10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Section 7

Storage and Sequence Association

HPF allows the mapping of variables across multiple processors in order to improve parallel
performance. FORTRAN 77 and Fortran 90 both specify relationships between the storage
for data objects associated through COMMON and EQUIVALENCE statements, and the order of
array elements during association at procedure boundaries between actual arguments and
dummy arguments. Otherwise, the location of data is not constrained by the language.

COMMON and EQUIVALENCE statements constrain the alignment of different data items
based on the underlying model of storage units and storage sequences:

Storage association is the association of two or more data objects that occurs
when two or more storage sequences share or are aligned with one or more storage
units.

— Fortran Standard (14.6.3.1)

The model of storage association is a single linearly addressed memory, based on the tradi-
tional single address space, single memory unit architecture. This model can cause severe
inefficiencies on architectures where storage for variables is mapped.

Sequence association refers to the order of array elements that Fortran requires when
an array expression or array element is associated with a dummy array argument:

The rank and shape of the actual argument need not agree with the rank and
shape of the dummy argument, ...
— Fortran Standard (12.4.1.4)

As with storage association, sequence association is a natural concept only in systems with
a linearly addressed memory.

As an aid to porting FORTRAN 77 codes, HPF allows codes that rely on sequence and
storage association to be valid in HPF. Some modification to existing FORTRAN 77 codes
may nevertheless be necessary. This chapter explains the relationship between HPF data
mapping and sequence and storage association.

7.1 Storage Association

7.1.1 Definitions

1. COMMON blocks are either sequential or nonsequential, as determined by either explicit
directive or compiler default. A sequential COMMON block has a single common block
storage sequence (5.5.2.1).

144

SECTION 7. STORAGE AND SEQUENCE ASSOCIATION

An aggregate variable group is a collection of variables whose individual storage se-
quences are parts of a single storage sequence.

Variables associated by EQUIVALENCE statements or by a combination of EQUIVALENCE
and COMMON statements form an aggregate variable group. The variables of a sequential
COMMON block form a single aggregate variable group.

The size of an aggregate variable group is the number of storage units in the group’s
storage sequence (14.6.3.1).

If there is a member in an aggregate variable group whose storage sequence is totally
associated (14.6.3.3) with the storage sequence of the aggregate variable group, that
variable is called an aggregate cover.

Variables are either sequential or nonsequential. A variable is sequential if and only if
any of the following holds:

(a) it appears in a sequential COMMON block;

(

(c) it is an assumed-size array;

(d) it is a component of a derived type with the Fortran 90 SEQUENCE attribute; or
(e) it is declared to be sequential in an HPF SEQUENCE directive.

b) it is a member of an aggregate variable group;

A sequential variable can be storage associated or sequence associated; nonsequential
variables cannot.

A COMMON block contains a sequence of components. Each component is either an
aggregate variable group, or a variable that is not a member of any aggregate variable
group. Sequential COMMON blocks contain a single component. Nonsequential COMMON
blocks may contain several components that may be nonsequential or sequential vari-
ables or aggregate variable groups.

A variable is ezplicitly mapped if it appears in an HPF alignment or distribution
directive within the scoping unit in which it is declared; otherwise it is implicitly
mapped.

7.1.2 Examples of Definitions

IMPLICIT REAL (A-Z)
COMMON /F00/ A(100), B(100), C(100), D(100), E(100)
DIMENSION X(100), Y(150), Z(200)

!Example 1:

EQUIVALENCE (A(1), Z(1))

IFour components: (A, B), C, D, E
!1Sizes are: 200, 100, 100, 100

!Example 2:

EQUIVALENCE (B(100), Y(1))

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.1. STORAGE ASSOCIATION 145

IThree components A, (B, C, D), E
1Sizes are: 100, 300, 100

tExample 3:

EQUIVALENCE (E(1), Y(1))
IFive components: A, B, C, D, E
1Sizes are: 100, 100, 100, 100, 150

IExample 4:

EQUIVALENCE (A(51), X(1)) (B(100), Y(1))
ITwo components (A, B, C, D), E
1Sizes are: 400, 100

'Example 5:

EQUIVALENCE (A(51), X(1)) (C€(80), Y(1))
ITwo components: (4, B), (C, D, E)
1Sizes are: 200, 300

'Example 6:

EQUIVALENCE (Y(100), Z(1))
I0ne aggregate variable group (Y, Z), not involving the COMMON block.
!Size is 299

|Example 7:

IHPF$ SEQUENCE /F00/

!The COMMON has one component, (A, B, C, D, E)
1Size is 500

In Examples 1-6, COMMON block /F0Q/ is nonsequential. Aggregate variable groups are shown
as components in parentheses. Aggregate covers are Z in Example 1 and Y in Example 3.

