10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Section 4

Data Parallel Statements and
Directives

The purpose of the FORALL statement and construct is to provide a convenient syntax
for simultaneous assignments to large groups of array elements. Such assignments lie at
the heart of the data parallel computations that HPF is designed to express. The multiple
assignment functionality it provides is very similar to that provided by the array assignment
statement and the WHERE construct in Fortran 90. FORALL differs from these constructs in
its syntax, which is intended to be more suggestive of local operations on each element of an
array, and in its generality, which allows a larger class of array sections to be specified. In
addition, a FORALL may call user-defined functions on the elements of an array, simulating
Fortran 90 elemental function invocation (albeit with a different syntax).

HPF defines a new procedure attribute, PURE, to declare the class of functions that
may be invoked in this way. Both single-statement and block FORALL forms are defined in
this Section, as well as the PURE attribute and constraints arising from the use of PURE.

HPF also defines a new directive, INDEPENDENT. The purpose of the INDEPENDENT
directive is to allow the programmer to give additional information to the compiler. The
user can assert that no data object is defined by one iteration of a DO loop and used (read or
written) by another; similar information can be provided about the combinations of index
values in a FORALL statement or construct. Such information is sometimes valuable to enable
compiler optimizations, but may require knowledge of the application that is available only
to the programmer. Therefore, HPF allows a user to specify these assertions, on which the
compiler may in turn rely in its translation process. If the assertion is true, the semantics
of the program are not changed; if it is false, the program is not HPF-conforming and has
no defined meaning.

4.1 The FORALL Statement

Fortran 90 places several restrictions on array assignments. In particular, it requires that
operands of the right side expressions be conformable with the left hand side array. These
restrictions can be relaxed by introducing the element array assignment statement, usually
referred to as the FORALL statement. This statement is used to specify an array assign-
ment in terms of array elements or groups of array sections, possibly masked with a scalar
logical expression. In functionality, it is similar to array assignment statements and WHERE
statements. The FORALL statement essentially preserves the semantics of Fortran 90 array

56 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

assignments and allows for convenient assignments like
FORALL (i=1:n, j=1:m) a(i,j)=i+j
as opposed to standard Fortran 90

a = SPREAD((/(i,i=1,n)/), DIM=2, NCOPIES=m) + &
SPREAD((/(i,i=1,m)/), DIM=1, NCOPIES=n)

It can also express more general array sections than the standard triplet notation for array
expressions. For example,

FORALL (i = 1:n) a(i,i) = b(i)

assigns to the elements on the main diagonal of array a.

Rationale. It is important to note, however, that FORALL is not intended to be a
general parallel construct; for example, it does not express pipelined computations
or MIMD computation well. This was an explicit design decision made in order to
simplify the construct and promote agreement on the statement’s semantics. (End of
rationale.)

41.1 General Form of Element Array Assignment

Rule R215 in the Fortran 90 standard for executable-construct is extended to include the
forall-stmt.

H401 forall-stmt is FORALL forall-header forall-assignment

H402 forall-header is (forall-triplet-spec-list [, scalar-mask-expr |)

Constraint: Any procedure referenced in the scalar-mask-ezpr of a forall-header must be
pure, as defined in Section 4.3.

Rationale. Pure functions are guaranteed to be free of side effects. Therefore, they
are safe to invoke in the scalar-mask-ezpr.

Note that functions referenced in the forall-triplet-spec-list are not syntactically con-
strained as the scalar-mask-ezpr is. This is consistent with the handling of bounds
expressions in DO loops. (End of rationale.)

H403 forall-triplet-spec is indez-name = subscript : subscript | : stride]
Constraint: indez-name must be a scalar integer variable.

Constraint: A subscript or stride in a forall-triplet-spec-list must not contain a reference to
any index-name in the forall-triplet-spec-list in which it appears.

H404 forall-assignment is assignment-stmt
or pointer-assignment-stmt

Constraint: Any procedure referenced in a forall-assignment, including one referenced by
a defined operation or assignment, must be pure as defined in Section 4.3.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

12
13
14
15
16

17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.1. THE FORALL STATEMENT 57

Rationale. Pure functions are guaranteed to have no side effects, and thus have an
unambiguous meaning when used in a FORALL statement. Experience also suggests
that they form a useful class of functions for use in scientific computation, and are
particularly useful when applied as data-parallel operations. For these reasons, there
was a strong consensus to allow their use in FORALL. More general functions called from
FORALL were also considered, but eventually rejected for lack of agreement on their
desirability, ease of implementation, or the semantics of complex cases they allowed.
(End of rationale.)

