
Scientific Programming 17 (2009) 279–282 279
DOI 10.3233/SPR-2009-0285
IOS Press

Book Review

Dan Nagle
George Mason University, Computational and Data Sciences, 4311-G Bob Ct., Fairfax, VA 22030, USA
E-mail: dnagle@gmu.edu

Python for Software Design, by Allen B. Downey,
Cambridge University Press, Cambridge, 2009, ISBN-
13:9780521725965

Python for Software Design is subtitled How to
Think Like a Computer Scientist. It has a Preface,
19 chapters, an Appendix and 251 pages, including the
index. The author wants to teach computer science to
first-year students. So the approach is to use a larger
number of shorter chapters to keep the lessons to a size
and complexity suitable for freshmen. After some ex-
perience with Java, the author switched to Python as
the teaching language.

I’m in computational science not computer science,
and I’ve been programming for decades. What does
this book have for me? Do I want to think like a com-
puter scientist? Do all computer scientists think alike?
Oh, well, I’ve heard of Python being used for com-
putational scientific tasks (Jonathan E. Guyer et al.,
FiPy: Partial differential equations with Python, CiSE
11(3), 6–15; M. Tobis, PyNSol: Objects as scaffolding,
CiSE 7(4), 84–91; K.-A. Mardal et al., Using Python to
solve partial differential equations, CiSE 9(3), 48–51),
so let’s keep an open mind and see what’s here.

Starting with the Preface, we get a little of the his-
tory of the book, including the original courses the
author taught using Java. The decisions to make the
course simpler, and the chapters shorter, is explained
as a response to the classroom response to the previ-
ously used material, and some suggestions from some
high school teachers who were also using the material.
The goals of making careful definitions of terms, build-
ing gradually, and keeping focus on the programming
rather than on the language are mentioned. The results
of these goals leading to Python, and the conversion
of the teaching material to Python are described. I like
the list of contributors. If you found a bug in an earlier
version of the book, you got your name in print (which
obviously encourages bug reporting). I won’t mention
it for every chapter, but each chapter ends with a De-
bugging section, a Glossary section, and a Problems
section. The first two are helpful summaries, and plac-
ing them near the problems likely helps the students

as well. There are also a few problems throughout the
chapters as well.

Chapter 1 introduces us to Python, with an easy
explanation of high-level languages versus low-level
languages. Low-level languages are defined to be ma-
chine languages, and the advantages of using high-
level languages are explained. This includes an expla-
nation of the differences between interpreters and com-
pilers. Now, we’re ready to download and start using
the Python interpreter, with some 1+1 giving 2 ex-
amples. What is a program? It’s defined as input, out-
put, math, conditional execution, and repetition. Then,
we move to debugging. Here, classes of errors are de-
scribed as syntax errors, runtime errors, and seman-
tic errors. We get a description of formal versus nat-
ural languages before writing our “Hello, world!”
program. From here, I read the book with the IDLE
window (a Python shell, it downloaded and installed
with the rest of the Python for Mac software from
python.org) open on my Mac. Now that I’m writing
this review, I’ve still got IDLE beside the text window.

Chapter 2 introduces the ideas of values, expres-
sions, and statements. First, we distinguish between the
value and the type of a name, and use the type()
function to make tests. Next, we’ll look at variables.
Python variables need no declaration (usually). One
must distinguish variables from keywords. The usual
naming rules apply. Finally, we see how Python forms
expressions, and quickly learn the difference between
integer division and floating point division. We need
to know Python’s order of precedence, and legal and
illegal operations, depending upon the types of the
operands. Here we find comments. The author seems
adept at choosing clear names so commentary may be
kept at a minimum.

Chapter 3 introduces us to the idea of Python func-
tions. First we find the type conversion functions,
building on the material from Chapter 2. Next, we’ll
look at the math functions, and that means we’ll need
to see how to import the math module and how to use
the dot notation to specify that the name is to be taken
from the math module. We’ll see how to combine func-
tions, and how to write our own. This brings us to the

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

280 Book Review

subject of flow of execution. We’ll also need to know
that the scope of parameters and variables. To help the
student understand all this, stack diagrams are used.
Lastly, fruitful and void functions (functions that do or
do not return values) are distinguished.

