Chapter 1

Introduction*

1.1 Background and Objectives
The PARKBENCH (PARallel

BENCHmarks) committee. originally called the
Purallel Benchmark Working Group. PBWG. was
founded at Supercomputing’92 in Minneapolis.
when a group of about 50 people interested in
computer benchmarking met under the joint ini-
tiative of Tony Hey (University of Southampton.
UK and Jack Dongarra (University of Tennessee/
Oak Ridge National Laboratory]. Most of the kev
plavers were present. from the Universities. Labo-

Kernels and

ratories and industries. representing both com-
puter manufacturers and computer users from
both sides of the Adantic. Roger Hocknev (Univer-
sity of Southampton’ chaired the meeting. and the
objectives of the group were:

1. To establish a comprehensive set of parallel
benchmarks that is generally accepted by
both users and vendors of parallel svstems.

2. To provide a focus for parallel benchmark
activities and avoid unnecessary duplica-
tion of effort and proliferation of bench-
marks.

3. To set standards for benchmarking meth-
odologv and result-reporting together with a
control databhasc/repository for both the
benchmarks and the results.

4. To make the benchmarks and results freely
available in the public domain.

The first vear's work was to produce a report

and an initial set of benchmarks for release at Su-
percomputing’ 93 in Pordand. Oregon. November

* Assembled by Roger Hockney for whole committee,
Received November 1993

Accepted February 199+

© 1994 by John Wiley & Sons. Inc.

Seientific Programming. Vol. 3. pp. 101-146 (1994
CCC 1058-9244/94/020101-40

1993. The committee has met at the University of
Tennessee at Knoxville on March 1-2. 1993, Mav
24. 1993 and August 23. 1993 to discuss the
evolving draft of this report. The document repro-
duced here is the final result of these meetings,
and is the first official publication of the
PARKBENCH committee. It was distributed at a
public Birds of a Feather meeting at Supercom-
puting'93. Portland. on 17th November 1993. as
a University of Tennessee Technical Report CS-
93-213 I1]. The bulk of this publication in Scien-
tific Programming differs only in non-substantive
editorial wavs from the technical report. An Ap-
pendix C has been added. however. containing
selected results from the benchmarks. The first
release of the PARKBENCH parallel benchmarks
is available publicly over Internet.

The initial focus of the parallel benchmarks is
on the new generation of scalable distributed-
memory message-passing architectures for which
there is a notable lack of existing benchmarks. For
this reason the initial benchmark release concen-
trates on Fortran 77 message-passing codes using
the widelv available PVM [27 message passing in-
terface for portability. Future versions will un-
doubtedly adopt the proposed MPI [3] interface.
when this is fully defined and becomes generally
accepted. The committee’s aim. however. is to
cover all parallel architectures. and this is ex-
pected to be achieved by producing versions of the
benchmark codes using Fortran90 and High Per-
formance Fortran (HPF)}. Many shared-memory
architectures provide efficient native implementa-
tions of PVM message-passing and are planning
HPF compilers. They will be covered by these
routes.

1.2 Procedures
The PARKBENCH committee divides its work be-

tween five subcommittees. corresponding to the

102 PARKBENCH COMMITTEE

five substantive chapters in the report. each with a
leader (shown in parentheses) who is responsible
for assembling the contents of his chapter and its
benchmarks for the committee’s approval.

—

Chapter-2: Methodology (David Bailey):
Chapter-3: Low-level benchmarks (Roger
Hockney):

3. Chapter-4: Kernel benchmarks (Tony Hev):
4. Chapter-5: Compact applications (David
Walker):

5. Chapter-6:

Haupt):

N

Compiler benchmarks (Tom

In order to facilitate discussion and exchange of
information. the following e-mail addresses were
set up.

1. pbwg-comm@cs. utk. edu for the Whole

committee

pbwg-method@cs. utk. edu for the Meth-

odology subcommittee

3. pbwg-lowlevel@cs.utk.edu for the
Low level subcommiittee

4. pbwg-kernel@cs. utk. edu for the Kernel
subcommittee

3. pbwg-compactapp@cs.utk. edu for the
Compact applications subcommittee

1

Recent practice. however. has been to send all
mail to pbwg-comm so that all members may see
it. All mail is being collected and can be retrieved
by sending email to netlib@ornl. gov and in
the mail message tyvping:

send comm.archive from pbwg

send index from pbwg

send method.archive from pbwg
send lowlevel.archive from pbwg
send kernel.archive from pbwg

send compactapp.archive from pbwg

O

We have setup a mail reflector for correspon-
dence, it is called pbwg-comm@cs. utk. edu. Mail
to that address will be sent to the mailing list and
also collected in netlib@ornl.gov. All
PARKBENCH correspondence and benchmarks
may be retrieved via anonymous ftp to
netlib2. cs.utk. edu. Alternatively. one can
collect PARKBENCH mail by sending email to
netlib@ornl. gov and in the mail message type:

send comm.archive from pbwg

The PARKBENCH committee is open without
charge to anyone interested in computer bench-
marking and operates similarly to the HPFF (High
Performance Fortran Forum). Anvone interested
in joining in the discussion or preparing bench-
marks should send e-mail 1o that effect to:

dongarra@cs. utk. edu

1.3 Vendor’s Commitment
The PARKBENCH committee is anxious that its

parallel benchmarks do not put undue demands
on computer vendors by way of man-power and
resources. in a way that would prejudice the wide
acceptance and use of the benchmarks. Initially it
is felt reasonable 1o expect that most vendors
should have litde difficulty in running the low-
level and kernel benchmarks. since these either
involve basic hardware and software tests {such as
COMMIS1. see section 3.3.1" that vendors would
wish to perform in any case. or involve scientific
library subroutines (such as FFT. see section
4.2.2) that they would be required to produce and
optimise. In the latter case. they would no doubt
be pleased to show the superior performance of
their library routine compared with that of the
standard Fortran provided in the PARKBENCH
benchmark suite.

The case of compact applications. which are
stripped down complete application codes (see
Chapter 5). is more difficult because these codes
might require substantial effort to optimise. and in
some cases even to run satisfactorily. For these
reasons. it is not expected that vendors would ini-
tially run all these codes. They might. however.
choose to run a selection of them from subject
areas of interest to their current potential cus-
tomers. in order to demonstrate their computer’s
capability on some standard and relevant tests. In
this wav, and over a period of time. it is hoped that
most of the compact applications would be run in
a natural way and without extra effort.

1.4 Programming Models

Computer benchmarks are computer programs
that form standard tests of the performance of a
computer and the software through which it is
used. They are written to a particular program-
ming model and implemented by specific soft-
ware, which is the final arbiter as to what the pro-

gramming model is. PARKBENCH has initially
adopted two such models:

1. Fortran77 + PVM: This is the classical
distributed-memory MIMD model in which
a number of separate logical processors ex-
ecute asynchronously independent For-
tran?77 programs in their individual and
separate memory space. The onlv commu-
nication and synchronisation between these
programs is by sending messages containing
data using the PVM (Parallel Virtual Ma-
chine [2]) library of Fortran communication
subroutines.

2. High Performance Fortran (HPF): This is
an extension of the classical SIMD model in
which a single instruction stream in the For-
ran90 language [4 specilies operations
that apply. notionally simultaneously. (o
vectors and higher-order arrays of dawa. In
HPF [5] data distribution statements are
added by the programmer as comments (o
the Fortran90 program to help the compiler
generate eflicient code on a distributed-
memory computer system.

A benchmark is therefore testing a software inter-
face to a computer. and not a particular tvpe of
computer architecture. For example. benchmarks
using the "F77+PVM'"" programming model can
be run on any computer providing this interface.
both distributed-memory message-passing com-
puters which have message-passing hardware.
and shared-memory computers which lack the
hardware but can simulate message-passing in
software.

1.5 Computer Terminology

Nevertheless. most of our benchmarks are written
to the distributed-memory MIMD programming
model, with so-called scalable distributed-mem-
ory hardware in mind. The hardware of such com-
puters consists of a large number of "nodes™ con-
nected by a communication network (tvpically
with a mesh or hypercube topology). across which
messages pass between the nodes. Each node tvp-
ically contains one or more microprocessors for
performing arithmetic (perhaps some with vector
processing capabilities), communication chips
that are used to interface with the network. and
local memory. For this reason, the computational
parts of the computer are commonly referred to as
either 'nodes’” or ’processors’’, and the com-

PARKBENCH REPORT 103

puter is scaled up in size by increasing their num-
ber. Both names are acceptable. but "nodes" is
perhaps preferable for use in descriptions of the
hardware. because we can then say that one node
may contain several processors.

The F77+PVM programming model that we
are using is. however. much simpler. in that the
node is the smallest element of the computer that
can be programmed. and it is always used as if it
contained a single processor. because it runs a
single F77 program. If the hardware actually uses
several processors to run the single program
faster. this should be beneficial to the benchmark
result, butitis hidden from the programmer. Thus
from the programmer’s view, there is no useful
distinction between node and processor, and in
this document we have tried to use the term "’pro-
cessor " consistently to mean the “logical proces-
sor’” of the F77+PVM programming model.
whether or not it may be implemented by one or
several phvsical processors.

1.6 How to Get the PARKBENCH Report
and Benchmarks

An up-to-date copy of all the PARKBENCH ma-
terial is available from netlib. The index of mate-
rial available may be obtained in several ways:

(1) From any machine on the
Internet type:

rcp anon@netlib2. es. utk. edu:
parkbench/index index

(2) Anonymous ftp to
netlib2.cs.utk. edu

cd parkbench
get index
quit

(3) Sending email to
netlib@ornl. gov
and in the message type:

send index from parkbench

(4) Use Xnetlib and click "li-
brary", click "parkbench",
click "parkbench/index", click
"download", click "Get Files
Now". (Xnetlib is an X-window
interface to the netlib

104 PARKBENCH COMMITTEE

software based on a
client-server model. The
software can be found in
netlib.)

The required material can then be obtained with a
further “‘get’’.

The latest version of this PARKBENCH report
that is available for public electronic distribution
can be found in the file parkbench.ps. The vari-
ous benchmarks will appear as compressed and
uuencoded tar files as they become available. A
collection of other benchmarks are also available,
and the index adequately explains their content.

Chapter 2

Methodology*

2.1 Philosophy

One might ask why anyone should care about de-
veloping a standardized. rigorous and scientifi-
cally tenable methodology for studying the perfor-
mance of high-performance computer svstems.
There are several reasons why this is an important
undertaking:

1. To establish and maintain high standards of

honesty and integrity in our profession.

2. To improve the status ol supercomputer

performance analvsis as a rigorous scientific
discipline.

3. To reduce confusion in the high-perfor-
mance computing literature.

4. To increase understanding of these svstems.
both at a low-level hardware or software
level and at a high-level. total system per-
formance level.

5. To assist the purchasers of high-perfor-
mance computing equipment in selecting
systems best suited o their needs.

0. Toreduce the amount of time and resources

vendors must expend in implementing mul-

tiple. redundant benchmarks.

To provide valuable feedback 1o vendors on

bottlenecks that can be alleviated in future

products.

It is important to note that researchers in many
scientific disciplines have found it necessary to es-
tablish and reline standards for performing exper-
iments and reporting the resulis. Many seientists
have learned the importance of standard ermi-
nology and netation. Chemists. physicists and bi-
ologists long ago discovered the importance of

by

controls in their experiments. The issue of repeat-

* Assembled by David Bailey for methodology subeommit-

tee.

ability proved crucial in the recent cold fusion epi-
sode. Medical researchers have found it necessary
to perform double-blind experiments in their
field. Psvchologists and sociologists have devel-
oped highly refined experimental methodologies
and advanced data analysis techniques. Political
scientists have found that subte differences in the
phrasing of a question can affect the results of a
poll. Researchers in many fields have found that
environmental factors in their experiments can
significantly influence the measured results: thus
thev must carefully report all such factors in their
papers.

If supercomputer performance analvsis and
benchmarking is ever to be taken seriously as a
sclentific discipline. certainly its practitioners
should be expected to adhere to standards that
prevail in other disciplines. This document is ded-
icated to promoting these standards in our field.

2.2 Fundamental Metrics

The conclusions drawn from a benchmark study
of computer performance depend not only on the
basic uming results obtained. but also on the way
these are interpreted and converted into perfor-
mance figures. The choice of the performance
metric. mav itself influence the conclusions. For
example. do we want the computer that generates
the most megaflop per second (or has the highest
Speedup’. or the computer that solves the prob-
lem in the least time? It is now well known that
high values of the first metrics do not necessarily
imply the second property. This confusion can be
avoided by choosing a more suitable metric that
reflects solution time directly. for example either
the Temporal. Simulation or Benchmark perfor-
mance. defined below. This issue of the sensible
choice of performance metric is becoming increas-
ingly important with the advent of massively par-
allel computers which have the potential of very

106 PARKBENCH COMMITTEL

high megaflop rates. but have much more limited
potential for reducing solution time.

2.3 Time Measurement

Before other issues can be considered. we must
discuss the measurement of run time. In recent
vears a consensus has been reached among many
scientists in the field that the most relevant mea-
sure of run time is actual wall-clock elapsed time.
This measure of time will be required for all
PARKBENCH results that are posted to the data-
base.

Elapsed wall-clock time means the time that
would be measured on an external clock that re-
cords the time-of-dayv or even Coordinated Uni-

versal Time (U'TC). between the start and linish of

the benchmark. We are not concerned with the
origin of the time measurement. since we are tak-
ing a difference. but it is important that the time
measured would be the same as that given by a

difference between two measurements of UTC. if

it were possible to make them. It is important to be
clear about this. because many computer clocks
(e.g.. Sun Unix function ETIME) measure elapsed
CPU time, which is the total time that the process
or job which calls it has been executing in the
CPU. Such a clock does not record time {i.e. it
stops ticking) when the job is swapped out of the
CPU. It does not record. therefore. any wait time
which must be included if we are to assess cor-
rectly the performance of a parallel program. On
some systems. scientists have found that even for
programs that perform no explicit I/0. consider-
able system time is nonetheless involved. for ex-
ample in fetching certain library routines or other
data.

Only timings actually measured may be cited
for PARKBENCH benchmarks {and we strongly
recommend this practice for other benchmarks as
well). Extrapolations and projections. for instance
to a larger number of processors. may not be em-
ploved for any reason. Also, in the interests of re-
peatability it is highly recommended that timing
runs be repeated, several times if possible.

Two low-level benchmarks are provided in the
PARKBENCH suite to test the precision and ac-
curacy of the clock that is to be used in the
benchmarking. These should be run first, before
any benchmark measurements are made. They
are:

1. TICK1 - measures the precision of the clock
by measuring the time interval between ticks

of the clock. A clock is said to tick when it
changes its value.

2. TICK2 - measures the accuracy of the clock
by comparing a given time interval mea-
sured by an external wall-clock (the bench-
marker’s wrist watch is adequate) with the
same interval measured by the computer
clock. This tests the scale factor used to
convert computer clock ticks to seconds.
and immediately detects if a CPU-clock is
incorrectly being used.

The fundamental measurement made in any
benchmark is the elapsed wall-clock time to com-
plete some specified task. All other performance
figures are derived from this basic timing mea-
surement. The benchmark time. T(\\V: p}. will be a
function of the problem size. V. and the number
of processors. p. Here. the problem size is repre-
sented by the vector variable. N\ which stands for
a set of parameters characterising the size of the
problem: e.g.. the number of mesh points in each
dimension. and the number of particles in a parti-
cle-mesh simulation. Benchmark problems of dif-
ferent sizes can be created by multiplying all the
size parameters by suitable powers of a single
scale factor. thereby increasing the spatial and
particle resolution in a sensible way. and reducing
the size parameters to a single size factor {usually
called a).

We believe that it is most important to regard
execution time and performance as a tuncuon of
at least the two variables (V; p). which define a
parameter plane. Much confusion has arisen in
the past by attempts to treat performance as a
function of a single variable. by taking a particular
path through tlllb plane. and not stating what path
is taken. \Iam different paths may be taken and
hence many different conclusions can be drawn. It
is important. therefore, always to define the path
through the performance plane. or better as we do
here, to study the shape of the two-dimensional
performance hill. In some cases there may even be
an optimum path up this hill. The following dis-
cussion of units and metrics is based on that of
Hockney [6].

2.4 Units and Symbols

A rational set of units and symbols is essential for
any numerate science including benchmarking.
The following extension of the internationally
agreed SI system of physical units [7] is made to

accommodate the needs of computer bench-
marking. v

The value of a variable comprises a pure num-
ber stating the number of units which equal the
value of the variable. followed by a unit symbol
specifving the unit in which the variable is being
measured. A new unit is required whenever a
quantity of a new nature arises. such as the first
appearance of vector operations. or message
sends. Generally speaking a unit symbol should
be as short as possible. consistent with being eas-
ily recognised and not already used. The following
have been found necessary in the characterisation
of computer and benchmark performance in sci-
ence and engineering. No doubt more will have to
be defined as benchmarking enters new areas.