To determine the set of permitted values for each indez-name in the forall-header, we
introduce some simplifying notation. In the forall-triplet-spec, let

e m1 be first subscript (“lower bound”);
e m2 be second subscript (“upper bound”);

e m3 be the stride; and

m2—ml+m3
m3 ‘

e mazx be {

If stride is missing, it is as if it were present with the value 1. Stride must not have
the value 0. The set of permitted values is determined on entry to the statement and is
ml+(k—1)xm3, k=1,2,...,maz. If maz < 0 for some indez-name, the forall-assignment
is not executed.

A FORALL statement assigns to memory locations specified by the forall-assignment for
permitted values of the indez-name variables. A program that causes multiple values to be
assigned to the same location is not HPF-conforming and therefore has no defined meaning.
This is a semantic constraint rather than a syntactic constraint, however; in general, it
cannot be checked during compilation.

4.1.2 Interpretation of Element Array Assignments

Execution of an element array assignment consists of the following steps:

1. Evaluation in any order of the subscript and stride expressions in the forall-triplet-
spec-list. The set of valid combinations of index-name values is then the Cartesian
product of the sets defined by these triplets.

2. Evaluation of the scalar-mask-expr for all valid combinations of indez-name values.
The mask elements may be evaluated in any order. The set of active combinations of
indez-name values is the subset of the valid combinations for which the mask evaluates
to .TRUE.

3. Evaluation in any order of the expr and all expressions within variable (in the case
of assignment-stmt) or target and all expressions within pointer-object (in the case
of pointer-assignment-stmt.) of the forall-assignment for all active combinations of
indez-name values. In the case of pointer assignment where the target is not a pointer,
the evaluation consists of identifying the object referenced rather than computing its
value.

58

SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

4. Assignment of the computed ezpr values to the corresponding wvariable locations (in

the case of assignment-stmt) or the association of the target values with the corre-
sponding pointer-object locations (in the case of pointer-assignment-stmt) for all active
combinations of index-name values. The assignments or associations may be made in
any order. In the case of a pointer assignment where the target is not a pointer, this
assignment consists of associating the pointer-object with the object referenced.

If the scalar mask expression is omitted, it is as if it were present with the value . TRUE.
The scope of an indez-name is the FORALL statement itself.
A forall-stmt is not HPF-conforming if the result of evaluating any expression in the

forall-header affects or is affected by the evaluation of any other expression in the forall-
header.

Rationale. This is consistent with the handling of DO loop bounds and strides.
Disallowing references to impure functions in a forall-triplet-spec-list was suggested,
but the analogy to DO bounds was considered too strong to overlook. Note that the
scalar-mask-expr can only invoke pure functions, which are side-effect free. Therefore,
the scalar-mask-expr cannot affect the values of the bounds. (End of rationale.)

A forall-stmt is not HPF-conforming if it causes any atomic data object to be assigned

more than one value. A data object is atomic if it contains no subobjects. For the purposes
of this restriction, any assignment (including array assignment or assignment to a variable
of derived type) to a non-atomic object is considered to assign to all subobjects contained
by that object.

Rationale. For example, an integer variable is an atomic object, but an array of
integers is an object that is not atomic. Similarly, assignment to an array section
is equivalent to assignments to each individual element (which may require further
reductions when the array contains objects of derived type). This restriction allows
cases such as

FORALL (i = 1:10) a(indx(i)) = b(i)

if and only if indx contains no repeated values. Note that it restricts FORALL behav-
ior, but not syntax. Syntactic restrictions to enforce this behavior would be either
incomplete (ie. allow undefined behavior) or exclude conceptually legal programs.

Since a function called from a forall-asssignment must be pure, it is impossible for
that function’s evaluation to affect other expressions’ evaluations, either for the same
combination of index-name values or for a different combination. In addition, it
is possible that the compiler can perform more extensive optimizations because all
functions are pure. (End of rationale.)

