Scientific Programming 19 (2011) 67-70
DOI 10.3233/SPR-2011-0318
I0S Press

Book Review

67

Introduction to Concurrency in Programming
Languages, by Matthew J. Sottile, Timothy G. Matt-
son and Craig E. Rasmussen, CRC Press, Boca Raton,
London, New York, 2009, ISBN: 978-1-420-07213-6,
US$79.95.

Parallel programming is mainstream scientific pro-
gramming. A desktop workstation can easily have hun-
dreds of pipelines. An undergraduate course in, say,
computational physics should introduce the student to
parallel solutions. What issues arise in parallel pro-
gramming that don’t arise in sequential programming?
How are the issues treated? And what text to use to ex-
plain the differences? For bonus questions, how did we
learn about parallel programming? Why are the solu-
tions organized the way they are?

Introduction to Concurrency in Programming Lan-
guages has 13 Chapters, three Appendices, and totals
330 pages, including the references and the index. The
book explores how concurrent programming can be as-
sisted by language features, and what language fea-
tures there are to help with concurrent programming. It
also discusses historical evolution of hardware and the
corresponding evolution of programming languages in
support of concurrency in applications. The book starts
with hardware details and takes us as far as design pat-
terns for parallel programming. The appendices briefly
describe OpenMP (in C), Erlang and Cilk. This book is
part of the Chapman & Hall/CRC Computational Sci-
ence Series, Horst Simon, LBNL, Series Editor.

Each chapter starts with a list of Objectives, and con-
cludes with a set of Exercises. The book’s web site,
www.parlang.com, is a bare-bones web site (as of this
writing) with links to the Publisher, Amazon.com, ex-
ample codes, errata, compilers and languages (a good
list, if missing Ada, APL (or J, its ASCII charac-
ter derivative) and ZPL), course materials (PowerPoint
sets for most chapters, more coming), press (reviews
and such), and (how 21st century) “follow us” on Twit-
ter. There is an email address for suggestions and re-
porting errata. I reported a couple of typos, and was
promptly credited on the web site.

There is no Preface, so let’s march straight into
Chapter 1, Introduction. Our objectives are to motivate
a discussion of concurrency and to demonstrate it with

some examples. First, we must distinguish concur-
rency from parallelism. We make the usual distinction,
that concurrency means “may be in progress simulta-
neously” while parallelism means “may be in execu-
tion simultaneously” so parallelism is a strict subset.
Thus, single processor systems have, through time-
sharing, given us concurrency for years, but multi-core
chips give us parallelism in the desktop system.

We learn that parallel applications have historically
been the domain of scientific programmers, but that
operating systems and databases have served to bring
concurrency issues to a wider range of programmers.
From early assemblers, programming languages have
evolved to a higher level, but have not yet brought par-
allelism to the same degree of abstraction. Languages
for writing full-blown parallel applications have not
yet left the academy (where they still provide mater-
ial for PhD dissertations). Where does concurrent pro-
gramming now appear? The authors tell us it’s in op-
erating systems, distributed systems, user interfaces,
databases and, of course, scientific applications. Miss-
ing is any discussion of the possibility of concur-
rency appearing in interpreters (for example, Python),
or in workbench programs (for example, Octave, R or
Scilab), we leave that as fodder for more of those PhD
dissertations.

The rest of the book starts by examining some of
the issues raised by concurrent programming, and so
motivated, examines some of the tools a programming
language might have for addressing them. This takes
us to the parallel design patterns that form the last sev-
eral chapters. We also learn that the book is aimed to-
wards undergraduates with some programming expe-
rience. I imagine that indicates upper division under-
graduates. The book might be helpful as supplemental
reading for a first-year graduate course if the students
have uneven backgrounds, or if the instructor wants to
impart some of the historical background or cognitive
issues discussed here.