7.1.3 Sequence Directives

A SEQUENCE directive is defined to allow a user to declare explicitly that variables or COMMON
blocks are to be treated by the compiler as sequential. (COMMON blocks are by default non-
sequential. Variables are nonsequential unless Definition 5 applies.) Some implementations
may supply an optional compilation environment where the SEQUENCE directive is applied
by default. For completeness in such an environment, HPF defines a NO SEQUENCE directive
to allow a user to establish that the usual nonsequential default should apply to a scoping
unit, or selected variables and COMMON blocks within the scoping unit.

H701 sequence-directive is SEQUENCE [[:: | association-name-list]
or NO SEQUENCE [[::] association-name-list |
H702 association-name is wariable-name

or / common-block-name /

Constraint: The result variable of an array-valued function that is not an intrinsic function
is a nonsequential array. It may not appear in any HPF SEQUENCE directive.

146 SECTION 7. STORAGE AND SEQUENCE ASSOCIATION

Constraint: A variable or COMMON block name may appear at most once in a sequence-
directive within any scoping unit.

7.1.4 Storage Association Rules

1. A sequence-directive with an empty association-name-list is treated as if it contained

the name of all implicitly mapped variables and COMMON blocks in the scoping unit
which cannot otherwise be determined to be sequential or nonsequential by their
language context.

. A sequential variable may not be explicitely mapped unless it is a scalar or rank-one
array that is an aggregate cover. If there is more than one aggregate cover for an
aggregate variable group, only one may be explicitly mapped.

. No explicit mapping may be given for a component of a derived type having the
Fortran 90 SEQUENCE attribute.

4. If a COMMON block is nonsequential, then all of the following must hold:

(a) Every occurrence of the COMMON block has exactly the same number of compo-
nents with each corresponding component having a storage sequence of exactly
the same size;

(b) If a component is a nonsequential variable in any occurrence of the COMMON block,
then it must be nonsequential with identical type, shape, and mapping attributes
in every occurrence of the COMMON block;

(c) If a component is sequential and explicitly mapped (either a variable or an aggre-
gate variable group with an explicitly mapped aggregate cover) in any occurrence
of the COMMON block, then it must be sequential and explicitly mapped with iden-
tical mapping attributes in every occurrence of the COMMON block. In addition,
the type and shape of the explicitly mapped variable must be identical in all
occurrences; and

(d) Every occurrence of the COMMON block must be nonsequential.

7.1.5 Storage Association Discussion

Advice to users. Under these rules, variables in a COMMON block can be mapped
as long as the components of the COMMON block are the same in every scoping unit
that declares the COMMON block. Rules 4 and 5 also allow variables involved in an
EQUIVALENCE statement to be mapped by the mechanism of declaring a rank-one
array to cover exactly the aggregate variable group and mapping that array.

Since an HPF program is nonconforming if it specifies any mapping that would cause
a scalar data object to be mapped onto more than one abstract processor, there is a
constraint on the sequential variables and aggregate covers that can be mapped. In
particular, programs that direct double precision or complex arrays to be mapped such
that the storage units of a single array element are split because of some EQUIVALENCE
statement or COMMON block layout are nonconforming.

Correct FORTRAN 77 or Fortran 90 programs will not necessarily be correct with-
out modification in HPF. As the examples in the next section illustrate, use of

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

7.1. STORAGE ASSOCIATION 147

EQUIVALENCE with COMMON blocks can impact mappability of the variables in subtle
ways. To allow maximum optimization for performance, the HPF default for variables
is to consider them mappable. In order to get correct separate compilation for sub-
programs that use COMMON blocks with different aggregate variable groups in different
scoping units, it will be necessary to insert the HPF SEQUENCE directive.

As a check-list for a user to determine the status of a variable or COMMON block, the
following questions can be applied, in order:

e Does the variable appear in some explicit language context which dictates se-
quential (e.g. EQUIVALENCE) or nonsequential (e.g. array-valued function result
variable)?

e If not, does the variable appear in an explicit mapping directive?

e If not, does the variable or COMMON block name appear in the list of names on a
SEQENCE or NO SEQUENCE directive?

o If not, does the scoping unit contain a nameless SEQUENCE or NO SEQUENCE?

e If not, is the compilation affected by some special implementation-dependent
environment which dictates that names default to SEQUENCE?

e If not, then the compiler will consider the variable or COMMON block name non-
sequential and is free to apply data mapping optimizations disregarding Fortran
sequence and storage association.

(End of advice to users.)

Advice to implementors. In order to protect the user and to facilitate portability
of older codes, two implementation options are strongly recommended. First, every
implementation should supply some mechanism to verify that the type and shape of
every mappable array and the sizes of aggregate variable groups in COMMON blocks are
the same in every scoping unit unless the COMMON blocks are declared to be sequential.
This same check should also verify that identical mappings have been selected for
the variables in COMMON blocks. Implementations without interprocedural information
can use a link-time check. The second implementation option recommended is a
mechanism to declare that variables and COMMON blocks for a given compilation should
be considered sequential unless declared otherwise. The purpose of this feature is to
permit compilation of large old libraries or subprograms where storage association
is known to exist without requiring that the code be modified to apply the HPF
SEQUENCE directive to every COMMON block. (End of advice to implementors.)