4.1.3 Examples of the FORALL Statement

FORALL (j=1:m, k=1:n) x(k,j) = y(j,k)
FORALL (k=1:n) x(k,1:m) = y(1:m,k)

These statements both copy columns 1 through n of array y into rows 1 through n of

array z. This is equivalent to the standard Fortran 90 statement

'S

[+ R B - T

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

.21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.1. THE FORALL STATEMENT 59

x(1:n,1:m) = TRANSPOSE(y(1:m,1:n))

FORALL (i=1:n, j=1:n) x(i,j) = 1.0 / REAL(i+j-1)

This FORALL sets array element z(¢, j) to the value z—+—]l—_—1 for values of 7 and j between

1 and n. In Fortran 90, the same operation can be performed by the statement

x(1:n,1:n) = 1.0/REAL(SPREAD((/(i,i=1,n)/),DIM=2,NCOPIES=n) &
+ SPREAD((/(j,j=1,n)/) ,DIM=1,NCOPIES=n) - 1)

Note that the FORALL statement does not imply the creation of temporary arrays and
is much more readable.

FORALL (i=1:n, j=1:n, y(i,j).NE.0.0) x(i,j) = 1.0 / y(i,j)

This statement takes the reciprocal of each nonzero element of array y(1:n,1: n) and
assigns it to the corresponding element of array z. Elements of y that are zero do not have
their reciprocal taken, and no assignments are made to the corresponding elements of z.
This is equivalent to the standard Fortran 90 statement

WHERE (y(i:n,1:n) .NE. 0.0) x(1:n,1:n) =1 / y(1:n,1:n)

TYPE monarch

INTEGER, POINTER :: p
END TYPE monarch
TYPE (monarch) :: a(m)
INTEGER, TARGET :: b(n)

! Set up a butterfly pattern
FORALL (j=1:n) a(j)%p => b(1+IEOR(j-1,2%*k))

This FORALL statement sets the elements of array a to point to a permutation of the
elements of b. When n = 8 and k = 1, then elements 1 through 8 of a point to elements
3,4,1,2,7, 8,5, and 6 of b, respectively. This requires a DO loop or other control flow in
Fortran 90.

FORALL (i=1:n) x(indx(i)) = x(i)
This FORALL statement is equivalent to the Fortran 90 array assignment
x(indx(1:n)) = x(1:n)

If indx contains a permutation of the integers from 1 to n, then the final contents of z

will be a permutation of the original values. If indz contains repeated values, neither the

behavior of the FORALL nor the array assignment are defined by their respective standards.

FORALL (i=2:4) x(i) = x(i-1) + x(i) + x(i+1)

60 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

If this statement is executed with
z = (1.0, 20.0, 300.0, 4000.0, 50000.0]

then after execution the new values of array z will be

z = [1.0,321.0, 4320.0, 54300.0, 50000.0]
This has the same effect as the Fortran 90 statement
x(2:4) = x(1:3) + x(2:4) + x(3:5)
Note that it does not have the same effect as the Fortran 90 loop

DOi=2, 4

x(i) = x(i-1) + x(i) + x(i+1)
END DO
FORALL (i=1:n) a(i,i) = x(i)

This FORALL statement sets the elements of the main diagonal of matrix a to the
elements of vector x. This cannot be done by an array assignment in Fortran 90 unless
EQUIVALENCE or WHERE is also used.

FORALL (i=1:4) a(i,ix(i)) = x(i)
This FORALL statement sets one element in each row of matrix a to an element of
vector z. The particular elements in a are chosen by the integer vector iz. If
z = [10.0, 20.0, 30.0,40.0]
iz =[1,2,2,4]
and array a represents the matrix

0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 1.0
20 20 2.0 20 20
3.0 3.0 3.0 3.0 3.0

before execution of the FORALL, then a will represent

100 0.0 0.0 0.0 0.0
1.0 20.0 10 1.0 1.0
20 300 2.0 2.0 20
30 30 3.0 3.0 40.0

after its execution. This operation cannot be accomplished with a single array assignment
in Fortran 90.

FORALL (k=1:9) x(k) = SUM(x(1:10:k))

This FORALL statement computes nine sums of subarrays of x. (SUM is allowed in a
FORALL because Fortran 90 intrinsic functions are pure; see Section 4.3.) If before the
FORALL

z = [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0]
then after the FORALL
z = [55.0, 25.0,22.0, 15.0, 7.0, 8.0, 9.0, 10.0, 11.0, 10.0]

This computation cannot be done by Fortran 90 array expressions alone.

