10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Section 5

Intrinsic and Library Procedures

HPF includes Fortran 90’s intrinsic procedures. It also adds new intrinsic procedures in two
categories: system inquiry intrinsic functions and computational intrinsic functions.

The definitions of two Fortran 90 intrinsic functions, MAXLOC and MINLOC, are extended
by the addition of an optional DIM argument.

In addition to the new intrinsic functions, HPF defines a library module, HPF_LIBRARY,
that must be provided by vendors of any full HPF implementation.

This description of HPF intrinsic and library procedures follows the form and con-
ventions of Section 13 of the Fortran 90 standard. The material of Sections 13.1, 13.2,
13.3, 13.5.7, 13.8.1, 13.8.2, 13.9, and 13.10 is applicable to the HPF intrinsic and library
procedures and to their descriptions in this section of the HPF document.

5.1 Notation

In the examples of this section, T and F are used to denote the logical values true and false.

5.2 System Inquiry Intrinsic Functions

In a multi-processor implementation, the processors may be arranged in an implemen-
tation-dependent multi-dimensional processor array. The system inquiry functions return
values related to this underlying machine and processor configuration, including the size and
shape of the underlying processor array. NUMBER_OF_PROCESSORS returns the total number
of processors available to the program or the number of processors available to the program
along a specified dimension of the processor array. PROCESSORS_SHAPE returns the shape of
the processor array.

The values returned by the system inquiry intrinsic functions remain constant for the
duration of one program execution. Thus, NUMBER_OF_PROCESSORS and PROCESSORS_SHAPE
have values that are restricted expressions and may be used wherever any other Fortran 90
restricted expression may be used. In particular, NUMBER_OF _PROCESSORS may be used in a
specification expression.

The values of system inquiry functions may not occur in initialization expressions,
because they may not be assumed to be constants. In particular, HPF programs may be
compiled to run on machines whose configurations are not known at compile time.

Note that the system inquiry functions query the physical machine, and have nothing
to do with any PROCESSORS directive that may occur.

88 SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Advice to users. SIZE(PROCESSORS_SHAPE()) returns the rank of the processor array.
References to system inquiry functions may occur in array declarations and in HPF
directives, as in:

INTEGER, DIMENSION(SIZE(PROCESSORS_SHAPE())) :: PSHAPE
'HPF$ TEMPLATE T(100, 3*NUMBER_OF_PROCESSORS())

(End of advice to users.)

5.3 Computational Intrinsic Functions

HPF adds one new intrinsic function, ILEN, which computes the number of bits needed to
store an integer value. HPF also generalizes the Fortran 90 MAXLOC and MINLOC intrinsic
functions with an optional DIM parameter, for finding the locations of maximum or minimum
elements along a given dimension.

5.4 Library Procedures

The mapping inquiry subroutines and computational functions described in this section
are available in the HPF library module, HPF_LIBRARY. Use of these procedures must be
accompanied by an appropriate USE statement in each scoping unit in which they are used.
They are not intrinsic.

5.4.1 Mapping Inquiry Subroutines

HPF provides data mapping directives that are advisory in nature. The mapping inquiry
subroutines allow the program to determine the actual mapping of an array at run time. It
may be especially important to know the exact mapping when an EXTRINSIC subprogram is
invoked. For these reasons, HPF includes mapping inquiry subroutines which describe how
an array is actually mapped onto a machine. To keep the number of routines small, the
inquiry procedures are structured as subroutines with optional INTENT (OUT) arguments.

5.4.2 Bit Manipulation Functions

The HPF library includes three elemental bit-manipulation functions. LEADZ computes the
number of leading zero bits in an integer’s representation. POPCNT counts the number of
one bits in an integer. POPPAR computes the parity of an integer.

5.4.3 Array Reduction Functions

HPF adds additional array reduction functions that operate in the same manner as the
Fortran 90 SUM and ANY intrinsic functions. The new reduction functions are IALL, IANY,
IPARITY, and PARITY, which correspond to the commutative, associative binary operations
IAND, IO0R, IEOR, and .NEQV. respectively.

In the specifications of these functions, the terms “XXX reduction” are used, where XXX
is one of the binary operators above. These are defined by means of an example. The IAND
reduction of all the elements of array for which the corresponding element of mask is true
is the scalar integer computed in result by

>

© w N o

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

5.4. LIBRARY PROCEDURES 89

result
DD i_1

IAND_IDENTITY_ELEMENT
LBOUND(array,1), UBOUND(array,1)

DO i_n = LBOUND(array,n), UBOUND(array,n)
IF (mask(i_1,i_2,...,i_n)) &
result = IAND(result, array(i_1,i_2,...,i_n))
END DO

END DO

Here, n is the rank of array and IAND_IDENTITY ELEMENT is the integer which has all bits
equal to one. (The interpretation of an integer as a sequence of bits is given in Section
13.5.7 of the Fortran 90 standard.) The other three reductions are similarly defined. The
identity elements for IOR and IEOR are zero. The identity element for PARITY is .FALSE.

5.4.4 Array Combining Scatter Functions

These are all generalized array reduction functions in which completely general, but nonover-
lapping, subsets of array elements can be combined. There is a corresponding scatter func-
tion for each of the twelve reduction operation in the language. The way the elements of
the source array are associated with the elements of the result is described in this section;
the method of combining their values is described in the specifications of the individual
functions in Section 5.7.

These functions all have the form

XXX_SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL, MINVAL,
PARITY, PRODUCT, and SUM. The number of INDX arguments must equal the rank of BASE.
Except for COUNT_SCATTER, ARRAY and BASE are arrays of the same type. For COUNT_SCATTER,
ARRAY is of type logical and BASE is of type integer. The argument MASK is logical, and the
INDX arrays are integer. ARRAY, MASK, and all the INDX arrays are conformable. MASK is
optional. (For ALL_SCATTER, ANY_SCATTER, COUNT_SCATTER,and PARITY_SCATTER, the ARRAY
must be logical. These functions do not have an optional MASK argument. To conform with
the conventions of the F90 standard, the required ARRAY argument to these functions is
called MASK in their specifications in Section 5.7.) The result has the same type, kind type
parameter, and shape as BASE.

For every element a in ARRAY there is a corresponding element in each of the INDX
arrays. Let s; be the value of the element of INDX1 that is indexed by the same subscripts
as element a of ARRAY. More generally, for each j = 1,2,...,n, let s; be the value of the
element of INDXj that corresponds to element a in ARRAY, where n is the rank of BASE. The
integers s;,j = 1,...,n, form a subscript selecting an element of BASE: BASE(sy, 2, ..., 5n).

Thus the INDX arrays establish a mapping from all the elements of ARRAY onto selected
elements of BASE. Viewed in the other direction, this mapping associates with each element
b of BASE a set S of elements from ARRAY.

Because BASE and the result are conformable, for each element of BASE there is a
corresponding element of the result.

90 SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

If S is empty, then the element of the result corresponding to the element b of BASE
has the same value as b.

If S is non-empty, then the elements of S will be combined with element b to produce
an element of the result. The particular means of combining these values is described
in the result value section of the specification of the routine below. As an example, for
SUM_SCATTER, if the elements of S are ay, ..., @y, then the element of the result corresponding
to the element b of BASE is the result of evaluating SUM((/a1, az,...,am,b/)).

Note that, since a scalar is conformable with any array, a scalar may be used in place
of an INDX array, in which case one hyperplane of the result is selected. See the example
below.

If the optional, final MASK argument is present, then only the elements of ARRAY in
positions for which MASK is true participate in the operation. All other elements of ARRAY
and of the INDX arrays are ignored and cannot have any influence on any element of the
result.

For example, if

1 2 3 -1 -2 -3
Aisthearray | 4 5 6 |; Bis the array | -4 -5 -6 |;
7 8 9 -7 -8 -9
111 12 3]
Ilisthearray | 2 1 1 |; I2isthearray [1 1 2
3 21 11 1_
then
14 6 O
SUM_SCATTER(A, B, I1, I2)is 8 -6 -6 |;
0 -8 -9
[-1 -2 -3]
SUM_SCATTER(A, B, 2, I2)is [30 3 -3 |[;
-7 -8 —9_
[-1 24 -3]
SUM_SCATTER(A, B, I1, 2)is | -4 7 -6 |[;
-7 -1 -9
-1 -2 -3
SUM_SCATTER(A, B, 2, 2)is | -4 40 -6
-7 -8 -9
IfAisthearray[iO 20 30 40 —10}, Bisthearray[l 2 3 4],

andINDisthearray[S 2 21 1],
then SUM_SCATTER(A, B, IND, MASK=(A .GT. 0)) is [41 52 13 4]

5.4.5 Array Prefix and Suffix Functions

In a scan of a vector, each element of the result is a function of the elements of the vector
that precede it (for a prefix scan) or that follow it (for a suffix scan). These functions
provide scan operations on arrays and subarrays. The functions all have the form

© o N &

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

5.4. LIBRARY PROCEDURES 91

XXX_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
XXX_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL, MINVAL,
PARITY, PRODUCT, and SUM.

When comments below apply to both prefix and suffix forms of the routines, we will
refer to them as YYYFIX functions.

The arguments DIM, MASK, SEGMENT, and EXCLUSIVE are optional. The COPY_YYYFIX
functions do not have MASK or EXCLUSIVE arguments. The ALL_YYYFIX, ANY YYYFIX, COUNT_-
YYYFIX, and PARITY_YYYFIX functions do not have MASK arguments. Their ARRAY argument
must be of type logical; it is denoted MASK in their specifications in Section 5.7.

The arguments MASK and SEGMENT must be of type logical. SEGMENT must have the
same shape as ARRAY. MASK must be conformable with ARRAY. EXCLUSIVE is a logical scalar.
DIM is a scalar integer between one and the rank of ARRAY.

Result Value. The result has the same shape as ARRAY, and, with the exception
of COUNT_YYYFIX, the same type and kind type parameter as ARRAY. (The result of
COUNT_YYYFIX is default integer.)

In every case, every element of the result is determined by the values of certain
selected elements of ARRAY in a way that is specific to the particular function and is
described in its specification. The optional arguments affect the selection of elements
of ARRAY for each element of the result; the selected elements of ARRAY are said to
contribute to the result element. This section describes fully which elements of ARRAY
contribute to a given element of the result.

If no elements of ARRAY are selected for a given element of the result, that result
element is set to a default value that is specific to the particular function and is
described in its specification.

For any given element r of the result, let a be the corresponding element of ARRAY.
Every element of ARRAY contributes to r unless disqualified by one of the following
rules.

1. If the function is XXX_PREFIX, no element that follows a in the array element
ordering of ARRAY contributes to r. If the function is XXX_SUFFIX, no element
that precedes a in the array element ordering of ARRAY contributes to r.