Chapter 4 examines interface design, using the
turtleworld modules. Unfortunately, I was unable to
download the Swampy software, the thinkpython.com
site doesn’t seem to be around anymore. After a while,
I tracked the software to a subversion repository, but
it seemed to want me to register in order to login,
so I gave up regretfully. At any rate, we’ll start this
chapter by executing some functions that move tur-
tles around the screen (turtles drag a paintbrush behind
them). Next, function calling is combined with control
structures to make the turtles follow complete paths.
Now, we can examine encapsulation and generaliza-
tion to make our functions easier to use. And so armed,
we can start to think about interface design. This leads
to the ideas of refactoring our work so far, leading, in
turn, to the idea of a development plan. The first idea of
a development plan is to make something work simply,
then embellish it gradually. Since we may now revisit
old code, the notion of docstrings is introduced.

Chapter 5 examines conditionals and recursion.
First, we must understand boolean expressions, and
move to logical operators. Then we can learn condi-
tional execution, with and without an alternative path
(that is, the if statement with and without an else
clause). Else-if clauses are expressed by the elif key-
word in chained conditionals. An alternative to chained
conditionals is nested conditionals. Now we’re ready
to examine recursion. So we find a simple countdown
example of recursion, and analyze it into its recursive
case and its base case. An infinite recursion is shown
to reveal the error message it generates. Lastly, we see
how to get simple input from the keyboard.

Chapter 6 discusses fruitful functions. All the user-
written functions so far have had only side-effects, usu-
ally printing something. Now, we’ll start writing some
to return values. Since we’ve already seen print func-
tions, we can learn incremental development by putting
print functions inside our own functions, to check ar-
guments and partial results. The idea is to start with
something simple, and make small changes, so when
something goes wrong, you’ll have a very good idea
where. Now that we have functions, we can have one
function of our own call another of our own, even it-
self. So equipped, we can tackle the factorial and the
Fibonacci favorites. We can place guardian statements
in our functions to check our assumptions.

Chapter 7 discusses iteration. First, we must under-
stand that one may assign a value to a variable more
than once, and that the new value may be computed
from the old value (but only if the variable already has
a valid old value). Next, recast the countdown problem
as iteration rather than recursion. Now we confront a
dilemma: How do we know whether our condition for
exiting the loop will ever be met? The answer, in gen-
eral, is, of course, we don’t. A simple example suf-
fices. What if we want to exit the while loop early?
Use the break statement. When dealing with floating
point data it is difficult to test for exactness, so the idea
of two numbers being close enough must be used. Now
that we’ve seen Newton’s method compute a square
root, we’ve seen an example of an algorithm.

Chapter 8 brings us to strings, which we’ve been us-
ing since the beginning without much understanding of
their properties and limitations. Strings appear similar
to an array of characters, they have a length, and char-
acters can be selected with an array-like notation. An
interesting point is that when a negative index is ap-
plied to a string, one is merely indexing the string from
the end rather than from the beginning. There’s a plus
operator to concatenate strings, and a slice notation to
extract substrings. New strings may be made, but ex-
isting strings are immutable. Various string methods
are shown, and along the way, the difference between
methods and functions is introduced.

Chapter 9 describes ways to search for strings em-
bedded in other strings, and along the way we learn
some file operations. Several ways to search are de-
scribed, often through the whole file, a line at a time.
We also learn where to get the file of all valid English
words for Scrabble and cross-word puzzles!

Chapter 10 introduces us to lists. A list is a sequence
of values where the values can be of any type (in-
cluding another list, which is said to be nested). Un-
like a string, a list is mutable. So, while a list item is
addressed with the same notation as a character in a
string, this may appear on the left-hand side. Various
list operations are introduced, including concatenation
and slices. Then we meet the list methods. We learn
the design patterns of maps, filters, and reductions.
Some ways of removing an item from a list are shown.
Now comes the subtlety of aliasing. Since strings are
immutable, only one is created within the interpreter
for each unique string. With lists, two names assigned
identical lists are not aliased. However, if one list is as-
signed to another, they are aliased. The consequences
of this for argument passing are examined.

Chapter 11 introduces dictionaries. With a list, the
items could be of any type. A dictionary is also made of
a set of items, but here the keys may also be of almost

Book Review 281

any type (the keys of the list are the integers starting
with zero). The keys are hashed to reduce search times.
How to make a histogram from a dictionary is shown.
One’s attention is directed to the unpredictable order
of the dictionary items. Reverse lookup is explained.
Lists and dictionaries are compared, which leads to a
discussion of hashes. The dictionaries are used to cre-
ate memos so previously computed values of the re-
cursive Fibonacci calculation need not be recomputed.
This leads to a discussion of global variables. We con-
clude the chapter with a discussion of long integers.
Trust me, it’s all related!