New unit svmbols and their meaning:

flop: floating-point operation [latex\lop’
inst: instruction of any kind [latex\inst’
intop: integer operation [latex\inop |
vecop: vector operation [latex\vecop!
send: message send operation [latex\send
iter: iteration of loop [latex\iter’
mref: memory reference (read or write)
[latex\mref’
8. barr: barrier operation [latex\barr]
9. b: binary digit (bit) [latex\bit]
10. B: byte {groups of 8 bits) [latex\B’
11. sol: solution or single execution of a
benchmark [latex\sol,
12. w: computer word. Symbol is lower case
(W means watt) [latex\w]
13. tstep: timestep

N

P Bk

When required a subscript may be used to show
the number of bits involved in the unit. For exam-
ple: a 32-bit floating-point operation flops,. a 64-
bit word we,. also we have b = w1, B = wg. wey =
8B.

Note that flop. mref and other multi-letter sym-
bols are inseparable four or five-letter symbols.
The character case is significant in all unit sym-
bols so thate.g. Flop. Mref. H, are incorrect. Unit
symbols should always be printed in roman type.
to contrast with variables names which are printed
in italic. To aid in the use of roman type. espe-
cially within LATEX"s math mode, LATEX com-
mands have been defined for each unit, these
commands being a backslash followed by the unit
symbol (except for ‘intop’ and ‘b’ whose names
are changed in the command to avoid a clash with
already defined system commands). Such com-
mands will print in roman type wherever they oc-

PARKBENCH REPORT 107

cur. Because ‘s’ is the Sl unit for seconds, unit
symbols like ‘sheep” do not take ‘s” in the plural.
Thus we count: one flop. two flop, . . ., one hun-
dred flop etc. This is especially important when
the unit symbol is used in ordinary text as a useful
abbreviation. as often, quite sensibly, it is.

SI provides the standard prefixes:

1. k : kilo meaning 103

2. M : mega meaning 10°
o ; o

3. G : giga meaning 10]

4. T : tera meaning 10"

This means that we cannot use M to mean 10242
(the binary mega) as is often done in describing
computer memory capacity. e.z. 256 MB. We can
however introduce the new prefix:

1. K :meaning 1024. then use a subscript 2 to
indicate the binary versions

2. M, : binary mega 10242
3. G, : binary giga 10243
4. T, : binary tera 1024*

In most cases the difference between the mega
and the binary mega (4%} is probably unimport-
ant, but it is important to be unambiguous. In this
wayv we can continue with existing practice if the
difference doesn’t matter. and have an agreed
method of being more exact when necessary. For
example. the above memory capacity was proba-
bly intended to mean 256M,B.

As a consequence of the above. an amount of
computational work involving 4.5 X 10" floating-
point operations is correctly written as 4.5 THlop.
Note that the unit svmbol Tflop is never pluralised
with an added "s’. and it is therefore incorrect to
write the above as 4.5 Tflops which could be con-
fused with a rate per second. The most frequently
used unit of performance. millions of floating-
point operations per second is correctly written
Mflop/s, in analogy to km/s. The slash is neces-
sary and means ‘per’, because the ‘p’ is an inte-
gral part of the unit symbol ‘flop” and cannot also
be used to mean “per’.

2.5 Floating-Point Operation Count

Although we discourage the use of millions of
floating-point operations per second as a perfor-
mance metric, it can be a useful measure if the
number of floating-point operations, F(N),
needed to solve the benchmark problem is care-

fully defined.

108 PARKBENCIH COMMITTEE

For simple problems (e.g. matrix multiply; it is
sufficient to use a theoretical value for the float-
ing-point operation count (in this case 2n? flop.
for nxn matrices) obtained by inspection of the
code or consideration of the arithmetic in the algo-
rithm. For more complex problems containing
data-dependent conditional statements. an em-
pirical method may have o be used. The sequen-
tial version of the benchmark code defines the
problem and the algorithm to be used to solve it.
Counters can be inserted into this code or a hard-
ware monitor used to count the number of {loat-
ing-point operations. The latter is the procedure

followed by the PERFECT Club [8. In either case

a decision has to be made regarding the number of
flop that are to be credited for ditferent types of

floating-point operations. and we see no good rea-
son to deviate from those chosen by Me Mahon [9°
when the Mflop/s measure was mmumll\ defined.
These are:

add, subtract. muliply 1 flop

divide, square-root 4 flop

exponential. sine etc. 8 flop
(this figure will be
adjusted)

IFIX .REL. Y! 1 flop

Some members of the committee felt that these
numbers, derived in the 1970s. no longer cor-
rectly reflected the situation on current com-
puters. However. since these numbers are only
used to calculate a nominal benchmark flop-
count, it is not so important that they be accurate.
The important thing is that they do not change.
otherwise all previous {lop-counts would have to
be renormalised. In any case. it is not possible for
a single set of ratios to be valid for all computers
and library software. The commitiee agreed that
above ratios should be kept for the time being. but
that the value for the transcendental functions
was unrealistic and would be adjusted later after
research into a more realistic and higher value.

We distinguish two tvpes of operation count.
The first is the nominal benchmark floating-point
operation count, fz(/V), which is found in the
above way from the defining Fortran77 sequential
code. The other is the actual number of floating-
point operations performed by the hardware when
executing the distributed multi-processor version.
Fu(N; p), which may be greater than the nominal
benchmark count, due to the distributed version
performing redundant arithmetic operations. Be-
cause of this. the hardware flop count may also

depend on the number of processors on which the
benchmark is run. as shown in its argument list.

2.6 Performance Metrics

Given the time of execution T{N: p} and the flop-
count F(\V) several different performance mea-
sures can be defined. Each metric has its own
uses. and gives different information about the
computer and algorithm used in the benchmark.
It is important therefore to distinguish the metries
with different names. symbols and units. and t
understand clearly the difference between them.
Much confusion and wasted work can arise from
optimising a benchmark with respect to an inap-
propriate metric. The principal performance met-
rics are discussed in the following subsections.

2.6.1 Temporal Performance

If we are interested in comparing the performance
of different algorithms for the solution of the same
problem. then the correct performance metric to
use is the Temporal Performance. Ry. which is
defined as the inverse of the execution time

RriN:p)=T7"\N:p) 2.1
The units of temporal performance are. in gen-
eral. solutions per second (sol/s!. or some more
appropriate absolute unit such as timesteps per
second (tstep/s). With this metric we can be sure
that the algorithm with the highest performance
executes in the least time. and is therefore the best
algorithm. We note that the number of flop does
not appear in this definition. because the objective
of algorithm design is not to perform the most
arithmetic per second. but rather it is to solve a
given problem in the least time. regardless of the
amount of arithmetic involved. For Ihh reason the
temporal performance is also the metric that com-
puter users should employ to select the best algo-
rithm to solve their problems. because their objec-
tive is also to solve the problem in the least time.
and they do not care how much arithmetic is done
to achieve this.

2.6.2 Simulation Performance

A special case of temporal performance occurs for
simulation programs in which the benchmark
problem is defined as the simulation of a certain
period of physical time, rather than a certain
number of timesteps. In this case we speak of the
Simulation Performance and use units such as

simulated days per day (written sim-d/d or *d"/d}
in weather forecasting. where the apostrophe is
used to indicate ‘simulated’: or simulated pico-
seconds per second (written simps/s or "ps’/s}in
electronic device simulation. It is important to use

simulation performance rather than timestep/s if

we are comparing different simulation algorithms
which may require different sizes of timestep for
the same accuracy (for example an implicit
scheme that can use a large timestep. compared
with an explicit scheme that requires a much
smaller step). In order to maintain numerical sta-
bility. explicit schemes also require the use of a
smaller timestep as the spatial grid is made finer.
For such schiemes the simulation performance
falls ofl dramatically as the problem size is in-
creased by introducing more mesh points in order
to refine the spatal resolution: the doubling of the
number of mesh-points in each of three dimen-
sions can reduce the simulation performance by a
factor near 16 because the timestep must also be
approximately halved. Even though the larger
problem will generate more Megaflop per second.
in forecasting. itis the simulated days per day (i.e.
the simulation performance; and not the Mflop/s.
that matter to the user.

As we see below. benchmark performance is
also measured in terms ol the amount of arith-
metic performed per second or Mtlop/s. However
it is important to realise that it is incorrect to com-
pare the Mflop/s achieved by two algorithms and
to conclude that the algorithm with the highest
Mflop/s rating is the hest algorithm. This is be-
cause the two alnonthnh may be performing (uite
different amounts of arithmetic during the solu-
tion of the same problem. The temporal perfor-
mance metric. Ry. defined above. has been intro-
duced to overcome this problem. and provide a
measure that can be used to compare different
algorithms for solving the same problem. How-
ever. it should be remembered that the temporal
performance only has the same meaning within
the confines of a fixed problem. and no meaning
can be attached to a comparison of the temporal
performance on one problem with the temporal
performance on another.

2.6.3 Benchmark Performance

In order to compare the performance of a com-
puter on one benchmark with its performance on
another, account must be taken of the different
amounts of work (measured in flop) that the dif-
ferent problems require for their solution. Using

PARKBENCI REPORT 109

the flop-count for the benchmark. F(:V). we can
detine the Benchmark Performance as
Rp(N: p)y = Fp(N)/T{N: p) (2.2}

The units of benchmark performance are Mflop/s
(benchmark name). where we include the name of
the benchmark in parentheses to emphasise that
the performance may depend strongly on the
problem being solved. and to emphasise that the
values are based on the nominal benchmark flop-
count. In other contexts such performance figures
would probably be quoted as examples of the so-
called sustained performance of a computer. We
feel that the use of this term is meaningless unless
the problem being solved and the degree of code
optimisation is quoted. because the performance
is so varied across dilferent benchmarks and dif-
ferent levels of optimisation. Hence we favour the
quotation of a selection of benchmark perfor-
mance figures. rather than a single sustained per-
formance. because the latter implies that the
quoted performance is maintained over all prob-
lems.

Note also that the flop-count F(.V) is that for
the defining sequential version of the benchmark.
and that the same count is used to calculate Rg for
the distributed-memory (DM} version of the pro-
gram, even though the DM version may actually
perform a dlilerem number of operations. It is
usual for DM programs to perform more arith-
metic than the defining sequential version. be-
cause often numbers are recomputed on each
processor in order to save communicating their
values from a master processor. However such
calculations are redundant (they have already
been performed on the master; and it would be
incorrect to credit them to the flop-count of the
distributed program.

Using the sequendal flop-count in the calcula-
tion of the DM programs benchmark performance
has the additional advantage that it is possible to
conclude that. for a given benchmark, the imple-
mentation that has the highest benchmark perfor-
mance is the best because it executes in the least
time. This would not necessarily be the case if a
different Fg (V) were used for different implemen-
tations of the benchmark. For example, the use of
a better algorithm which obtains the solution with
less than FB(1\) operations will show up as higher
benchmark performance. For this reason it should
cause no surprise if the benchmark performance
occasionally exceeds the maximum possible hard-
ware performance. To this extent benchmark per-
formance Mflop/s must be understood to be nom-

110 PARKBENCH COMMITTEE

inal values, and not necessarily exactly the
number of operations executed per second by the
hardware, which is the subject of the next metric.
The purpose of benchmark performance is to
compare different implementations and algo-
rithms on different computers for the solution of
the same problem, on the basis that the best per-
formance means the least execution time. For this
to be true Fg(N) must be kept the same for all
implementations and algorithms.

2.6.4 Hardware Performance

If we wish to compare the observed performance
with the theoretical capabilities of the computer
hardware. we must compute the actual number of
floating-point operations performed, Fy(N\: p).
and from it the actual Hardware Performance

Ry(N: p) = Fu(N: p)/T(N: p) (2.3)

The hardware performance also has the units
Mflop/s. and will have the same value as the
benchmark performance for the sequential ver-
sion of the benchmark. However. the hardware
performance may be higher than the benchmark
performance for the distributed version. because
the hardware performance gives credit for redun-
dant arithmetic operations. whereas the ben-
chmark performance does not. Because the hard-
ware performance measures the actual
floating-point operations performed per second.
unlike the benchmark performance. it can never
exceed the theoretical peak performance of the
computer.

Assuming a computer with multiple-CPUs each
with multiple arithmetic pipelines. delivering a
maximum of one flop per clock period. the theo-
retical peak value of hardware performance is

r¥ :f[./)l.[)l])P.S‘/'(,.PL X number.CPUs {24,
clock.period

with units of Mflop/s il the clock period is ex-
pressed in microseconds. By comparing the mea-
sure hardware performance. R;{N: p). with the
theoretical peak performance. we can assess the
fraction of the available performance that is being
realised by a particular implementation of the
benchmark.

2.6.5 Speedup, Efficiency and
Performance per Node

Parallel speedup is a popular metric that has been
used for many vears in the study of parallel com-

puter performance. However, its definition is open
to ambiguity and misuse because it always begs
the question “*speedup over what?”’

Speedup is usually defined as

Ty
T

P

where T, is the p-processor time to perform some
benchmark, and 7 is the one-processor time.
There is no doubt about the meaning of 7,—this
is the measured time T(V: p) to perform the
benchmark. There is often considerable dispute
over the meaning of 77: should it be the time for
the parallel code running on one processor. which
probably contains unnecessary parallel overhead.
or should it be the best serial code (possibly using
a different algorithm) running on one processor?
Many scientists feel the latter is a more responsible
choice. but this requires research to determine the
best practical serial algorithm for the given appli-
cation. If at a later time a better algorithm is
found. current speedup figures might be consid-
ered obsolete. An additional difficulty with this
definition is that even if a meaning for 7' is agreed
to. there may be insufficient memory on a single
processor to store an entire large problem. Thus in
many cases it may be impossible to measure T
using this definition.

One principal objective in the field of perfor-
mance analysis is to compare the performance of
different computers by benchmarking. It is gener-
allv agreed that the best performance corresponds
to the least wall-clock execution time. In order 10
adapt the speedup statistic for benchmarking. it is
thus necessary to define a single reference value of
T, to be used for all caleulations. It does not mat-
ter how T is defined. or what itz value is. only that
the same value of T is used to calculate all
speedup values used in the comparison.

However. defining Ty as a reference time unre-
lated to the parallel computer being benchmarked
unfortunately has the consequence that many
properties that many people regard as essential to
the concept of parallel speedup are lost:

1. It is no longer necessarily true that the
speedup of the parallel code on one proces-
sor is unity. [t may be. but only by chance.

2. 1t is no longer true that the maximum
speedup using p-processors is p.

3. Because of the last item. efficiency figures
computed as speedup divided by p are no
longer a meaningful measure of processor
utilization.

There are other difficulties with this formula-
tion of speedup. If we use Ty as the run time on a
very fast single processor (currently. say. a Cray
C90 or a NEC SX-3), then manufacturers of
highly parallel systems will be reluctant to quote
the speedup of their system in the above way. For
example, if the speedup of a 100 processor paral-
lel system over a single processor of the same sys-
tem is a respectable factor of 80. it is likely that the
speedup computed from the standard Ty would
be reduced to 10 or less. This is because a fast
vector processor is tvpically at least ten times
faster than the RISC processors used in many
highly parallel systems of a comparable genera-
tion.

Thus it appears that if we sharpen the defini-
tion of speedup to make it an acceptable metric
for comparing the performance of different com-
puters. we have to throw away the main properties
that have made the concept of speedup useful in
the past.

Accordingly. the PARKBENCH committee has
decided the following:

1. No speedup statistic will be kept in the
PARKBENCH database.

2. Speedup statistics based on PARKBENCH
benchmarks must never be used as tigures
of merit when comparing the performance
of different systems. We further recommend
that speedup figures based on other bench-
marks not be used as figures of merit in such
comparisons.

3. Speedup statistics may be used in a study of
the performance characteristics of an indi-
vidual parallel system. But the basis for the
determination of T must be clearly and ex-
plicidy stated.

4. The value of T should be based on an effi-
cient uniprocessor implementation. Code
for message passing. svnechronization. etc.
should not be present. The author should
also make a reasonable effort to insure that
the algorithm used in the uniprocessor im-
plementation is the best practical serial al-
gorithm for this purpose.

5. Given that a large problem frequently does
not fit on a single processor. it is permissible
to cite speedup statistics based on the tim-
ing of a smaller number of processors. In
other words. it is permissible to compute
speedup as T,/ T,,. for some m. 1 < m <p.
If this is done. however. this usage must be
clearly stated. and full details of the basis of
this calculation must bhe presented. As

PARKBENCH REPORT 111

above, care must be taken to insure that the
unit timing T, is based on an efficient im-
plementation of appropriate algorithms.