2. If the DIM argument is provided, an element z of ARRAY does not contribute
to r unless all its indices, excepting only the index for dimension DIM, are the
same as the corresponding indices of a. (It follows that if the DIM argument is
omitted, then ARRAY, MASK, and SEGMENT are processed in array element order,
as if temporarily regarded as rank-one arrays. If the DIM argument is present,
then a family of completely independent scan operations are carried out along
the selected dimension of ARRAY.)

3. If the MASK argument is provided, an element z of ARRAY contributes to r only if
the element of MASK corresponding to z is true. (It follows that array elements
corresponding to positions where the MASK is false do not contribute anywhere
to the result. However, the result is nevertheless defined at all positions, even
positions where the MASK is false.)

92

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

4. If the SEGMENT argument is provided, an element z of ARRAY does not contribute
if there is some intermediate element w of ARRAY, possibly z itself, with all of
the following properties:

(a) If the function is XXX_PREFIX, w does not precede z but does precede a in
the array element ordering; if the function is XXX_SUFFIX, w does not follow
z but does follow a in the array element ordering;

(b) If the DIM argument is present, all the indices of w, excepting only the index
for dimension DIM, are the same as the corresponding indices of a; and

(c) The element of SEGMENT corresponding to w does not have the same value
as the element of SEGMENT corresponding to a. (In other words, z can
contribute only if there is an unbroken string of SEGMENT values, all alike,
extending from z through a.)

5. If the EXCLUSIVE argument is provided and is true, then a itself does not con-
tribute to 7.

These general rules lead to the following important cases:

Case (i):

Case (ii):

Case (iii):

Case (w):

Case (v):

Case (vi):

If ARRAY has rank one, element 7 of the result of XXX_PREFIX (ARRAY) is
determined by the first i elements of ARRAY; element SIZE(ARRAY) — ¢ +1
of the result of XXX_SUFFIX(ARRAY) is determined by the last 7 elements
of ARRAY.

If ARRAY has rank greater than one, then each element of the result of
XXX_PREFIX (ARRAY) has a value determined by the corresponding element
a of the ARRAY and all elements of ARRAY that precede a in array element
order. For XXX_SUFFIX, a is determined by the elements of ARRAY that
correspond to or follow a in array element order.

Each element of the result of XXX_PREFIX(ARRAY,MASK=MASK) is deter-
mined by selected elements of ARRAY, namely the corresponding element
a of the ARRAY and all elements of ARRAY that precede a in array ele-
ment order, but an element of ARRAY may contribute to the result only
if the corresponding element of MASK is true. If this restriction results in
selecting no array elements to contribute to some element of the result,
then that element of the result is set to the default value for the given
function.

Each element of the result of XXX_PREFIX (ARRAY,DIM=DIM) is determined
by selected elements of ARRAY, namely the corresponding element a of
the ARRAY and all elements of ARRAY that precede a along dimension
DIM; for example, in SUM PREFIX(A(1:N,1:N), DIM=2), result element
(i1,32) could be computed as SUM(A(i1,1 : i2)). More generally, in
SUM_PREFIX(ARRAY, DIM), result element iy,i2,...,%p1M, .- .,%n could be
computed as SUM(ARRAY(i1,12,...,:%DIM,..»4n)) . (Note the colon
before ipras in that last expression.)

If ARRAY has rank one, then element i of the result of XXX_PREFIX (ARRAY,
EXCLUSIVE=.TRUE.) is determined by the first ¢ — 1 elements of ARRAY.

The options may be used in any combination.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. LIBRARY PROCEDURES 93

Advice to users. A new segment begins at every transition from false to true or
true to false; thus a segment is indicated by a maximal contiguous subsequence of like
logical values:

«(t,7,T,F,T,F,F,F,T,F,F,T/)
mmmes - — o - e - seven segments

(End of advice to users.)

Rationale.

One existing library delimits the segments by indicating the start of each segment.
Another delimits the segments by indicating the stop of each segment. Each method
has its advantages. There is also the question of whether this convention should
change when performing a suffix rather than a prefix. HPF adopts the symmetric
representation above. The main advantages of this representation are:

(A) It is symmetrical, in that the same segment specifier may be meaningfully used
for prefix and suffix without changing its interpretation (start versus stop).

(B) The start-bit or stop-bit representation is easily converted to this form by us-
ing PARITY_PREFIX or PARITY_SUFFIX. These might be standard idioms for a
compiler to recognize:

SUM_PREFIX(F00,SEGMENT=PARITY_PREFIX(START_BITS))
SUM_PREFIX(F00,SEGMENT=PARITY_SUFFIX(STOP_BITS))
SUM_SUFFIX(F0O0,SEGMENT=PARITY_SUFFIX(START_BITS))
SUM_SUFFIX(F00,SEGMENT=PARITY_PREFIX (STOP_BITS))

(End of rationale.)

Examples. The examples below illustrate all possible combinations of optional
arguments for SUM_PREFIX. The default value for SUM_YYYFIX is zero.

Case (i): SUM_PREFIX((/1,3,5,7/))is[1 4 9 16).

1 2 3
Case (i): If Bis the array | 4 5 6 |,
7 8 9
1 14 30
SUM_PREFIX(B) is the array 5 19 36
12 27 45

Case (i3): If A is the array (35 2 -1 7 4 8],
then SUM_PREFIX(A, MASK = A .LT. 6) is[s 8 655 9 9].

Case (iv): If B is the array , then SUM_PREFIX(B, DIM=1) is the array

~N b
© o W

2
5
8

1 2 3 1 3 6
5 7 9 | and SUM_PREFIX(B, DIM=2) isthearray | 4 9 15
12 15 18 7 15 24

94

SUM_PREFIX(B, DIM=2, MASK=M, SEGMENT=S, EXCLUSIVE=.TRUE.) is

SUM_PREFIX(B, DIM=2, MASK=M, SEGMENT=S, EXCLUSIVE=.FALSE.) is

SUM_PREFIX(B, DIM=2, MASK=M, EXCLUSIVE=.TRUE.) is
SUM_PREFIX(B, DIM=2, MASK=M, EXCLUSIVE=.FALSE.) is

SUM_PREFIX(B, DIM=2, SEGMENT=S, EXCLUSIVE=.TRUE.) is

SUM_PREFIX(B, DIM=2, SEGMENT=S, EXCLUSIVE=.FALSE.) is

SUM_PREFIX (B, DIM=2, EXCLUSIVE=.TRUE.) is
SUM_PREFIX(B, DIM=2, EXCLUSIVE=.FALSE.) is

0
SUM_PREFIX(B, MASK=M, SEGMENT=S, EXCLUSIVE=.TRUE.) is 0 11
0

SUM_PREFIX(B, MASK=M, SEGMENT=S, EXCLUSIVE=.FALSE.) is

SUM_PREFIX(B, MASK=M, EXCLUSIVE=.TRUE.) is 1 14 17 42 56

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Case (v): SUM_PREFIX((/1,3,5,7/), EXCLUSIVE=.TRUE.) is[o 1 4 9].

1 2 3 4 5
Case (vi): fBisthearray | 6 7 8 9 10 |, M is the array
11 12 13 14 15

o |
H 33
= am

, and S is the array then:

- oA
oA
H A
oA
oA
|—i

H T om
- T

0 1 0 3 7
0O o0 o o0 9
0 11 11 24 24

1 3 3 7 12
0O 0 8 9 19
11 11 24 24 24

0 1 3 6 10
0 0 0 8 17

0 11 11 24 24
1
0

3 6 10 15
0 8 17 27
11 11 24 24 24

i 0 3 7
0o 7 0 9
11 23 36 50

o O O

[are
w
w
~
[ure
N

7 15 9 19
11 23 36 50 65

13 21 30
23 36 50

D, O O O
-
e

13 21 30 40
11 23 36 50 65

11

0w O O
O b O
o »n O

11

113 3 4 b
0 13 8 13 15
11 13 21 0 O

0 12 14 38 51

— L

1 14 25 51 66

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

5.5. GENERIC INTRINSIC AND LIBRARY PROCEDURES

1 14 17 42 56 |

SUM_PREFIX (B, MASK=M, EXCLUSIVE=.FALSE.) is 1 14 25 51 66
12 14 38 51 66

0 11 0 0 0

SUM_PREFIX(B, SEGMENT=S, EXCLUSIVE=.TRUE.) is 0 13 0 4 5
0 20 800

[1 13 3 4 5

SUM_PREFIX (B, SEGMENT=S, EXCLUSIVE=.FALSE.) is 6 20 8 13 15
11 32 21 14 15

[0 18 39 63 90

SUM_PREFIX(B, EXCLUSIVE=.TRUE.) is 1 20 42 67 95
7 27 50 76 105

1 20 42 67 95

SUM_PREFIX(B, EXCLUSIVE=.FALSE.) is 7 27 50 76 105
18 39 63 90 120

5.4.6 Array Sorting Functions

95

HPF includes procedures for sorting multidimensional arrays. These are structured as
functions that return sorting permutations. An array can be sorted along a given axis, or
the whole array may be viewed as a sequence in array element order. The sorts are stable,

allowing for convenient sorting of structures by major and minor keys.

5.5 Generic Intrinsic and Library Procedures

For all of the intrinsic and library procedures, the arguments shown are the names that
must be used for keywords when using the keyword form for actual arguments. Many of the
argument keywords have names that are indicative of their usage, as is the case in Fortran

90. See Section 13.10 of the standard.

5.5.1 System inquiry intrinsic functions

NUMBER_OF _PROCESSORS (DIM) The number of executing processors
Optional DIM
PROCESSORS_SHAPE ()

5.5.2 Array location intrinsic functions

MAXLOC(ARRAY, DIM, MASK) Location of a maximum value in an array
Optional DIM, MASK

MINLOC(ARRAY, DIM, MASK) Location of a minimum value in an array
Optional DIM, MASK

The shape of the executing processor array

96 SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

5.5.3 Mapping inquiry subroutines

HPF_ALIGNMENT (ALIGNEE, LB, UB, STRIDE, AXIS_MAP, IDENTITY MAP, &
DYNAMIC, NCOPIES)
Optional LB, UB, STRIDE, AXIS_MAP, IDENTITY MAP, DYNAMIC, NCOPIES
HPF_TEMPLATE (ALIGNEE, TEMPLATE_RANK, LB, UB, AXIS_TYPE, AXIS_INFO, &
NUMBER_ALIGNED, DYNAMIC)
Optional TEMPLATE RANK, LB, UB, AXIS_TYPE, AXIS_INFO,
NUMBER_ALIGNED, DYNAMIC
HPF_DISTRIBUTION (DISTRIBUTEE, AXIS_TYPE, AXIS_INFO, PROCESSORS_RANK, &
PROCESSORS_SHAPE)
Optional AXIS_TYPE, AXIS_INFO, PROCESSORS_RANK, PROCESSORS_SHAPE

5.5.4 Bit manipulation functions

ILEN(I) Bit length (intrinsic)
LEADZ(I) Leading zeros
POPCNT(I) Number of one bits
POPPAR(I) Parity