0w oo =N > o - W N =

] - - < » - W -) w w W W W W W N NN N N NN N [+ M = [- = - = — = - =
=N o o; [N = © © ® ~ =] (5] s W [X] - (=2 =] 3] N O o - W N [= © @ N o ot » w [M] - o

'S
o0

»

10
11
12
13
14
15

16

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.1. THE FORALL STATEMENT 61

4.1.4 Scalarization of the FORALL Statement

One way to understand the semantics of the FORALL statement is to exhibit a naive trans-
lation to scalar Fortran 90 code. We provide such a translation below.

Advice to implementors. Note, however, that such a translation is meant for illus-
tration rather than as the definitive reference to the FORALL semantics of or practical
implementation in the compiler. In particular, implementing a FORALL using DO loops
imposes an apparent order on the operations that is not implied by the formal defini-
tion. Additionally, compiler analysis of particular cases may allow significant simpli-
fication and optimization. For example, if the array assigned in a FORALL statement
is not referenced in any other expression in the FORALL (including its use in functions
called from the FORALL), it is legal and, on many machines, more efficient to perform
the computations and final assignments in a single loop nest. Also note the discussion
at the end of this section regarding other difficulties of a Fortran 90 translation. (End
of advice to implementors.)

A forall-stmt of the form
FORALL (vi=hi:ui:s1,m=l:u2:8,...,0=l,:un:8,,mask) aler,...,eyn)=rhs
is equivalent to the following code:

! Evaluate subscript and stride expressions.

! These assignments may be executed in any order.
templ = L

tempu; = u

temps; = $;

templ = b
tempug = up
tempss = s2
templ, = 1,
tempu, = u,
temps, = S,

! Evaluate the scalar mask expression, and evaluate the
! forall-assignment subexrpressions where the mask is true.
! The iterations of this loop nest may be executed in any order.
! The assignments in the loop body may be executed in any order,
I provided that the mask element is evaluated before any other
! expression in the same iteration.
! The loop body need not be executed atomically.
! The DO statements may be nested in any order
DO wvi=templ; , tempu, , temps;
DO w=temply, tempuy , tempso

DO wv,=templ, , tempu, ,temps,
tempmask(vy, v, ...,0,) = mask

62 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

IF (tempmask(vy,v,...,v,)) THEN
temprhs(vy,v2,...,v,) = Ths
tempe; (v1,12,...,0,) = €
tempez (v1,12,...,0,) = e
tempen, (V1,%,...,U) = €y

END IF

END DO
END DO
END DO

Perform the assignment of these values to the corresponding
elements of the array on the left-hand side.

The iterations of this loop nest may be executed in any order.
The DO statements may be nested in any order.

DO wu=temply ,tempu; , temps;

DO w=temply, tempus , tempss

DO w,=templ, , tempu, , temps,
IF (tempmask(vi,v»,...,v,)) THEN

a(tempe; (v1,v2, .. .,U), ..., tempen (V1,12,...,0,)) = &
temprhs(uy,vo, ..., 0,)
END IF
END DO
END DO
END DO

The scalarization of a FORALL statement containing a pointer assignment is similar,

replacing the assignments to temprhs and a with pointer assignments.

Advice to implementors. Several subtleties are not specified in the above outline
to promote readability. When rhs is an array-valued expression, then several of the
statements cannot be translated directly into Fortran 90. In particular, at least one
of the e; will be a triplet; both bounds and stride must be saved in tempe;, possibly
by using derived type assignment or adding a dimension to the data structure. The
translation of the subscripts in the final assignment to a must also be generalized to
handle triplets. Storage allocation for temprhs may be complicated by the fact that it
must store arrays (possibly with different sizes for different values of vy, ..., v,). If the
forall-assignment is a pointer-assignment-stmt, then a suitable derived type must be
produced for temprhs. The assignments to tempey, . . ., tempe,, must, however, remain
true (integer) assignments. Finally, there may also be more than seven indexes; this
may forbid a direct translation on implementations that support a limited number of
dimensions in arrays. (End of advice to implementors.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.2. THE FORALL CONSTRUCT 63

4.1.5 Consequences of the Definition of the FORALL Statement

Rationale. The scalar-mask-expr may depend on the indez-name values. This allows
a wide range of masking operations.

A syntactic consequence of the semantic rule that no two execution instances of the
body may assign to the same atomic data object is that each of the indez-name
variables must appear on the left-hand side of a forall-assignment. The converse is
not true (i.e., using all indez-name variables on the left-hand side does not guarantee
there will be no interference). Because the condition is not sufficient, it does not
appear a syntax constraint. This also allows for easier future extensions for private
variables or other syntactic sugar.