Chapter 12 discusses tuples. The selection operator
selects an item from a tuple, just like it does for strings,
lists, and dictionaries. Slices and ranges work as be-
fore. Tuple assignment, and how to use that to swap
tuples, is shown. Use of tuples as return values (for ex-
ample, from divmod()) is shown. Use of tuples to
simplify argument lists, how to make variable-length
argument lists, and how to unpack them is shown. Tu-
ples are compared with lists, and with dictionaries.

Chapter 13 discusses selection of data structures,
now that we have several from which to chose. A num-
ber of cases involving analysis of long strings to search
for patterns of words is shown, and the trade-offs
for the various data structures is explored. Random
numbers get a mention. Particularly interesting to me
was the Markov analysis (that is, which word follows
immediately after which other word, and how many
times).

Chapter 14 discusses files. We’ve already been using
files for a bit. But here we’ll learn opening, reading and
writing. All of which leads us to discuss exceptions.
So we see the exception block and the handling block
sequence. Use of databases (which require strings) and
therefore also formatting is discussed. Next, we meet
pipes. So now that we have operations on files and ex-
ternal programs, we learn one last tidbit about writing
modules.

Chapters 15–18 would likely have been one long
chapter in a book written by another author. But here,
it’s been split into 4 separate one. I think that’s help-
ful, as it breaks a long topic into smaller pieces for
sequential consideration. It also facilitates the well-
paced style of repetition kept fresh with something new
added.

Chapter 15 discusses classes and objects. We’ll start
with how to define classes, and how to get some diag-
nostics about them. Once we have instances of a class,
we can assign values to its attributes. Now we can start
to define points, then rectangles. This leads to the use
of objects as return values from functions. We note that
objects are mutable, so a function may modify its argu-

ments. We learn some more about aliasing, which leads
to learning about shallow copies versus deep copies.

Chapter 16 discusses classes and functions. Now
that we have objects whose class we defined ourselves,
we’ll want to display their values both for output and
as a debugging aid. We’ll also write functions to pro-
duce new objects from old. Sometimes it will be con-
venient to simply modify the object passed as an argu-
ment to the function. Of course, it’s always possible to
change the function definition to return a new, modified
object rather than changing the argument. This leads
to a discussion of prototyping versus planning. Plan-
ning and generalization may lead to simplification and
therefore, to reliability.

Chapter 17 discusses classes and methods. The lack
of any obvious link between functions taking objects
of a class and the class itself leads to the idea of meth-
ods. So the object and self notation for methods is
introduced. The rationale for methods is discussed, and
a few more examples are given. Then, we turn to the
init (initializer or constructor) method for a class.
From there, operator overloading and type-based dis-
patch are discussed, leading to a discussion of poly-
morphism.

Chapter 18 discusses inheritance. Individual objects
and class attributes are discussed. The example of a
poker program is used. We want to be able to com-
pare objects. So we learn how to encode, and then sort
cards. Learning to shuffle leads to the random num-
ber generator. With methods to add and remove cards,
we are ready to deal. Inheritance allows us to make a
“hand” class, which is derived from the “deck” class.
So dealing is nothing beyond removing a card from the
deck, and adding it to a hand. The idea of class dia-
grams leads to the “IS-A” and “HAS-A” relationships.

Chapter 19 discusses Tkinter, a binding to Tk/Tcl
(although Tk/Tcl isn’t mentioned, one may check the
python.org web site). It’s very nice that several bind-
ings to graphics are defined for Python. Often, the most
difficult part of a programming assignment is to get
the graphics right in order to gain some understanding
from all the lovely numbers.

Finally, the Appendix discusses debugging. The
hints range from the practical to psychological coun-
seling. All are useful and valuable, however.

So what has happened? Am I now thinking like a
computer scientist? I don’t know. As a computational
scientist, I use a lot of these ideas everyday. I guess
I just learned them informally, along with my war
stories and battle scars. But it was nice to get a re-
fresher on some of the new terminology. I hadn’t heard

282 Book Review

“checking the input” called “guardian statements” be-
fore. But how many times can one read about if-
statements? (Here’s the logical condition. Okay. Here’s
the block of code. Okay. I’ll forego the joke about the
movie star’s seventh husband.) On the positive side,
it was useful to get some clearly explained rationale
for the ideas of object-oriented programming. That’s
helpful.