5.5.5 Array reduction functions

IALL(TARRAY, DIM, MASK) Bitwise logical AND reduction
Optional DIM, MASK
IANY(IARRAY, DIM, MASK) Bitwise logical OR reduction

Optional DIM, MASK

IPARITY (IARRAY, DIM, MASK) Bitwise logical EOR reduction
Optional DIM, MASK

PARITY(MASK, DIM) Logical EOR reduction
Optional DIM

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. GENERIC INTRINSIC AND LIBRARY PROCEDURES 97

5.5.6 Array combining scatter functions

ALL_SCATTER(MASK, BASE, INDX1 ..., INDXn)

ANY_SCATTER(MASK, BASE, INDX1, ..., INDXn)

COPY_SCATTER (ARRAY, BASE, INDX1i, ..., INDXn, MASK)
Optional MASK

COUNT_SCATTER(ARRAY, BASE, INDXi, ..., INDXn, MASK)
Optional MASK

IALL_SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)
Optional MASK

IANY_SCATTER (ARRAY, BASE, INDXi, ..., INDXn, MASK)
Optional MASK

IPARITY SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)
Optional MASK

IALL_SCATTER(ARRAY, BASE, INDXi, ..., INDXn, MASK)
Optional MASK

MAXVAL_SCATTER(ARRAY, BASE, INDX1i, ..., INDXn, MASK)
Optional MASK

MINVAL SCATTER(ARRAY, BASE, INDX1i, ..., INDXn, MASK)
Optional MASK

PARITY_SCATTER(MASK, BASE, INDX1, ..., INDXn)

PRODUCT_SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)

Optional MASK
SUM_SCATTER (ARRAY, BASE, INDX1, ..., INDXn, MASK)
Optional MASK

5.5.7 Array prefix and suffix functions

ALL_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE
ALL_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE
ANY_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE
ANY_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE

98

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

COPY_PREFIX(ARRAY, DIM, SEGMENT)
Optional DIM, SEGMENT
COPY_SUFFIX(ARRAY, DIM, SEGMENT)
Optional DIM, SEGMENT
COUNT_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE
COUNT_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE
IALL_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
IALL_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
IANY_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
IANY_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
IPARITY PREFIX (ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
IPARITY_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
MAXVAL_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
MAXVAL _SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
MINVAL_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
MINVAL_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
PARITY PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE
PARITY_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional DIM, SEGMENT, EXCLUSIVE
PRODUCT_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
PRODUCT_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
SUM_PREFIX (ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE
SUM_SUFFIX (ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional DIM, MASK, SEGMENT, EXCLUSIVE

5.5.8 Array sort functions

GRADE_DOWN (ARRAY,DIM) Permutation that sorts into descending order

Optional DIM

GRADE_UP (ARRAY,DIM) Permutation that sorts into ascending order

Optional DIM

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. SPECIFICATIONS OF INTRINSIC PROCEDURES 99

5.6 Specifications of Intrinsic Procedures

5.6.1

5.6.2

ILEN(1)

Description. Returns one less than the length, in bits, of the two’s-complement
representation of an integer.

Class. Elemental function.
Argument. I must be of type integer.
Result Type and Type Parameter. Same as I.

Result Value. If I is nonnegative, ILEN(I) has the value [logo(I +1)]; if I is
negative, ILEN(I) has the value [loga(—1I)].

Examples. ILEN(4) = 3. ILEN(-4) = 2. 2**ILEN(N-1) rounds N up to a power
of 2 (for N > 0), whereas 2**(ILEN(N)-1) rounds N down to a power of 2. Compare
with LEADZ.

The value returned is one less than the length of the two’s-complement representation
of I, as the following explains. The shortest two’s-complement representation of 4
is 0100. The leading zero is the required sign bit. In 3-bit two’s complement, 100
represents —4.

MAXLOC(ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Determine the locations of the first elements of ARRAY along dimension
DIM having the maximum value of the elements identified by MASK.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

MASK (optional) must be of type logical and must be conformable with

ARRAY.

Result Type, Type Parameter, and Shape. The result is of type default integer.

If DIM is absent the result is an array of rank one and size equal to the rank of ARRAY;

otherwise, the result is an array of rank n — 1 and shape (di,...,dprm—1,dDIM+1,
..,dpn), where (di,...,dy) is the shape of ARRAY.

Result Value.

100

5.6.3

Case (i):

Case (ii):

Case (iii):

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

The result of executing S = MAXLOC(ARRAY) + LBOUND(ARRAY) - lisa
rank-one array S of size equal to the rank n of ARRAY. It is such that
ARRAY(S(1), ..., S(m)) has the maximum value of all of the elements
of ARRAY. If more than one element has the maximum value, the element
whose subscripts are returned is the first such element, taken in array
element order. If ARRAY has size zero, the result is processor dependent.

The result of executing S = MAXLOC(ARRAY, MASK) + LBOUND(ARRAY) -
1 is a rank-one array S of size equal to the rank n of ARRAY. It is such
that ARRAY(S(1), ..., S(n)) corresponds to a true element of MASK,
and has the maximum value of all such elements of ARRAY. If more than
one element has the maximum value, the element whose subscripts are
returned is the first such element, taken in array element order. If there
are no such elements (that is, if ARRAY has size zero or every element of
MASK has the value false), the result is processor dependent.

If ARRAY has rank one, the result of MAXLOC(ARRAY, DIM [,MASK]) is a
scalar S such that ARRAY(S + LBOUND(ARRAY,1) - 1) corresponds to a
true element of MASK (if MASK is present) and has the maximum value of all
such elements (all elements if MASK is absent). It is the smallest such sub-
script. Otherwise, the value of element (s1,...,SpIM—1,SDIM+1,---5n)
of

MAXLOC (ARRAY, DIM [,MASK]) is equal to
MAXLOC(ARRAY(S1,...,8DIM—1,% SDIM+1s- -« Sn)

[,MASK = MASK(S1,...,8DIM—1,%, SDIM+1, - - - ,sn)]).

Examples.

Case (i):
Case (i):

Case (iii):

The value of MAXLOC((/ 5, -9, 3 /)) is [1]

MAXLOC(C, MASK = C .LT. 0) finds the location of the first element of
C that is the maximum of the negative elements.

The value of MAXLOC((/ 5, -9, 3 /), DIM=1) is 1. If B is the array

2 2 6

and MAXLOC(B, DIM = 2) is [2 3]
Note that this is true even if B has a declared lower bound other than 1.

lls_gl, MAXLOC(B,DIM=1)is[212]

MINLOC(ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Determine the locations of the first elements of ARRAY along dimension
DIM having the minimum value of the elements identified by MASK.

Class. Transformational function.

Arguments.

ARRAY

must be of type integer or real. It must not be scalar.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

30
31

32

34

35

37
38
39
40
41
42
43
44
45
46

47

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

47
48

5.6. SPECIFICATIONS OF INTRINSIC PROCEDURES 101

DIM (optional) must be scalar and of type integer with a value in the

range 1 < DIM < n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

MASK (optional) must be of type logical and must be conformable with

ARRAY.

Result Type, Type Parameter, and Shape. The result is of type default integer.
If DIM is absent the result is an array of rank one and size equal to the rank of ARRAY;
otherwise, the result is an array of rank n — 1 and shape (d1,...,dprmM—1,dDIM+1,
...,dy), where (di,...,dy) is the shape of ARRAY.

Result Value.

Case (i):

Case (ii):

Case (iii):

The result of executing S = MINLOC(ARRAY) + LBOUND(ARRAY) - lisa
rank-one array S of size equal to the rank n of ARRAY. It is such that
ARRAY(S(1), ..., S(n)) has the minimum value of all of the elements
of ARRAY. If more than one element has the minimum value, the element
whose subscripts are returned is the first such element, taken in array
element order. If ARRAY has size zero, the result is processor dependent.

The result of executing 8 = MINLOC(ARRAY, MASK) + LBOUND(ARRAY) -
1 is a rank-one array S of size equal to the rank n of ARRAY. It is such
that ARRAY(S(1), ..., S(n)) corresponds to a true element of MASK,
and has the minimum value of all such elements of ARRAY. If more than
one element has the minimum value, the element whose subscripts are
returned is the first such element, taken in array element order. If there
are no such elements (that is, if ARRAY has size zero or every element of
MASK has the value false), the result is processor dependent.

If ARRAY has rank one, the result of MINLOC(ARRAY, DIM [,MASK]) is a
scalar 8 such that ARRAY(S + LBOUND(ARRAY,1) - 1) corresponds to a
true element of MASK (if MASK is present) and has the minimum value of all
such elements (all elements if MASK is absent). It is the smallest such sub-
script. Otherwise, the value of element (s1,...,SDIM~1, SDIM+1,-- - Sn)
of

MINLOC(ARRAY, DIM [,MASK]) is equal to

MINLOC(ARRAY((S1,...,SDIM—1,%SDIM+1--- ,8n))

[,MASK = MASK((S1,...,SDIM—1,%, SDIM+1,- -+ a1 .

Examples.

Case (i):
Case (ii):

Case (iii):

The value of MINLOC((/ 5, -9, 3 /)) is [2]

MINLOC(C, MASK = C .GT. 0) finds the location of the first element of
C that is the minimum of the positive elements.

The value of MINLOC((/ 5, -9, 3 /), DIM=1) is 2. If B is the array
[13 -9

s 5 el MINLOC(B,DIM=1)1S[121]

and MINLOC(B, DIM = 2)is | 3 1]
Note that this is true even if B has a declared lower bound other than 1.

102

56.4

5.6.5

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

NUMBER_OF_PROCESSORS(DIM)
Optional Argument. DIM

Description. Returns the total number of processors available to the program or
the number of processors available to the program along a specified dimension of the

processor array.

Class. System inquiry function.

Arguments.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n where n is the rank of the processor
array.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has a value equal to the extent of dimension DIM of the
processor-dependent hardware processor array or, if DIM is absent, the total number
of elements of the processor-dependent hardware processor array. The result is always
greater than zero.

Examples. For a computer with 8192 processors arranged in a 128 by 64 rectangular
grid, the value of NUMBER_OF _PROCESSORS () is 8192; the value of NUMBER_OF _PROCES-
SORS(DIM=1) is 128; and the value of NUMBER_OF PROCESSORS(DIM=2) is 64. For a
single-processor workstation, the value of NUMBER_OF_PROCESSORS() is 1; since the
rank of a scalar processor array is zero, no DIM argument may be used.

PROCESSORS_SHAPE()

Description. Returns the shape of the implementation-dependent processor array.
Class. System inquiry function.
Arguments. None

Result Type, Type Parameter, and Shape. The result is a default integer
array of rank one whose size is equal to the rank of the implementation-dependent
Processor array.

Result Value. The value of the result is the shape of the implementation-dependent
processor array.

Example. In a computer with 2048 processors arranged in a hypercube, the value
of PROCESSORS_SHAPE() is [2,2,2,2,2,2,2,2,2,2,2]. In a computer with 8192 proces-
sors arranged in a 128 by 64 rectangular grid, the value of PROCESSORS_SHAPE() is
[128,64]. For a single processor workstation, the value of PROCESSORS_SHAPE() is ||
(the size-zero array of rank one).