Right-hand sides and expressions on the left hand side of a forall-assignment are
defined as evaluated only for combinations of indez-names for which the scalar-mask-
ezpr evaluates to .TRUE. This has implications when the masked computation might
create an error condition. For example,

FORALL (i=1:n, y(i).NE.0.0) x(i) = 1.0 / y(i)

does not cause a division by zero. (End of rationale.)

4.2 The FORALL Construct

The FORALL construct is a generalization of the FORALL statement allowing multiple as-
signments, masked array assignments, and nested FORALL statements and constructs to be
controlled by a single forall-triplet-spec-list.

42.1 General Form of the FORALL Construct

Rule R215 of the Fortran 90 standard for ezecutable-construct is extended to include the
forall-construct.

H405 forall-construct is FORALL forall-header
forall-body-stmt
[forall-body-stmt | ...
END FORALL

H406 forall-body-stmt is forall-assignment
or where-stmt
or where-construct
or forall-stmt
or forall-construct

Constraint: Any procedure referenced in a forall-body-stmt, including one referenced by a
defined operation or assignment, must be pure as defined in Section 4.3.

Constraint: If a forall-stmt or forall-construct is nested in a forall-construct, then the inner
FORALL may not redefine any indez-name used in the outer forall-construct.

64 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

Rationale. These statements are allowed in a FORALL construct because they are
defined as forms of assignment in Fortran 90 and HPF. The intent is that forall-
construct, like forall-stmt, is a block assignment rather than a general-purpose “parallel
loop.” (End of rationale.)

To determine the set of permitted values for an indez-name, we introduce some sim-
plifying notation. In the forall-triplet-spec, let

e ml be the first subscript (“lower bound”);
e m2 be the second subscript (“upper bound”);

o m3 be the stride; and

m2—ml+m3
m3 '

e maz be [

If stride is missing, it is as if it were present with the value 1. The set of permitted values
is determined on entry to the construct and is m1 + (k — 1) x m3, k = 1,2, ..., max. The
expression stride must not have the value 0. If for some index-name maz < 0, no forall-
body-stmt is executed.

Each assignment nested within a FORALL construct assigns to memory locations speci-
fied by the forall-assignment for permitted values of the indez-name variables. A program
that causes multiple values to be assigned to the same location by a single statement is not
HPF-conforming and therefore has no defined meaning. An HPF-conforming program may,
however, assign to the same location in syntactically different assignment statements. This
is a semantic constraint rather than a syntactic constraint, however; in general, it cannot
be checked during compilation.

4.2.2 Interpretation of the FORALL Construct

Execution of a FORALL construct consists of the following steps:

1. Evaluation in any order of the subscript and stride expressions in the forall-triplet-
spec-list. The set of valid combinations of index-name values is then the Cartesian
product of the sets defined by these triplets.

2. Evaluation of the scalar-mask-expr for all valid combinations of indez-name values.
The mask elements may be evaluated in any order. The set of active combinations of
indez-name values is the subset of the valid combinations for which the mask evaluates
to .TRUE.

3. Execute the forall-body-stmts in the order they appear. Each statement is executed
completely (that is, for all active combinations of indez-name values) according to the
following interpretation:

(a) Statements in the forall-assignment category (i.e. assignment statements and
pointer assignment statements) evaluate the ezpr and all expressions within
variable (in the case of assignment-stmt) or target and all expressions within
pointer-object (in the case of pointer-assignment-stmt) of the forall-assignment
for all active combinations of indez-name values. These evaluations may be done

s W N

w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

10
11
12
13
14
156
16
17
18
19
20
21
22
23
24
25
26
27
28

29

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.2. THE FORALL CONSTRUCT 65

(b)

in any order. The expr values are then assigned to the corresponding variable lo-
cations (in the case of assignment-stmt) or the target values are associated with
the corresponding pointer-object locations (in the case of pointer-assignment-
stmt). The assignment or association. operations may also be performed in any
order.

