
Scientific Programming 20 (2012) 349–353 349
DOI 10.3233/SPR-2012-0348
IOS Press

Book Review

Dan Nagle
E-mail: danlnagle@me.com

Scientific Software Design: The Object-Oriented
Way, by Damian Rouson, Jim Xia and Xiaofeng Xu
(authors), Cambridge University Press, 2011, ISBN
978-0-521-88813-4, 404 pp., hardcover.

1. Who are we, anyway?

What is computational science? We have all heard
the cheerleading. Computational science is the third
great leg of science, to take its rightful place alongside
observation and experiment, on the one hand, and the-
ory, on the other. But what has computational science
really got that makes it a third way? Is it not just ap-
plied theory, computing the consequences of an equa-
tion? Is it not simply mining observations or control-
ling experiments and recording the results? Is there
really a body of knowledge, distinct from any field of
application, that stands alone? Describing such a body
of knowledge is where the book described in the fol-
lowing stands.

2. A body of craft

Scientific Software Design, subtitled The Object-
Oriented Way, is 382 pages and includes a Preface,
12 chapters (in three sections), two appendices, a Bib-
liography and an Index. The authors are from Sandia
National Laboratories, IBM Canada Labs, and General
Motors, respectively. As the title indicates, this book is
about software design, particularly the design of scien-
tific software. The examples involve solving differen-
tial equations (both ODEs and PDEs). Computational
Science departments, where they exist as separate en-
tities, or where they are lumped together with other
sciences in a department of this, that, and computa-
tional science, must work to explain the differences be-
tween themselves and the established Computer Sci-
ence department (whether lumped together with this or
that engineering). Perhaps this contributes to an em-
phasis on managing large datasets (for example, the

output of a large telescope or particle collider), or solv-
ing differential equations on complex grids (for exam-
ple, fluid flow in ever-more realistic settings), rather
than on old fashioned software engineering. These au-
thors set themselves the task of addressing this per-
ceived gap.

We sally into the Preface. With the laws of physics
in our current universe being what they are, high per-
formance computing means highly-scalable comput-
ing. These authors mean to lead us on a track which,
they claim, is nearly orthogonal. They want to dis-
cuss highly-scalable design. What is that? With more
and more science being multi-science, advances are
happening along the boundaries among various disci-
plines. So several experts are involved. As the code
grows, it will become more complex, with no one au-
thor able to ride herd on all of it. One consequence is
that the design must support clearly understood inter-
faces so interoperability will be effective in the long
haul. The social side of this situation is that every ex-
pert in one topic is a non-expert in other topics, who
nevertheless must be able to understand the overall
computational scheme, even if only to integrate each
expert’s own contribution into the mix. And with sci-
ence being done in the interdisciplinary gaps, mix it
will be. We also understand that greater mix means
computationally greater size and complexity. Not only
must the scientists work together effectively, so must
their code contributions. The contributions of the var-
ious disciplines are being combined, not displaced.
From this perspective, we approach Part 1, The Tao of
Scientific OOP.

Chapter 1, Development Costs and Complexity,
starts us with the notions of multiscale and multi-
physics. The authors deplore their perceived lack of
discussion of software architecture in today’s compu-
tational science education. They illustrate with an ex-
ample. Start with the heat equation, a model of physi-
cal reality. From here, one derives a oft-stated problem
of the heat flow along a conductor, in this example case
the heat sink on a processor chip. Next, a discretiza-
tion scheme is applied to produce equations suitable

1058-9244/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

350 D. Nagle / Book Review

for digital computation. And code may be developed to
be executed on a digital computer to solve the original
problem. Any student in a computational science pro-
gram could go this far, perhaps as a homework prob-
lem. But, the authors remind us, the programmer’s time
is more valuable than the computer’s time. A simple
example with a postdoc and a departmental cluster puts
realistic numbers on the money involved to prove the
point. So the discussion takes us to code complexity
to show us that, while the numerical complexity of the
solution scheme can be estimated, the complexity of
the code maintenance and code development, all too
often, is not considered. In short, how many lines of
code must be checked to find a bug? This is the main
expense of fixing the bug. A simple solution of our heat
problem provides the example. Language constructs,
such as modules, pure functions, and argument intents,
are helpful by limiting the lines of code that must be
checked for any search. Here, the authors’ penchant
for mixing metaphors comes to the fore, Ravioli Tastes
Better Than Spaghetti Code. Momentarily, we divert to
a history of computer science. We start with assembly
code, with its unbounded jumps. Then, fifty years ago,
Fortran put some bounds on things, with defined loops
and choice blocks (if-blocks did not arrive until For-
tran 77, but that is a nitpick – loops were there from the
beginning and anyway the argument is sound). Veering
past whether jumps should be considered harmful, we
sightsee along the structured programming vista before
arriving at object-oriented programming. While keep-
ing code to small code segments has not been shown
to reduce the overall count of bugs, it does neverthe-
less reduce the amount of code needing to be checked
when the symptoms of a bug are seen. The 90–10%
rule, which the authors call the Pareto Principle and
quote as 80–20%, is next. Thus, we may write most
of our code to be readable by ourselves, as the bottle-
neck is a small portion of the overall software. And the
kernel is likely supported by a tuned library procedure,
so we will not ourselves write even all of the kernel.
And writing modular, object-oriented code will help
us parallelize our code when time comes to care about
performance. The authors finish this first chapter with
a presentation of their coding style, and show us that
Fortran and C++, as done here anyway, appear rather
similar.