So motivated and oriented, we press ahead to Chap-
ter 2, Concepts in Concurrency. We want to be able
to code our concurrent algorithms in a form readable
by mortal humans, using standard features of program-
ming languages, that avoid the correctness and perfor-
mance issues concurrency gives us. Parallel program-

1058-9244/11/$27.50 © 2011 - IOS Press and the authors. All rights reserved

68 Book Review

ming terminology is messy, but to proceed we need
some. To keep the terms thread and process with their
perhaps most popular meanings, the unit of concurrent
execution is called a task. We identify parallelism as a
subset of concurrency. Next, it’s off to clarify data de-
pendencies. After a spot of history, we find the concept
of atomicity. The fact of the fetch, operate, store se-
quence tells us that what we may consider to be atomic
in software may not be in hardware, the basis of our
program’s execution. So we need mutual exclusion and
critical sections. Generalizing to consistency, we find
the complications introduced by caches. Generalizing
again, we find thread safety.

And so we advance to Chapter 3, Concurrency Con-
trol. The goal this time is to see the specific prob-
lems that concurrency brings, and examine in detail the
causes in order to see what sort of correctives must be
applied. The correctness issues we find are race con-
ditions, deadlock and livelock. The livelock discussion
leads to consideration of liveness, starvation and fair-
ness. The techniques to address these problems include
the synchronization tools of semaphores, mutual ex-
clusion and rendezvous. The reader may already be fa-
miliar with locks. We learn enough Dutch, when dis-
cussing semaphores, to understand Dijkstra’s P (prola-
gen: to try and lower) and V (verhogen: to raise). With
monitor variables we attack the producer/consumer
pattern. We check how databases treat transactions.

This leads us to Chapter 4, The State of the Art.
We motivate language features by examining cur-
rently available libraries, message passing and ex-
plicit threading, to provide examples we can gener-
alize into higher level abstractions, and we see how
some languages have incorporated these ideas. The
state of the art, unfortunately, is message passing li-
braries. Explicit threading is also a low-level library-
based practice. Libraries are hobbled by not having,
or having only in clumsy ways, access to language
level concepts, such as types or arrays. Some higher-
level ideas include transactional memory, event-driven
programming and the actor model. Within languages,
even within the higher-level languages, execution-time
aliasing is the enemy of analysis, automatic or human.

Our next step is to learn what higher-level languages
provide us, in Chapter 5, High-Level Language Con-
structs. We want to learn what sequential languages
have, within their feature sets, to help with concur-
rent programming. Side effects come to the fore. Thus,
there is a cognitive effect upon the programmer of us-
ing sequential languages for concurrent programming.
We distinguish imperative languages and declarative

languages. We see the high-level code, and peek at
some assembler, seeking possible weak spots. We want
to gain the goals of Readability, Writability and Reli-
ability. The discussion of the cognitive aspects of con-
current programming is one of the most interesting
parts of the book for me. While one certainly wants
to use a high level language (especially after being
re-acquainted with assembler!), one must beware of
building an abstraction barrier to understanding the
issues concurrency brings. Some of these issues are ap-
parent only when the actual code to be executed is care-
fully examined using actual data (for example, aliasing
analysis). Interpreted languages get a brief mention,
due to the ability of the interpreter to query the state of
the program.

It’s time to take a step back and get some history,
which is what we find in Chapter 6, Historical Context
and Evolution of Languages. Here, we examine his-
toric hardware evolution, and the corresponding pro-
gramming language development, that are relevant to
our study of concurrency. Nodding towards Moore’s
Law, we see how increasing sophistication of hardware
allowed interrupt-driven input/output, which makes
concurrent execution of programs attractive. Then we
must consider the effects of caches. Our story takes us
to the Solomon project at Westinghouse, leading to the
ILLIAC IV at the University of Illinois. Then we turn
our attention to the CDC line, leading, of course, to
the Cray PVPs (parallel vector processors). We see the
von Neumann machine, with its memory bottleneck
before turning to the massively parallel computers of
the 1980s. We get a reference to the Top 500 list. We
next head towards VAXClusters, before finding our-
selves at the currently popular Linux cluster of com-
modity boxes. We stop at Flynn’s Taxonomy before
turning to languages. This discussion starts with For-
tran (in the beginning, spelled FORTRAN, which my
spelling checker still prefers even though all caps has
been incorrect for decades now). ALGOL leads to Pas-
cal and Modula. A little further and we find Ada. We
distinguish declarative and functional languages, move
to dataflow languages and logic languages, before fi-
nally landing at parallel languages. Here, too, we be-
gin with High Performance Fortran and examine data
layout before heading to ZPL, with its expressive re-
gions. A brief word of the limits to autoparallelization
completes the chapter.