2.7 Performance Database

The process of gathering. archiving, and distribut-
ing computer benchmark data is a cumbersome
task usually performed by computer users and
vendors with little coordination. Within Xnetlib
[10] there is a mechanism to provide Internet-ac-
cess to a performance database server (PDS)
which can be used to extract current benchmark
data and literature. PDS [11] provides an on-line
catalog of public-domain computer benchmarks
such as the LINPACK Benchmark [12]. Perfect
Benchmarks [8]. and the NAS Parallel Bench-
marks [13]. PDS does not reformat or present the
benchmark data in any way that conflicts with the
original methodology of any particular bench-
mark; it is thereby devoid of any subjective in-
terpretations of machine performance. PDS is
providing a more manageable approach to the de-
velopment and support of a large dynamic data-
base of published performance metrics.

The PDS system was developed at the Univer-
sity of Tennessee and Oak Ridge National Labo-
ratory and is an initial attempt at performance
data management. This on-line database of com-
puter benchmarks is specifically designed to pro-
vide easy maintenance. data security. and data
integrity in the benchmark information contained
in a dvnamic performance database.

PDS was designed with a simple tabular format
that involves displaying the data in rows (machine
configuration and columns {numbers). Graphical
representations of tabular data. such as the repre-
sentation by SPEC [14] with the obsolescent
SPECmarks. are straightforward.

2.7.1 Design of a Performance Database

Because of the complexity and volume of the data
involved in a performance database, it is natural
to exploit a database management system (DBMS)
to archive and retrieve benchmark data. A DBMS
will help not only in managing the data. but also in
assuring that the various benchmarks are pre-
sented in some reasonable format for users: table
or spreadsheet where machines are rows and
benchmarks are columns.

Of major concern is the organization of the
data. It seems logical to organize data in the
DBMS according to the benchmarks themselves: a

112 PARKBENCH COMMITTEE

LINPACK table, a Perfect table, etc. It would be
nearly impossible to force these very different pre-
sentation formats to conform to a single presenta-
tion standard just for the sake of reporting. Indi-
vidual tables preserve the display characteristics
of each benchmark, but the DBMS should allow
users to query all tables for various machines.
Parsing benchmark data into these tables is
straightforward provided a customized parser is
available for each benchmark set. In the parsing
process, constructing a raw data file and building
a standard format ASCII file eases the incorpora-
tion of the data into the database.

The functionality required by PDS is not very
different from that of a standard database appli-
cation. The difference lies in the user interface.
Financial databases. for example. typically in-
volve specific queries like

EXTRACT ROW ACCT_NO = R103049

in which data points are usually discrete and the
user is very familiar with the data. The user. in this
case, knows exactly what account number to ex-
tract, and the format of retrieved data in response
to queries. With our performance database. how-
ever, we would expect the contrary: the user does
not really know (/) what kind of data is available.
(if) how to request/extract the data. and it what
form to expect the returned data to be in. These
assumptions are based on the current lack of co-
ordination in (public-domain} benchmark man-
agement. The number of benchmarks in use con-
tinues to rise with no standard format for
presenting them. The number of performance-
literate users is increasing. but not at a rate suffi-
cient to expect proper queries from the perfor-
mance database. Quite often. users just wish to
see the best-performing machines for a particular
benchmark. Hence. a simple rank-ordering of the
rows of machines according to a specific bench-
mark column may be sufficient for a general user.

Finally. the features ol the PDS user interface
should include

(1) the ability 1o extract specific machine and
benchmark combinations that are of inter-
est.

(2) the ability to search on multiple keywords
across the entire dataset. and

(3) the ability to view cross-referenced papers
and bibliographic information about the
benchmark itsell.

We include (3) in the list above to address the
concern of proliferating numbers without any
benchmark methodology information. PDS would
provide abstracts and complete papers related to
benchmarks and thereby provide a needed educa-
tional resource without risking improper interpre-
tation of retrieved benchmark data.

2.7.2 PDS Features

PDS provides the following retrieval-based func-
tions for the user:

(1) a browse feature to allow casual viewing
and point-and-click navigation through the
database.

(2) asearch feature to permit multiple keyword
searches with Boolean conditions.

(3} a rank-ordering feature to sort and display
the results for the user. and

(4) a few additional features that aid the user
in acquiring benchmark documentation
and references.

As discussed in {11}, the Rank Ordering op-
tion in PDS allows the user to view a listing of
machines that have been ranked by a particular
performance metric such as megaflop/s or
elapsed CPU time. Both Rank Ordering and
Papers options are menu-driven data access
paths within PDS. With the Browse facility in
PDS. the user first selects the vendor{s! and
benchmark(s} of interest. then selects the large
Process button to query the performance data-
base. The PDS client then opens a socket connec-
tion to the server and. using the query language
rdb’. remotely queries the database. The Search
option in PDS permits user-specilied kevword
searches over the entire performance database.
Search utilizes literal case-insensitive matching
along with a moderate amount of aliasing. Multi-
ple kevwords are permitted. and a Boolean flag is
provided for more complicated searches. Using
Search. the user has the option of entering ven-
dor names. machine aliases. benchmark names.
or specific strings. or producing a more compli-
cated Boolean kevword search. Since any re-
trieved data will be displaved to the screen by
default). the Save optuon allows the user to store
any retrieved performance data to an ASCIL file.
Finally. the Bibliography option in PDS pro-
vides a list of relevant manuscripts and other in-
formation about the benchmarks. Future en-
hancements to PDS include the use of more

sophisticated two-dimensional graphical displays
for machine comparisons. Additional serial and
parallel benchmarks will be added to the database
as formal procedures for data acquisition are de-
termined. The Browse and Search facilities
available in the current version of PDS are illus-
trated in Appendix B.

2.7.3 PDS Availability

To receive Xnetlib with PDS support for Unix-
based machines, send the electronic mail message
send zxnetlib.shar from zxnetlib to netlib
@ornl. gov. You can unshar the file and compile
it bv answering the user-prompted questions upon
installation. Use of shar will install the full func-
tionality of Xnetlib along with the latest PDS client
tool. Questions concerning PDS should be sent to
utpds@cs. utk. edu. The University of Tennes-
see and Oak Ridge National Laboratory will be
responsible for gathering and archiving additional
(published) benchmark data.

At present each benchmark measurement for a
particular problem size .\ and processor number
p- is represented by one line in the database with
variable length fields chosen by the benchmark
writer as suitable and comprehensive to describe
the conditions of the benchmark run. The fields
separated by a marker include. benchmarker’s
name and e-mail. computer location and date.
hardware specification. compiler data and optimi-
sation level, N, p, T{(:V: p), Rg(N: P} and other
metrics as deemed appropriate by the benchmark
writer. Ideally. the line for the database would be
produced automatically as output by the bench-
mark program itself.

2.8 Interactive Graphical interface

The Southampton Group has agreed to provide
an interactive graphical front end to the
PARKBENCH PDS database of performance
results. To achieve this. the basic data held in
the Performance Data Base should be values of
T(N; p) for at least 4 values of problem size /\,
each for sufficient p-values (say 5 to 10) to deter-
mine the trend of variation of performance with
number of processors for constant problem size. It
is important that there be enough p-values to see
any saturation in performance, if present, or any
peak in performance followed by degradation. A
graphical interface is really essential to allow this
multidimensional data to be viewed in any of the
metrics defined above, as chosen interactively by

PARKBENCH REPORT 113

the user. The user could also be offered (by suit-
able interpolation) a display of the results in vari-
ous scaled metrics, in which the problem size is
expanded with the number of processors.

In order to encompass as wide a range of per-
formance and number of processors as possible, a
log-scale on both axes is unavoidable, and the
format and scale range should be kept fixed as
long as possible to enable easy comparison be-
tween graphs. A three-cycle by three-cycle log/log
graph with range 1 to 1000 in both p and Mflop/s
would cover most needs in the immediate future.
Examples of such graphs are to be found in [6,
15].

A log/log graph is also desirable because the
size and shape of the Amdahl saturation curve is
the same wherever it is plotted on such a graph.
i.e. there is a universal Amdahl curve that is invar-
iant to its position on any log/log graph. Amdahl
saturation is a two-parameter description of any
of the performance metrics. R. as a function of p
for fixed :V. which can be expressed by

___ R \
R=a+pip 2.6)

where R. is the saturation performance ap-
proached as p — = and p; is the number of pro-
cessors required to reach half the saturation per-
formance. The graphical interface should allow
this universal Amdahl curve to be moved around
the graphical display, and be matched against the
performance curves. The changing values of the
two parameters (R». p;) should be displayed as the
Amdahl curve is moved.

As more experience is gained with performance
analvsis. that is the fitting of performance data to
parameterised formulae. it is to be expected that
the graphical interface will allow more compli-
cated formulae to be compared with the experi-
mental data. perhaps allowing 3 to 5 parameters
in the theoretical formula. But. as vet. we do not
know what these parameterised formula should
be.

2.9 Benchmarking Procedure and
Code Optimisation

Manufacturers will alwavs feel that any bench-
mark not tuned specifically by themselves. is an
unfair test of their hardware and software. This is
inevitable and from their viewpoint it is true.
NASA have overcome this problem by only speci-
fving the problems (the NAS paper-and-pencil

114 PARKBENCH COMMITTEE

benchmarks [16]) and leaving the manulacturers
to write the code. but in many circumstances this
would require unjustifiable effort and take too
long. Itis also a perfectly valid question to ask how
a particular parallel computer will perform on ex-

isting parallel code. and that is the viewpoint of

PARKBENCH.

The benchmarking procedure is to run the dis-
tributed PARKBENCH suite on an as-is basis.
making only such non-substantive changes that
are required to make the code run {e.g. changing
the names of header files to a local variant). The
as-is run may use the highest level of automatic
compiler optimisation that works. but the level
used and compiler date should be noted in the
appropriate section of the performance database
entry.

After completing the as-is run. which gives a
base-line result. any form of optimisation may be
applied to show the particular computer to its best
advantage, up to completely rethinking the algo-
rithm. and rewriting the code. The only require-
ment on the benchmarker is to state what has
been done. However. remember that. even if the
algorithm is changed. the official flop-count.
Fg(N) that is used in the calculation of nominal

benchmark Mflop/s. Rg(N; p), does not. In this
way a better algorithm will show up with a higher
Rp. as we would want it to. even though the hard-
ware Mflop/s is likely to be litde changed.
Typical steps in optimisation might be:

1. explore the effect of different compiler op-
timisations on a single processor. and
choose the best for the as-is run.

perform the as-is run on multiple proces-

1o

sors. using enough values of p to determine
any peak in performance or saturation.

3. return to single processor and otpimise code
for vectorisation. if a vector processor is be-
ing used. This meuns restructuring loops to
permit vectorisauon.

4. continue by replacement of selected loops
with optimal assembly coded library rou-
tines {e.g. BLAS [17] where appropriate}.

5. replacement of whole benchmark by a
tuned library routine with the same func-
tionality.

6. replace the whole benchmark with a locally
written version with the same functonality
but using possibly an entirely different algo-
rithm that is more suited to the architecture.

Chapter 3

Low-Level Benchmarks*

3.1 Introduction

The first step in the assessment of the perfor-
mance of a parallel computer system is to measure

the performance of a single logical processor of

the multi-processor svstem. There exist already
many good and well-established benchmarks
for this purpose, notably the LINPACK bench-
marks and the Livermore Loops. These are not
part of the PARKBENCH suite of programs. but
PARKBENCH recommends that these be used to
measure single-processor performance. in addi-
tion to some specific low-level measurements of its
own (see Section 3.2). There follows a brief de-
scription of existing benchmarks that are recom-
mended for measuring single-processor perfor-
mance. with a discussion of their value.

3.1.1 Most Reported Benchmark:
LINPACKD (n = 100)

This well-known standard benchmark is a Fortran
program for the solution of (100 X 100j dense set
of linear equations by Gaussian elimination. It is
distributed by Jack Dongarra of the University of
Tennessee [12!. The results are quoted in Mflop/s
and are regularly published and available by elec-
tronic mail. The main value of this benchmark is
that results are known for more computers than
any other benchmark. Most of the compute time is
contained in vectorisable DO-loops such as the
DAXPY (scalar times vector plus vector) and inner
product. Therefore one expects vector computers
to perform well on this benchmark. The weakness
of the benchmark is that it tests only a small num-
ber of vector operations, but it does include the
effect of memory access and it is solving a com-
plete (although small) real problem.

* Assembled by Roger Hockney for Low-Level subcommit-
tee.

3.1.2 Performance Range:
The Livermore Loops

These are a set of 24 Fortran DO-loops (The
Livermore Fortran Kernels. LFK) extracted from
operational codes used at the Lawrence Liver-
more National Laboratory [9]. They have been
used since the early seventies to assess the arith-
metic performance of computers and their com-
pilers. They are a mixture of vectorisable and
non-vectorisable loops and test rather fully the
computational capabilities of the hardware. and
the skill of the software in compiling efficient code.
and in vectorisation. The main value of the
benchmark is the range of performance that it
demonstrates. and in this respect it complements
the limited range of loops tested in the LINPACK
benchmark. The benchmark provides the individ-
ual performance of each loop. together with vari-
ous averages (arithmetic. geometric. harmonic)
and the quartiles of the distribution. However, it is
difficult to give a clear meaning to these averages.
and the value of the benchmark is more in the
distribution itself. In particular, the maximum
and minimum give the range of likely performance
in full applications. The ratio of maximum to min-
imum performance has been called the instability
or the speciality [18], and is a measure of how
difficult it is to obtain good performance from the
computer, and therefore how specialised it is. The
minimum or worst performance obtained on these
loops is of special value, because there is much
truth in the saying that ““the best computer to
choose is that with the best worst-performance.”

3.2 Single-Processor Benchmarks

The single-processor low-level benchmarks pro-
vided by PARKBENCH, aim to measure perfor-
mance parameters that characterise the basic
architecture of the computer, and the compiler

116 PARKBENCH COMMITTEE

software through which it is used. For this reason.
such benchmark: have also been called appropri-
ately basic architectural benchmarks. Following
the methodolov\ of Euroben [19]. the aim is that
these hardw are/compller parameters will be used
in performance formulae that predict the timing
and performance of the more complex kernels (see
Chapter 4) and compact applications (see Chap-
ter 5). They are therefore a set of synthetic
benchmarks contrived to measure theoretical pa-
rameters that describe the severity of some over-
head or potential bottleneck. or the properties of
some item of hardware. Thus RINF1 characterises
the basic properties of the arithmetic pipelines by
measuring the parameters (r=. ny) (see section
3.2.3). and POLY1 and POLY2 characterise the
severity of the memory bottleneck by measuring
the parameters (7. f}) (see section 3.2.4).

The fundamental measurement in any bench-
marking is the measurement of elapsed wall-clock
time. Because the computer clocks on each pro-
cessor of a multi-processor parallel computer are
not synchronised. all benchmark time measure-
ments must be made with a single clock on one
processor of the system. The benchmarks TICK1
and TICK2 have. respectively. been designed to
measure the resolution and 1o check the absolute
value of this clock. These henchmarks should be
run with satisfactory results before any further
benchmark measurements are made.

3.2.1 Timer Resolution: TICK1

TICK1 measures the resolution of the clock being
used in the benchmark measurements. which is
the time interval between successive ticks of the
clock. A succession of calls to the timer routine are
inserted in a loop and executed many times. The
differences between successive values given by the
timer are then examined. If the changes in the
clock value {or ticks; occur less frequently than the
time taken to enter and leave the timer routine.
then most of these differences will be zero. When a
tick takes place. however. a dilference equal to the
tick value will be recorded. surrounded by many
zero differences. This is the case with clocks of
poor resolution: for example most UNIX clocks
that tick typically every 10 ms. Such poor UNIX
clocks can still be used for low-level benchmark
measurements if the benchmark is repeated. say.
10.000 times. and the timer calls are made out-
side this repeat loop.

With some computers. such as the CRAY se-
ries, the clock ticks every cycle of the computer.

that is to say every 6ns on the Y-MP. The resolu-
tion of the CRAY clock is therefore approximately
one million times better than a UNIX clock. and
that is quite a difference! If TICK1 is used on such
a computer the difference between successive val-
ues of the timer is a very accurate measure of how
long it takes to execute the instructions of the
timer routine, and therefore is never zero. TICK1
takes the minimum of all such differences. and all
it is possible to say is that the clock tick is less than
or equal to this value. Typically this minimum will
be several hundreds of clock ticks. With a clock
ticking every computer cycle, we can make low-
level benchmark measurements without a repeat
loop. Such measurements can even by made on a
busy timeshared system (where many users are
contending for memory access) by taking the min-
imum time recorded from a sample of. sav.
10.000 single execution measurements. In this
case. the minimum can usually be said to apply to
a case when there was no memory access delay
caused by other users.

