Scientific Programming 16 (2008) 341-342
DOI 10.3233/SPR-2008-0263
10S Press

Book Review

341

Using OpenMP - Portable Shared Memory Paral-
lel Programming by Barbara Chapman, Gabrielle Jost
and Ruud Van Der Paas, 2007, ISBN: 9780262533027

As multi-core processors become the mainstream
computing engines, considerable burden is on the soft-
ware designers to take advantage of the new hardware.
Until now, software developers take advantage of the
increase in processor performance (which in turn im-
plies that your single-thread program will run faster as
you buy the latest processor). However, with the ad-
vent of throughput-oriented computing as envisaged
by multi-core/Chip Multithreading (CMP) models on
newer processors, your single-thread program may not
run faster, even if you go out and buy the latest chip.
In fact it can end up running slower. To us software de-
velopers this means that we need to rethink the way we
write applications and focus towards concurrent pro-
gramming, in order to take advantage of the parallel
hardware we are getting.

I can hear your cries already — “Oh, but we already
write concurrent programs!”. Well, you may do, but
the majority of applications today are single-threaded,
and for a good reason. It is much easier to reason
about and write bug-free single-thread programs, com-
pared to multithread programs. After all, if you need
parallelism, you can always run multiple instances of
your application to improve the throughput. That story
is changing now, with the advent of multi-core and
chip multithreading processors. A highly concurrent
application can take much better advantage of the lat-
est hardware. Hence, parallel programming is becom-
ing mainstream and developers are looking for paral-
lel programming models using which they can easily
parallelize their applications. This is where OpenMP
enters the picture. OpenMP is a shared-memory Appli-
cation Programming Interface (API) using which, de-
velopers can write shared memory parallel program-
ming applications.

OpenMP simplifies the process of parallelizing an
existing serial application. It allows the developer to do
this complex task in several small incremental steps by
means of inserting OpenMP directives as pragmas in
C/C++ applications or as comments in Fortran appli-
cation. Though OpenMP is rich in features, it is easy

for the developers to come up with a correct OpenMP
parallel version of their application by learning only a
small set of OpenMP directives and inserting them in
the source code appropriately. Most of the complexity
is hidden inside an OpenMP compliant compiler im-
plementation and OpenMP runtime libraries, which re-
alize the parallelized version of the application.

The book “Using OpenMP — Portable Shared Mem-
ory Parallel Programming” by Barbara Chapman, Ga-
brielle Jost and Ruud Van Der Paas, comes at the right
time when most of the developer community is scram-
bling onto the parallel programming bandwagon. It is
an excellent introduction for folks new to OpenMP
programming. It also contains in depth insights on sub-
tle issues in OpenMP programming, which will make it
interesting to experienced OpenMP developers as well.

The book is organized into 9 chapters, with the first
four chapters explaining the basics of OpenMP pro-
gramming model and the remaining 5 chapters deal
with the advanced concepts.

Chapter 1 provides the pertinent historical back-
ground of parallel programming hardware and soft-
ware. It provides details on the evolution of OpenMP
as an industry accepted shared memory parallel pro-
gramming model. It does a brief comparison of the
three widely used parallel programming models, na-
mely OpenMP, Message Passing Interface (MPI) and
pthreads, using a small program to compute the dot
product. In my opinion, it would have been good if
the authors had clearly differentiated between memory
consistency and memory coherence issues while talk-
ing about the OpenMP memory model in Chapter 1.
Also, a brief description of NUMA vs. UMA would
not have been amiss in Chapter 1.

Chapter 2 provides an overview of the OpenMP
constructs, and is followed by a description of how
to write a simple OpenMP program for matrix—vector
application in Chapter 3. Chapter 4 discusses the
major OpenMP language features by illustrating all
the important constructs with small code snippets in
C/Fortran. After reading Chapters 1-4, anyone new to
OpenMP should be all set to dive right into writing
OpenMP applications.

Chapter 5 details how to measure and improve the
performance of OpenMP applications. In this chapter,

1058-9244/08/$17.00 © 2008 — IOS Press and the authors. All rights reserved

342 Book Review

the authors first discuss the various factors which af-
fect OpenMP performance such as memory hierarchy,
application’s memory access patterns, compiler opti-
mizations, and the runtime environment etc., followed
by a brief discussion on how to measure OpenMP per-
formance. They also discuss best practices for improv-
ing OpenMP performance. Chapter 5 concludes with
a case study of matrix—vector multiplication showing
how the performance of the OpenMP versions in C and
Fortran can be improved, and the impact of the various
factors on performance.

Chapter 6 discusses some of the issues in real-life
OpenMP applications such as scalability, and data and
thread placement in CC-NUMA machines. It also dis-
cusses combining OpenMP and message-passing pro-
gramming, clearly explaining the pros and cons of such
a hybrid approach. Chapter 6 contains a case study of
real life applications such as CFD flow solver and NAS
parallel benchmarks. It concludes with details on how
to do performance analysis of OpenMP applications
using latest profiling tools.

Chapter 7 discusses the common programming er-
rors developers make in OpenMP applications, and de-
tails of how to debug OpenMP applications. Complex
issues such as data races, memory consistency prob-
lems, and deadlocks are explained in detail with exam-
ples and instructions on how they can be avoided. This
chapter is a must-read for all OpenMP developers.

Chapter 8 covers the internal details of OpenMP
implementation in OpenMP compliant compilers. It
describes details on how OpenMP directives are trans-
lated, and how runtime support functions are imple-
mented. Chapter 8 concludes with a brief discussion on
the impact of OpenMP on compiler optimizations.

Chapter 9 discusses future OpenMP extensions.
Since the book is based on OpenMP 2.5, it dis-
cusses the extensions planned for OpenMP 3.0. As
the OpenMP 3.0 specification has recently been re-
leased, the reader may want to look at the new features

OpenMP 3.0 specification from www.OpenMP.org
while reading this chapter. The book also has an ex-
haustive list of references for the reader to pursue de-
tails on specific topics of interest.

Overall, this book is a good tutorial on OpenMP
for developers new to OpenMP. The book discusses
the latest state of the art OpenMP implementations. It
provides practical perspectives on performance issues
one can run into while developing OpenMP applica-
tions. If you are a programmer planning to develop
OpenMP applications, this is a good book to have on
hand. Most of the features are discussed with examples
in both C and Fortran, which makes this book relevant
for both C/C++ and Fortran OpenMP developers. The
book is well organized, therefore, based on your level
of OpenMP expertise, you can pick and read relevant
chapters.

You can also use this book to teach a short course
on OpenMP programming to undergraduates in com-
puter science. A beginner’s course on OpenMP pro-
gramming can cover the first 4 chapters of the book.
An intermediate course on OpenMP programming can
cover the material from Chapters 5-10. However there
are no programming exercises at the end of each chap-
ter. So if you want to use this book as a textbook, you
need to create your own set of programming exercises.

This book is a good starting point to understand the
OpenMP basics and start writing OpenMP programs.
If you are an experienced OpenMP developer, you can
use the advanced material in the later chapters of the
book, to tune the performance of your OpenMP ap-
plications. I recommend this book as a good buy if
you are planning to develop parallel applications using
OpenMP.

Sandya S. Mannarswamy

Hewlett Packard India Private Ltd.
Bangalore, India

E-mail: sandya.s.mannarswamy@ hp.com