All of which brings us to Chapter 7, Modern Lan-
guages and Concurrency Constructs. We want to see
how language arrays, message passing and control flow
relate to concurrency. We also discuss functional lan-

Book Review 69

guages from a concurrency vantage point. We need ar-
rays as first class objects to proceed, alas, lacking in
the C family of languages. We meet the term syntactic
sugar, and its less-familiar cousin, syntactic salt. Next
we visit array notation, which leads to the Connec-
tion Machine languages. Now we must face message
passing. There are one-sided and two-sided varieties of
message passing. Some languages have message pass-
ing as a feature of the language, so we meet the Er-
lang language with its actor model and channels. Now
we’re ready for coarrays (misspelled with a hyphen).
Unfortunately, it’s not the standard coarrays, but an
earlier syntax from Cray’s original definition. This puts
us at the gates of the PGAS (partitioned global ad-
dress space) languages, but there’s a name-only men-
tion of UPC (Unified Parallel C) and Titanium (with no
mention of Split/C). The control flow discussion leads
to parallel loops before we venture towards functional
languages and functional operators.

It’s back to reality in Chapter 8, Performance Con-
siderations and Modern Systems. Our objectives are to
examine processor performance versus memory per-
formance, Amdahl’s Law, the effects of locks and,
more generally, the performance overhead of concur-
rency constructs. The memory discussion centers on
the effects of caches. That leads to the issue of row-
major arrays versus column-major arrays. The example
given is passing MATLAB arrays to a C function. Af-
ter reviewing Amdahl’s Law (Amdahl’s Second Law,
of course), we discover that parallel overhead brings a
new term into the equation. And excessive use of locks
can serialize a whole program. Other sources of over-
head include thread creation, so one might consider
forming thread pools. Lastly we find the issue of the
work performed per synchronization.

In the home stretch, we’re ready for Chapter 9, In-
troduction to Parallel Algorithms. We try to see how
to identify concurrency in our algorithms, and what to
seek in the source code of a sequential program. This
is a short chapter, and simply prepares us for the paral-
lel design patterns that form the topics of the final four
chapters. The patterns chapters are where the examples
are, so without further ado, let’s advance.

We start the patterns with Chapter 10, Pattern: Task
Parallelism. We discuss task parallelism and its un-
derlying algorithmic structures, use genetic algorithms
and the tried-and-true Mandelbrot set as examples,
and see examples in Erlang, Cilk and OpenMP (us-
ing C). The algorithms supporting the task parallelism
pattern include the master-worker, SPMD (single pro-
gram, multiple data), loop-level parallelism and fork-

join. We see some snippets written in Cilk and Erlang
for steps along the way. A view of a genetic algorithm
in Erlang is shown. With some discussion of task gran-
ularity, a Cilk implementation of the Mandelbrot cal-
culation follows.

Our next pattern is in Chapter 11, Pattern: Data Par-
allelism. This time, we learn about data parallelism
with a matrix multiply as our example. Next we discuss
its limitations, and how it shades into task parallelism
along what is really a spectrum. In short, a geomet-
ric decomposition leads to the SPMD design pattern.
There’s the matrix multiply, followed by a cellular
automaton. The cellular automaton example is array-
based, so its coded in Fortran to take advantage of
the array intrinsics and array control statements (with
some sacrifice of efficiency due to copying the working
arrays). Further examples in MATLAB and OpenMP
(in C) complete the presentation.

