Scientific Programming 18 (2010) 125-126
DOI 10.3233/SPR-2011-0312
I0S Press

Guest Editorial

125

Special Issue: Exploring languages for
expressing medium to massive

on-chip parallelism

Gabriele Jost® and Alice Koniges "

 Texas Advanced Computing Center, The University of Texas, Austin, TX, USA
b National Energy Research Scientific Computing Center, Berkeley Lab, Berkeley, CA, USA

1. Introduction

The many-year trend of increasing processor speed
has ended, and high-performance computing (HPC) is
looking for a path to Exascale computation (i.e., at
arate exceeding 1018 operations per second) that does
not involve simply improving the processor speed/
clock rate. Indeed, ‘Going to the exascale’ will mean
aradical change in computing architecture — basically,
vastly increasing the levels of parallelism to the point
of millions of processors working in parallel. Newer
processors tend to have larger numbers of cores, and
there is a hierarchy of shared memory cores and dis-
tributed nodes containing those cores. A natural way to
deal with this increase in the number of cores as well
as the lack of uniform memory access is to re-examine
programming languages. This Special Issue addresses
the programming model developments that are being
studied to deal with the next generation of hardware,
including a new language effort and new features in
current languages.

2. The papers

The papers presented in this Special Issue of Sci-
entific Programming discuss and illustrate the issues,
problems and trends related to hardware develop-
ments and their implications on programming models.
They cover a broad range of topics starting from con-
ventional programming such as combining MPI and
OpenMP (often called “Hybrid Programming”) to new
and upcoming models. Some of the studies present an

application programmer’s point of view, while other
contributions come from compiler developers.

MPI is the most commonly used model for message
passing while OpenMP is the currently most common
shared memory programming model. Both MPI and
OpenMP have been in use for several years, and even
the hybrid approach of combining MPI and OpenMP
has been well studied. However, newer architectures
seem to be a better fit for the hybrid models, and per-
formance gains in hybrid programming are becoming
more prevalent. As hardware architectures become in-
creasingly hierarchical displaying shared as well as
distributed memory characteristics, it seems natural to
combine MPI and OpenMP when trying to exploit par-
allelism on multi-core node clusters. It is therefore not
surprising that this is the path most often taken by the
scientific programmer.

Three of the papers in this series address issues re-
sulting from the combination of MPI and OpenMP
programming models. The paper “Experiences using
hybrid MPI/OpenMP in the real world: Paralleliza-
tion of a 3D CFD solver for multi-core node clusters”
(Jost and Robins) describes how the performance and
scalability of an existing MPI code was improved by
adding OpenMP directives to time consuming loops.
This paper describes a full-scale real world application
rather than a benchmark. It also provides detailed per-
formance analysis, which demonstrates challenges and
opportunities of the hybrid MPI/OpenMP approach.
The paper “Overlapping communication with compu-
tation using OpenMP tasks on the GTS magnetic fu-

1058-9244/10/$27.50 © 2010 — IOS Press and the authors. All rights reserved

126 G. Jost and A. Koniges / Guest Editorial

sion code” by Preissl et al. describes how the new
OpenMP tasking feature was used as an elegant way
to overlap MPI communication and computation in
an application kernel. A significant performance gain
over the traditional hybrid MPI/OpenMP code was
achieved.

Finally, the paper, “A programming model perfor-
mance study ...”, by Shan et al., looks at the perfor-
mance of the NAS parallel benchmarks in a hybrid
mode (with MPI and OpenMP) in the context of mem-
ory usage. Here the reduced memory footprint of the
hybrid code is noted, and seems more important than
any performance improvement.

Neither MPI nor OpenMP were designed with multi-
core node clusters in mind. In particular, OpenMP as-
sumes a flat memory model where all shared data, in-
dependent of its locality, can be accessed with the
same latency and bandwidth. OpenMP therefore does
not provide means to explicitly control data locality.
The paper “Enabling locality-aware computations in
OpenMP” by Huang et al. addresses this issue from a
compiler development point of view. The paper sug-
gests extensions to OpenMP that would enable the user
to manage a program’s data layout and to align tasks.
Examples are provided that show the intended use of
the proposed features. In addition, the paper describes
a prototype implementation of the new features in an
open source compiler.

Partitioned Global Address Space (PGAS) program-
ming models present the programmer with a logi-
cally shared address space that is physically distrib-
uted across available memory domains. An example of
a PGAS language is UPC (Unified Parallel C). UPC
is an explicit parallel extension of the C programming
language with added support for parallel programming
with distributed, but shared data. In order to obtain
good performance, management of data locality is crit-
ical. The paper “Optimizing UPC programs for multi-
core systems” by Zheng addresses this very impor-
tant issue. The contribution discusses how to optimize
data layout within an UPC application. It presents vari-
ous UPC optimization techniques and demonstrates the
results with several case studies. The paper by Shan
et al., also discussions the use of UPC, particularly
with respect to memory footprint and performance of
the NAS parallel benchmarks. This study also pro-
vides an interesting comparison of UPC with hybrid
MPI/OpenMPI parallelization and pure MPI.

How can the power of new emerging accelerator
cards, such as GPGPUs be harnessed to speed-up
full-scale scientific applications? The currently most
widely used model for GPGPU systems is CUDA, tar-

geted to the Nvidia Graphics cards. CUDA provides an
API for the programmer to explicitly map the layout
of the application onto the layout of the target archi-
tecture. The paper “Acceleration of a CFD code with
a GPU” by Jespersen studies some of the issues aris-
ing when using CUDA and accelerator cards for a full-
scale CFD code and presents interesting results and
surprising insights.

One trend in upcoming models is to hide the details
of the underlying hardware architecture, leaving the
optimization for a particular compute platform to run-
time support and architecture experts. Intel’s Concur-
rent Collection (CnC) is an example for such a model.
The paper “Concurrent Collections” by Budimli¢ et al.,
discusses this state-of-the-art technology. The paper in-
troduces the CnC programming model and evaluates
the performance potential of CnC for several applica-
tions.

3. The future

One thing we know for the future — it will no
longer be “business as usual” with performance im-
provements directly in the processor fueling subse-
quent increases in application performance. Instead,
the switch to hybrid multi-core and even GPGPU ar-
chitectures fuels a corresponding revolution in pro-
gramming models. While many computational scien-
tists believe that the new models may be “MPI + X”,
where the X denotes a “to be determined” parallel lan-
guage designed for within the multi-core nodes, and
MPI remains across the nodes, the actual prediction of
what X will be is unknown. Additionally, this revolu-
tion in programming models allows for the possibility
that entirely new language constructs and formalisms
may be developed that really change the way we attack
parallel high-performance programming for increases
not only in performance but also in programmer pro-
ductivity.

Other issues that need to be considered include the
existence of legacy applications based on the con-
ventional models like MPI and OpenMP. These will
require runtime support for their efficient execution:
light-weight message passing and synchronization, ef-
ficient collective operations and the overlap of com-
munication and I/O needs to be supported. New, more
suitable, programming models depend on the possibil-
ity an easy conversion from the old to the new model.
Another important aspect is efficient memory access
for entities like global arrays. The papers presented in
this issue provide a starting point for this new era in
computation.