So oriented, we venture into Chapter 2, The Object
Oriented Way. We start with a Rosetta Stone, where
names of concepts taken from Unified Modeling Lan-
guage (UML) are related to their near-synonyms in
C++ and Fortran. So the UML Abstract Data Type

(ADT) is related to the C++ class and the Fortran de-
rived type. It is a long list. Feeling bound to begin with
“Hello, world!” we find a structured program of five
lines that does the trick. It appears on the same page
an object-oriented program of 33 lines to the same ef-
fect. What was done? Or rather, why? We have built
a solid wall defending the data of each step of estab-
lishing data, actor and action. With this, modifications
may be done with greater confidence. And the count
of lines to check to find bugs can be substantially re-
duced. One could apply the techniques employed to
wrap some old, yet trusted code to be used in a new
program, without fear of contamination across the bor-
der. We take our object-oriented analysis, fortified with
UML diagrams, and create an object-oriented design
for our heat problem. We visit composition, aggrega-
tion and inheritance. Some advantages of inheritance
are shown when we wish to modify our heat program
to use more general heat distributions. That was easy!
Which is the point. We encounter unit testing, a ben-
efit of our data-isolating style. A short discussion of
static inheritance versus dynamic inheritance brings us
to a revisiting of the complexity analysis we saw ear-
lier. And all this was done in Fortran, with public and
private attributes, only clauses on use statements, and
pure functions sporting intent-in arguments. The inter-
module barrier holds, and can be seen to hold.

Of course, a scientific software project will grow,
and this is what happens in Chapter 3, Scientific OOP.
(Scientific OOP will be written SOOP, pronounced,
I presume, soup.) We meet Abstract Data Type Calcu-
lus. Using C++ overloaded operators or Fortran user-
defined operators, and C++ overloaded assignment
operators or Fortran user-defined assignment, we can
make our software resemble our blackboard notes. We
explore forward Euler quadrature followed by a back-
ward Euler quadrature. Once we have methods to com-
pute a time derivative, either quadrature can be coded
quickly, along with the confidence-giving test cases
we now know we want. Object Oriented Analysis and
Object Oriented Design are working. More integration
schemes are easily added to our heat code. How easy is
it? Well, how hard is it? And we are lead to design met-
rics. We meet the concepts of cohesion and coupling,
followed by the notions of an ADT’s afferent couplings
and its efferent couplings. Hence, we visit complexity
theory. Exact results are not available, but we make do
with computed bounds. Next, we visit information the-
ory, and ask how much must be known for two classes
to interact? That is, how much must two programmers
communicate to work together on the same program?
All of which leads us to the Tao of SOOP.

D. Nagle / Book Review 351

Having mastered the basics, our journey continues
into Part II, SOOP to Nuts and Bolts (yes, by now
one has learned not to mind the mixed metaphors).
So we find ourselves starting Chapter 4, Design Pat-
tern Basics. Design patterns, we learn, originated in
architecture. We take the lessons learned there to
programming. We have a bit of a history lesson of how
architectural ideas came into computer science. So fol-
lowing the path of architect Chris Alexander in his A
Pattern Language books, and determined to use design
patterns, we encounter the three problems that serve as
examples in the remainder of Part II, the Lorenz Equa-
tions, whose chaos allows us to test our computed solu-
tions, quantum vortices in superfluids described by the
Biot–Savart law and Burgers equation. So prepared, we
venture onwards.