Statements in the where-stmt and where-construct categories evaluate their mask-
expr for all active combinations of values of indez-names. All elements of all
masks may be evaluated in any order. The WHERE statement’s assignment (or
assignments within the WHERE branch of the construct) are then executed in order
using the above interpretation of array assignments within the FORALL, but the
only array elements assigned are those selected by both the active indez-name
values and the WHERE mask. Finally, the assignments in the ELSEWHERE branch
are executed if that branch is present. The assignments here are also treated as
array assignments, but elements are only assigned if they are selected by both
the active combinations and by the negation of the WHERE mask.

Statements in the forall-stmt and forall-construct categories first evaluate the
subscript and stride expressions in the forall-triplet-spec-list for all active combi-
nations of the outer FORALL constructs. The set of valid combinations of indez-
names for the inner FORALL is then the union of the sets defined by these bounds
and strides for each active combination of the outer indez-names, the outer index
names being included in the combinations generated for the inner FORALL. The
scalar mask expression is then evaluated for all valid combinations of the inner
FORALL’s indez-names to produce the set of active combinations. If there is no
scalar mask expression, it is as if it were present with the constant value . TRUE.
Each statement in the inner FORALL is then executed for each active combina-
tion (of the inner FORALL), recursively following the interpretations given in this
section.

If the scalar mask expression is omitted, it is as if it were present with the value . TRUE.

The scope of an indez-name is the FORALL construct itself.

Each forall-assignment must obey the same restrictions in a forall-construct as in a
simple forall-stmt. In addition, each where-stmt or assignment nested within a where-
construct must obey these restrictions. (Note that any innermost statement within nested
FORALL constructs must fall into one of these two categories.) For example, an assignment
may not cause the same array element to be assigned more than once. Different statements
may, however, assign to the same array element, and assignments made in one statement
may affect the execution of a later statement.

4.2.3 Examples of the FORALL Construct

FORALL

(i=2:n-1, j=2:n-1)

a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)
END FORALL

This FORALL is equivalent to the two Fortran 90 statements

66 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

a(2:n-1,2:n-1)

a(2:n-1,1:n-2)+a(2:n-1,3:n) &
+a(1:n-2,2:n-1)+a(3:n,2:n-1)
a(2:n-1,2:n-1)

b(2:n-1,2:n-1)

In particular, note that the assignment to array b uses the values of array a computed in
the first statement, not the values before the FORALL began execution.

FORALL (i=1:n-1)
FORALL (j=i+li:n)
a(i,j) = a(j,i)
END FORALL
END FORALL

This FORALL construct assigns the transpose of the lower triangle of array a (i.e., the
section below the main diagonal) to the upper triangle of a. For example, if n = 5 and a
originally contained the matrix

0.0 0.0 0.0 0.0 0.0
1.0 10 1.0 1.0 1.0
20 40 80 16.0 32.0
30 9.0 27.0 81.0 243.0
4.0 16.0 64.0 256.0 1024.0

then after the FORALL it would contain

00 10 20 3.0 4.0
1.0 1.0 4.0 9.0 16.0
20 40 80 27.0 64.0
30 9.0 27.0 81.0 256.0
4.0 16.0 64.0 256.0 1024.0

This cannot be done using array expressions without introducing mask expressions.

FORALL (i=1:5)
WHERE (a(i,:) .NE. 0.0)
a(i,:) = a(i-1,:) + a(i+1,:)
ELSEWHERE
b(i,:) = a(6-i,:)
END WHERE
END FORALL

This FORALL construct, when executed with the input arrays

0.0 0.0 0.0 0.0 0.0 00 00 00 00 00
1.0 1.0 1.0 0.0 1.0 10.0 10.0 10.0 10.0 10.0
a=| 20 20 00 2.0 20 {,b=| 200 20.0 20.0 20.0 20.0
3.0 00 30 3.0 3.0 30.0 30.0 30.0 30.0 30.0

0.0 0.0 0.0 0.0 0.0 40.0 40.0 40.0 40.0 40.0

o -~ [T L) N -

b —
- =]

=
N

13

10

11

12

13

14

15

16

17

18

19

20

21

22

41

42

43

44

45

46

47

48

4.2. THE FORALL CONSTRUCT 67

will produce as results

0.0 0.0 0.0 0.0 0.0 00 00 00 00 0.0
20 2.0 00 0.0 20 10.0 10.0 10.0 2.0 10.0
a=1] 40 1.0 00 30 40 |,b=1] 200 20.0 0.0 20.0 200
20 00 00 20 20 30,0 2.0 30.0 30.0 30.0
0.0 0.0 00 0.0 0.0 00 00 00 00 0.0

Note that, as with WHERE statements in ordinary Fortran 90, assignments in the WHERE
branch may affect computations in the ELSEWHERE branch.