TICK1 exists and forms part of the Genesis
benchmarks [20

3.2.2 Timer Value: TICK2

TICK2 confirms that the absolute values returned
by the computer clock are correct. by comparing
its measurement of a given time interval with that
of an external wall-clock {actually the bench-
marker’s wristwatch®. Parallel benchmark perfor-
mance can only be measured using the elapsed
wall-clock time. because the objective of parallel
execution is to reduce this time. Measurements
made with a CPU-timer iwhich only records time
when its job is executing in the CPU are clearly
incorrect. because the clock does not record wait-
ing time when the job is out of the CPU. TICK2
will immediately detect the incorrect use of a
CPU-time-for-this-job-only clock. An example of
a timer that claims to measure elapsed time but is
actually a CPU-timer. is the returned value of the
popular Sun UNIX timer ETIME. TICK2 also
checks that the correct multiplier is being used in
the computer system software 10 convert clock
ticks to true seconds.

TICK?2 existz and forms part of release 2.2 and

1

later of the Genesis benchmarks [21

3.2.3 Basic Arithmetic Operations: RINF1
This benchmark takes a set ol common Fortran
DO-loops and analyses their time of execution in
terms of the two parameters (r=.ry) [22. 23. 2+4.

25, 26, 27]. rx is the asvmptotic performance rate
in Mflop/s which is approached as the loop (or
vector) length, n, becomes longer. ny (the half-per-
formance length) expresses how rapidly, in terms
increasing vector length. the actual performance,
r, approaches r.. It is defined as the vector length
required to achieve a performance of one half of
r=. This means that the time. ¢. for a DO-loop
corresponding to g vector operations (i.e. with g
floating-point operations per element per itera-
tion) is approximated by

t=q*(n+ ny)/r. (3.1)
Then the performance rate is given by

—grn_ (3.2)

¢ 1+ m/n)

I

We can see from Eqn. (3.1) that ny is a way of
measuring the importance of vector startup over-
head (=ny/r.) in terms of quantities known to
the programmer (loop or vector length). In the
benchmark program. the two parameters are de-
termined by a least-squares fit of the data 10 the
straight line defined by Eqn. (3.1). A useful guide
to the significance of ny is to note from Eqn. (3.2)
that 80 percent of the asymptotic performance is
achieved for vectors of length 4 X ny. Generally
speaking. ny values of up to about 50 are tolera-
ble. whereas the performance of computers with
larger values of ny is severely constrained by the
need to keep vector lengths significantly longer
than ny. This requirement makes computers diffi-
cult to program efficiently. and often leads to dis-
appointing performance. compared to the asymp-
totic rate advertised by the manufacturer.

RINF1 has been used extensively for about
ten vears as part of the Hockney and EuroBen
benchmarks {module MOD1AC) [281. It is also
included in the Genesis benchmarks [151.

3.2.4 Memory-Bottleneck Benchmarks:
POLY1 and POLY2

Even if the vector lengths are long enough to over-
come the vector startup overhead. the peak rate of
the arithmetic pipelines may not be realised be-
cause of the delays associated with obtaining data
from the cache or main memory of the computer.
The POLY1 and POLY2 benchmarks quantify
this dependence of computer performance on
memory access bottlenecks. The computational
intensity, /. ol a DO-loop is defined as the number

PARKBENCH REPORT 117

of floating-point operations performed per mem-
ory reference to an element of a vector variable
[27]. The asymptotic performance, r=, of a com-
puter is observed to increase as the computational
intensity increases. because as this becomes
larger, the effects of memory access delays be-
come negligible compared to the time spent on
arithmetic. This effect is characterised by the two
parameters (7=, f;), where 7. is the peak hardware
performance of the arithmetic pipeline, and f} is
the computational intensity required to achieve
half this rate. That is to say the asymptotic perfor-
marnce is given by:

Fe ‘
I A+ 47 (3.3)
If memory access and arithmetic are not over-
lapped. then f; can be shown to be the ratio of
arithmetic speed (in Mflop/s) to memory access
speed (in Mw/s) [27]. The parameter f;, like ny,
measures an unwanted overhead and should be
as small as possible. In order to vary f and allow
the peak performance to be approached, we
choose a kernel loop that can be computed with
maximum efficiency on any hardware. This is the
evaluation of a polynomial by Horner’s rule, in
which case the computational intensity is the or-
der of the polynomial, and both the multiply and
add pipelines can be used in parallel. To measure
fi. the order of the polynomial is increased from
one to ten, and the measured performance for
long vectors is fitted to Eqn. (3.3).

The POLY1 benchmark repeats the polynomial
evaluation for each order typically 1000 times for
vector lengths up to 10,000, which would nor-
mally fit into the cache of a cache-based proces-
sor. Except for the first evaluation, the data will
therefore be found in the cache. POLY1 is there-
fore an in-cache test of the memorv bottleneck
between the arithmetic registers of the processor
and its cache.

POLY?2, on the other hand, flushes the cache
prior to each different order and then performs
only one polynomial evaluation, for vector lengths
from 10.000 up to 100,000, which would nor-
mally exceed the cache size. Data will have to be
brought from off-chip memory, and POLY2 is an
out-of-cache test of the memory bottleneck
between off-chip memory and the arithmetic
registers.

The POLY1 benchmark exists as MOD1G of
the EuroBen benchmarks [28]. POLY2 exists as
part of the Hockney benchmarks.

118 PARKBENCH COMMITTEL

3.3 Multi-Processor Benchmarks
The PARKBENCH suite of benchmark programs

provides low-level benchmarks to characterise
the basic communication properties of a parallel
computer by measuring the parameters (-, ny) for
communication (COMMS1, COMMS2, COMMS3).
The ratio of arithmetic speed to communication
speed (the hardware + compiler parameter f; for
communication) is measured by the POLY3
benchmark. The ability to synchronise all the pro-
cessors in a parallel computer in an acceptable
time, is a key requirement of such computers. The
SYNCH1 benchmark assesses this by measuring
the number of barrier synchronisation statements
that can be executed per second as a function of
the number of processors taking part in the bar-
rier.

3.3.1 Communication Benchmarks:
COMMS and COMMS2

The purpose of the COMMS1. or Pingpong.
benchmark [18. 29] is to measure the basic com-
munication properties of a message-passing
computer. A message of variable length. n. is
sent from a master processor to a slave processor.
The slave receives the message into a Fortran data
array, and immediately returns it to the master.
Half the time for this message pingpong is re-
corded as the time. ¢. to send a message of length.
n. In the COMMS2 benchmark there is a message
exchange in which two processors simultaneously
send messages to each other and return them. In
this case advantage can be taken of bidirectional
links. and a greater bandwidth can be obrained
than is possible with COMMS1. In both bench-
marks. the time as a function of message length is
fitted by least squares using the parameters (rx, ny)
(24, 27] to the following linear timing model:

t=(n+ ny)/rs (3.4)
when the communication rate is given by

I'c

r= 1T in = ropipe(n/ny) (3.5)

where pipe(x) = ﬁ (3.6)
and the startup time is

to = ny/rs (3.7)

In the above equations. r« is the asvmptotic band-
width of communication which is approached as
the message length tends to infinity (hence the
subscript). and ny is the message length required
to achieve half this asvmptotic rate. Hence ny is
called the half-performance message length.

The importance of the parameter ny is that it
provides a vardstick with which to measure mes-
sage-length, and thereby enables one to distin-
guish the two regimes of short and long messages.
For long messages (n > ny). the denominator in
equation (3.5) is approximately unity and the
communication rate is approximately constant at
its asymptotic rate. rx

r=re (3.8

For short messages (n < ny}. the communication
rate is best expressed in the algebraically equiva-
lent form

mn .

= —— (3.9}

g (1 + n/ny) L

where my = £y = r</ny (3.10)

For short messages. the denominator in equation
3.9 is approximately unity. so that

r=mon = n/ty (3.11)
In sharp contrast to the approximately constant
rate in the long-message limit. the communication
rate in the short message limit is seen to be ap-
proximately proportional to the message length.
The constant of proportionality. 7. is known as
the specific performance, and can be expressed
conveniently in units of kilobyte per second per
byvte (kB/s)/B or *k/s’. Unfortunately since an Sl
prefix, such as k. cannot stand alone without a
unit symbol, this unit must be written either as
10*/s or as kHz, where Hz is a special unit name
for per second (s71).

Thus, in general, we may say that r. charac-
terises the long-message performance and
the short-message performance. The COMMS1
benchmark computes all four of the above param-
eters, (r=, ny, ty, and), because each empha-
sises a different aspect of performance. However
only two of them are independent. In the case that
there are different modes of transmission for mes-
sages shorter or longer than a certain length, the
benchmark can read in this breakpoint and per-
form a separate least-squares fit for the two re-
gions. An example is the Intel iPSC/860 which

has a different message protocol for messages
shorter than and longer than 100 byte.

Because of the finite (and often large) value of
to. the above is a two-parameter description of
communication performance. [tis therefore incor-
rect. and sometimes positively misleading. to
quote only one of the parameters (e.g. just r». as is
often done) to describe the performance. The
most useful pairs of parameters are (re. ny). (m.
ry) and (ty. r.). depending on whether one is con-
cerned with long vectors. short vectors or a direct
comparison with hardware times. Note also that.
although ny is defined as the message length re-
quired to obtain half the asymptotic rate r.. the
two parameters (r. ny) are sufficient to calculate
the communication rate for any message length
via equation 3.5. or equivalently using 7 instead
of r< via 3.9.

The COMMS1 and CGOMMS2 benchmarks exist
as part of the Genesis benchmarks [301.

3.3.2 Total Saturation Bandwidth:
COMMS3

To complement the above communication bench-
marks. there is a need for a benchmark to mea-
sure the total saturation bandwidth of the com-
plete communication system. and to see how this
scales with the number of processors. A natural
generalisation of the COMMS2 benchmark is
made as follows. and called the COMMS3 bench-
mark: Each processor of a p-processor system
sends a message of length n to the other (p — 1)
processors. Each processor then waits to receive
the (p — 1) messages directed at it. The timing of
this generalised pingpong ends when all messages

PARKBENCH REPORT 119

have been successfully received by all processors,
although the process will be repeated many times
to obtain an accurate measurement, and the over-
all time will be divided by the number of repeats.
The time for the generalised pingpoing is the time
to send p (p — 1) messages of length n and can be
analysed in the same way as COMMS1 and
COMMS2 into values of (rz,n;). The value
obtained for r. is the required total saturation
bandwidth, and we are interested in how this
scales up as the number of processors p increases
and with it the number of available links in the
system.

COMMS3 is a new benchmark written specifi-
cally for PARKBENCH.

3.3.3 Communication Bottleneck: POLY3

POLY3 assesses the severity of the communica-
tion bottleneck. It is the same as the POLY1
benchmark except that the data for the polvno-
mial evaluation is stored on a neighbouring pro-
cessor. The value of f; obtained therefore mea-
sures the ratio of arithmetic to communication
performance. Equation (3.3) shows that the com-
putational intensity of the calculation must be sig-
nificantly greater than f, (say 4 times greater) if
communication is not to be a bottleneck. In this
case the computational intensity is the ratio of
arithmetic performed on a processor to words
transferred to/from it over communication links.
In the common case that the amount of arithmetic
is proportional to the volume of a region, and the
data communicated is proportional to the surface
of the region, the computational intensity is in-
creased as the size of the region (or granularity of

Table 3.1: Current Low-Level benchmarks and the Parameters
they measure. Note we abbreviate performance (perf.), arithmetic
(arith.), communication (comms.), operations (ops.).

Benchmark Measures Parameters
SINGLE-PROCESSOR

TICK1 Timer resolution tick interval
TICK2 Timer value wall-clock check
RINF1 Basic Arith. ops. (ro,ny)
POLY1 Cache-bottleneck (P f3)
POLY2 Memory-bottleneck (Fosfi)
MULTI-PROCESSOR

COMMS1 Basic Message perf. (ro,my)
COMMS2 Message exch. perf. (re,my)
COMMS3 Saturation Bandwidth (Fe,ny)
POLY3 Comms. Bottleneck (P ft)
SYNCH1 Barrier time and rate barr/s

120 PARKBENCH COMMITTEE

the decomposition) is increased. Then the f; ob-
tained from this benchmark is directly related to
the granularity that is required to make communi-
cation time unimportant.

POLY3 is a new benchmark written specifically

for PARKBENCH.

3.3.4 Synchronisation Benchmarks:
SYNCH1

SYNCH1 measures the time to execute a barrier
synchronisation statement as a function of the
number of processors taking part in the barrier.
The practicability of massively parallel computa-

tion with thousands or tens of thousands of pro-
cessors depends on this barrier time not increas-
ing too fast with the number of processors. The
results are quoted both as a barrier time. and as
the number of barrier statements executed per
second (barr/s).

The SYNCH1 benchmark exists as part of Gen-
esis v2.1.1 [20].

3.4 Summary of Benchmarks

Table 3.1 summarises the current low-level
benchmarks. and the architectural properties and
parameters that they measure.

Chapter 4

Kernel Benchmarks™*

4.1 Introduction and Rationale

The low-level benchmark codes are designed to
measure the basic architectural features ol paral-
lel machines. Full application codes obviously
measure the performance of a parallel system on
the full problem and this is ultimately what the
user wants. However. in many instances. the full
application codes are complex. contain many
100s of thousands of lines of Fortran. and are not
available in a suitable parallel version. In order to
obtain a guide to the performance of any given
parallel system on a particular application some-
thing less complex than the full application is use-
ful. A profile of the sequential version of the appli-
cation enables the compute intensive portions of
the program to be identified. It is these compute-
intensive sections of an application that we wish to
model with the introduction of parallel kernel
benchmarks.

The popular kernel benchmarks that have heen
used for traditional vector supercomputers. such
as . the Livermore Loops [9,. the LINPACK
benchmark [12° and the original NAS kernels
[311. are clearly inappropriate for the perfor-
mance evaluation of parallel machines. The tun-
ing restrictions of these benchmarks rule out many
widely used parallel extensions. More importantly.
the computation and memory requirements of
these programs do not do justice to the vastly in-
creased capabilities of the new parallel machines.
particularly those that will be available by the mid
1990°s. For these reasons we believe that a new.
widely accepted set of kernel benchmarks is desir-
able as a step on the way to more sensible and
scientific performance reporting of parallel sys-
tems.

The kernel codes are typically up to a few thou-
sand lines of Fortran and are sulficiendy simple
that the performance of a given parallel machine

* Assembled by Tony Hey for Kernel subcommittee.

on this program may be related to the underlying
architectural parameters. It must be acknowl-
edged. however. that the performance on kernels
alone is insufficient to assess completely the per-
formance potential of a paralle] machine on full
scientific applications. The chief difficulty is that a
certain data structure may be very efficient on a
certain system for one of the isolated kernels, and
vet this data structure would be inappropriate if
incorporated into a larger application. For exam-
ple. the performance of a real CFD application on
a parallel system is critically dependent on data
motion between different computational kernels.
In addition. full applications typically have initial-
ization phases, I/0 and so on. so complete repro-
duction of these features can be of critical impor-
tance for a realistic guide to performance.

For these reasons the PARKBENCH suite in-
troduces a level of complexity above kernel codes
which is called compact applications. These are
full but perhaps simplified application codes that
contain all the necessary features of the full prob-
lem but are sufficiently simple to run and analyse.
These are described in Chapter 5.

4.2 The Kernel Benchmarks

The kernels attempt to span a reasonably wide
range of application areas by including the most
frequently encountered computationally intensive
tvpes of problems. We have tentatively grouped
them into four sections. Some of the benchmark
codes are taken from existing parallel benchmark
suites (NAS [32]. Genesis [15]. etc). In order to
avoid duplication and redundancy. we have at-
tempted to list some of the attributes of the paral-
lel svstem tested by each kernel benchmark.

4.2.1 Matrix Benchmarks

For the past 15 vears or so. there has been a great
deal of activity in the area of algorithms and soft-

122 PARKBENCH COMMITTEL

ware for solving linear algebra problems. The lin-
ear algebra community has long recognized the
need for help in developing algorithms into soft-
ware libraries. and several vears ago. as a commu-
nity effort. put together a de factor standard for
identifving basic operations required in linear al-
gebra algorithms and software. The hope was that
the routines making up this standard. known col-
lectively as the Basic Linear Algebra Subprograms
(BLAS). would be efficientdy implemented on ad-
vanced-architecture computers by many manu-
facturers. making it possible to reap the portability
benefits of having them efficiently implemented
on a wide range of machines. This goal has been
largely realized.

The key insight of this approach to designing
linear algebra algorithms for advanced architec-
ture computers is that the frequency with which
data are moved between diflerent levels of the
memory hierachy must be minimized in order to
attain high performance. Thus. our main al-
gorithmic approach for exploiting both vectoriza-
tion and parallelism in our implementations is the
use of block-partitioned algorithms. particularly
in conjunction with highly-tuned kernels for per-
forming matrix-vector and matrix-matrix opera-
tions (the Level 2 and 3 BLAS). In general. the use
of block-partitioned algorithms requires data to
be moved as blocks. rather than as vectors or
scalars. so that although the total amount of data
moved is unchanged. the latency {or startup cost)
associated with the movement is greatly reduced
because fewer messages are needed to move the
data.