The next chapter, Chapter 5, The Object Pattern, dis-
cusses the general object. It starts with a discussion
of just how rigid to make the design of a large pro-
gram. Which details to specify? If one is too lax, the
code will lose understandability; if too tight, one might
press needless constraints, hindering some efforts and
wasting others. The object pattern takes its name from
Java, where all entities are descendants of the object
class. The object class holds codifications of properties
we want all objects to have, such as construction and
destruction. Our example for this chapter is the vortex
problem described in the previous chapter. It is inter-
esting due to the desire to have an object represent each
vortex, which must be linked together to form the ring.
Since the vortexes occur in a ring, and one would like
a pointer from vortex to vortex, one has an interesting
issue: how to add or remove vortexes? The data struc-
ture is not a list yet has a referent from the outside.
Once one’s code is traversing the ring, one has end-
less traversal. (Visualize a figure 6. Descending from
the top along the riser, one is following an outside ref-
erent. Once in the loop at the bottom, one continues
in endless cycles.) Pointers are used in either Fortran
or C++, but the usual object constructor or destruc-
tor may not be used. Thus, one has a dangling pointer
problem (where the object targeted by the pointer is no
longer valid, yet the pointer remains). How to avoid the
memory leak? The object pattern is used to supplement
the language-supplied pointer to provide safe pointer
manipulation. In either language, a more elegant solu-
tion could be employed, but the authors sacrifice for
pedagogic purposes, keeping the solution simpler, and
their point is clearly made.

Moving to Chapter 6, The Abstract Calculus Pat-
tern, we see how to build our divisions between mod-

ules more clearly. The Lorenz problem, those three lit-
tle scalar coupled differential equations demonstrating
the attractor, will be our focus. This time, we write ab-
stract classes to supply the integration services. Our
user will write to the abstract classes. We then imple-
ment the abstract class with a Lorenz class containing
the particulars. Our user does not even see our actual
procedures, only their signatures. The solutions in ei-
ther C++ or Fortran are strikingly similar. The biggest
difference being that Fortran uses a default clause in
a select type block where C++ attempts a dynamic
cast within a try block, both languages guard to catch
a class that cannot be integrated.

In Chapter 6, we supplied a service, integrating
the Lorenz equations, without exposing the procedures
that did so, we only exposed their signatures. Thus, we
can change the procedure we supply during execution.
That is what we do in Chapter 7, The Strategy and Sur-
rogate Patterns. Now, we integrate the Lorenz equa-
tions, and we can choose an integrator from among a
selection provided. As the design becomes more ab-
stract, the C++ and Fortran expositions of the design
are, surprisingly perhaps, converging. Here, the major
difference is that the Fortran version must use an auxil-
iary class to implement the Surrogate Pattern, which is
unneeded in C++ due to its forward attribute. On the
other hand, the C++ version uses reference-counted
pointers where Fortran can gain the same effect with
its allocatable variables.

Pressing bravely into Chapter 8, The Puppeteer Pat-
tern, we encounter the next level of complexity. Re-
call that we are addressing the complexity that arises
from multi-physics simulations. Our weapon of choice
is to safely encapsulate local data within the definitions
of the software representing the abstractions involved.
What happens when a non-linear problem requires data
from within each abstraction to use an implicit method
to advance to the next time step? We employ a Pup-
peteer, which acts the role of the broker who knows all
the actors (considered to be the puppets), and allows
them to cooperate without knowing each other. Again,
the C++ implementation and the Fortran implementa-
tion are remarkably similar.

Chapter 9, Factory Patterns, takes the encapsula-
tion process one step further. In the non-linear problem
solved in Chapter 8, we had to allow objects of one
class, the puppeteer class, to have access to data that we
would like to be private within another class (the pup-
pets). Can this be avoided? Indeed it can, and we learn
that the factory pattern shows the way. Our example is
solving Burgers equation. This time, all the classes in-

352 D. Nagle / Book Review

volved will be unknown to each other except via their
parent classes. The parent classes expose the signatures
of the procedures to be publicly known. The actual pro-
cedures are not known outside the child classes at all.
Instances of a factory class can create new instances
of the working classes as needed. Our separation tech-
niques are functioning well. And we can advance to
Part III, Gumbo SOOP.

Chapter 10, Formal Constraints introduces us to the
Object Constraint Language (OCL). This language is
aimed towards bridging the gap between working sci-
entists, who are the subject matter experts of scien-
tific computing, and experts in formal methods, the
language whereby program correctness is to be ex-
pressed. Our example is a solution of Burgers equation
expressed in Fortran. OCL lacks a good expression of
arrays, so we must explore how to do so before pro-
ceeding to discuss memory management. Fortran spec-
ifies that the arguments of defined operators must not
be changed by the pure procedure defining the opera-
tion, so if the results of nested operators are pointers,
memory leaks can develop especially in complicated
expressions with many partial results. This point, and
Fortran’s lack of a language-defined assertion mecha-
nism, are the subject here. Solutions are provided, but
the language could provide more help to good effect.