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 103

5.7 Specifications of Library Procedures

571

5.7.2

ALL_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a segmented logical AND scan along dimension DIM of
MASK.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of MASK.

SEGMENT (optional) must be of type logical and must have the same shape as
MASK.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ALL((/ ai,...,am /)) where
(a1,...,an) is the (possibly empty) set of elements of MASK selected to contribute to
r by the rules stated in Section 5.4.5.

Example. ALL PREFIX((/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/)) is
[T FFT T].

ALL_SCATTER(MASK,BASE,INDX, ..., INDXn)

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDX1, ..., INDXn. An element of the result is true if and only if the
corresponding element of BASE and all elements of MASK scattered to that position
are true.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

BASE must be of type logical with the same kind type parameter
as MASK. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with MASK. The
number of INDX arguments must be equal to the rank of
BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

104

5.7.3

5.7.4

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Result Value. The element of the result corresponding to the element b of BASE has
the value ALL((/a1,as,...,am,b/)), where (ai,...,an) are the elements of MASK
associated with b as described in Section 5.4.4.

Example. ALL SCATTER((/T, T, T, F/), (/T, T, T/), (/1, 1, 2, 2/)) is
[T F T].
ALL-SUFFlX(MASK, DIM, SEGMENT, EXCLUSlVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented logical AND scan along dimension
DIM of MASK.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of MASK.

SEGMENT (optional) must be of type logical and must have the same shape as
MASK.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ALL((/ ai,...,amn /)) where
(a1,...,am) is the (possibly empty) set of elements of MASK selected to contribute to
r by the rules stated in Section 5.4.5.

Example. ALL_SUFFIX((/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/)) is
[F FTT T].

ANY_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE
Description. Computes a segmented logical OR scan along dimension DIM of MASK.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of MASK.

SEGMENT (optional) must be of type logical and must have the same shape as

MASK.

U=2] N O W - W [N =

T N R B R e T R R S L=
o N - o © o] ~N o o> »Ww [- [=]

)
=

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

e ® ~ [= I [w (%] -

R e =
w [N [o

-
'S

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 105

575

5.7.6

EXCLUSIVE (optional) must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ANY((/ ai,...,am /)) where
(ai,...,an) is the (possibly empty) set of elements of MASK selected to contribute to
r by the rules stated in Section 5.4.5.

Example. ANY PREFIX((/F,T,F,F,F/), SEGMENT= (/F,F,F,T,T/)) is
[F T TF F].

ANY_SCATTER(MASK,BASE,INDXI, ..., INDXn)

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDX1, ..., INDXn. An element of the result is true if and only if the
corresponding element of BASE or any element of MASK scattered to that position is
true.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

BASE must be of type logical with the same kind type parameter
as MASK. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with MASK. The
number of INDX arguments must be equal to the rank of
BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE has
the value ANY((/ai, a2, ...,@m,b/)), where (ai,...,an) are the elements of MASK
associated with b as described in Section 5.4.4.

Example. ANY_SCATTER((/T, F, F, F/), (/F, F, T/), (/1, 1, 2, 2/)) is
[T F T].
ANY_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented logical OR scan along dimension DIM
of MASK.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

106

5.7.7

5.7.8

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of MASK.

SEGMENT (optional) must be of type logical and must have the same shape as
MASK.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ANY((/ ai,...,a, /)) where
(a1,...,am) is the (possibly empty) set of elements of MASK selected to contribute to
r by the rules stated in Section 5.4.5.

Example. ANY_SUFFIX((/F,T,F,F,F/), SEGMENT= (/F,F,F,T,T/)) is
[T TFF F].

COPY_PREFIX(ARRAY, DIM, SEGMENT)
Optional Arguments. DIM, SEGMENT
Description. Computes a segmented copy scan along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as

ARRAY.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element 7 of the result has the value a; where (ai,...,an) is the
set, in array element order, of elements of ARRAY selected to contribute to r by the
rules stated in Section 5.4.5.

Example. COPY PREFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[1 11 4 4].

COPY_SCATTER(ARRAY,BASE,INDXI1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX1, ..., INDXn. Each element of the result is equal to
one of the elements of ARRAY scattered to that position or, if there is none, to the
corresponding element of BASE.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 107

5.7.9

Class. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

BASE must be of the same type and kind type parameter as
ARRAY.

INDX1,...,INDXn must be of type integer and conformable with ARRAY. The
number ofINDX arguments must be equal to the rank of
BASE.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.
Result Value. Let S be the set of elements of ARRAY associated with element b of
BASE as described in Secion 5.4.4.

If S is empty, then the element of the result corresponding to the element b of BASE
has the same value as b.

If S is non-empty, then the element of the result corresponding to the element b of
BASE is the result of choosing one element from S. HPF does not specify how the
choice is to be made; the mechanism is processor dependent.

Example. COPY_SCATTER((/1, 2, 3, 4/), (/7, 8, 9/), (/1, 1, 2, 2/)) is
[z, y, 9], where z is a member of the set {1,2} and y is a member of the set

{3,4}.
COPY_SUFFIX(ARRAY, DIM, SEGMENT)
Optional Arguments. DIM, SEGMENT

Description. Computes a reverse, segmented copy scan along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as

ARRAY.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value a,, where (ai,...,a;) is the
set, in array element order, of elements of ARRAY selected to contribute to r by the
rules stated in Section 5.4.5.

Example. COPY SUFFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[3 335 5].

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

5.7.10 COUNT_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE
Description. Computes a segmented COUNT scan along dimension DIM of MASK.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of MASK.

SEGMENT (optional) must be of type logical and must have the same shape as
MASK.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. The result is of type default integer
and of the same shape as MASK.

Result Value. Element r of the result has the value COUNT((/ ai,...,am /))
where (a1,...,am) is the (possibly empty) set of elements of MASK selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. COUNT PREFIX((/F,T,T,T,T/), SEGMENT= (/F,F,F,T,T/)) is
[o 121 2].

5.7.11 COUNT_SCATTER(MASK,BASE,INDXI, ..., INDXn)

Description. Scatters elements of MASK to positions of the result indicated by index
arrays INDX1, ..., INDXn. Each element of the result is the sum of the corresponding
element of BASE and the number of true elements of MASK scattered to that position.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

BASE must be of type integer. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with MASK. The
number of INDX arguments must be equal to the rank of
BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value b + COUNT((/ai1,as,...,@m/)), where (ai,...,an) are the elements
of MASK associated with b as described in Section 5.4.4.

Example. COUNT_SCATTER((/T, T, T, F/),(/1, -1, 0/),(/1, 1, 2, 2/)) is
[3 0 o].

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 109

5.7.12 COUNT_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented COUNT scan along dimension DIM of
MASK.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of MASK.

SEGMENT (optional) must be of type logical and must have the same shape as
MASK.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. The result is of type default integer
and of the same shape as MASK.

Result Value. Element r of the result has the value COUNT((/ ai1,...,am /))
where (ay,...,an) is the (possibly empty) set of elements of MASK selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. COUNT SUFFIX((/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/)) is
[2 11 2 1].

5.7.13 GRADE_DOWN(ARRAY,DIM)

Optional Argument. DIM

Description. Produces a permutation of the indices of an array, sorted by descend-
ing array element values.

Class. Transformational function.

Arguments.
ARRAY must be of type integer, real, or character.
DIM (optional) must be scalar and of type integer with a value in the

range 1 < DIM < n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default integer.
If DIM is present, the result has the same shape as ARRAY. If DIM is absent, the result
has shape (/ SIZE(SHAPE(ARRAY)), PRODUCT(SHAPE(ARRAY)) /).

110

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Result Value.

Case (i):

Case (i1):

The result of S = GRADE_DOWN (ARRAY) has the property that if one com-
putes the rank-one array B of size PRODUCT (SHAPE (ARRAY)) by

FORALL (K=1:SIZE(B,1)) B(K)=ARRAY(S(1,K),S(2,K),...,S(N,K))
where N has the value SIZE (SHAPE (ARRAY)), then B is sorted in descend-
ing order; moreover, all of the columns of S are distinct, that is, if j # m
then ALL(S(:,7) .EQ. S(:,m)) will be false. The sort is stable; if
J <m and B(j) = B(m), then ARRAY(S(1,3),S(2,5),...,8(n,7)) pre-
cedes ARRAY(S(1,m),S(2,m),...,S(n,m)) in the array element order-
ing of ARRAY.

The result of R = GRADE_DOWN(ARRAY,DIM=K) has the property that if
one computes the array B(i1,42,...,%5,...,%,) =

ARRAY (i1,42,..., R(i1,%2,. .. 0k, «yin)ye.ryin)
then for all i1, ?2, ..., (omit ig),...,%,, the vector B(iy,42,...,:,...,%5) is
sorted in descending order; moreover, R(i1,%2,...,:,...,%,) is a permu-

tation of all the integers in the range
LBOUND (ARRAY,K) : UBOUND (ARRAY,K) . The sort is stable; that is, if j < m

and B(¢1,%2,...,7,...,in) = B(1,i2,...,m,...,%,), then
R(il,ig,...,j,...,in) < R(il,iz,...,m,...,in).
Examples.

Case (i):

Case (ii):

GRADE DOWN((/30, 20, 30, 40, -10/)) is a rank two array of shape
[15] with the value [41325] (To produce a rank-one
result, the optional DIM = 1 argument must be used.)

1 9 2
IfAisthearray | 4 5 2 |,
1 2 4
12233121
then GRADE DOWN(A) has the value o 21323311
1 9 2
IfAisthearray | ¢ 5 2 |,
1 2 4
2 1 3
then GRADE_DOWN(A, DIM = 1) has the value 1 21
3 3 2

5.7.14 GRADE_UP(ARRAY,DIM)

Optional Argument. DIM

Description. Produces a permutation of the indices of an array, sorted by ascending
array element values.

Class. Transformational function.

Arguments.

10

11

12

13

14

15

16

17

18

19

20

21

22

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

(=T Y)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 111

ARRAY

must be of type integer, real, or character.

DIM (optional) must be scalar and of type integer with a value in the

range 1 < DIM < n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default integer.
If DIM is present, the result has the same shape as ARRAY. If DIM is absent, the result
has shape (/ SIZE(SHAPE(ARRAY)), PRODUCT(SHAPE(ARRAY)) /).

Result Value.

Case (i):

Case (ii):

The result of S = GRADE_UP(ARRAY) has the property that if one com-
putes the rank-one array B of size PRODUCT (SHAPE (ARRAY)) by

FORALL (K=1:SIZE(B,1)) B(K)=ARRAY(S(1,K),S(2,K),...,S(N,K))
where N has the value SIZE (SHAPE(ARRAY)), then B is sorted in ascending
order; moreover, all of the columns of S are distinct, that is, if j # m then
ALL(S(:,5) .EQ. S(:,m)) will be false. The sort is stable; if 7 <m
and B(j) = B(m), then ARRAY(S(1,5),S(2,5),...,8(n,5)) precedes
ARRAY(S(1,m),S(2,m),...,S8(n,m)) in the array element ordering of
ARRAY.