A second key idea is that the performance of an
algorithm can be tuned by a user by varying the
parameters that specify the data layout. On
shared memory machines. this is controlled by the
block size, while on distributed memory machines
it is controlled by the block size and the configura-
tion of the logical process mesh.

The way in which an algorithm’s data are dis-
tributed over the processors of a parallel computer
has a major impact on the load balance and com-
munication characteristics of the parallel algo-
rithm, and hence largely determines its perfor-
mance and scalability. The block scattered (or
block cvclic) decomposition provides a simple. vet
general-purpose, way of distributing a block-par-
titioned matrix on distributed memory parallel
computers. In the block scattered decomposition,
described in detail in [33], a matrix is partitioned
into blocks of size r X s, and blocks separated by a
fixed stride in the column and row directions are
assigned to the same processor. If the stride in the

column and row directions is P and) blocks re-
spectively. then we require that P X () equals the
number of processors. .\',,. Thus. it is useful to
imagine the processors arranged as a P X () mesh.
or template. Then the processor at position (p. ¢
(0=p < P,0=q<Q)in the template is assigned
the blocks indexed by,

(p+iP, g+ jO), (4.1)

where i = 0. [(M, —p — 1)/P..
J=0. . [Ny —qg—1)/0.
and M, X NV}, is the size of the matrix in blocks.

Blocks are scattered in this way so that good
load balance can be maintained in algorithms.
such as LU factorization [34. 35]. in which rows
and/or columns of blocks of a matrix become
eliminated as the algorithm progresses. However.
for some of the distributed Level 3 BLAS routines
a scattered decomposition does not improve load
balance. and may result in higher concurrent
overhead. The general matrix-matrix multiplica-
tion routine xGEMM is an example of such a rou-
tine for which a pure block (i.e.. nonscattered; de-
composition is optimal when considering the
routine in isolation. However. xGEMM may be
used in an application for which. overall. a scat-
tered decomposition is best.

The underlying concept of the implementations
we have chosen for dense matrix computations is
the use of block-partitioned algorithms to mini-
mize data movement between different levels in
hierarchical memory. The ideas discussed here for
dense linear algebra computations are applicable
to any computer with a hierarchical memory that
(1) imposes a sufficiently large startup cost on the
movement of data between different levels in the
hierarchy. and for which (2) the cost of a context
switch is too great to make fine grain size
multithreading worthwhile. These ideas have been
exploited by the software packages LAPACK [17]
and ScaLapack [36]. The PARKBENCH suite in-

cludes five matrix kernels.

1. Dense matrix multiply. Communication in-
volves broadcast of data along rows of
mesh, and periodic shift along column di-
rection (or vice versa).

2. Transpose. Matrix transpose is an impor-
tant benchmark because it exercises the
communications of a computer heavily on a
realistic problem where pairs of processors
communicate with each other simulta-
neously. It is a useful test of the total com-
munications capacity of the network.

3. Dense LU factorization with partial pivot-
ing. Searching for a pivot is basically a re-
duction operation within one column of the
processor mesh. Exchange of pivot rows is a
point-to-point communication. Update
phase requires data to be broadcast along
rows and columns of the processor mesh.

4. QR Decomposition. In this benchmark par-

allelization is achieved by distribution of

rows on a logical grid ol processors using
block interleaving.

5. Matrix tridiagonalization. for eigenvalue
computations of symmetric matrices.

There have been many implementations ol ma-
trix multiplication algorithms on distributed mem-
ory parallel computers [37. 38. 39]. Many of them
are limited in their use since they are implemented
with a pure block (non-scattered) distribution. or
specific (not general-purpose) data distribution.
and/or on square processor configurations with a
specific number of processors (column and/or
row numbers of processors are powers of 2). The
software contained in this benchmark eliminates
all of these constraints.

Our matrix multiplication algorithm is a block
scattered variant of that of Fox. Hey. and Otto
[37]. that deals with arbitrary rectangular proces-
sor templates.

Suppose the matrix A has M, block rows and L,,
block columns. and the matrix B has L, block
rows and \;, block columns. Block (/. Jj of C is

then given by

Ly—1

ci.J)= Z AU K)-BK.J) (4.2)

where /=0,1,.... M, —1,/J=0,1...,\, - 1.
In Equation 4.2 the order of summation is arbi-
trary.

Fox et al. initially considered only the case of

square matrices in which each processor contains
a single row or a single column of blocks. That is.
the blocks that start the summation lie along the
diagonal. The summation is started at a different
point for each block row of C so that in the phase
of the parallel algorithm corresponding to summa-
tion index K, A(/, K) and B(K, J) can be multiplied
in the processor to which C([, J) is assigned.
This requires each processor containing a block
of B to be multiplied in step K to broadcast that
block along the column of the processor template
at the start of the step. Also A must be rolled left-
wards at the end of the step so that each column is

PARKBENCIH REPORT 123

DOK=0,L, -1
[Columncast one block of B (B(I. MOD(/ + K,
Ng)). I = 0 : L;) along each column across
template]
PARDO /=0, M, — 1
KP = MOD(K + I, L)
PARDOJ =0,N, — 1
Cl,J)=C{,J)+ A, KP) -
END PARDO
END PARDO
[Roll A leftwards]
END DO

B(KP. J)

FIGURE 4.1 A distributed block scattered matrix
multiplication algorithm. The PARDO’s indicate over
which indices the data are decomposed. All indices re-
fer to blocks of elements. Communication phases are
indicated in square brackets.

overwritten by the one to the right, with the first
column wrapping round to overwrite the last
column. the pseudocode for this algorithm is
shown in Figure 4.1. Another variant of this algo-
rithm involves broadcasting blocks of A over rows.
and rolling B upwards.

In Figure 4.1 a columncast is a communication
phase in which one data item (typically a block. or
set of blocks) is taken from each block column of
the matrix and is broadcast to all the other proces-
sors in the same columnn of the processor tem-
plate. A rowcast is similar. but broadcasts a data
item for each block row of the matrix to all proces-
sors in the same row of the template.

The kernels for LU. QR and the reduction of a
svmmetric matrix to tridiagonal form in prepara-
tion for eigenvalue computations all use block-
partitioned algorithms. They rely on the BLAS for
most of the computational performance and the
BLACS for communication.

4.2.2 Fourier Transforms

The computation of the fast Fourier transform
(FFT) is the cornerstone of many supercomputer
applications. These include not only the predicta-
ble digital signal processing. speech recognition,
image processing, and petroleum seismic analysis,
but also other less obvious applications, such as in
computational fluid dynamics, medical technol-
ogy, multiple prerision arithmetic and computa-
tional number theory. Computations worthy of a
parallel computer generally fall into four catego-
ries: (1) one or a few very long 1-D FFTs; (2) many
small or moderate-sized 1-D FFTs; (3) one or a

124 PARKBENCH COMMITTEE

few large 2-D FFTs: or (4) one or a few large 3-D
FFTs. The PARKBENCH suite includes two FFT
test kernels. one for a large 1-D FFT. and one for
a large 3-D FFT.

1. 1-D FFT. In this kernel. two sequences ol
integers x; and »; are generated. with length
n = 2™ and values in the range 0 = x;. v; <
M. The standard value of M/ is 1024. These
sequences are generated using the same
uniform pseudo-random number generator
as is used in the 3-D FFT kernel and the
embarrassingly parallel kernel. Then the
linear convolution of these two sequences is
computed using a complex-number FFT.
i.e. by padding x and y with zeroes to length
2n. then performing a forward FFT on x
and . multiplving the two resulting se-
quences of complex numbers. and finally
performing an inverse FFT on the result.
The result sequence should have exclusively
integer values. which permits a straightfor-
ward validity check.

No restriction is placed on thd FFT tech-
nique used to perform this convolution. ex-
cept that it be based on a complex-number
FFT rather than. for example. a number-
theoretic FFT. It is expected. however. that
efficient implementations will employ tech-
niques. such as Edson’s algorithm and real-
to-complex FFTs. that take advantage of
the purely real nature of the input and out-
put data to reduce the computational cost.
The usage of vendor-supplied library FFT
routines is permitted. The serial implemen-
tation program includes a reasonably effi-
cient 1-D FFT suitable for computation on
a workstation or singlP Processor vector sys-
tem.

3-D FFT. The PARKBENCH 3-D FFT ker-
nel is the 3-D FFT PDE benchmark from
the NAS Parallel Benchmark suite [327. It
performs the essence of manv spectral
codes and is a rigorous test of long-distance
communication performance. A brief de-
scription of this benchmark is as follows.

N

Consider the partial differential equation

(PDE)

dulx. t)

e aViulx. 1)

where z is a position in three-dimensional
space. When a Fourier transform is applied
to each side. this equation becomes

iz t) .

o - tam MBI
where v(z, ¢) is the Fourier transform of
u(x, t). This has the solution

u(z’ t) = e—-m:‘n-'~’|:.|'—’/v(:7 0)

In this benchmark a 3-D complex array L', which
represents u is first filled with pseudo-random
data generated by the same scheme as used in the
embarrassingly parallel kernel (see subsection
4.2.4). Then we compute }, the result of a forward
3-D FFT of U. For each of several iterations. F'is
multiplied by the appropriate exponential factors
and then an inverse 3-D FFT produces the result.

Any complex FFT algorithm may be used for
the computation of the 3-D FFTs mentioned
above, and vendor-supplied library routines may
be employed.

4.2.3 PDE Kernels

In these PDE kernels communication is basically
exchange with neighbors and the convergence
check is a reduction. A variety of methods and
update stencils may be used. The following two
PDE solvers have been included in the parallel
benchmark suite:

1. Successive Over-Relaxation (SOR} kernel.
The PARKBENCH SOR kernel is based on
the PDE1 benchmark from the GENESIS
distributed memory benchmark suite [20°.
This benchmark solves the Poisson equa-
tion on a 3-dimensional grid by parallel red-
black relaxation with Chebyshev accelera-
tion. In this method the mesh points are
divided into two groups according to
whether the sum of indices is odd (‘red’) or
even ("black’). The method proceeds in half
iterations. during each of which only half
the points are adjusted (alternatively the
‘red” and ‘black™ set of pointsi. Thus all the
‘red” points can be adjusted in parallel dur-
ing one hall iteration. and similarly all the
‘black’ points in parallel during the nex
half iteration. The problem is discretized
using the ordinary 7-point difference stencil
in a regular cubic grid. The value of the re-

laxation factor (») changes at each half iter-
ation according to:
wv’(); =1
02 =1/(1 - $p?)
w172
=1/(1 = §p2w"),
t=3 1.3%o (4.3)

where p is the convergence factor of the cor-
responding Jacobi iteration and the super-
script ¢ designates the iteration number. For
large numbers of iterations, w tends to the
constant relaxation factor that is used
throughout the traditional SOR procedure.
The asymptotic convergence factor is there-
fore the same for both algorithms.

In order to map the problem onto a parallel
computer the 3-dimensional grid is divided
into cuboidal subgrids. Each subgrid is as-
signed to a processor in such a way that
neighbouring subgrids are mapped on
neighbouring processors. The grid variables
in each subgrid are exclusively computed
by its associated processor. At the inner
boundaries of the subgrid the processors
need values at points which are contained in
the neighbouring subgrid. Rather than
transferring these values exactly at the time
when they are needed—this would prevent
vector processing within the processor—
thev are stored in so-called overlap areas.
After each iteration the values in the overlap
areas are exchanged and updated via the
message-passing communication mecha-
nism. The introducion of overlap areas
needs strict synchronization following each
iteration step in order to ensure the correct
execution of the benchmark.

Since the Chebyshev SOR method requires
no extra arithmetic over the traditional SOR
algorithm yet has more favourable initial er-
ror decay properties. it is one of the most
efficient PDE kernels. Note. however. that
in this benchmark only nearest neighbour
interactions are required and the number of
floating point operations per grid point is
very small when compared to more complex

PDEs.
Multigrid kernel. The PARKBENCH multi-

grid kernel is the multigrid benchmark from

PARKBENCH REPORT 125

the NAS Parallel Benchmarks [32]. It re-
quires highly structured long distance com-
munication and tests both short and long
distance data exchange.

This kernel performs a V-cycle multigrid
algorithm to obtain an approximate solution
u to the discrete Poisson problem

Viu=v

on a 256 X 256 X 256 grid with periodic
boundary conditions.

The calculation starts out with the array
v = 0, except at a few randomly placed
points where v = 1. The iterative solution
begins with u = 0. Each iteration consists of
the following two steps, where k = 8 =
log2256:

r=uv— Au (evaluate residual)
u + Mhr (apply correction)

Here M* denotes a F-cycle muliigrid operator,
and A denotes a trilinear finite element discretiza-
tion of the Laplacian V=.

4.2.4 Other

1. Embarrassingly Parallel. The PARK-
BENCH embarrassingly parallel kernel is
taken from the NAS Parallel Benchmarks
[32]. It provides an estimate of the upper
achievable limits for floating point perfor-
mance. i.e. the performance without signifi-
cant interprocessor communication.

In this benchmark, we first generate the
pseudo-random floating point values r; in
the interval (0, 1) for 1 < { =< 2n using the
linear congruential generator

zi41 = az; (mod 2%)
rier = 27%z,44

Then for1 <j < nwesetx;=2ry; 1 — 1and
¥ = 2rs; = 1. Thus z; and y; are uniformly
distributed on the interval (—1, 1). Next, for
each pair (z;, 3;), we test to see if t; = zj +
y¥? = 1. If not, this pair is rejected. If this
inequality holds, then we set Xk = x;
\% (_2 lOg tj)/lj and Yk =):,V ("2 log tj)/tj.
Then X and }; are independent Gaussian
deviates with mean zero and variance one.

126

PARKBENCH COMMITTEE

The benchmark counts the number of these
Gaussian deviates that lie in various square
annuli around the origin.

Conjugate gradient kernel. The PARK-
BENCH conjugate gradient benchmark

is taken from the NAS Parallel Benchmarks
[32]. In this kernel. the inverse power
method is used to find an estimate of the
largest eigenvalue of a symmetric positive
definite sparse matrix with a random pat-
tern of nonzeros. The code is typical of un-
structured grid computations in that it tests
irregular long distance communication. em-
ploving unstructured matrix vector multipli-
cation. The irregular communication re-
quirement of this benchmark is evidenty a
challenge for all kinds of parallel com-
puters.

The code generates the matrix as the
weighted sum of .V outer products of ran-

dom sparse vectors x:

N
L -
i=1

where AN is the number of rows and
columns: the weights w, are a geometric se-
quence with ; = 1 and ratio chosen so that
wy = 0.1. The vectors x are chosen to have
a few randomly placed nonzeros. each of
which is a sample from the uniform distri-
bution on (0. 1). Furthermore. the i ele-
ment of x; is set to 1/2 to insure that 4 can-
not be structurally singular. Finally. 0.1 is
added to the diagonal of 4. This results in a
matrix whose condition number (the ratio of
its largest eigenvalue to its smallest® is
roughly 10.

Large Integer Sort. Although sorting has
tradltlonallv been thought of as of impor-
tance pnmanl} in non-scientific computing.
this operation is increasingly important in
advanced scientific applications. The parti-
cle method fluid simulations. for example.
sorting is the dominant cost.

The PARKBENCH integer sort benchmark
is taken from the NAS Parallel Benchmarks
[32]. The kernel tests both integer compu-
tation speed and communication perfor-
mance. In this benchmark. a vector of inte-
ger data is generated using the same
pseudo-random number generator that is

used in the embarrassingly parallel kernel.
This data is initially mapped according to a
particular scheme. The benchmark sorts
this data by the most efficient scheme for a
particular architecture. Vendor-supplied
sort routines may be used to perform the
sort operation.

4. Input/Output. We propose a paper and
pencil style benchmark—not tied to any
particular parallel platform or application
but just measuring some key fundamental
[/0 parameters of the system. A standard
Fortran-77 version (‘()mplemems the de-

tailed description given in the individual

ReadMe file. The I/0 performance is tested

by writing and then reading different sized

data sets to and from disk. The read and
write buffer sizes are varied so that esti-
mates of disk I/0 start-up time. bandwidth
and data transference times may be made.

4.3 Benchmark Implementation
The PARKBENCH kernel benchmarks are written

as far as possible in standard Fortran 77 using
64-bit floating point arithmetic (DOUBLE PRECI -
SION on most systems). unless otherwise stated.
Both PVYM/MPI [2. 3] and subset HPF versions
exist for most of the codes in addition to the stan-
dard Fortran-77 versions. A description of each
benchmark and instructions on how to run it are
given in individual ReadMe files. They also con-
tain a specification of the three problem sizes
agreed upon for each code: (1) test problem (2}
moderate size and (3) grand challenve size. A for-
mula should be given in the ReadMe files to pro-
duce flop counts for the kernel benchmarks along
with precalculated figures for each standard prob-
lem size. Make-files are supplied with each
benchmark to handle compilation and linking in a
Unix environment.

