputer.

Many benchmarks assess the numerical perfor-
mance of novel architectures, but no similar tests
inform potential users about programmability. In-
deed, the very idea of measuring programmability
is a suspicious one. There is tremendous variation
in users’ taste, aptitude, and background. Just as
important, no matter how bizarre an architecture
or programming system, there exists at least one

Reviewed June 1993

application for which it is ideally suited. Thus, one
finds the advocates of data-parallel languages
concentrating on regularly-structured problems
which are intrinsically load-balanced, while mes-
sage-passing’s proponents show us task-farm af-
ter task-farm, and devotees of the religious sects
which have grown up around various functional,
dataflow, and logic languages keep pointing out
how much simpler their programs appear (to
them, at least) than those of their competitors.
Feo’s book represents a laudable attempt to es-
tablish some kind of baseline to compare the pro-
gramming language usability on parallel com-
puters. The editor, a member of the Computing
Research Group at Lawrence Livermore National
Laboratory (LLNL) presents four non-trivial
problems. The four problems contain a variety of
different types of parallelism, including dynamic
task creation, producer/consumer synchroniza-
tion, and array management {unlike matrix multi-
plication, numerical quadrature, or the eight-
queens problem, which are often used to show
language features). These problems are ““solved”
using eight different programming languages by

48 REVIEWS

the participants at a 1988 Salishan workshop
sponsored by LLNL.

The first problem, known as Hamming’s Prob-
lem, takes a set of primes {a, b, ¢, ...}, and a limit
N, and to output in increasing order, without du-
plicates, all integers with exactly those prime fac-
tors which are less than N. The Paraffins Problem
is similar—given an integer N > 0, output the
chemical structure of all paraffin molecules which
have up to N carbon atoms. (A paraffin molecule
contains only single carbon—carbon and carbon—
hydrogen bonds, and no loops.) The third prob-
lem simulates a doctor’s office, where a set of pa-
tients become ill at random intervals and queue
up to be served by one of several doctors. The
final, and only numerical, problem solves a sys-
tem of linear equations Ax = b, where A is a sky-
line matrix, i.e., a matrix whose nonzero elements
are contained with a known envelope. While the
matrix can use a conventional solver, the intent is
that solutions take advantage of the location of
zeros in the matrix.

The languages are divided into categories:

1. imperative languages with data-parallel ex-
tensions (C*),

2. imperative languages with control-parallel
operations (Ada and Occam), and

3. functional or dataflow languages.

Of the latter, Scheme and Sisal are the most
widely used, with Haskell, Id, and Program Com-
position Notation (PCN) representing more mod-
ern or extreme alternatives.

Each chapter overviews a language and its im-
plementation, and then discusses the four prob-
lems. Most of the contributors present the entire
source code for their solutions, which run from a
few 10’s of lines to several pages per program. As

expected, the imperative programs are usually
longer than their higher-level brethren, while most
of the functional and dataflow solutions presented
are broadly similar to one another. Most of the
discussion is clear and concise; more program-
ming language comparisons would have helped,
but the material presented is a good overview of
what people are doing and thinking in parallel
computing.

While this book is generally very good, it does
have two shortcomings. The first problem is the
lack of discussion about how long it took the con-
tributors to develop their programs. An elegant so-
lution achieved after months of hard thinking is
probably a poorer measure of usability than a
workable solution produced in a day or a week:
some measure of programming effort is required
and would serve the same purpose (and have the
same pitfalls) as megaFLLOPS figures for LIN-
PACK, NAS. and other benchmarks.

The second, and more important, problem with
The Salishan Problems is its price. $120 for 386
pages is well out of the reach of graduate students
and most lecturers, and indeed of many college
libraries. One only hopes that Elsevier will pro-
duce a paperback edition in the near future so
that this valuable work can become more widely
known.

Gregory V. Wilson

Computer Systems Research Institute
University of Toronto

6 King’s College Road

Toronto, Ontario

Canada M53S 1A4

email:gvw@cs.toronto.edu
Phone: 1(416)978-1241
Fax:1(416)978-1676

Redundant Disk Arrays: Reliable Parallel Secondary Storage, by Garth A. Gibson, MIT Press, Cambridge,

1992, $35.00, 250 pp.

The simplest way to sum up this book is to say that
anyone who is doing research in computer systems
should sit down and read it. Even if I/0 systems
and ways of modelling reliability are not one’s pri-

Reviewed June 1993

mary interests (and Gibson’s writing makes them
seem very interesting), this book is a beautiful ex-
ample of how one ought to conduct and analyze
research, and indeed of how to choose important
directions for research.

The book’s central thesis is by now well known.
Just as volume production of microprocessors has

made them more cost-effective than the multichip
or multiboard CPUs which typically inhabit main-
frames, so the volume production of small disk
systems for the microcomputer and workstation
markets has led to them providing more storage
per dollar, volume, or watt than their larger coun-
terparts. As a result, a system containing a dozen
small disks may provide the capacity of a single
large one at a significantly lower cost. Such an
array might be expected to have a higher overall
failure rate because of its larger number of com-
ponents, but this can be ameliorated by storing
data redundantly, using the same coding tech-
niques used to detect and correct single-word
faults in most solid-state memories.

Gibson argues that such redundant arrays of
inexpensive disks (RAIDs) will inevitably replace
large single-disk systems. He backs up this argu-
ment with statistics drawn from the behavior of
commercially-available disk systems, with a vari-
ety of performance models, and with the experi-
ence of the RAID group at UC Berkeley. The
book’s first two chapters introduce his thesis, and
review the current and likely future state of 1/0
systems. Chapter 3 then presents the RAID con-

REVIEWS 49

cept, while Chapters 4 and 5 characterize disk
lifetimes, and use these characterizations to sup-
port the reliability models which are crucial to the
overall argument. The final chapter summarizes
his conclusion that RAID systems could exceed
the throughput of conventional disks by factors of
6 to 8, while being more reliable, and no more
expensive.

It is easy to see why the ACM chose this book as
a Distinguished Dissertation in 1991. A decade
from now, the work it presents will probably be
seen as having been as influential in the 1990s as
the development of RISC technology and multi-
processor architectures were in the 1980s.

Gregory V. Wilson

Computer Systems Research Institute
University of Toronto

6 King’s College Road

Toronto, Ontario

Canada M3S 1A4

email:gvw@cs.toronto.edu
Phone: 1(416)978-1241
Fax: 1(416) 978-1676