So we move into Chapter 11, Mixed-Language Pro-
gramming. The context for the discussion is the Trili-
nos package. The goal is to link the Fortran binding
with the C++ software. The strategy is to use Fortran’s
Interoperability with C to define the binding. Trilinos
uses an object oriented design, so linking the of C++
to C to Fortran poses the issue that C does not directly
support object oriented designs. Nevertheless, the au-
thors describe a solution, which allows both the C++
side and the Fortran side to use object oriented features
while communicating through C.

And so we arrive at the ultimate chapter, Chapter 12,
Multiphysics Architectures. This brings us to the point
where multiphysics meets multiprocessor. We profile
our Burgers solver. Next, we dutifully salute Amdahl’s
Law one more time, this time with the greater detail
of a multipart program. We review multithreading only
to find refuge in directive-based OpenMP. Our next ef-
fort lands us in the war zone of message-passing, com-
plete with conditional compilation, via cpp, to remove
the library calls when undesired. We finally come to
meet coarrays. Unlike library code, coarrays are fully
integrated into the language, so they fit into derived
types without jumping through hoops and fully partici-
pate in other common language features (allocation, in-

put/output and so on). Our goal is to compute solutions
to scientific problems, so we meet the multiphysics.
Quantum turbulence, lattice-Boltzmann biofluid dy-
namics, particle dispersion in magnetohydrodynamics,
and radar scattering in the atmospheric boundary layer
serve as example problems. Each requires cooperation
from a variety of disciplines. We arrive at the Morfeus
Framework, an open-source project intended to aid our
efforts at solving these and similarly complex calcula-
tions.

We have reached the Appendices. The first covers
mathematics. The material would be at home in a first-
year graduate course in Computational Science. The
second introduces the reader to the Unified Modeling
Language (UML). The authors make good use of the
UML, the reader lacking familiarity with it could prof-
itably read it before starting the chapters. Other readers
might prefer to find a book on UML before venturing
into the main text.

3. The skills of growth

So where have we been on this journey? The au-
thors start us with the proposition that binding soft-
ware into independent, self-contained and therefore
reusable, segments is good for software development.
Many professional programmers, making, for exam-
ple, office software, would do little more than yawn in
reaction. The authors have then proceeded to show us
that, as the scientific complexity of our computational
efforts grows, so the need for independence of scien-
tific modules grows as well. This is due to the degree
of detail to be included in our computations within one
discipline, but also due to the interdisciplinary needs of
a single analysis. The authors have also shown that, far
from being at odds with the needs for parallel process-
ing implied by the magnitude of operations counts and
the size of datasets, properly handled independence of
modules works synergistically with the forms of com-
putation needed by parallel processors. This is indeed
good and useful news. The techniques shown here can
indeed form the inspiration for one’s own design (or
redesign). Indeed, there are several instances above
where I wrote of what the programmer could or should
do, when I could (should?) have written of the scien-
tist instead. And that’s the point: if computational sci-
ence is a distinct discipline, the scientist must become
a programmer.

New hardware today moves from commercial or en-
tertainment uses towards scientific use. The “attack of

D. Nagle / Book Review 353

the killer micros” was first heard some 25 years ago.
And today, 64-bit parallel hardware is developed for
gamers and home viewing of movies. That’s where
the big money is, after all. Are software development
techniques moving from commercial software devel-
opers to scientific software developers, too? The an-
swer must be “yes” but certainly it’s happening more
slowly than one might like. Confidence in long-used
and well-tested software, and a desire for continuity of
published work conspire to keep the “if it ain’t broke,
don’t fix it!” attitude alive and well. Computational
Science is new to many campuses, so practitioners are
still resolving just what the departmental identity is.
Surely the focus must be on differential equations and
large databases, with perhaps some graphics for un-
derstanding and for communication to colleagues. So

perhaps issues of software engineering are still in the
pending tray.

These authors have shown that increasing complex-
ity, due to increased details of the calculation, in-
creased variety of contributors to bring together an
increased variety of expertise, and the increasingly
complex demands of parallel processing for execution,
must be addressed, and they have gone a long way
at least towards showing us how to do so. Networked
open source scientific software projects may further
confuse things by leaving some inter-programmer
communications in batch mode. Scientific software
must be consciously designed to grow with a research
program and the hardware that supports the research
program. And how to do that is precisely what these
authors in this book have shown.