4.4 Concluding Remarks
The contents of the PARKBENCH kernel bench-

mark suite should map reasonably well onto any
parallel library supplied by the vendors. This will
allow comparative performance measurements
across different platforms using the PARKBENCH
kernels but also performance comparisons to the
functionally similar and highly-optimized library
routines on every particular parallel system. An-
other advantage of the use of kernel benchmarks
is that they should not involve an unreasonable
amount of labour on the part of vendors.

Chapter 5

Compact Applications™

5.1 Introduction

While kernel applications. such as those de-
scribed in Chapter 3. provide a fairly straight-for-
ward wav of assessing the performance of parallel
systems they are not representative of scientific
applications in general since they do not reflect
certain types of syvstem behavior. In particular.
many scientific applications involye data move-
ment between phases of an application. and may
also require significant amounts of 1/0. These
tvpes ol behavior are difficult to gauge using ker-
nel applications.

One factor that has hindered the use of full ap-
plication codes for benchmarking parallel com-
puters in the past is that such codes are difticult to
parallelize and to port between target architec-
tures. In addition, full application codes that have
been successfully parallelized are often proprie-
tarv, and/or subject to disuibution restrictions.
To minimize the negative impact of these factors
we propose to make use of compact applications
in our benchmarking effort.

Compact applications are typical of those
found in research environments ias opposed to
production or engineering environments). and
usually consist of up to a few thousand lines of
source code. Compact applications are distinct
from kernel applications since they are capable of
producing scientifically useful results. In many
cases, compact applications are made up of sev-
eral kernels, interspersed with data movements
and [/0 operations between the kernels.

In this chapter the criteria for selecting compact
applications for the PARKBENCH suite will be
discussed. In addition, the general research areas
that will be represented in the suite are outlined.

* Assembled by David Walker for Compact Applications
subcommittee.

5.2 Criteria for Selection

The three main criteria for inclusion of a parallel
code in the Compact Applications suite are.

1. The code must be a complete application
and be capable of producing results of re-
search interest. These two points distin-
guish a compact application from a kernel.
For example. a code that only solves a ran-
domly-generated. dense. linear system by
LU factorization should be considered a
kernel. Even though the code is complete. it
does not produce results of research inter-
est. However. if the LU factorization is em-
bedded in an application that uses the
boundary element method to solve. for ex-
ample. a two-dimensional elastodynamics
problem. then such an application could le-
gitimately be considered a compact appli-
cation. Compact applications and full pro-
duction codes are distinguished by their
software complexity. which is difficult to
quantify. Software complexity gives an indi-
cation of how hard it is to write. port and
maintain an application. and may be
gauged verv roughly bv the length of the
source code. However. there is no hard up-
per limit on the length of a code in the Com-
pact Applications suite. It is expected that
the source code (excluding comments and
repeated common blocks) for most compact
applications will be between 2000 and
10000 lines. but some may be longer.

2. The code must be of high quality. This
means it must have been extensively tested
and validated, preferably on a wide selec-
tion of different parallel architectures. The
problem size and number of processors
used must not be hard-coded into the appli-
cation, and should be specified at runtime

128 PARKBENCH COMMITTEE

as input to the program. Ideally, the parallel
code should not impose restrictions on the
problem size that are not applicable for
the corresponding sequential code. Thus.
the parallel code should not require that the
problem size be exactly divisible by the
number of processors, or that the number of
processors be a power of two. In some cases
this latter requirement may have to be re-
laxed. For example. most paralle] fast
Fourier transform routines require the num-
ber of processors to be a power of two. It is
preferable that the code be written so that it
works correctly for an arbitrary one-to-one
mapping between the logical process topol-
ogy of the application and the hardware to-
pology of the parallel computer. This is de-
sirable so that the assignment of a location
in the logical process topology to a physical
processor can be easily adjusted when port-
ing the application between platforms. For
example a Gray code assignment may be
best for a hypercube. and a natural ordering
for a mesh architecture.

3. The application must be well documented.
The source code itself should contain an
adequate number of comments. and each
module should begin with a comment sec-
tion that describes what the routine does.
and the arguments passed to it. In addition.
there should be a Users ™ Guide to the appli-
cation that describes the input and output.
the parameterization of the problem size
and processor layout. and details of what
the application does. The Users™ Guide
should also contain a bibliography of re-
lated papers.

In additon. to the three criteria discussed
above. there are a number of other desirable fea-
tures that a PARKBENCH Compact Application
should have. These are discussed in the following
subsections.

5.2.1 Self Checking Applications

The application should be self-checking. That is.
at the end of the computation the application
should perform a check 1o validate the resulis of
the run. The application may also output a sum-

mary of performance results for the run. such as
the Mflop rate, and other pertinent information.

5.2.2 Programming Languages

The code should be written in Fortran 77, Fortran
90, High Performance Fortran. or C. Data should
be passed between processors by explicit message
passing. PARKBENCH does not specily which
message passing system should be used. but one
that is available on a number of parallel platforms
is preferable. Eventually it is expected that MPI
will become the message passing system of choice.
but in the meantime portable systems such as
PVM. PICL. Express. PARMACS. and P+ are ac-
ceptable alternatives. The codes in the Compact
Applications suite should not contain any assem-
bly coded portions. although assembly code may
be used in optimized versions of the code.

5.3 Proposed Compact Application
Benchmarks

At the tme of writing (October 1993} the
PARKBENCH organization is in the process of so-
liciting submission of applications for inclusion in
the Compact Applications suite. Thus. the appli-
cations that comprise the suite cannot vet be listed
here. However. in this section the main applica-
tion areas that are expected to be in the suite are
outlined. The intention is that these areas should
be representative of the fields in whiclr parallel
computers are actually used. The codes should
exercise a number of different algorithms. and
possess different communication and 170 charac-
teristics. Initally the Compact Applications suite
will consist of no more than ten codes. This re-
striction is imposed so that the resources needed
to manage and distribute the suite can be as-
sessed. The suite mayv be enlarged in the future if
this seems manageable. Below is a list of the appli-
cation areas that are expected o be represented in
the suite. This is not meant to be an exclusive list:
submissions from other application areas will be
considered for inclusion in the suite.

* Climate and meteorological modeling
¢ Computadonal tluid dynamics (CFD;
* Finance. e.g.. portfolio optimization
* Molecular dynamics

* Plasma physics

* Quantum chemistry

* Quantum chromodvnamics {QCD}

* Reservoir modeling

5.4 Submitting to the Compact
Application Suite

The procedure for submitting codes to the
PARKBENCH Compact Applications suite is as

follows:

1. Complete the submission form in Appendix

A. and email it to David Walker at
walker@msr.epm.ornl.gov. The data on
this form will be reviewed by the
PARKBENCH Compact Applications Sub-
committee. and the submitter will be noti-
fied if the application is to be considered
further for inclusion in the PARKBENCH

suite.

. If PARKBENCH Compact Applications
Subcommittee decides to consider the ap-
plication further the submitter will be asked
to submit the source code and input and
output files. together with any documenta-
tion and papers about the application.
Source code and input and output files
should be submitted by email. or fip. unless
the files are very large. in which case a tar

PARKBENCH REPORT 129

file on a 1/4 inch cassette tape. Wherever
possible, email submission is preferred for
all documents in man page, Latex and/or
Postscript format. These files, documents
and papers together constitute the applica-
tion package. The application package
should be sent to the following address, and
the subcommittee will then make a final de-
cision on whether to include the application
in the PARKBENCH suite.

David W'. Walker

Oak Ridge National Laboratory
Bldg. 6012/MS-6367

P. O. Box 2008

Oak Ridge. TN 37831-6367

(615) 574-7401/0680 (phone/fax)
walker@msr.epm.ornl.gov

. If the application is approved for inclusion

in the PARKBENCH suite, an authorized
person from the submitting organization will
be asked to complete and sign a form giving
PARKBENCH authority to distribute. and
modify (if necessary). the application pack-
age.

Chapter 6

HPF Compiler Benchmarks*

6.1 Objectives

For most users. the performance of codes gener-
ated by a compiler is what actually martters. This
an be inferred from running HPF version of
PARKBENCH codes described in chapters 4 and
5. For HPF compiler developers and implementa-
tors. however. an additional benchmark suite
may be verv useful: the benchmark suite that can
evaluate specific HPF compilation phases and the
compiler runtime support. For that purpose. the
relevant metric is the ratio of execution times of
compiler generated to hand coded programs as a
function of the problem size and number of pro-
cessors engaged in the computation.

The compilation process can be logically di-
vided into several phases. and each of them influ-
ence the efficiency of the resulting code. The ini-
tial stage is parsing of a source code which results
in an internal representation of the code. It is fol-
lowed by compiler transformations. like data dis-
tribution. loop transformations. computation
distribution. communication detection. se-
quentialization. insertion of calls to a runtime
support. and others. This we will call a HPF-spe-
cific phase of compilation. The compilation is
concluded by code generation phase. For portable
compilers that output Fortran 77 + message pass-
ing code. the node compilation is factorized out
and the efficiency of the node compiler can be
evaluated separately.

This benchmark suite addresses the HPF-spe-
cific phase only. Thus. it is well suited for perfor-
mance evaluation of both translators (HPF to For-
tran 77 + message passing) and genuine HPF
compilers. The parsing phase is an element of the
conventional compiler technology and it is not of
interest in this context. The code generation phase

* Assembled by Tom Haupt for Compiler Benchmarks sub-
committee.

involves optimization techniques developed for
sequential compilers {in particular. Fortran 90
compilers} as well as micro-grain parallelism or
vectorization. The object codes for specific plat-
forms may be strongly architecture dependent
(e.g.. may be very different for processors with
vector capabilities than for those without it}. Eval-
uation of performance of these aspects requires
different techniques than these proposed here.

It is worth noting. that the HPF-phase strongly
affects the possibility of optimization of the node
codes. For example. insertions of calls to the com-
munication library may prohibit the node com-
piler from performing many standard optimiza-
tions without expensive interprocedural analysis.
Therefore. its capability to exploit opportunities
for optimizations at HPF level and to generate the
output code in such a way that it can be further
optimized by the node compiler is an important
element of evaluation of HPF compilers. Never-
theless. evaluation of the HPF-phase separately is
very valuable since the hand coded programs face
the same problems. We will address these issues
in future releases of the benchmark suite.

Compilers for massively parallel and distrib-
uted systems are still the object of research and
laboratory testing rather than commercial prod-
ucts. The parallel compiler technology as well as
methods of evaluating it are not mature vet. Nev-
ertheless, the advent of the HPF standard gives
opportunity to develop systematic benchmarking
techniques.

The current definition of HPF [5] cannot be
recognized as an ultimate solution for parallel
computing. Its limitations are well known. and
many researchers are working on extensions to
HPF to address a broader class of real life, com-
mercial and scientific applications. We expect
new language features to be added to the HPF
definition in future versions of HPF, and we will
extend the benchmark suite accordingly. On the

other hand. new parallel languages based on lan-
guages other than Fortran. notably C++. are be-
coming more and more popular. Since the paral-
lelism is inherent in a problem and not its
representation., we anticipate many commonali-
ties in the parallel Janguages and corresponding
compiler technologies. notably sharing the run-
time support. Therefore, we decided to address
this benchmark suite to these aspects of the com-
pilation process that are inherent to parallel pro-
cessing in general. rather than testing syntactic

details of HPF.

6.2 Low-Level HPF Compiler
Benchmarks

6.2.1 Overview

The benchmark suite comprises several simple.
synthetic applications which test several aspects
of HPF compilation. The current version of the
suite addresses the basic features of HPF. and it is
designed to measure performance of early imple-
mentations of the compiler. They concentrate on
testing parallel implementation of explicitly paral-
lel statements. i.e.. array assignments. FORALL
statements. INDEPENDENT DO loops. and in-
trinsic functions with different mapping directives.
In addition, the low-level compiler benchmarks
address problem of passing distributed arrays as
arguments to subprograms.

The language features not included in the HPF
subset are not addressed in this release of the
suite. The next releases will contain more kernels
that will address all features of HPF. and also they
will be sensitive to advanced compiler transforma-
tions.

The codes included in this suite are either
adopted from existing benchmark suites. NAS
suite [31], Livermore Loops [9]. and the Purdue
Set [40], or are developed at Syracuse University.

6.2.2 FORALL Statement—Kernel FL

FORALL statement provides a convenient syntax
for simultaneous assignments to large groups of
array elements. Such assignments lie at the heart
of the data parallel computations that HPF is de-
signed to express. The idea behind introducing
FORALL in HPF is to generalize Fortran 90 array
assignments to make expressing parallelism eas-
ier. Kernel FL provides several examples of
FORALL statements that are difficult or incon-
venient to write using Fortran 90 syntax.

PARKBENCH REPORT 131

6.2.3 Explicit Template—Kernel TL

Parallel implementation of the array assignments,
including FORALL statements. is a central issue
for an early HPF compiler. Given a data distribu-
tion, the compiler distributes computation over
available processors. An efficient compiler
achieves an optimal load balance with minimum
interprocessor communication.

Sometimes. the programmers may help the
compiler to minimize interprocessor communica-
tion by suitable data mapping. in particular by
defining a relative alignment of different data ob-
jects. This may be achieved by aligning the data
objects with an explicitly declared template. Ker-
nel TL provides an example of this kind.

6.2.4 Communication Detection in Array
Assignments—Kernels AA, SH, ST,
and IR

Once the data and iteration space is distributed.
the next step that strongly influences efficiency of
the resulting codes is communication detection
and code generation to execute data movement.
In general. the off-processor data elements must
be gathered before execution of an array assign-
ment, and the results are to be scattered to desti-
nation processors after the assignment is com-
pleted. In other words. some of the array
assignments may require a preprocessing phase to
determine which off-processor data elements are
needed and execute the gather operation. Simi-
larly, they mav require postprocessing (scatter).
Many different techniques may be used to opti-
mize these operations. To achieve high efficiency.
it may be very important that the compiler is able
to recognize structured communication patterns,
like shift, multicast. etc. Kernels AA, SH, and ST
introduce different structured communication
patterns, and kernel IR is an example of an array
assignment that requires unstructured communi-
cation (because of indirections).

6.2.5 INDEPENDENT Assertion—
Kernel EP

In addition to array assignments and FORALL
statements, parallelism may be expressed by us-
ing INDEPENDENT assertions. The EP kernel
tests the performance of INDEPENDENT DO

construct with NEW variables.

132 PARKBENCH COMMITTEE

6.2.6 Non-Elemental Intrinsic
Functions—Kernel RD

Fortran 90 intrinsics and HPF functions offer vet
another way to express parallelism. Kernel RD
tests implementation of several reduction func-
tions.

6.2.7 Passing Distributed Arrays as
Subprogram Arguments—Kernels AS, IT,
IM, and EI

The last group of kernels, demonstrate passing
distributed arrays as subprogram arguments.
They represent three typical cases:

1. a known mapping of the actual argument is
to be preserved by the dummy argument
(AS).

2. mapping of the dummy argument is to be
inherited from the actual argument. thus no
remapping is necessarv. The mapping is
known at compile time (IT}.

3. mapping of the dummy argument is to be
identical to that of the actual argument, but
the mapping is not known at compile time

(IM).

6.3 Summary

The synthetic compiler benchmark suite de-
scribed here is an addition to the benchmark ker-
nels and applications described in Chapters 4 and
5. It is not meant as a tool to evaluate the overall
performance of the compiler generated codes. [t
has been introduced as an aid for compiler devel-
opers and implementators to address some se-
lected aspect of the HPF compilation process. In
the current version. the suite does not comprise a
comprehensive sample of HPF codes. Actually. it
addresses only the HPF subset. Hopelully. this
way, we will contribute to the establishment of a
svstematic compiler benchmarking methodology.
We intend to continue our effort to develop a com-
plete. fully representative HPF benchmark suite.

CONCLUSIONST

The PARKBENCH benchmark suite comprises
codes that vary from low-level benchmarks mea-
suring basic machine parameters. through impor-
tant application kernels, to compact research ap-
plications. This hierarchical structure allows
information derived from the simpler codes to be
used in explaining the performance characteris-

1 Assembled by Roger Hockney for whole committee.

tics of the more complicated codes. Thus the
benchmark suite can be used to evaluate perfor-
mance on a range of levels from simple machine
parameters to full applications where effects due
to non-parallelisable sections of code, and mem-
ory, communication or [/O bottlenecks may be-
come important.

BIBLIOGRAPHY

—
—
—

(11]

PARKBENCH Committee. ‘‘Public international

benchmarks for parallel computers.” Computer

Science Dept., University of Tennessee, Knox-
ville, TN, Tech. Rep. CS§-93-213. Nov. 1993.
(Scientific Programming. vol. 3. pp. 101-146.
1994.)