4.2.4 Scalarization of the FORALL Construct

Advice to implementors. As with the FORALL statement, the following translations of
FORALL constructs to DO loops are meant to illustrate the meaning, not necessarily to
serve as an implementation guide. The caveats for the FORALL statement scalarization
apply here as well. (End of advice to implementors.)

A forall-construct of the form:

FORALL (... € ... € ... €p ...)
$1
52

Sn
END FORALL

where each s; is a forall-assignment is equivalent to the following code:

temp1 =€
temps e

temp, = e,

FORALL (... temp; ... temps ... temp, ...) &
FORALL (... tempy ... tempy ... temp, ...) $2
FORALL (... tempy ... tempy ... tempp, ...) Sy

When the s; are FORALL or WHERE statements or constructs, then the FORALL statements
above must be replaced with FORALL constructs (since FORALL statements can only contain
assignments). The scalarizations below must then be applied to the shortened FORALL
constructs.

A forall-construct of the form:

FORALL (w=l:u1:81, mask;)
WHERE (masky)
allh:ug:82) = rhs;
ELSEWHERE
a(lz:ug:83) = rhso
END WHERE
END FORALL

68

is

SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

equivalent to the following code:

! Evaluate subscript and stride expressions.

! These assignments can be made in any order.
templh = |

tempu; = w1

temps; = 81

!\ Evaluate the FORALL mask expression.

! The iterations of this loop may be executed in any order.

DO wv=temply , tempu; , temps;
tempmask; (v)) = mask;
END DO

! Evaluate the bounds and masks for the WHERE.

! The iterations of this loop may be executed in any order.

! The loop body need not be executed atomically.
DO v =templ;, tempuy , temps;
IF (tempmask;(v;)) THEN
tempmasks (v1) = masky
END IF
END DO

Evaluate the WHERE branch.

!
! The iterations of this loop may be executed in any order.

! The assignments in the loop body may be executed in any order.
!

The loop body need not be executed atomically.
DO w=temply ,tempu, temps;
IF (tempmask; (v1)) THEN
tmpl(v) = b
tmpug (1) = up
tmpsy(v1) = s9
WHERE (tempmaska(vy))
temprhs; (1) = rhsy
END WHERE
END IF
END DO

| The iterations of this loop may be executed in any order.

| The loop body need not be ezecuted atomically.
DO v =temply, tempuy , temps;
IF (tempmask;(v1)) THEN
WHERE (tempmaske (v1))
a(tmply (v1) : tmpug (v1) 1 tmpsa (v1)) = temprhs; (v1)
END WHERE
END IF
END DO

! Evaluate the ELSEWHERE branch.

® =N &«

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PR

w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.2. THE FORALL CONSTRUCT 69

is

| The iterations of this loop may be executed in any order.
| The assignments in the loop body may be executed in any order.
! The loop body need not be executed atomically.
DO v =templ , tempu, ,temps;
IF (tempmask; (v1)) THEN
tmpls(v) = I3
tmpuz(v1) = us
tmpsz(v1) = s3
WHERE (.NOT. tempmasks(v))
temprhsy (v1) = thse
END WHERE
END IF
END DO
! The iterations of this loop may be executed in any order.
! The loop body need not be ezecuted atomically.
DO wvi=temply, tempu; , temps;
IF (tempmask;(vy)) THEN
WHERE (.NOT. tempmasks(v1))
a(tmpls (v1) : tmpug (vy) : tmpsz (v1)) = temprhsa (vy)
END WHERE
END IF
END DO

Advice to implementors. Note that the assignments to tempmasks and temprhs;
are array assignments and require special treatment (including saving of shape infor-
mation) similar to that for array assignments in the FORALL statement scalarization.
The extension to multiple dimensions (in either the FORALL index space or the array
dimensions) is straightforward. If there are multiple statements in a branch of the
WHERE construct, each statement will generate two loops similar to those shown above.
(End of advice to implementors.)