7.1.6 Examples of Storage Association

IMPLICIT REAL (A-Z)
COMMON /F00/ A(100), B(100), C(100), D(100), E(100)
DIMENSION X(100), Y(150), Z(200), ZZ(300)

EQUIVALENCE (A(1), Y(1))

IAggregate variable group is not mappable.
!Sizes are: 200, 100, 100, 100.

148 SECTION 7. STORAGE AND SEQUENCE ASSOCIATION

EQUIVALENCE (B(100), Y(1)), (B(1), Z2(1))
IAggregate variable group is mappable only by mapping ZZ.
1ZZ is an aggregate cover for B, C, D, and Y.
1Sizes are: 100, 300, 100.

EQUIVALENCE (E(1), Y(1))
IAggregate variable group is mappable by mapping Y.
1Sizes are: 100, 100, 100, 100, 150.

COMMON /TWO/ A(20,40),E(10,10),G6(10,100,1000) ,H(100),P(100)
REAL COVER(200)
EQUIVALENCE (COVER(1), H(1))

'HPF$ SEQUENCE A

IHPF$ ALIGN E ..

IHPF$ DISTRIBUTE COVER (CYCLIC(2))

Here A is sequential and implicitly mapped, E is explicitly mapped, G is implicitly mapped,
the aggregate cover of the aggregate variable group (H, P) is explicitly mapped. /TWO/ is
a nonsequential COMMON block.

In another subprogram, the following declarations may occur:

COMMON /TWO/ A(800), E(10,10), G(10,100,1000), Z(200)
'HPF$ SEQUENCE A, Z
'HPF$ ALIGN E ...
IHPF$ DISTRIBUTE Z (CYCLIC(2))

There are four components of the same size in both occurrences. Components one and four
are sequential. Components two and four are explicitly mapped, with the same type, shape
and mapping attributes.

The first component, A, must be declared sequential in both occurrences because its
shape is different. It may not be explicitly mapped in either because it is not rank-one or
scalar in the first.

E and G must agree in type and shape in both occurrences. E must have the same
explicit mapping and G must have no explicit mapping in both occurrences, since they are
nonsequential variables.

The fourth component must have the same explicit mapping in both occurrences, and
must be made sequential explicitly in the second.

7.2 Argument Passing and Sequence Association

For actual arguments in a procedure call, Fortran 90 allows an array element (scalar) to be
associated with a dummy argument that is an array. It furthermore allows the shape of a
dummy argument to differ from the shape of the corresponding actual array argument, in
effect reshaping the actual argument via the subroutine call. Storage sequence properties of
Fortran are used to identify the values of the dummy argument. This feature, carried over
from FORTRAN 77, has been widely used to pass starting addresses of subarrays, rows
or columns of a larger array, to procedures. For HPF arrays that are potentially mapped
across processors, this feature is not fully supported.

®» N o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.2. ARGUMENT PASSING AND SEQUENCE ASSOCIATION 149

7.2.1 Sequence Association Rules

1. When an array element or the name of an assumed-size array is used as an actual
argument, the associated dummy argument must be a scalar or specified to be a
sequential array.

An array-element designator of a nonsequential array must not be associated with a
dummy array argument.

2. When an actual argument is an array or array section and the corresponding dummy
argument differs from the actual argument in shape, then the dummy argument must
be declared sequential and the actual array argument must be sequential.

3. A variable of type character (scalar or array) is nonsequential if it conforms to the
requirements of Definition 5 of Section 7.1.1. If the length of an explicit-length char-
acter dummy argument differs from the length of the actual argument, then both the
actual and dummy arguments must be sequential.

7.2.2 Discussion of Sequence Association

When the shape of the dummy array argument and its associated actual array argument
differ, the actual argument must not be an expression. There is no HPF mechanism for
declaring that the value of an array-valued expression is sequential. In order to associate
such an expression as an actual argument with a dummy argument of different rank, the
actual argument must first be assigned to a named array variable that is forced to be
sequential according to Definition 5 of Section 7.1.1.

7.2.3 Examples of Sequence Association

Given the following subroutine fragment:

SUBROUTINE HOME (X)
DIMENSION X (20,10)

By rule 1
CALL HOME (ET (2,1))

is legal only if X is declared sequential in HOME and ET is sequential in the calling routine.
Likewise, by rule 2

CALL HOME (ET)

requires either that ET and X are both sequential arrays or that ET is dimensioned exactly
the same as X.

Rule 3 addresses a special consideration for variables of type character. Change of the
length of character variables across a call, as in

CHARACTER (LEN=44) one_long_word
one_long_word = ’Chargoggagoggmanchaugagoggchaubunagungamaugg’
CALL webster (one_long_word)

SUBROUTINE webster(short_dictionary)
CHARACTER (LEN=4) short_dictionary (11)
INote that short_dictionary(3) is ’agog’, for example