The result of R = GRADE_UP(ARRAY,DIM=K) has the property that if one
computes the array B(i1,42,...,%k,...,tn) =

ARRAY (i1,492,..., R(41,92, ..., 0ky---r0n)yc oyin)

then for all 41,49, ..., (omit i), ..., in, the vector B(41,d2,...,5...,%n) is
sorted in ascending order; moreover, R(i1,12,...,:,...,%,) iS a permuta-
tion of all the integers in the range

LBOUND (ARRAY, K) : UBOUND (ARRAY,K) . The sort is stable; that is, if j <m
and B(il,i2,...,j,...,in) = B(il,iz,...,m,...,in), then

R(Gi1,92,. .,y -yin) < R(i1,i2,...,m,...,in).

Examples.

Case (i):

Case (i):

GRADE_UP((/30, 20, 30, 40, -10/)) is a rank two array of shape
[15] with the value [5 21 3 4] (To produce a rank-one
result, the optional DIM = 1 argument must be used.)

If A is the array

[N NN
N OO
o NN

-
W
N W
w =
w N
= N
w
N
-

then GRADE_UP(A) has the value [

If A is the array

-
N o1 ©
NN

w

then GRADE_UP(A, DIM = 1) has the value

112 SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

5.7.15 HPF_ALIGNMENT(ALIGNEE, LB, UB, STRIDE, AXIS_MAP, IDENTITY_MAP,
DYNAMIC, NCOPIES)

Optional Arguments. LB, UB, STRIDE, AXIS_MAP, IDENTITY_MAP, DYNAMIC,
NCOPIES

Description. Returns information regarding the correspondence of a variable and
the align-target (array or template) to which it is ultimately aligned.

Class. Mapping inquiry subroutine.
Arguments.

ALIGNEE may be of any type. It may be scalar or array valued.
It must not be an assumed-size array. It must not be a
structure component. If it is a member of an aggregate
variable group, then it must be an aggregate cover of the
group. (See Section 7 for the definitions of “aggregate
variable group” and “aggregate cover.”) It must not be a
pointer that is disassociated or an allocatable array that
is not allocated. It is an INTENT (IN) argument.

If ALIGNEE is a pointer, information about the align-
ment of its target is returned. The target must not be
an assumed-size dummy argument or a section of an
assumed-size dummy argument. If the target is (a sec-
tion of) a member of an aggregate variable group, then
the member must be an aggregate cover of the group.
The target must not be a structure component, but the
pointer may be.

LB (optional) must be of type default integer and of rank one. Its size
must be at least equal to the rank of ALIGNEE. It is an
INTENT (OUT) argument. The first element of the it? axis
of ALIGNEE is ultimately aligned to the LB(i)*® align-target
element along the axis of the align-target associated with
the it? axis of ALIGNEE. If the i*® axis of ALIGNEE is a
collapsed axis, LB(i) is processor dependent.

UB (optional) must be of type default integer and of rank one. Its size
must be at least equal to the rank of ALIGNEE. It is an
INTENT (OUT) argument. The last element of the it? axis
of ALIGNEE is ultimately aligned to the UB(i)*" align-target
element along the axis of the align-target associated with
the i*h axis of ALIGNEE. If the i" axis of ALIGNEE is a
collapsed axis, UB(i) is processor dependent.

STRIDE (optional) must be of type default integer and of rank one. Its size
must be at least equal to the rank of ALIGNEE. It is an
INTENT (OUT) argument. The i*h element of STRIDE is
set to the stride used in aligning the elements of ALIGNEE
along its i*? axis. If the i*? axis of ALIGNEE is a collapsed
axis, STRIDE(i) is zero.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 113

AXIS_MAP (optional)

IDENTITY_MAP (optional)

DYNAMIC (optional)

NCOPIES (optional)

must be of type default integer and of rank one. Its size
must be at least equal to the rank of ALIGNEE. It is an
INTENT (OUT) argument. The i*! element of AXIS_MAP is
set to the align-target axis associated with the ith axis of
ALIGNEE. If the i*! axis of ALIGNEE is a collapsed axis,
AXIS_ MAP(i) is O.

must be scalar and of type default logical. It is an INTENT
(OUT) argument. It is set to true if the ultimate align-
target associated with ALIGNEE has a shape identical to
ALIGNEE, the axes are mapped using the identity per-
mutation, and the strides are all positive (and therefore
equal to 1, because of the shape constraint); otherwise it
is set to false. If a variable has not appeared as an alignee
in an ALIGN or REALIGN directive, and does not have the
INHERIT attribute, then IDENTITY MAP must be true; it
can be true in other circumstances as well.

must be scalar and of type default logical. It is an
INTENT (OUT) argument. It is set to true if ALIGNEE
has the DYNAMIC attribute; otherwise it is set to false. If
ALIGNEE has the pointer attribute, then the result applies
to ALIGNEE itself rather than its target.

must be scalar and of type default integer. It is an INTENT
(OUT) argument. It is set to the number of copies of
ALIGNEE that are ultimately aligned to align-target. For
a non-replicated variable, it is set to one.

Examples. If ALIGNEE is scalar, then no elements of LB, UB, STRIDE, or AXIS_MAP
are set.

Given the declarations

|HPF$
|HPF$
|HPF$
|HPF$
|HPF$
'HPF$
'HPF$

REAL PI = 3.1415927
POINTER P_TO_A(:)

DIMENSION A(10,10),B(20,30),C(20,40,10),D(40)

TEMPLATE T(40,20)
DYNAMIC A

-

ALIGN A(I,:) WITH T(1+3%I,2:20:2)
ALIGN C(I,*,J) WITH T(J,21-I)

ALIGN D(I) WITH T(I,4)

PROCESSORS PROCS(4,2), SCALARPROC
DISTRIBUTE T(BLOCK,BLOCK) ONTO PROCS
'HPF$ DISTRIBUTE B(CYCLIC,BLOCK) ONTO PROCS
IHPF$ DISTRIBUTE ONTO SCALARPROC :: PI
P_TO_A => A(3:9:2, 6)

assuming that the actual mappings are as the directives specify, the results of HPF_ALIGNMENT

are:

114 SECTION 5. INTRINSIC AND LIBRARY PROCEDURES
r | A | B] C | D | P.TO_A |
LB 4, 2] 1, 1] (1, N/A, 1] 1] 10
UB [31, 20] | [20, 30] | [20, N/A, 10] | [40] 28
STRIDE 3,2 1,1 -1, 0, 1] 1 6
AXIS_MAP 1,2 1,2 [2, 0, 1] 1 1
IDENTITY_MAP false true false false false
DYNAMIC true false false false false
NCOPIES 1 1 1 1 1

where “N/A” denotes a processor-dependent result. To illustrate the use of NCOPIES, con-

sider:

LOGICAL B0Z0(20,20) ,RONALD_MCDONALD(20)
'HPF$ TEMPLATE EMMETT_KELLY(100,100)
'HPF$ ALIGN RONALD_MCDONALD(I) WITH B0ZO(I,*)
'HPF$ ALIGN BOZO(J,K) WITH EMMETT_KELLY(J,5%K)

CALL HPF_ALIGNMENT (RONALD_MCDONALD, NCOPIES = NC) sets NC to 20. Now consider:

LOGICAL B0Z0(20,20) ,RONALD_MCDONALD(20)
'HPF$ TEMPLATE WILLIE_WHISTLE(100)
'HPF$ ALIGN RONALD_MCDONALD(I) WITH BOZO(I,*)
'HPF$ ALIGN BOZ0(J,*) WITH WILLIE_WHISTLE(5#J)

CALL HPF_ALIGNMENT (RONALD MCDONALD, NCOPIES = NC) sets NC to one.

5.7.16 HPF_TEMPLATE(ALIGNEE, TEMPLATE_RANK, LB, UB, AXIS_TYPE, AXIS_
INFO, NUMBER_ALIGNED, DYNAMIC)

Optional Arguments. LB, UB, AXIS_TYPE, AXIS_INFO, NUMBER ALIGNED,
TEMPLATE_RANK, DYNAMIC

Description. The HPF_TEMPLATE subroutine returns information regarding the ul-
timate align-target associated with a variable; HPF_TEMPLATE returns information
concerning the variable from the template’s point of view (assuming the alignment
is to a template rather than to an array), while HPF_ALIGNMENT returns information
from the variable’s point of view.

Class. Mapping inquiry subroutine.

Arguments.

ALIGNEE

may be of any type. It may be scalar or array valued.
It must not be an assumed-size array. It must not be a
structure component. If it is a member of an aggregate
variable group, then it must be an aggregate cover of the
group. (See Section 7 for the definitions of “aggregate
variable group” and “aggregate cover.”) It must not be a
pointer that is disassociated or an allocatable array that
is not allocated. It is an INTENT (IN) argument.

If ALIGNEE is a pointer, information about the align-
ment of its target is returned. The target must not be

e o N o

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 115

TEMPLATE RANK (optional)

LB (optional)

UB (optional)

AXIS_TYPE (optional)

an assumed-size dummy argument or a section of an
assumed-size dummy argument. If the target is (a sec-
tion of) a member of an aggregate variable group, then
the member must be an aggregate cover of the group.
The target must not be a structure component, but the
pointer may be.

must be scalar and of type default integer. It is an INTENT
(OUT) argument. It is set to the rank of the ultimate
align-target. This can be different from the rank of the
ALIGNEE, due to collapsing and replicating.

must be of type default integer and of rank one. Its size
must be at least equal to the rank of the align-target to
which ALIGNEE is ultimately aligned; this is the value
returned in TEMPLATE_ RANK. It is an INTENT (OUT) argu-
ment. The i*" element of LB contains the declared align-
target lower bound for the it" template axis.

must be of type default integer and of rank one. Its size
must be at least equal to the rank of the align-target to
which ALIGNEE is ultimately aligned; this is the value
returned in TEMPLATE RANK. It is an INTENT (OUT) argu-
ment. The i*" element of UB contains the declared align-
target upper bound for the it? template axis.

must be a rank one array of type default character. It
may be of any length, although it must be of length
at least 10 in order to contain the complete value. Its
elements are set to the values below as if by a char-
acter intrinsic assignment statement. Its size must be
at least equal to the rank of the align-target to which
ALIGNEE is ultimately aligned; this is the value returned
in TEMPLATE_RANK. It is an INTENT (OUT) argument. The
ith element of AXIS_TYPE contains information about the
ith axis of the align-target. The following values are de-

fined by HPF (implementations may define other values):

’NORMAL’ The align-target axis has an axis of ALIGNEE
aligned to it. For elements of AXIS_TYPE assigned
this value, the corresponding element of AXIS_INFO
is set to the number of the axis of ALIGNEE aligned
to this align-target axis.

