
Scientific Programming 17 (2009) 339–341 339
DOI 10.3233/SPR-2009-0294
IOS Press

Book Review

Lee S. Brownston ∗

Stinger Ghaffarian Technologies, Inc., USA

Programming: Principles and Practice Using C++,
by Bjarne Stroustrup, Pearson Education, Addison–
Wesley Professional, 2008, ISBN 978-0321543721.

This is an introduction to computer programming
using the C++ language. It’s an unusual notion; C++
is commonly thought to be too difficult to teach as
a first programming language, that you have to know
everything to do anything. Bjarne Stroustrup, the cre-
ator of C++ and the major influence on its evolution,
disagrees, and he is not about to cede the field to Java,
Python and Visual Basic.

The text is organized around several extended ex-
ample programs that span multiple chapters. The pro-
grams grow by successive approximations. Sometimes
the examples are purposefully false starts, to show why
a naive approach wouldn’t work. These extended ex-
amples are a “calculator” (algebraic expression evalu-
ator) in Chapters 6 and 7; a 2D graphics package and
GUI widget set built on the FLTK toolkit in Chap-
ters 12 through 16; and an STL-like vector class in
Chapters 19 and 20. In addition, there are many smaller
examples from a variety of domains, including word
counting (Chapter 3); a date class (Chapter 9); linked
lists (Chapter 17); text editing (Chapter 20); linear al-
gebra (Chapter 24); and encryption (Chapter 25).

The example programs are carefully and imagina-
tively chosen to introduce programming language el-
ements, computer science concepts and good (“pro-
fessional”) practices. There are few promissory notes
in which an example program depends on language
features that have not yet been introduced, but there
are some. For example, to avoid dealing with ex-
ceptions and namespaces, early examples #include a
custom-built header file named “std_lib_facilties.h”
which hides those details.

Language features are introduced as needed to
solve the example programming problems. Sometimes,
a minimal amount of information is presented. On

*Address for correspondence: Lee Brownston, Mail Stop 269-
3, NASA Ames Research Center, Moffett Field, CA 94035, USA.
E-mail: Lee.S.Brownston@nasa.gov.

page 733, in the discussion of STL algorithm find_if(),
a function pointer is discreetly presented in a code ex-
ample, and it is not even called a function pointer,
much less is its type mentioned. Then the subject is
quickly passed over to a discussion of function objects,
though pointers to functions do re-appear in later ex-
amples.

Similarly, principles of good programming practice
are integrated into each chapter and not isolated in their
own sections. The advice is always clear, sound, nec-
essary and undogmatic, but it is not the last word. In
fact, Stroustrup’s thinking on these matters continues
to evolve. For example, on page 597 of the textbook,
the recommendation is to pass objects by value if they
are tiny; by pointer if the null pointer is a meaning-
ful value; and by reference otherwise. But on page 99
of The C++ Programming Language: Special Edition,
pointers were preferred over references.

Although the text assumes no prior familiarity with
any other programming language, part of Chapter 25
does assume a knowledge of binary and hexadecimal
number systems, and some knowledge of linear alge-
bra is needed to understand a matrix example in Chap-
ter 24. The recursive-descent expression parser in the
“calculator” example of Chapters 6 and 7 can be pretty
rough going for someone encountering these ideas for
the first time.

Stroustrup is a precise and careful writer, but the
style is conversational rather than formal. On page 802
he acknowledges Brian Kernighan’s style as an inspi-
ration, especially “the tutorial sections of his master-
piece, The C Programming Language”. As with any
technical book of such a size (1236 + xxvii pages),
there are some errata. I found a few dozen, often hav-
ing to do with text and examples becoming out of
sync. Few are likely to cause problems for the reader,
though the characterization of stack behavior as “first
in, first out” on page 287 should be corrected by teach-
ers adopting the book.

One point firmly and repeatedly stressed is that
programmers should use the standard library contain-
ers and algorithms whenever possible, and should not

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

340 Book Review

try to roll their own. This leads to a de-emphasis on
data structures and especially algorithms in the text.
The implementation of a vector class is presented in
detail; linked lists in somewhat less detail; binary trees
in even less detail; and stacks are briefly described.
Queues are just mentioned and graphs not mentioned
at all. The only standard algorithms to be discussed
are search: linear, binary and balanced binary trees.
Sorting algorithms are not investigated at all: there is
just a table of standard library sorting algorithms on
page 1117 in an appendix.

The core material in the first 21 chapters is separated
from the discretionary material by a charming history
of programming languages from 1948 to the near fu-
ture. Counteracting the abstractness of the technical
material, this history, with photographs of the most
important innovators, personalizes the enterprise, and
places modern programming practice in its intellectual
tradition. It is no surprise that there is only grudging
mention of Java; in fact, C# is mentioned more fre-
quently.

As with many other computer texts, the discre-
tionary material comes at the end, assumes consid-
erably more background and requires more effort on
the part of the student, and is comparatively rushed.
The incremental presentation of necessary background
diminishes, and the subject matter turns to more ad-
vanced and infrequently-encountered topics such as
regular expressions, linear algebra, bit manipulations,
fragmentation of the free store, real-time embedded
programming, and coding standards. The penultimate
chapter returns to the important topic of testing, and
a final chapter covers the parts of the C language not
covered in the preceding chapters because they are not
recommended in C++ programs.