Another pattern is discussed in Chapter 12, Pattern:
Recursive Algorithms. We review recursion as a se-
quential pattern, and view some examples of paral-
lel implementations. So out trots the Fibonacci func-
tion, and its sidekick, the factorial function. This leads
to a discussion of function side effects, before plung-
ing into the divide-and-conquer pattern and a sorting
example. Then we see a divide-and-conquer Sudoku
solver. (I may have just gotten a better idea of how to
solve Sudoku puzzles.)

Our final pattern is in Chapter 13, Pattern: Pipelined
Algorithms. We introduce the pipeline paradigm,
demonstrate it in Erlang, and discuss the application to
the visual cortex in the brain. We find a description,
and an illustration of a pipeline in Figure 13.1, which
has a bug, but the fix is on the web site. The software
discussion leads us to some code snippets in Erlang.

Finally, there’s the appendices. The appendices are
brief discussions of the basic ideas of OpenMP (in C),
Erlang and Cilk. There are enough references to lead
the student to a fuller discussion of each.

So where have we been? At one level, we have an
undergraduate computer science text. The stated goal
is to give a discussion of concurrency and the issues
it brings forward into the undergraduate computer sci-
ence classroom. At this level, the book succeeds. The
chapters are well ordered and structured, the exercises
are appropriate for the material, the coverage is fairly
broad. The references section is thorough so students
can pursue further reading as desired. At another level,
it’s a Renaissance Reader of the history of concurrent
(and parallel) programming. I also appreciate the dis-
cussions of cognitive issues. Too often we ignore these

70 Book Review

important considerations. An instructor might want to
read this book, just for examples and the broad cover-
age of the material. Also, this book will compliment
well the main text, for example, in an undergraduate
computational physics course.

What’s missing? I saw nothing on debugging, or on
when to use a particular pattern (matrix multiplica-
tion is an intrinsic procedure, or easily available from
a library — the student likely won’t code one other
than as an exercise). I saw nothing regarding the ef-
fects different orders of operations can have on float-
ing point results. The criticism that modern standard-
ized languages don’t support parallelism is fading fast.
Ada has had parallelism for over 25 years now. Java
is not an international standard language, but is sta-
ble, supports parallelism, and is herein mentioned, but
little more. Today’s computational science undergrad-
uate is more likely, I believe, to encounter Java code
than Erlang code or Cilk code, during a career in com-
putational science. The current Fortran standard has
coarrays, and coarrays are supported by several current
compilers. The C++ draft standard describes thread
classes, and supporting classes and templates. The up-
coming C standard is reported to describe threads in
a library, and pthreads are almost universally avail-
able to standard C programs anyway. And I like the
PGAS languages. I think the PGAS model works well
with many scientific problems (and the SPMD pat-
tern is repeatedly mentioned in this book), so I would

have appreciated more emphasis on UPC and Fortran’s
coarrays. But this is an undergraduate text, aimed to-
wards general computer science students. For that, it’s
a good choice. Programmers today must be able to pro-
gram on commodity hardware, and that means parallel
hardware. Even if one imagines writing only sequen-
tial programs, concurrency is a mainstream issue. For
undergraduates in computational science, perhaps the
emphasis should be shifted somewhat, but this is still a
good choice for a course text, or a supplemental text.

I like the historical reviews. They help complete my
war-story-based version of how we got here. (Some-
day, I promise, I'll find time to read Sammet’s Pro-
gramming Languages: History and Fundamentals and
the HOPL (History of Programming Languages) se-
ries, but no time today.) How hardware and software
evolved together also helps motivate the solution to
the issues raised by concurrency. In computational sci-
ence, one must write code to get the right answer reli-
ably, of course, but also write so colleagues can read it
for understanding, as scholarly criticism is part of the
scientific process. So the cognitive issues are, perhaps,
more important in computational science than in com-
puter science. All of that makes for a solid introduc-
tion.

Dan Nagle
E-mail: danlnagle @me.com