’REPLICATED’ ALIGNEE is replicated along this align-tar-
get axis. For elements of AXIS_TYPE assigned this
value, the corresponding element of AXIS_INFO is set
to the number of copies of ALIGNEE along this align-
target axis.

’SINGLE’ ALIGNEE is aligned with one coordinate of the
align-target axis. For elements of AXIS_TYPE assigned

116

AXIS_INFO (optional)

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

this value, the corresponding element of AXIS_INFQ is
set to the align-target coordinate to which ALIGNEE
is aligned.

must be of type default integer and of rank one. Its size
must be at least equal to the rank of the align-target to
which ALIGNEE is ultimately aligned; this is the value
returned in TEMPLATE _RANK. It is an INTENT (OUT) argu-
ment. See the description of AXIS_TYPE above.

NUMBER_ALIGNED (optional) must be scalar and of type default integer. It is an

DYNAMIC (optional)

INTENT (OUT) argument. It is set to the total number
of variables aligned to the ultimate align-target. This is
the number of variables that are moved if the align-target
is redistributed.

must be scalar and of type default logical. It is an INTENT
(0UT) argument. It is set to true if the align-target has
the DYNAMIC attribute, and to false otherwise.

Example. Given the declarations in the example of Section 5.7.15, and assuming
that the actual mappings are as the directives specify, the results of HPF_TEMPLATE

are:
l I A l C | D |
LB 1,1 L 1] L 1]
UB [40, 20] [40, 20] [40, 20]
AXIS_TYPE [NORMAL’, | INORMAL’, | [NORMAL’,
'NORMAL’] | 'NORMAL'| 'SINGLE’]
AXIS_INFO 1, 2 3, 1] 1, 4]
NUMBER_ALIGNED 3 3 3
TEMPLATE_RANK 2 2 2
DYNAMIC false false false

5.7.17 HPF_DISTRIBUTION(DISTRIBUTEE, AXIS_-TYPE, AXIS_INFO, PROCES-
SORS_ RANK, PROCESSORS_SHAPE)

Optional Arguments. AXIS_TYPE, AXIS_INFO, PROCESSORS_RANK,

PROCESSORS_SHAPE

Description. The HPF_DISTRIBUTION subroutine returns information regarding the
distribution of the ultimate align-target associated with a variable.

Class. Mapping inquiry subroutine.

Arguments.

DISTRIBUTEE

may be of any type. It may be scalar or array valued.
It must not be an assumed-size array. It must not be a
structure component. If it is a member of an aggregate
variable group, then it must be an aggregate cover of the
group. (See Section 7 for the definitions of “aggregate

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 117

1 variable group” and “aggregate cover.”) It must not be a
2 pointer that is disassociated or an allocatable array that
3 is not allocated. It is an INTENT (IN) argument.

4 If DISTRIBUTEE is a pointer, information about the dis-
5 tribution of its target is returned. The target must not
6 be an assumed-size dummy argument or a section of an
7 assumed-size dummy argument. If the target is (a sec-
8 tion of) a member of an aggregate variable group, then
® the member must be an aggregate cover of the group.
10 The target must not be a structure component, but the
o pointer may be.

2 AXIS_TYPE (optional) must be a rank one array of type default character. It

13

may be of any length, although it must be of length
at least 9 in order to contain the complete value. Its
elements are set to the values below as if by a char-
acter intrinsic assignment statement. Its size must be
at least equal to the rank of the align-target to which
DISTRIBUTEE is ultimately aligned; this is the value re-
turned by HPF_TEMPLATE in TEMPLATE RANK). It is an
INTENT (OUT) argument. Its i*? element contains infor-
mation on the distribution of the i*! axis of that align-
target. The following values are defined by HPF (imple-
mentations may define other values):

14

15

16

17

18

19

20

21

22

23

24

25 ’BLOCK’ The axis is distributed BLOCK. The correspond-
26 ing element of AXIS_INFO contains the block size.

27 >COLLAPSED’ The axis is collapsed (distributed with the
28 “x” gpecification). The value of the corresponding
29 element of AXIS_INFO is processor dependent.

30 ’CYCLIC’ The axis is distributed CYCLIC. The corre-
31 sponding element of AXIS_INFQ contains the block
32 size.

% AXIS_INFO (optional) must be a rank one array of type default integer, and size
34 at least equal to the rank of the align-target to which
3 DISTRIBUTEE is ultimately aligned (which is returned by
% HPF_TEMPLATE in TEMPLATE RANK). It is an INTENT (OUT)
3 argument. The ith element of AXIS_INFO contains the
3 block size in the block or cyclic distribution of the it! axis
% of the ultimate align-target of DISTRIBUTEE; if that axis

“ is a collapsed axis, then the value is processor dependent.

41

PROCESSORS_RANK (optional) must be scalar and of type default integer. It is set
to the rank of the processor arrangement onto which
DISTRIBUTEE is distributed. It is an INTENT (QUT) ar-

42

43

44

5 gument.
46 PROCESSORS_SHAPE (optional) must be a rank one array of type default integer and
a7 of size at least equal to the value, m, returned in PROCES-

48 SORS_RANK. It is an INTENT (OUT) argument. Its first m

118

5.7.18

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Example.

elements are set to the shape of the processor arrange-
ment onto which DISTRIBUTEE is mapped. (It may be
necessary to call HPF_DISTRIBUTION twice, the first time
to obtain the value of PROCESSORS_RANK in order to allo-
cate PROCESSORS_SHAPE.)

Given the declarations in the example of Section 5.7.15, and as-

suming that the actual mappings are as the directives specify, the results of

HPF _DISTRIBUTION are:

I A I B | PI |
AXIS_TYPE [BLOCK’, 'BLOCK’] | [CYCLIC’, 'BLOCK/]
AXISINFO [10, 10] [T, 15]
PROCESSORS SHAPE 4,7 %)
PROCESSORS_RANK 2 2 0

IALL(ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Computes a bitwise logical AND reduction along dimension DIM of

ARRAY.

Class. Transformational function.

Arguments.

ARRAY
DIM (optional)

MASK (optional)

must be of type integer. It must not be scalar.

must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. The result is of type integer with
the same kind type parameter as ARRAY. It is scalar if DIM is absent or if ARRAY has
rank one; otherwise, the result is an array of rank n — 1 and shape

(dl, do,....dprM—1,4dDIM+1,5- - -, dn) where (dl, ds,... ,dn) is the shape of ARRAY.

Result Value.
Case (i):

The result of TALL(ARRAY) is the IAND reduction of all the elements of

ARRAY. If ARRAY has size zero, the result is equal to a processor-dependent
integer value x with the property that IAND(I, x) = I for all integers I
of the same kind type parameter as ARRAY. See Section 5.4.3.

Case (ii):

The result of TALL(ARRAY, MASK=MASK) is the IAND reduction of all the

elements of ARRAY corresponding to the true elements of MASK; if MASK
contains no true elements, the result is equal to a processor-dependent
integer value z (of the same kind type parameter as ARRAY) with the
property that IAND(I, x) = I for all integers I.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 119

1 Case (iii): If ARRAY has rank one, TALL(ARRAY, DIM=1 [,MASK|) has a value equal
2 to that of TALL(ARRAY [,MASK]). Otherwise, the value of element

3 (81,82, -+, SDIM—1, SDIM+1, - - - ,8n) of TALL(ARRAY, DIM=1 [,MASK]) is
4 equal to IALL(ARRAY(S1,82,...,SDIM—1,:y SDIM+1s--+,5n)

5 [,MASK = MASK(sS1,52,...,8DIM~1,% SDIM+1,---,5n)1)

6

7 Examples.

8

9 Case (i): The value of IALL((/7, 6, 3, 2/)) is 2.

10

Case (ii): The value of IALL(C, MASK = BTEST(C,0)) is the IAND reduction of the

u odd elements of C.

12

13 Case (iii): TEB is the array | = > > |, then IALL(B, DIM = 1) is [2 3 5 |
14 377
15 and TALL(B, DIM = 2) is [0 3]

16

17
18 5.7.19 IALL_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

19

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

20

21

22 Description. Computes a segmented bitwise logical AND scan along dimension DIM

s of ARRAY.

24

25 Class. Transformational function.

26

27 Arguments.

28

29 ARRAY must be of type integer. It must not be scalar.

30 DIM (optional) must be scalar and of type integer with a value in the

i range 1 < DIM < n, where n is the rank of ARRAY.

32

33 MASK (optional) must be of type logical and must be conformable with

34 ARRAY.

35

56 SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

37

38 EXCLUSIVE (optional) must be of type logical and must be scalar.

39

0 Result Type, Type Parameter, and Shape. Same as ARRAY.

41

“ Result Value. Element r of the result has the value IALL((/ ai,...,an /)) where

43

(a1,...,anm) is the (possibly empty) set of elements of ARRAY selected to contribute
to 7 by the rules stated in Section 5.4.5.

44
45

46

Example. TALL PREFTX((/1,3,2,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[1 10 4 4].

47

48

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

IALL_SCATTER(ARRAY,BASE,INDX1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX1, ..., INDXn. The j*"bit of an element of the result is
1 if and only if the j*"bits of the corresponding element of BASE and of the elements
of ARRAY scattered to that position are all equal to 1.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

BASE must be of type integer with the same kind type param-
eter as ARRAY. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with ARRAY. The
number of INDX arguments must be equal to the rank of
BASE.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value IALL((/ay,as,...,am,b/)), where (ai,...,an) are the elements of
ARRAY associated with b as described in Section 5.4.4.

Example. IALL_SCATTER((/1, 2, 3, 6/), (/1, 3, 7/), (/1, 1, 2, 2/)) is
[0 2 7]

IALL_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented bitwise logical AND scan along di-
mension DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as

ARRAY.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 121

EXCLUSIVE (optional) must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value TALL((/ a1,...,am /)) where
(a1,...,an) is the (possibly empty) set of elements of ARRAY selected to contribute
to T by the rules stated in Section 5.4.5.

Example. IALL SUFFIX((/1,3,2,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[o 2 2 4 5].

IANY(ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Computes a bitwise logical OR reduction along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

MASK (optional) must be of type logical and must be conformable with

ARRAY.

Result Type, Type Parameter, and Shape. The result is of type integer with
the same kind type parameter as ARRAY. It is scalar if DIM is absent or if ARRAY has
rank one; otherwise, the result is an array of rank n — 1 and shape
(di,d2,...,dpimM—1,dDIM 41,5 - - - ,dn) where (d1,dy,. .. ,dyn) is the shape of ARRAY.

Result Value.

Case (i): The result of IANY(ARRAY) is the IOR reduction of all the elements of
ARRAY. If ARRAY has size zero, the result has the value zero. See Sec-
tion 5.4.3.

Case (ii): The result of IANY(ARRAY, MASK=MASK) is the IOR reduction of all the
elements of ARRAY corresponding to the true elements of MASK; if MASK
contains no true elements, the result is zero.