There is little treatment of software engineering or
the problems specific to large programs, other than the
obvious one that the larger the program, the harder it is
to write correctly, to test and to debug. There is no dis-
cussion of design tools such as UML diagrams. Con-
cepts such as iterative development and agile program-
ming are absent. The examples are all small programs
and the point of view is usually that of someone re-
sponsible for a small unit of functionality, a few classes
at most. Although there are abstract base classes, the
concept of a class used as an interface is not presented.

Similarly, many established concepts and terms are
avoided. In passing, mention is made of writing a class
the sole purpose of which is to supply a new inter-
face, but the terms “adaptor”, “facade” and “proxy” are
not used, nor is there any other allusion to design pat-

terns. In discussing the testing of GUIs on pages 969–
973, programmers are recommended to separate I/O,
whether GUI or text I/O, from the main program, but
there is no allusion to the concept of Model–View–
Controller. These absences are emblematic of the insu-
larity of the C++ inner circle. Not only does the C++
community insist on its own vocabulary (“base class”
instead of “superclass”; “member function” instead of
“method”), but the most authoritative writings seldom
make reference to ideas which originated outside of
the C++ community itself or the direct ancestors of
C++, such as Simula and, of course, C. Students will
encounter these ideas if they continue their computer
science studies, but a teacher would do them a service
by presenting these ideas in class.

This text shares many of the features common
among computer texts. The formatting involves gobs
of white space, since turning pages rapidly gives the
reader the feeling of making rapid progress: big mar-
gins, especially around code examples, bulleted lists,
tables and diagrams; chapters and parts beginning
with sparsely-populated pages. Chapters and appen-
dices have numbered sections and sometimes subsec-
tions, and the table of contents enumerates them all,
taking 18 pages to do so. Small colored disks in the
margin highlight important points, and the exposition
is sometimes interrupted by “Try this” suggestions.
Each chapter ends with “drills” (exercises which don’t
involve much original thought); review questions; a list
of terms introduced in the chapter; an extensive set of
exercises; and a “postscript” that comments on the ma-
terial just presented and often looks forward to the fol-
lowing chapter. Color is used extensively in diagrams,
tables, icons, chapter beginnings and endings and color
photographs of programming language innovators.

The chapter on testing emphasizes the choice of tests
to run and presents a roll-your-own approach to test
suite construction. It’s odd that unit test frameworks
such as the open-source CppUnit port of JUnit are not
even mentioned, especially considering the strong dep-
recation of duplicating standard library data structures
and algorithms. In fact, FLTK and Visual Studio are the
only products considered. A brief survey of the kinds
of tools a programmer might want to use would have
been welcome.

Although Stroustrup warns against putting too much
emphasis on formatting and other stylistic matters, the
code examples implicitly present a consistent coding
style: under_scores rather than CamelCase; extremely
short variable and formal parameter names; no lexi-
cal distinction between class and struct data member

Book Review 341

names on the one hand and variable and formal pa-
rameter names on the other; absence of curly braces
around single-statement blocks in if, for and while
statements; the asterisk for a pointer is attached to the
type name rather than to the variable or formal para-
meter; header comments appear between the signature
and the body; const is used when needed but not every-
where it is possible. All of these are defensible choices,
and may even be the best choices, but alternatives are
rarely discussed (e.g., the author’s personal distaste for
camel case on page 936).

Stroustrup is justly proud of the success of C++ and
of his role in its creation and development. This tends
to make him soft-pedal the tradeoffs involved in choos-
ing a language. While acknowledging that no language
does everything equally well, he is far from specific
about the shortcomings of C++. To be sure, a text-
book author doesn’t want to discourage students about
the value of what they are studying, but a bit more
candor about the tradeoffs would have been welcome.
For example, among all the numerous application do-
mains mentioned in the text, web application develop-
ment is missing. This is an area in which PHP, Java,
Python, Visual Basic and even Perl are more popular
than C++. On page 773 is a list of desirable proper-
ties of programming languages. Missing from this list
are rapid development, short development cycles, mod-

ification without re-compilation and protection against
memory leaks. So we have a chicken-and-egg problem:
does he value C++ because it has most of these prop-
erties, or does he value these properties because C++
possesses so many of them? I suspect some of both.

Experienced programmers, even experienced C++
programmers, can profit from reading Programming:
Principles and Practice Using C++. They can learn
about some of the less-familiar language features,
some perspicuous uses of more-familiar language fea-
tures and good programming practices, as well as sim-
ply being exposed to several carefully-written pro-
grams designed by an authority in the field. The C++
Programming Language will give advanced readers
deeper and more comprehensive coverage, but there is
still value for them in this book as a refresher.

While reading this book, I couldn’t help thinking of
the Caltech students who studied introductory physics
from Richard Feynman’s famed lectures. No, the de-
mands on the student are not nearly as great, nor is
the interest value for the experienced. This textbook
was developed over several years at Texas A & M Uni-
versity, and this is a credit to the level of students for
whom this was their introduction to programming. It
is unlikely that this text will be adopted in community
colleges and university extension courses.