For all my cynicism, I liked this book. The presen-
tation is neat and clean, I might even say cheerful.
And I learned a lot, not least of all where higher level
languages are going, and the terminology used to ex-
press that. All of which makes talking to colleagues
easier and more beneficial. And I gleaned some fac-
toids along the way. (I wasn’t expecting to learn the
complaint phone number for the BBC. No, I won’t call
them to see if it works, but it’s nice to have it, just
in case.) I liked the pace of presentation. I liked the
constant stirring of topics: a new feature, a hint on
debugging, a few words on programming style, some
thoughts on programming principles, then on to the
next new feature. It really is a nice mix. If one is writ-
ing a textbook on scientific programming (rather than
computer science as this one is), one could well learn
some style tips here.

Now, what about Python for computational scien-
tists? Well, this book isn’t really the right source for
that. It’s aimed towards freshmen’s first programming
class. So I’ll look elsewhere. I have handy (Jonathan
E. Guyer et al., FiPy: Partial differential equations with
Python, CiSE 11(3), 6–15), so let’s see what’s here.
FiPy is a package for solving differential equations,
which the authors apply to problems arising in materi-
als research at NIST. The authors specifically disclaim
that FiPy is not the first nor the last word in solving
such equations. On the other hand, I can read their code
snippets, and after only one book on Python along with
a few examples in IDLE, I think I understand what
they’re trying to say. This must be some kind of break-
through. Very concise, high-level, fully object-oriented
code, and it’s actually readable!

So, I’m ready to investigate Python a little deeper.
Let’s return to the Python web site, where I got the in-
terpreter and accessories. There appear to be interest
groups: on interfacing to C (and therefore to Fortran
through Fortran’s Interoperability with C features); and
C++. So maybe I can get some of my existing code to
play well with Python. There’s some threading prim-
itives, so all thoughts of parallel programming aren’t
forgotten. And, if I can get to C, then there’s always
MPI, which may mean starting multiple interpreters

around the cluster. How that would work in practice is
unclear to me now, but I’ve not really investigated it.

One shortcoming for prime-time scientific program-
ming was, to me anyway, that there is only one float-
ing point precision. Native Python has rather blunt con-
trol of floating point exceptions, more precise control
is offered by the NumPy add-on, see below. I saw
no control of rounding of floating point operations
(which may be difficult with an interpreter), nor of in-
put/output formatting operations. And I saw no unfor-
matted input/output. Perhaps I simply didn’t find it on
the web site. I might not have looked in all the right
places. I wouldn’t necessarily expect it in a freshman
programming text.

Let’s also check the NumPy (numpy.scipy.org) web
site. This appears to complete some of the missing
scientific computing pieces from the python.org of-
fering. Here are more complete interfaces to IEEE
754, and array classes. There are also extensive sets of
math routines and interfaces to Fortran. For computa-
tional science, one should investigate NumPy before
proceeding too far. One should also investigate SciPy
(www.scipy.org) for a collection of packages of inter-
est to computational scientists.

So where does Python fit in the world of scien-
tific programming? It’s a crowded world for inter-
preters. One has Octave and Scilab already. R is well-
established in the world of statistics. There are several
commercial offerings, with various goals. For pure text
processing, there’s Awk, Perl, Ruby and more. Python
is a very high-level language, fully capable of ex-
pressing an object-oriented programming style clearly.
I think it has a place in the world. I do intend to keep
the interpreter I downloaded on my system.

But this is supposed to be a book review, and I seem
to have rambled off into a discussion of Python. I very
much like Python for Software Design. I would rec-
ommend it for teaching a first year computer science
course. What about computational science? I hope that
instructors in computational science will learn some
pedagogical lessons from it. Repeatedly, the book
showed code that was simply readable. The feature, its
rationale, its uses, and debugging hints are together for
collective reference (like an object?). And ideas are re-
peated as they naturally reappear. Is that how computer
scientists think? I don’t know. But if that’s how they
teach, they’re doing a fine job. When trying to teach
the more difficult ideas of floating point errors, control
of step size, mesh refinement, and parallel program-
ming, computational scientists could learn something
from Python for Software Design.