Case (iii): If ARRAY has rank one, IANY(ARRAY, DIM=1 [,MASK]) has a value equal
to that of TANY (ARRAY [,MASK]). Otherwise, the value of element
(s1,82,.-+,SDIM—1,5DIM+1, - - - ,8r) of IANY(ARRAY, DIM=1 [,MASK]) is
equal to TANY (ARRAY (81,52, ..,SDIM—1,% SDIM+1,- -« Sn)

[,MASK = MASK(s1,82,...,8DIM—1,% SDIM+1;-- -5 sn)])

122

5.7.23

5.7.24

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Examples.

Case (i): The value of IANY((/9, 8, 3, 2/)) is 11.

Case (ii): The value of TANY(C, MASK = BTEST(C,0)) is the IOR reduction of the
odd elements of C.

235
042

and TANY(B, DIM = 2) is [7 6]

Case (iit): If B is the array l], then IANY(B, DIM = 1) is [277]

IANY_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a segmented bitwise logical OR scan along dimension DIM
of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IANY((/ ai,...,a, /)) where
(a1,...,am) is the (possibly empty) set of elements of ARRAY selected to contribute
to r by the rules stated in Section 5.4.5.

Example. TANY PREFIX((/1,2,3,2,5/), SEGMENT= (/F,F,F,T,T/)) is
[1 3 3 2 7].

IANY_SCATTER(ARRAY,BASE,INDX1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX1, ..., INDXn. The j''bit of an element of the result
is 1 if and only if the j*'bit of the corresponding element of BASE or of any of the
elements of ARRAY scattered to that position is equal to 1.

© o N O o - W N =

» [[- [- [aoWw W W W w W [+ W w w N N [[N [N N [[*] bt [- (= - — - — - -
~N > (4] 'S w (&) - [=] © ® = O [> w N - o © ® S B = - W N L [=] © [+] ~N > w - oW [N - o

'
@

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 123

1 Class. Transformational function.

Z Arguments.

4 ARRAY must be of type integer. It must not be scalar.

° BASE must be of type integer with the same kind type param-
° eter as ARRAY. It must not be scalar.

7

8 INDX1,...,INDXn must be of type integer and conformable with ARRAY. The
0 number of INDX arguments must be equal to the rank of
10 BASE.

1 MASK (optional) must be of type logical and must be conformable with
12 ARRAY.

13

14 Result Type, Type Parameter, and Shape. Same as BASE.

15

Result Value. The element of the result corresponding to the element b of BASE
has the value IANY((/ai,ag,...,am,b/)), where (ai,...,an) are the elements of
ARRAY associated with b as described in Section 5.4.4.

16
17
18
19 Example. IANY_SCATTER((/1, 2, 3, 6/), (/1, 3, 7/), (/1, 1, 2, 2/)) is
20 3 7 7).
" [s7 7]

* 57.25 IANY_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

23

24 Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

* Description. Computes a reverse, segmented bitwise logical OR scan along dimen-

sion DIM of ARRAY.

26

27

28 Class. Transformational function.
29
20 Arguments.
8 ARRAY must be of type integer. It must not be scalar.
32
5 DIM (optional) must be scalar and of type integer with a value in the
a range 1 < DIM < n, where n is the rank of ARRAY.
35 MASK (optional) must be of type logical and must be conformable with
36 ARRAY.
87 SEGMENT (optional) must be of type logical and must have the same shape as
38
ARRAY.
39
0 EXCLUSIVE (optional) must be of type logical and must be scalar.
4 Result Type, Type Parameter, and Shape. Same as ARRAY.
42
43 Result Value. Element r of the result has the value IANY((/ ai,...,am, /)) where
4 (a1,-..,am) is the (possibly empty) set of elements of ARRAY selected to contribute
45 to r by the rules stated in Section 5.4.5.

46

Example. IANY_SUFFIX((/4,2,3,2,5/), SEGMENT= (/F,F,F,T,T/)) is
[7 337 5].

47

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

5.7.26 IPARITY(ARRAY, DIM, MASK)

Optional Arguments. DIM, MASK

Description. Computes a bitwise logical exclusive OR reduction along dimension
DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY. The
corresponding actual argument must not be an optional
dummy argument.

MASK (optional) must be of type logical and must be conformable with

ARRAY.

Result Type, Type Parameter, and Shape. The result is of type integer with
the same kind type parameter as ARRAY. It is scalar if DIM is absent or if ARRAY has
rank one; otherwise, the result is an array of rank n — 1 and shape
(di1,d2,...,dpiM—1,dDIM+1, - - - ,dy) where (di,da, ... ,dn) is the shape of ARRAY.

Result Value.

Case (i): The result of IPARITY(ARRAY) is the IEOR reduction of all the elements
of ARRAY. If ARRAY has size zero, the result has the value zero. See Sec-
tion 5.4.3.

Case (ii): The result of IPARITY (ARRAY, MASK=MASK) is the IEOR reduction of all
the elements of ARRAY corresponding to the true elements of MASK; if MASK
contains no true elements, the result is zero.

Case (iii): If ARRAY has rank one, IPARITY (ARRAY, DIM=1 [,MASK]) has a value equal
to that of TPARITY(ARRAY [,MASK]). Otherwise, the value of element
(81,82, .-, SDIM—1,SDIM+1; - - - ,8n) of IPARITY (ARRAY, DIM=1 [,MASK])
is equal to IPARITY (ARRAY (S1,82,...,SDIM—1,% SDIM+1s--+15n)
[,MASK = MASK(s1,82,...,SDIM—1,% SDIM+1,- -+, sn)))

Examples.

Case (i): The value of IPARITY((/13, 8, 3, 2/)) is 4.
Case (ii): The value of IPARITY(C, MASK = BTEST(C,0)) is the IEOR reduction of
the odd elements of C.

Case (iii): If B is the array [(2) Z ;

and IPARITY(B, DIM = 2) is [6 6]

}, then IPARITY(B, DIM = 1) is [2 7 5]

© o =N O

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

39

40

41

42

43

44

45

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 125

IPARITY_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a segmented bitwise logical exclusive OR scan along di-
mension DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IPARITY((/ ai,...,8m /))
where (a1, ...,amn) is the (possibly empty) set of elements of ARRAY selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. IPARITY PREFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[1 30 4 1].

IPARITY_SCATTER(ARRAY,BASE,INDX1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX1, ..., INDXn. The j*bit of an element of the result is 1
if and only if there are an odd number of ones among the j**bits of the corresponding
element of BASE and the elements of ARRAY scattered to that position.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

BASE must be of type integer with the same kind type param-
eter as ARRAY. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with ARRAY. The

number of INDX arguments must be equal to the rank of
BASE.

126

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value IPARITY((/a1,as,...,am,b/)), where (ai,...,an) are the elements
of ARRAY associated with b as described in Section 5.4.4.

Example. IPARITY_SCATTER((/1,2,3,6/), (/1,3,7/), (/1,1,2,2/)) is
[2 6 7].

5.7.29 IPARITY_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented bitwise logical exclusive OR scan
along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IPARITY((/ ai,...,am /))
where (ay,...,an) is the (possibly empty) set of elements of ARRAY selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. IPARITY_SUFFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[o 131 5].

5.7.30 LEADZ(l)

Description. Return the number of leading zeros in an integer.
Class. Elemental function.

Argument. I must be of type integer.

© ® = =] o L) N -

-
o

-
-

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

40
41
42
43
44
45
46
47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 127

1 Result Type and Type Parameter. Same as I.

2

8 Result Value. The result is a count of the number of leading 0-bits in the integer
4 I. The model for the interpretation of an integer as a sequence of bits is in Section
5 13.5.7 of the Fortran 90 Standard. LEADZ(0) is BIT_SIZE(I). For nonzero I, if the
6 leftmost one bit of I occurs in position k — 1 (where the rightmost bit is bit 0) then
T LEADZ(I) is BIT_SIZE(I) - k.

Examples. LEADZ(3) has the value BIT_SIZE(3) - 2. For scalar I, LEADZ(I) .EQ.
MINVAL((/ (J, J=0, BIT_SIZE(I)) /), MASK=M) whereM =(/ (BTEST(I,J),
J=BIT_SIZE(I)-1, 0, -1), .TRUE. /). A given integer I may produce different
results from LEADZ(I), depending on the number of bits in the representation of the
integer (BIT_SIZE(I)). That is because LEADZ counts bits from the most significant
bit. Compare with ILEN.

11
12
13
14
15
16

17 57.31 MAXVAL_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

18

19 Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

20

2 Description. Computes a segmented MAXVAL scan along dimension DIM of ARRAY.
22
2 Class. Transformational function.
24

25

26 Arguments.

27

28 ARRAY must be of type integer or real. It must not be scalar.

0 DIM (optional) must be scalar and of type integer with a value in the
3 range 1 < DIM < n, where n is the rank of ARRAY.

31

32 MASK (optional) must be of type logical and must be conformable with
33 ARRAY.

34

a5 SEGMENT (optional) must be of type logical and must have the same shape as
36 ARRAY.

37

s EXCLUSIVE (optional) must be of type logical and must be scalar.

39

40 Result Type, Type Parameter, and Shape. Same as ARRAY.

41

42 Result Value. Element r of the result has the value MAXVAL((/ ai,...,8m /))
43 where (a1, ...,an) is the (possibly empty) set of elements of ARRAY selected to con-
4 tribute to 7 by the rules stated in Section 5.4.5.

Example. MAXVAL PREFIX((/3,4,-5,2,5/), SEGMENT= (/F,F,F,T,T/)) is
[3 4 4 2 5].

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

5.7.32 MAXVAL_SCATTER(ARRAY,BASE,INDX]1, ..., INDXn, MASK)

Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX1, ..., INDXn. Each element of the result is assigned
the maximum value of the corresponding element of BASE and the elements of ARRAY
scattered to that position.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.
BASE must be of the same type and kind type parameter as
ARRAY. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with ARRAY. The
number of INDX arguments must be equal to the rank of
BASE.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value MAXVAL((/ay,as,...,am,b/)), where (ai,...,an) are the elements of
ARRAY associated with b as described in Section 5.4.4.

Example. MAXVAL_SCATTER((/1, 2, 3, 1/), (/4, -5, 7/), (/1, 1, 2, 2/))
is[4 3 7].

5.7.33 MAXVAL_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented MAXVAL scan along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as

ARRAY.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 129

EXCLUSIVE (optional) must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element 7 of the result has the value MAXVAL((/ ai,...,am /))
where (a1, ...,an,) is the (possibly empty) set of elements of ARRAY selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. MAXVAL_SUFFIX((/3,4,-5,2,5/), SEGMENT= (/F,F,F,T,T/)) is
[4 4 -5 5 5].

© ® = [= T W N -

ot
(=]

=
-

5.7.34 MINVAL_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

-
[~

[
w

—
'S

-
w

Description. Computes a segmented MINVAL scan along dimension DIM of ARRAY.

-
=}

Class. Transformational function.