I. Dongarra. A. Geist. R. Manchek. and V. Sun-
deram. “Integrated pym framework supports het-
erogeneous network computing.” Computers in
Physics, vol. 7. pp. 166—175. 1993.

1 Message Passing Interface Forum. ~Document for

a standard message-passing interface.” Com-
puter Science Dept.. University of Tennessee.
Knoxville. TN. Tech. Rep. C5-93-21+4. Nov.
1993.

M. Metcalf and J. Reid. Fortran-90 Explained.
Oxford and New York: Oxford Science Publica-
tions/OUP. 1990.

] High Performance Fortran Forum. “"High perfor-

mance fortran language specitication.” Scientific
Programming. vol. 2. pp. 1-170. 1993,

R. W. Hockney, ““A framework for benchmark
performance analysis.”” Supercomputer, vol.
48(IX-2). pp. 9-22. 1992.

Quantities. Units and Symbols. London: The
Roval Society. 1975.

| M. Berrv. D. Chen. P. Koss. D. Kuck. S. Lo. Y.

Pang. L. Pointer. R. Roloff. A. Sameh. E. Cle-
menti. S. Chin. D. Schneider. G. Fox. P. Messina.
D. Walker. C. Hsiung. J. Schwarzmeier. K. Lue.
S. Orszag. F. Seidl. O. Johnson. R. Goodrum. and
J. Martin. ~"The PERFECT club benchmarks: Ef-
fective performance evaluation of computers.”
Intl. J. Supercomputer Appls.. vol. 3. pp. 5—40.
1989.

F. H. McMahon. *“The Livermore Fortran Kernels
test of the numerical performance range.” in Per-
formance Evaluation of Supercomputers, §. L.
Martin, Ed., vol. 4, Special Topics in Supercom-
puting. G. Rodrigue. S. Fembach, & G. Michael.
Eds. Amsterdam: Elsevier Science B. V.. North-
Holland. 1988, pp. 143-186.

J. Dongarra. T. Rowan. and R. Wade. “*Software
distribution using XNETLIB database server.™
Computer Science Dept.. University of Tennes-
see, Knoxville, TN, Tech. Rep. €§-93-191,
March 1993.

B. H. LaRose. ““The development and implemen-

(16]

[17]

(18]

(19]

tation of a performance database server.” Com-
puter Science Dept.. University of Tennessee.
Knoxville. TN. Tech. Rep. €S-93-195. Aug.
1993.

2] J. 1. Dongarra. “Performance of various com-

puters using standard linear equations sofrware in
a Fortran environment.”” Computer Science
Dept.. University of Tennessee. Knoxville. TN,
Tech. Rep. €S-89-85. March 1990.

D. Bailey. I. Barton. T. Lasinski. and I1. Simon
(Eds.). “The NAS parallel benchmarks.” NASA
Ames Research Center. Moffett Field. CA. Tech.
Rep. 103863. July 1993.

I. Uniejewski. ““SPEC Benchmark Suite: De-
signed for todayv’s advanced systems.”” SPEC
Newsletter, vol. 1. Fall 1989,

5} C.Addison. J. Allwright. N. Binsted. N. Bishop. B.

Carpenter. P. Dalloz. D. Gee. V. Getov. A. Hey.
R. Hockney. M. Lemke. J. Merlin. M. Pinches. C.
Scott. and [. Wolton. ~“The Genesis distributed-
memory benchmarks. Part 1: Methodology and
general relativity benchmark with results for the
SUPRENUM computer.”” Concurrency: Practice
and Experience, vol. 5. pp. 1-22. 1993,

D. Bailey. E. Barszez. J. Barton. D. Browning. R.
Carter. L. Dagum. R. Fatoohi. P. Frederickson.
T. Lasinski. R. Schreiber. H. Simon. V. Venkata-
krishnan. and S. Weeratunga. ~“The NAS parallel
benchmarks.™ Int. J. of Supercomputer Applica-
tions. vol. 5. pp. 63=73. 1991.

E. Anderson. Z. Bai. C. Bischof. J. Demmel. .
Dongarra. J. Du Croz. A. Greenbaum. 5. Ham-
marling. A. McKenney. S. Ostrouchov. and D.
Sorensen. LAPACK Users' Guide. Philadelphia.
PA: SIAM. 1992.

R. W. Hockney. “‘Performance parameters and
benchmarking of supercomputers.” Parallel
Computing. vol. 17, pp. 1111-1130. 1991.

A. Friedli. W. Gentzsch, R. Hockney. and A. van
der Steen, “*A European supercomputer bench-
mark effort.”” Supercomputer, vol. 34(VI-6). pp.
14-17, 1989.

A.]. G. Hey, “The Genesis distributed-memory
benchmarks,” Parallel Computing. vol. 17. pp.
1275-1283, 1991.

V. S. Getov, A. J. G. Hey. R. W. Hockney. and
I. C. Wolton, ““The Genesis benchmark suite:
Current state and results,” in Proc. of Workshop

(28

120]

(30]

I D. Bailev. J. Barton. T.

on Performance Evaluation of Parallel Systems—
PEPS 93, pp. 182—-190. 1993.

R. W. Hockney. “*Super-computer architecture,”™
in Infotech State of the Art Conference: Future
Systems. vol. 2. F. Sumner, Ed. Maidenhead.
U.K.: Infotech. 1977, pp. 277-305.

7 R. W. Hockney and C. R. Jesshope. Parallel

Computers: Architecture, Programming and Al-
gorithms. Bristol: Adam Hilger. 1981.

R. W. Hockney, “Characterization of parallel
computers and algorithms,”” Computer Physics
Communications, vol. 26, pp. 285-291. 1982.
R. W. Hockney. “*Characterizing computers and
optimizing the FACR({/) Poisson-solver on parallel
unicomputers,” [EEE Trans. Comput., vol. C32.
pp- 933-941. 1983.

! R. W. Hockney. “Parametrization of computer

performance.”” Parallel Computing. vol. 5. pp.

97-103. 1987.

+ Ro WL Hockney and €. R, Jesshope. Parallel

Computers 2: Architecture, Programming and Al-
gorithms. Bristol and Philadelphia: Adam Hilger/
10P Publishing. 2nd ed.. 1988. iDistributed in
the USA by [OP Publ. Inc.. Public Ledger Bldg..
Suite 1035, Independence Square. Philadelphia.
PA 19106,

A. . van der Steen and P. P M. de Rijk. ~Guide-
lines for use of the EuroBen benchmark.™ Euro-
Ben. The EuroBen Group. Utrecht. The Nether-
lands. Tech. Rep. TR3. Feb. 1993,

R. W. Hockney. ~*Synchronization and communi-
cation overheads on the LCAP multiple FP5-164
computer system.” Parallel Computing. vol. 9.
pp. 279-290. 1988,

C. A. Addison. V. S. Getov. A. J. G. Hev. R. W.
Hockney. and 1. C. Wolton. “"The Genesis dis-
tributed-memory benchmarks.” in Advances in
Parallel Computing, vol. 8. Computer Bench-
marks. J. Dongarra and W. Gentzsch. Eds. Am-
sterdam: Elsevier Science B. V., North-Holland.
1993, pp. 257-271.

D. Bailey and J. Barton, ““The NAS kernel
benchmark program.” NASA Ames Technical
Memorandum. CA. Tech. Rep. 86711, 1985.
Lasinski. and H. Simon
(Eds.). ~The NAS parallel benchmarks.” NASA

[33]

3

[40]

[+

[+

]

1]

PARKBENCH REPORT 135

Ames Research Center, Moffett Field. CA. Tech.
Rep. RNR-91-02. Jan. 1991.

J. Choi. J. J. Dongarra. and D. W. Walker. *“The
design of scalable software libraries for distrib-
uted memory concurrent computers.” in Proc. of
Environment and Tools for Parallel Scientific
Computing Workshop, 1992.

J. Choi. J. J. Dongarra. R. Pozo. and D. W
Walker. “*ScaLAPACK: A scalable linear algebra
library for distributed memory concurrent com-
puters.” in Proc. of Fourth Symposium on the
Frontiers of Massively: Parallel Computation,
1992.

J. J. Dongarra. R. van de Geijn. and D. Walker.
“A look at scalable linear algebra libraries.™ in
Proc. of the 1992 Scalable High Performance
Computing Conference. 1992, p. 372.

J. Choi. J. Dongarra. R. Pozo. and D. Walker,
“ScaLAPACK: A scalable linear algebra library
for distributed memory concurrent computers.”
in Proc. of Fourth Symposium on the Frontiers of
Massively: Parallel Computation. 1992. p. 120.

] G.C. Fox. 8. W. Otto. and A. J. G. Hey. ““Matrix

algorithms on a hypercube I: Matrix multiplica-
tion.”” Parallel Computing. vol. 4. pp. 17-31.
1987.

S. Huss-Lederman. E. M. Jacobson. A. Tsao. and
G. Zhang. “Matrix multiplication on the Intel
Touchstone Delta.” Supercomputing Research
Center. Tech. Rep.. 1993. (In preparation.)

C. Lin and L. Snyder. ""A matrix product algo-
rithm and its comparative performance on hyper-
cubes.” in Proc. of the 1992 Scalable High Per-
formance Computing Conference, 1992, p. 190.
I. Rice. “"Problems to test parallel and vector lan-
guages.”” Purdue University. West Lafavette. IN.
Tech. Rep. CSDTR 516, Oct. 1990.

R. W. Hockney and E. A. Carmona. “*Compari-
son of communications on the Intel iPSC/860
and Touchstone Delta.” Parallel Computing. vol.
18. pp. 1067-1072. 1992,

D. Bailey. R. Barszcz. L. Dagum, and H. Simon.
“NAS parallel benchmark results.” NASA Ames
Research Center, Moffett Field. CA. Tech. Rep.
RNR-93-016. Oct. 1993,

Appendix A

Compact Applications Submission Form

This appendix gives the form to be completed
when submitting a compact application for inclu-
sion in the PARKBENCH suite. For an electronic
version of this form send email to walker@ msr.
epm.ornl.gov or obtain a copy from netib under
pbwg (see Chapter 1). The completed form should
be emailed to the same address.

Name of Program

Submitter’s Name
Submitter’s Organization
Submitter’s Address

Submitter's Phone Number
Submitter’s Fax Number
Submitter’s Fax Email

Cognizant Expert(s)
CE’s Organization
CE’s Address

CE’s Phone Number
CE’s Fax Number
CE’s Fax Email

Extent and timeliness with which CE is prepared
to respond to questions and bug reports from

PARKBENCH:

Major Application Field
Minor Application Field

Application “*pedigree’ (origin. history. major

ports and modifications):

May this code be freely distributed (if not specify
restrictions):

Give length in bytes of integers and floating-point
numbers that should be used in this application:
Integers: bytes
Floats: bvtes

Documentation describing the implementation of
the application (at module level. or lower):

Research papers describing sequential code and/
or algorithms:

Research rapers descril)in" harallel C()(l(f and/()r
l o I
alg(’)nthms:

Other relevant research papers:

Application available in the following languages
(give message passing svstem used. if applicable.
and machines application runs on}:

Total number of lines in source code
Number of lines excluding comments
Size in byvtes of source code

List input files (filename, number of lines. size in
bytes, and if formatted):

List output files (filename, number of lines, size in
byvtes, and if formarted):

Brief. high-level description of what application
does:

Main algorithms used:

PARKBENCH REPORT 137

Give parameters of the data distribution (if appro-
priate):

Give parameters that determine the problem size:

Give memory as function of problem size:

Give number of floating-point operations as func-
tion of problem size:

Give communication overhead as function of
problem size and data distribution:

Skeleton sketch of application:

Brief description of I/0 behavior:

Brief description of load balance behavior:

Describe the data distribution (if appropriate}:

Give three problem sizes. small. medium, and
large for which the benchmark should be run (give
parameters for problem size. sizes of 170 files.
memory required. and number of floating point
operations):

How did vou determine the number of floating-
point operations (hardware monitor. count by
hand. etc.):

Other relevant information:

Appendix B

Sample Xnetlib/PDS Screens*

With the Browse facility in PDS (see Figure B.1).
the user first selects the vendoris} and bench-
mark(s) of interest. then selects the large Process
button to query the performance database. The
PDS client then opens a socket connection to the
server and. using the query language (rdb}. re-
motely queries the database. The formart of the
returned result is shown in Figure B.2. Notice that
the column headings which will vary with each
benchmark. The returned data is displaved as an
ASCII widget with scrollbars when needed.

The Search option in PDS is illustrated in Fig-
ures B.3 and B.+4. This feature permits user-speci-
fied keyword searches over the entire performance
database. Search utilizes literal case-insensitive
matching along with a moderate amount of alias-
ing. Multiple kevwords are permitted. and a Bool-
ean flag is provided for more complicated

* Assembled by Jack Dongarra for the Methodology sub-
committee.

searches. Notice the selection of the Boolean And
option in Figure B.3. Using Search. the user has
the option of entering vendor names. machine ali-
ases. benchmark names. or specific strings. or
producing a more complicated Boolean kevword
search. The benchmarks returned from the Bool-
ean And search

rios 550 linpack Perfect

are shown in Figure B.4. The alias terms rios 550
are associated with the IBM R5/0000 Model 550
series of workstations. The specilication ol lin-
pack and Perfect will limit the search to the LIN-
PACK and Perfect benchmarks only. Since any
retrieved data will be displaved o the screen (by
default). the Save option allows the user to stre
any retrieval performance data in an ASCII file.

PARKBENCIH REPORT 139

3 Perfmmnro Oalﬂlase Servel
Gt [@Index] [Library] [Classifications] [Search] [Who] ~omalnad .
[ﬁm W Berfurmancal lemv in New Vlllﬂj [(uutextua!?lp]
Xnetlib 3.4

I Rank Ordering] Erowse Dearrll J@Bamrs & Nntes] gibliography

L} Please select vendor(s) and benchmark(s) and then [Process] to view.

Process the current lists and return results l

Newors” [3| J[_30_] senthaarts
Caiant JC st JC w1 |C Linwack
—LIIm (CERN
s][Priee 1| ([Parallel-Tinpack
Amﬂn Fu]\tsu J(_Pyramid [bonnie
Atari J[" Gould Sequent (_flops
| sc1 |

[ANP](_#itachi][Siemens] T Fhourstone
o) hanoi
3 I
G (1815 Stardent] nieve
Ccowex J Jntel__ I sun) nath
Cray Res |[Kendall Squ Tandy Perfect
¢SA___J[Masscomp J(Tektronix] genesis
(Data Ceneral IMECITENNN (Titan clinpack
—rmmmu—] sin

tFfedp
oncore m

FIGURE B.1 The browse facility provided by PDS.

Performance z;n sver

0 Lut [E) Indﬂ [LihraryJ [(hssificatious] m Oire-nlnat
3 L@ Timely nessage] Itonferznces] Performance Ehuw in New \Iimlo?l Iiuu(extual Heln]
4

[CRank ordering |[Browse |[search |[save]

Xnetlib 3.4
Papers & Notes|[Eibliography]

Results from FLOPS Benchmark notes: : ; Flops public domain benchmark 3
August 3 1993 §
Alfred A. Aburto aburto@nosc.eil 3
Naval Ocean Systeas Center San Diego i
SYSTEM 0S/COMPILER CPU/FPU FPU(MHZ) SCALAR_MFLOPS REF §
4860X2/66 EISA NOTE 023, IBM 0S/2 2.0 80486DX2 66.7 2.8658 36 8
IBN PS/2 Model5S NOTE 038, NS DOS 5.0 386SK/--~-~ 16.0 0.0057 32 33
IBN RS/6000 320H AIX 3.2.2, Pover RISC ~ ----- 6.6116 17 3
IBM RS/6000 370 AIX 3.2.3, cc -DINIX -0 Power RISC 62. 23.5727 37 g
IBM RS/6000 530 AIX 3.1.5, cc -DIWIX -0 Power RISC 25.0 8.9897 21
IBN RS/6000 540 AIX 3.2, xlc -DUNIX -0 Power Risc 11.1603 39
IBN RS/6000 540 cc -DUNIX -0 Pover RISC 10.9878 11 2
IBM RS/6000 550 3.2.3,cc -0 -gfloat=nomaf Pover RISC 42.7 13.7101 12 3
IBM RS/6000 S50 AIX 3.2.2,cc -OUNIX -0 -Q Power RISC 42.7 15.5674 1 ;
IBM RS/6000 550 AIX 3.2.3,cc -DUNIX -0 Power RISC 2.7 15.5820 12
IBN RS/6000 550 cc ~DUNIX -0 Pover RISC 4.7 15.5036 11
IBM RS/6000 560 cc -DUNIX -0 -Q Power RISC 50.0 18.2436 3
IBM RS/6000 950 AIX 3.2.1, Pover RISC ~ -——-- 11.0800 17
IBN RS/6000 980 cc -DUNIX -DROPT -0 -Q Power RISC 62.5 22.6487 14
IBN value Point NOTE 038, MS DOS S 486SX/----~ 25.0 0.0242 32
Insight 4860X-50 NOTE 028, 18m WZ Z.I 80486DX 50.0 2.0607 4
SGI 4D/20 Irix3.2,cc -DUNIX_01d -03 R2000 12.5 3.6821 28
SGI 4D/RPC Irix 4.0.5, cc -DUNIX -00 R3000/R3010 33. 3.6707 28
SGI 4D/RPC Irix 4.0.5, cc -DUNIX -03 R3000/R3010 33. 9.6501 28
SGI Iris 4D/35 Irix 4.0.5, cc -DUNIX -00 R3000/R3010 36.0 4.1529 7
SCI Iris 4D/35 Irix 4.0.5, cc -DUNIX -01 R3000/K3010 3.0 9.1439 7
SCI Iris 40/35 Irix 4.0.5, cc -DINIX -02 R3000/R3010 36.0 10.7828 7
SCI Iris 4D/35 Irix 4.0.5, cc -DUNIX -03 R3000/R3010 36.0 10.7533 7
SCI Iris Indigo NOTE D1S R3000/R3010 33. 10.1848 11 g
SCI Iris Indigo cc -03 R3000/R3010 33.0 9.1272 9 3
SCI Iris RPCS0 cc -03 R4000/R4010 100.0 18.0685 9 %

FIGURE B.2 Sample data returned by the PDS Browse facility.

