Scientific Programming 16 (2008) 275-276
DOI 10.3233/SPR-2008-0277
IOS Press

Editorial

275

Complexity in scalable computing

Damian W.I. Rouson

Scalable Computing Research and Development Department, Sandia National Laboratories, Livermore, CA, USA

The rich history of scalable computing research
owes much to a rapid rise in computing platform
scale in terms of size and speed. As platforms evolve,
so must algorithms and the software expressions of
those algorithms. Unbridled growth in scale inevitably
leads to complexity. This special issue grapples with
two facets of this complexity: scalable execution and
scalable development. The former results from effi-
cient programming of novel hardware with increasing
numbers of processing units (e.g., cores, processors,
threads or processes). The latter results from efficient
development of robust, flexible software with increas-
ing numbers of programming units (e.g., procedures,
classes, components or developers). The progression in
the above two parenthetical lists goes from the lowest
levels of abstraction (hardware) to the highest (people).
This issue’s theme encompasses this entire spectrum.

The lead author of each article resides in the Scal-
able Computing Research and Development Depart-
ment at Sandia National Laboratories in Livermore,
CA. Their co-authors hail from other parts of San-
dia, other national laboratories and academia. Their re-
search sponsors include several programs within the
Department of Energy’s Office of Advanced Scientific
Computing Research and its National Nuclear Secu-
rity Administration, along with Sandia’s Laboratory
Directed Research and Development program and the
Office of Naval Research. The breadth of interests of
these authors and their customers reflects in the breadth
of applications this issue covers.

Multicore challenges and benefits

This article demonstrates how to obtain scalable
execution on the increasingly dominant high-perfor-
mance computing platform: a Linux cluster with mul-

ticore chips. The authors describe how deep mem-
ory hierarchies necessitate reducing communication
overhead by using threads to exploit shared register
and cache memory. On a matrix—matrix multiplication
problem, they achieve up to 96% parallel efficiency
with a three-part strategy: intra-node multithreading,
non-blocking inter-node message passing, and a ded-
icated communications thread to facilitate concurrent
communications and computations. On a quantum
chemistry problem, they spawn multiple computation
threads and communication threads on each node and
use one-sided communications between nodes to min-
imize wait times. They reduce software complexity by
evolving a multi-threaded factory pattern in C++ from
a working, message-passing program in C.

Components for collaborative quantum chemistry

This article describes the use of component-based
software engineering (CBSE) and object-oriented de-
sign patterns to surmount several social hurdles to col-
laborative software development. For example, they
stress the importance of compromise in the interface
standardization process that lies at the heart of CBSE.
When compromise proves elusive, they employ the
adaptor pattern to allow components to function in en-
vironments that require a non-standard interface. They
also quantify the modest overhead (12%) associated
with low-level operations such as data re-ordering at
the component interface layer for packages that do not
conform to the standard. The article includes Scien-
tific Interface Definition Language (SIDL) code snip-
pets based on a generic chemistry package from the
Quantum Chemistry Scientific Application Partnership
(QCSAP).

1058-9244/08/$17.00 © 2008 — IOS Press and the authors. All rights reserved

276 Editorial

Multiscale modeling of micro- and nano-fluidics

This article presents two multiphysics applications
formed from single-physics software components that
must be advanced at disparate rates. One application
involves a continuum model of flow in microchan-
nels patterned into a solid, the boundaries of which
support electro-osmotic flows simulated via molecu-
lar dynamics. A second application combines Brown-
ian motion of solute ions interacting with nano-porous
membranes and a continuum model of system-scale ef-
fects in electrodialytic water desalination. The authors’
Python “puppeteer” components orchestrate the behav-
ior of subordinate C/C++/Fortran 77 components, each
of which remains incognizant of its peers, while auto-
matically generated bindings bridge between the pup-
peteer and its subordinates. The flexibility afforded by
localizing shared operations such as data transfer and
convergence management inside the puppeteer easily
justifies its cost: 1% of runtime.

Managing complexity with Bocca and CCA

This article presents Bocca, the first rapid proto-
typing tool for CBSE tailored to high-performance
computing. Based on the Common Component Archi-
tecture (CCA), Bocca operates in an implementation-
language-agnostic manner to automate the task of writ-
ing component glue code. By leveraging CCA’s Ba-
bel SIDL interpreter, Bocca supports two-way calls
between each of the most common HPC languages:
Fortran 77/90/95, C, C++, Python and Java. The au-
thors provide several polynomial scaling arguments to
demonstrate the complexity reduction Bocca affords.
After providing a Bocca script that creates a complete,
componentized application in only a handful of lines,

they detail how Bocca simplifies the software life cycle
from code creation to maintenance, application genera-
tion, refactoring, and importing existing SIDL and im-
plementation code.

Analysis-driven architecture: Abstract data type
calculus

This article charts three paths for analyzing scal-
able development. One employs object-oriented design
(OOD) metrics. Another adapts concepts from compu-
tational complexity theory wherein the “computation”
is a developer’s algorithm for finding a bug. A third
analysis uses information theory wherein the informa-
tion takes two forms: that added when extending an ab-
stract base class and that added to a collection of inter-
faces when introducing a new single-physics class into
a multiphysics package. Each analysis considers ab-
stract data type (ADT) calculus, or the construction of
arithmetic, integral and differential operators on soft-
ware abstractions of scalar, vector and tensor fields.
The analyses demonstrate the low complexity of ADT
calculus in terms of high package stability, short bug
search times and minimal information entropy.

While a common thread of software complexity con-
siderations runs through each article, their ordering de-
lineates a trend from greater focus on scalable execu-
tion to sole focus on scalable development. The arti-
cles in the middle consider the interplay between the
two. A unique emphasis on quantifying software com-
plexity also binds most of the issue. The research ac-
complishments represented by these articles warrants
optimism regarding the prospects for taming complex-
ity. The challenges that persist warrant optimism that
many years of vibrant research remain.