-
Q

—
]

10 Arguments.

2 ARRAY must be of type integer or real. It must not be scalar.

21

22 DIM (optional) must be scalar and of type integer with a value in the
23 range 1 < DIM < n, where n is the rank of ARRAY.

24 MASK (optional) must be of type logical and must be conformable with
% ARRAY.

26

- SEGMENT (optional) must be of type logical and must have the same shape as
28 ARRAY.

29 EXCLUSIVE (optional) must be of type logical and must be scalar.

(3
o

Result Type, Type Parameter, and Shape. Same as ARRAY.

w
—

[
N

Result Value. Element r of the result has the value MINVAL((/ ai1,...,am /))
where (ay,...,an) is the (possibly empty) set of elements of ARRAY selected to con-
tribute to r by the rules stated in Section 5.4.5.

W W W
L5 I .)

w
=3

Example. MINVAL PREFIX((/1,2,-3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[1 1 -3 4 4].

w
3

W
¢ 3]

[
o

«© 5.7.35 MINVAL_SCATTER(ARRAY,BASE,INDXI, ..., INDXn, MASK)

41

Optional Argument. MASK

42

43 Description. Scatters elements of ARRAY selected by MASK to positions of the result
44 indicated by index arrays INDX1, ..., INDXn. Each element of the result is assigned
48 the maximum value of the corresponding element of BASE and the elements of ARRAY
16 scattered to that position.

47

48 Class. Transformational function.

130

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Arguments.

ARRAY must be of type integer or real. It must not be scalar.
BASE must be of the same type and kind type parameter as
ARRAY. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with ARRAY. The
number of INDX arguments must be equal to the rank of
BASE.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value MINVAL((/a1,ag,...,am,b/)), where (ai,...,an) are the elements of
ARRAY associated with b as described in Section 5.4.4.

Example. MINVAL_SCATTER((/ 1,-2,-3,6 /), (/ 4,3,7 /), (/ 1,1,2,2 /))
is [-2 -3 7]

5.7.36 MINVAL_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented MINVAL scan along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value MINVAL((/ a1,...,Qm /))
where (aj,...,an) is the (possibly empty) set of elements of ARRAY selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. MINVAL_SUFFIX((/1,2,-3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[—3 -3 -3 4 5].

e o N o

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

39
40
41
42
43
44
45
46
47
48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 131

5.7.37 PARITY(MASK, DIM)

Optional Argument. DIM

Description. Determine whether an odd number of values are true in MASK along
dimension DIM.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM (optional) must be scalar and of type integer with a value in the

range 1 < DIM < n, where n is the rank of MASK. The
corresponding actual argument must not be an optional
dummy argument.

Result Type, Type Parameter, and Shape. The result is of type logical with
the same kind type parameter as MASK. It is scalar if DIM is absent or if MASK has
rank one; otherwise, the result is an array of rank n — 1 and shape
(di,da,...,dprvM—1,dDIM+1, - - - ,dn) where (d;,do, . .., dn) is the shape of MASK.

Result Value.

Case (i): The result of PARITY (MASK) is the .NEQV. reduction of all the elements of
MASK. If MASK has size zero, the result has the value false. See Section 5.4.3.

Case (ii): If MASK has rank one, PARITY(MASK, DIM=1) has a value equal to that of
PARITY (MASK). Otherwise, the value of element
(81,82, -+, SDIM—1,SDIM+1, - - -, Sn) Of PARITY(MASK, DIM=1) is equal to
PARITY(MASK(Sl, 82y.. .3y 8SDIM—-1y:ySDIM+1s+ - Sn))

Examples.

Case (i): The value of PARITY((/T, T, T, F/)) is true.

TTF
TTT

and PARITY(B, DIM = 2) is [F T]

Case (ii): If B is the array [], then PARITY(B, DIM = 1) is [FFT]

5.7.38 PARITY_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a segmented logical exclusive OR scan along dimension
DIM of MASK.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

132

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of MASK.

SEGMENT (optional) must be of type logical and must have the same shape as
MASK.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value PARITY((/ a1,...,Qm /))
where (ai,...,an) is the (possibly empty) set of elements of MASK selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. PARITY PREFIX((/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/)) is
[T TFT F].

5.7.39 PARITY_SCATTER(MASK,BASE,INDX1, ..., INDXn)

Description. Scatters elements of MASK to positions of the result indicated by index
arrays INDX1, ..., INDXn. An element of the result is true if and only if the number
of true values among the corresponding element of BASE and the elements of MASK
scattered to that position is odd.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

BASE must be of type logical with the same kind type parameter
as MASK. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with MASK. The
number of INDX arguments must be equal to the rank of
BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value PARITY((/aj,as,...,am,b/)), where (ai,...,an) are the elements of
MASK associated with b as described in Section 5.4.4.

Example. PARITY_SCATTER((/ T,T,T,T /), (/ T,F,F /), (/ 1,1,1,2 /)) is
[F T F].

5.7.40 PARITY_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented logical exclusive OR scan along di-
mension DIM of MASK.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 133

1 Class. Transformational function.

2

s Arguments.

4 MASK must be of type logical. It must not be scalar.

5

. DIM (optional) must be scalar and of type integer with a value in the
, range 1 < DIM < n, where n is the rank of MASK.

8 SEGMENT (optional) must be of type logical and must have the same shape as
9 MASK.

10 EXCLUSIVE (optional) must be of type logical and must be scalar.

11

12 Result Type, Type Parameter, and Shape. Same as MASK.

13

Result Value. Element r of the result has the value PARITY((/ ai,...,am /))
where (ay,...,am) is the (possibly empty) set of elements of MASK selected to con-
tribute to 7 by the rules stated in Section 5.4.5.

14
15
16

17

Example. PARITY SUFFIX((/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/)) is
[F T TF T].

19

20

» 5741 POPCNT(I)

22 Description. Return the number of one bits in an integer.

23

24 Class. Elemental function.

25

26 Argument. I must be of type integer.

27

Result Type and Type Parameter. Same as I.

28

29 Result Value. POPCNT(I) is the number of one bits in the binary representation of
30 the integer I. The model for the interpretation of an integer as a sequence of bits is
3 in Section 13.5.7 of the Fortran 90 Standard.

32

53 Example. POPCNT(I) = COUNT((/ (BTEST(I,J), J=0, BIT_SIZE(I)-1) /)), for
3 scalar I.

35
% 5.7.42 POPPAR(l)

7 Description. Return the parity of an integer.
38

39 Class. Elemental function.

40

a Argument. I must be of type integer.

42

Result Type and Type Parameter. Same as I.

43

4 Result Value. POPPAR(I) is 1 if there are an odd number of one bits in I and zero
45 if there are an even number. The model for the interpretation of an integer as a
46 sequence of bits is in Section 13.5.7 of the Fortran 90 Standard.

47

48 Example. For scalar I, POPPAR(x) = MERGE(1,0,BTEST (POPCNT (x),0)).

134

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

5.7.43 PRODUCT_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE
Description. Computes a segmented PRODUCT scan along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be
scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value PRODUCT((/ a1,...,am /))
where (a1, ...,am) is the (possibly empty) set of elements of ARRAY selected to con-
tribute to r by the rules stated in Section 5.4.5.

Example. PRODUCT_PREFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[1 2 6 4 20].

5.7.44 PRODUCT _SCATTER(ARRAY,BASE,INDX1, ..., INDXn, MASK)

Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX1, ..., INDXn. Each element of the result is equal to
the product of the corresponding element of BASE and the elements of ARRAY scattered
to that position.

Class. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be
scalar.

BASE must be of the same type and kind type parameter as
ARRAY. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with ARRAY. The

number of INDX arguments must be equal to the rank of
BASE.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 135

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value PRODUCT((/ai,a2,...,am,b/)), where (ai,...,an) are the elements
of ARRAY associated with b as described in Section 5.4.4.

© N > w - w [V -

Example. PRODUCT_SCATTER((/ 1,2,3,1 /), (/ 4,-5,7 /), (/ 1,1,2,2 /))
is [8 -15 7]

=
(=3

-
=

-
[

s 5.7.45 PRODUCT_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

14 Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

15

16 Description. Computes a reverse, segmented PRODUCT scan along dimension DIM of

17 ARRAY.

18

19 Class. Transformational function.

20

21 Arguments.

2 ARRAY must be of type integer, real, or complex. It must not be

scalar.

24

25 DIM (optional) must be scalar and of type integer with a value in the

26 range 1 < DIM < n, where n is the rank of ARRAY.

2 MASK (optional) must be of type logical and must be conformable with

28 ARRAY.

29

% SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

31

32 EXCLUSIVE (optional) must be of type logical and must be scalar.

33

34 Result Type, Type Parameter, and Shape. Same as ARRAY.

35

Result Value. Element r of the result has the value PRODUCT((/ ai,...,am /))
where (a1, .. .,an) is the (possibly empty) set of elements of ARRAY selected to con-
tribute to r by the rules stated in Section 5.4.5.

36
37
38

39

Example. PRODUCT SUFFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[6 6 3 20 5].

40
41
42

s 5.7.46 SUM_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

“ Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

45

46 Description. Computes a segmented SUM scan along dimension DIM of ARRAY.
47

48 Class. Transformational function.

136

SECTION 5. INTRINSIC AND LIBRARY PROCEDURES

Arguments.

ARRAY must be of type integer, real, or complex. It must not be
scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

EXCLUSIVE (optional) must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value SUIM((/ ay,...,a,m /)) where
(@1,...,am) is the (possibly empty) set of elements of ARRAY selected to contribute
to r by the rules stated in Section 5.4.5.

Example. SUM_PREFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/)) is
[1 36 4 9].

5.7.47 SUM_SCATTER(ARRAY,BASE,INDX1, ..., INDXn, MASK)

Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX1, ..., INDXn. Each element of the result is equal to
the sum of the corresponding element of BASE and the elements of ARRAY scattered
to that position.

Class. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be
scalar.

BASE must be of the same type and kind type parameter as
ARRAY. It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with ARRAY. The
number of INDX arguments must be equal to the rank of
BASE.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE has
the value SUM((/a1, a2, ...,am,b/)), where (a3,...,a.,) are the elements of ARRAY
associated with b as described in Section 5.4.4.

Example. SUM_SCATTER((/1, 2, 3, 1/), (/4, -5, 7/), (/1, 1, 2, 2/)) is
[7 -1 7].

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

5.7. SPECIFICATIONS OF LIBRARY PROCEDURES 137

5.7.48 SUM_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented SUM scan along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be
scalar.

DIM (optional) must be scalar and of type integer with a value in the
range 1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

SEGMENT (optional) must be of type logical and must have the same shape as
ARRAY.

EXCLUSIVE (optional) must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element 7 of the result has the value SUM((/ a3,...,am /)) where
(ai,...,am) is the (possibly empty) set of elements of ARRAY selected to contribute
to 7 by the rules stated in Section 5.4.5.

Example. SUM_SUFFIX((/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/))is
[6 539 5].