PARKBENCH COMMITTELE

Performance Database Server

; L@ Index] [Uibrary] [Classifications] [Search] [who] DownTvad
8 [Q Tinely message] [conferences] [Perfornance| [Show in New window] [Contextual Help)

FIGURE B.:

Xnetlib 3.4

[Rank ordering][Browse][Search |[Save|[Papers & Notes){Eibliography]

Boolean search type: [or] 0] Comeand set: [clear display][clear search field]
search string: {rios 550 linpack Perfect] press return...

performance Database search :

Ta search thmu?h the performance database please enter a .
key or series of keywords and Boolean search type. Type <return>
to begin the search.

clear display - clears the output window and prepares it for a
new search result.

clear search field - resets the search string to null.

Search information::

truly a literal search over all the data. By selecting 'and’ the
return results are ONLY records matching ALL keys. In selecting
‘or’ the return results are ANV records matching ANV key.

Please NOTE: The search facility allows users to BUILD up query results
from numerous queries in the same screen and then save them.
To clear the search results select ‘clear display’.

Performance Detabase Server

o ti; [@Index] [Library] [Classifications] [Search] “oovaload

[@Timely Message] [conferences] [Performance] [Show in New windaw] [Contextual Help)

]
Xnetlib 3.4
8 [Rank ordering |[Browse |[Search](save] [Fapers & Notes|[6ibliography

Boolean search type: m Comnand set: [clear display][clear search field]
search string: Elos 550 Yinpack Perfect —[press return, ..

Results from Linpack Benchmark notes: : : Linpack Performance Report 3
Septenhel 1 1993; Jack Dongarra dongarra@cs.uig
University of Tennessee Knoxville

Computer 0S/Conpiler N=100(Mflops) u-moa 3

IBM RISC Sys/6000-550 (42 MHz) v2.2.1 x1f -0 -P -up,-ead?q 26
IBM RISC Sys/6000-550L(42 NHz) v2.3.0 xIF -0 ~P -¥p,-ead?8 19

Results from Perfect Benchmark notes: : ; Perfect Club Report
Jan 9 1993
Dave Schneider
schneid®csrd.uiuc.edu
CSRD UIVC IMlinois
To reviev bibliography click Papers .

MNODEL Location Name ADM-bepu ARC2D-bcpu BONA-bepu DYFESM-bepu FLOS
RS6000-550 NCSA RSS50 38.930 310.810 99.350 21.460 :

FIGURE B.4 Results of a keyword search using the PDS Search facility.

Specifving a keyword search using the PDS Search facility.

Appendix C

Selected Results*

C.1 Low-Level Benchmarks

C.1.1 Arithmetic Benchmark Results

As an indication of the type of results given by the
low-level arithmetic benchmarks. Table C.1 gives
measurements made on a number of worksta-
tions. and microprocessor chips that are used as
processing nodes in distributed memory parallel
computers. The measurements shown represent
the state of aflairs on the date of the measure-
ments. and both hardware and software improve-
ments since that time should have significanty
improved the results. They are presented here
only to illustrate the type of results to be expected
from the low-level benchmarks. They should not
be taken as representing the current state of com-
petitive performance in the very rapidly changing
workstation and chip market. Such a comparison
will only be possible if these benchmarks are rou-
tinely run on new hardware and software and the
results stored in the PARKBENCH interactive
performance database. which would then contain
an up-to-date comparison of competitive hard-
ware and software. Nowithstanding these cave-

ats. we feel it is helpful to give these examples of

low-level benchmark measurements that happen
to be available. even though some are a few vears
old and therefore probably seriously outdated. In
this small table we have not room to give the full
specification of the conditions for each measure-
ment (full and exact description of hardware, and
compiler and options used. etc.), but this infor-
mation would be an essential and required com-
ponent of an entry into the PARKBENCH data-
base of benchmark results.

* Assembled by Vladimir Getov for the whole committee.

C.1.2 Example Results for the
COMMS1 Benchmark

We report below results for the COMMS1 bench-
mark on the SUPRENUM. Intel iPSC/860 [18:.
Touchstone Delta [41!. Intel Paragon XP/S and
Meiko C5-2 message-passing parallel computers.

Table C.1. Examples of low-level benchmark
measurements on some common workstations
and microprocessor chips used in distributed
memory parallel computers. Measurements were
made with the highest level of optimisation that
ran, and are in Mflop/s for 64-bit precision. The
units of ny are vector length, and f are flop/mref.
Results are for the best generally available
compiler on the date shown. The RINF1
benchmark gives values of the (r., n;) parameters
for the kernel A = B * C (vector = vector X vector)
for contiguously stored vectors.

Intel IBM RS/ DEC

i860XP 6000-530 a
Benchmark 50 MHz 25 Mtz 133 MHz
d/m/y 12/10/93 14/6/90 13/1/93
Linpackd 14.7 9.54 20.7
n = 100
Livermore 28.8 31.8 46.6
Maximum
Livermore 2.62 1.34 +.47
Minimum
RINF1
s 7.64 26.4
(ry) (2.58) (5.6)
POLY1
Fx 13.50 25.85 88.9
(f) (0.44) (0.34) (0.71)
POLY2
Fo 13.48 25.65
(A (1.12) (0.91)

142 PARKBENCH COMMITTEE

Table C.2. Values of (r., ny, £y, m) for the single message pingpong
between two nodes of the same cluster on the SUPRENUM and
neighbouring nodes on the Intel iPSC/860, Touchstone Delta, Intel
Paragon and Meiko CS-2 computers. The Delta measurements were
made at Caltech on 17 Jan. 1992, the Paragon measurements at ORNL
25—-28 May, 1993, and the CS-2 measurements at Southampton
University on 9 July, 1993. Subsequent hardware and software changes

may have improved the results.

Rangv Ie ny ty kutl
Specification B* MB/s B ms kllz
SUPRENUM
sp SEND A{1:N) 0.67 2041 3.05 0.328
dp SEND A(1:N) +.82 12740 2.6+ 0.378
INTEL iPSC/860
CSEND (LA.N.) N <100 2.36 179 0.074 13.5
N> 100 2.80 560 0.200 5.0
INTEL Delta
CSEND (,A.N\.)) N< 512 3.48 213 0.001 16.3
N> 512 6.76 892 0.132 Ak g
INTEL Paragon XP/S
CSEND (AN N < 40000 235 4044 0.172 5.80
Meiko CS-2
PARMACS N < 40000 +43.0 3747 0.087 11.5
* B - byte

These results are given numerically in Table-C.2.
and graphically in Figures C.1 and Figures C.2.
The latter are typical of the representation to be
expected from the proposed graphical front end to
the PARKBENCH database.

Table C.2 gives the values obtained for the
communication parameters. in the version of the
benchmark using the native SUPRENUM exten-
sions to the Fortran90 language. These include a
SEND and RECEIVE language statement with a
syntax similar to that of the Fortran READ and
WRITE statement. The asymptotic stream rate. or
bandwidth. (r:} shows considerable variation on
the SUPRENUM. depending on how the data to
be transferred is specified in the 170 list of the
SEND statement. A variable length array in For-
tran90 syntax in single precision achieves 0.67
MB/s. whereas the same statement specified in
double precision achieves 4.8 MB/s. This double-
precision rate is about twice that observed on the
iPSC/860 with their CSEND Fortran subroutine.
which sends an array whose length is specified in
bytes. The principal difference between the two
computers is the magnitude of the startup time. ¢ .
which is 74us on the iPSC/860 compared with
about 3ms on the SUPRENUM. Since the startup

time, via . determines the transfer rate for short
messages (say < 100Bj. we see that the SU-
PRENUM is 45 times slower than the iPSC/860
for short messages. On the other hand the SU-
PRENUM has almost twice the stream rate for
long messages (as seen by the value of r«i. pro-
vided the most favourable format (i.e. double pre-
cision or 64-hit) is used in the 170 list. One may
compute from these numbers that the iPSC/860
is faster at transferring messages for all message
lengths less than 16.481 Byte. The longer startup
time on SUPRENUM results in larger values of ny.
showing that longer messages are needed 1o
achieve any given fraction of the asymptotic rate.

The results for the Touchstone Delta show that
this computer has the fastest short and long mes-
sage performance. judged respectively by the val-
ues of my and r.. However the improvement of
short message performance over the iPSC/800) is
only marginal. and the long message performance
is only about one quarter of the advertised band-
width of 25MB/s. However hardware and soft-
ware improvements made since the measurements
were made should have improved the results.

If we compare the new generation of production
computers. the Intel Paragon XP/S and the Meiko

PARKBENCH : COMMS1

600 Sy
500

/2]

L=

~_ 400

<5}

£

S 300

~

Q

Qe

wn

g 200

« | 8o ...

~ 172

B~

1 L

s 2.8MB/s
iPSC/860

43.0MB/s
CS-2

1 1

200

400

600 800 1000

Message Length / Byte

FIGURE C.1 Time to send a message of different lengths for messages up to 1000
Byte. Circles are for the Intel iPSC/860. delta-triangles are for the Touchstone Delta,
squares are for the Paragon. and diamonds for the Meiko C5-1. The solid lines are
straight-line least-square fits given in the text. Measurements made with software avail-
able at the following places and dates: iPSC/860 (USAF Phillips Lab. 13 Jan 1992),
Delta (Caltech 17 Jan 1992), Paragon (ORNL 25-28 May 1993), CS-2 (Southampton
U. 9 July 1993). Subsequent software updates may have improved the results.

PARKBENCH : COMMSI1

100 3 — ——rrrrr
]
F cs-2]
r-M 4.'31
//o /(r/_a,o-c 24 |
™y 10 " 'Paragon
\ : o o __A—a—0-06.7
g /o/ ;jka/A Delta
A~ >—o0—00 2.8
~ x’ri“;:n‘,/o/"—" iPSC/860 J
o
~ 1 B A
) ; >]
- []
> |
o
~ 3
q) 4
S]
n]
g q
~
E-‘ F
¥
[
0.001 ‘" i s -

1 10

100

1000 10000 10000

Message Length / Byte

FIGURE C.2 The observed message-passing bandwidth in Megabyte per second as a
[% l o) © B I
function of message length. up to 40.000 Byte. The data and symbols are the same as

those shown in Fig. C.1.

144 PARKBENCH COMMITTEE

10_ ———rrrr — T i
[roblem sizel 256 x128 |
=, i / e C-90
& I o Y-MP]
E i o T3D 1
o} - = SP-1
’—‘ .
“(3 i g /’ v 1PSC/86q
~—~ Paragon
\m / a CM-5
v CM-2
I / 2 c
) L+ |
19) 2/]
c: a - 4
z /]
' /‘ / / -
o r]
i
L‘ | i
Q
a9
0.1 bl el
1 10 100 1000 10000

Number of Processors, p
FIGURE C.3 The benchmark performance for the 3-D FFT-kernel on different paral-

lel computers.

CS-2. we find. on the dates stated. the CS-2 0
have a higher communication performance than
the Paragon for both short {7} and long messages
(r=), and therefore for all message lengths. How-
ever both computers are at an early swate of the
hardware and software development. and both
have considerable development potential. The
COMMS1 benchmark will continue to be used to
track this competiton in communication perfor-
mance. and the success of both manufacturers to
achieve a high performance for both short and
long messages.

C.2 Kernels

This section reports selected kernels” results ob-
tained to date [42] on the following parallel com-
puters: YMP, C90. and T3D by Cray Research
Inc. (CRI); Paragon and iPSC/860 by Intel: SP-1
by International Business Machines (IBM): KSR1
by Kendall Square Research: CM-2, CM-200.
and CM-5 by Thinking Machines Corp. (TMC).
The performance results in Gflop/s use the flop
counts of corresponding PARKBENCH kernels as
determined by the hardware performance monitor
on a Cray Y-MP.

On the 3-D FFT PDE benchmark (see Figure
C.3). the T3D is showing the best performance.
For this benchmark. a 6+ node T3D is roughly
equivalent to two C90 processors. whereas 64
node SP-1. Paragon. and CM-5 svstems all
achieve only the performance of roughly one C90
processor. The CM-5 is showing poor scalability
bevond 64 nodes. There is no obvious reason for
this result. One would expect beter scalability
from the 3-D FFT PDE benchmark since it is
transpose-based with a signilicantly larger arid
and correspondingly greater parallelism.

Results for the embarrassingly parallel kernel
are shown in Figure (.5, Not all svstems exhibit
high rates on this problem. This appears to stem
from the fact that this benchmark requires refer-
ences to several mathematical intrinsic functions.
such as the Fortran routines AINT. SQRT. and
LOG. and evidently these functions are not highly
optimized on some systems.

The irregular communication requirement of
the CG-kernel is obviously a challenge f[or all the
parallel systems. Results are shown in Figure C.6.
In addition. newly reported and much improved
C90 results further diminish the relative perfor-
mance ol the parallel svstems. None of the distrib-
uted memory parallel computers tested showed

Performance, R;/(Gflop/s)

o
—

FIGURE C.4 The benchmark performance for the MG-kernel on different parallel

computers.

PARKBENCH REPORT

— —r—g
Problem|size 256]

>» b ®m O

a

YT

C-90
Y-MP
T3D
Paragon
CM-5
CM-200
CM-2

p—

Y4

P

Ly

7

4

PR

10

100

PR ST
1000

10000

Number of Processors, p

—T YT T TrTOT

C-90
Y-MP

[,
)

T3D

SP-1)
iPSC/860
Paragon]
KSR1]

4 b =

[3

[

Performance, R,/(Gflop/s)

I A

v

/
Y

+ CM-5
o CM-200 |
v CM-2

Wt

1

FIGURE C.5 The benchmark performance for the EP-kernel on different parallel

computers.

10

100 10

00 10000

Number of Processors, p

145

146 PARKBENCH COMMITTELE

[

C-90

Y-MP |
T3D
Paragon
CM-5
v CM-2

0O 4 0O e

(@]
p—t

8
Problem #ze 2x10

Performance, Ry/(Gflop/s)

ST SRR T 1

v 1

Y

1 10

100

1000 10000

Number of Processors, p

FIGURE C.6 The benchmark performance for the CG-kernel on different parallel

computers.

better performance than a single processor C90
for the Conjugate Gradient benchmark. Parallel
algorithms for Conjugate Gradient are still evolv-
ing, and implementations of the newer algorithms
have appeared only on the iPSC/860. For this
reason, an 128 node iPSC/860 is outperforming a
comparably sized Paragon by almost a factor of 2
on the Conjugate Gradient kernel.

Except for the Embarrassingly Parallel bench-
mark. the 16 processor Cray C-90 parallel com-
puter is still the highest performing system tested.
It also remains the highest priced system tested.
The distributed memory parallel computers of
comparable price do exist. however. the problem
sizes used so far do not offer sufficient parallelism
to do justice to such systems. With the possible
exception of the Cray T3D, message transfer time

on current systems is such that bevond 128 nodes
the benchmark performance begins to severely
degrade. Larger problem sizes. however. should
offer parallelism up to 512 nodes and even higher
on current parallel computers.

Of the distributed memory parallel computers,
the T3D is consistently achieving the greatest per-
formance. The excellent results demonstrated by
the T3D proves that distributed memory architec-
tures are quite suitable for general purpose scien-
tific computing and not destined just to fill a niche
in the field. The above kernel results reflect the
situation in 1993 described in the report [42].
Please note that subsequent hardware and soft-
ware changes have significantly improved some
results.