A forall-construct of the form:

FORALL (vi=h:u3:81, masky)
FORALL (w=k:up:sy, masky)
aler) = rhs;
b(ez) = T‘h82
END FORALL
END FORALL

equivalent to the following Fortran 90 code:

| Evaluate subscript and stride expressions and outer mask.
| These assignments may be ezecuted in any order.

temply = 4

tempu; = u

temps; = §1

' The iterations of this loop may be ezecuted in any order.
DO v =templ , tempu; , temps;

70 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

tempmask, (v1) = mask;
END DO

! Evaluate the inner FORALL bounds, etc
! The iterations of this loop may be executed in any order.
! The assignments in the loop body may be erecuted in any order,
! provided that the mask bounds are computed before the mask itself.
! The loop body need not be erecuted atomically.
DO v =temply , tempu; , temps,
IF (tempmask;(v)) THEN
templh(v)) = b
tempug (v1) = wp
tempsa (1) = s
DO w = temply(v1) ,tempug (vy) ,tempss (v1)
tempmasky (vy, %) = masky
END DO
END IF
END DO

! Evaluate first statement
! The iterations of this loop may be executed in any order.
! The assignments in this loop body may be executed in any order.
! The loop body need not be erecuted atomically.
DO v =temply , tempu; , temps;
IF (tempmask;(vy)) THEN
DO v = templ (v1),tempus (vy) , tempsy (v1)
IF (tempmasks(vy,1v2)) THEN
temprhs; (v1,12) = rhs
tmpe; (v1, 1) = ¢
END IF
END DO
END IF
END DO
! The iterations of this loop may be executed in any order.
DO v =temply, tempu; , temps;
IF (tempmask, (v1)) THEN
DO v = templ (v1),tempus(vy) , tempsy (v1)
IF (tempmasks(vy,19)) THEN
a(tmpey (v1,%)) = temprhs; (vy,v2)
END IF
END DO
END IF
END DO

! Evaluate second statement.
! Ordering constraints are as for the first statement.
DO vy =templ; , tempu, , temps;

IF (tempmask; (v;)) THEN

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.2. THE FORALL CONSTRUCT 71

DO vy = temply(v1),tempugs(v1), tempsy (vy)
IF (tempmasky(v1,v2)) THEN
temprhss (v, 1) = rhsy
tmpexy(vi, 1) = e
END IF
END DO
END IF

END DO
DO vy =templ; , tempu, , temps;

IF (tempmask;(v;)) THEN
DO w = templ(v1),tempus(v1) ,tempss (vy)
IF (tempmasks(vi, 1)) THEN
b(tmpez (v1,v2)) = temprhsy (v, v2)
END IF
END DO
END IF

END DO

Again, the extensions to higher dimensions are straightforward, as is the extension to deeper
nesting levels.

Advice to implementors. Note that each statement at the deepest nesting level will
generate two loops of the types shown. (End of advice to implementors.)

425 Consequences of the Definition of the FORALL Construct

Rationale.

A block FORALL means roughly the same thing as does replicating the FORALL header
in front of each array assignment statement in the block, except that any expres-
sions in the FORALL header are evaluated only once, rather than being re-evaluated
before each of the statements in the body. The exceptions to this rule are nested
FORALL statements and WHERE statements, which introduce syntactic and functional
complications into the copying.

One may think of a block FORALL as synchronizing twice per contained assignment
statement: once after handling the right-hand side and other expressions but before
performing assignments, and once after all assignments have been performed but
before commencing the next statement. In practice, appropriate analysis will often
permit the compiler to eliminate unnecessary synchronizations.

In general, any expression in a FORALL is evaluated only for valid combinations of all
surrounding indez-names for which all the scalar mask expressions are . TRUE.

Nested FORALL bounds and strides can depend on outer FORALL indez-names. They
cannot redefine those names, even temporarily (if they did, there would be no way to
avoid multiple assignments to the same array element).

Statements can use the results of computations in lexically earlier statements, includ-
ing computations done for other name values. However, an assignment never uses a
value assigned in the same statement by another indez-name value combination.

(End of rationale.)

72 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

4.3 Pure Procedures

A pure function is one that obeys certain syntactic constraints that ensure it produces no
side effects. This means that the only effect of a pure function reference on the state of
a program is to return a result—it does not modify the values, pointer associations, or
data mapping of any of its arguments or global data, and performs no external I/0. A
pure subroutine is one that produces no side effects except for modifying the values and/or
pointer associations of INTENT(OUT) and INTENT(INOUT) arguments. These properties are
declared by a new attribute (the PURE attribute) of the the procedure.

A pure procedure (i.e., function or subroutine) may be used in any way that a normal
procedure can. However, a procedure is required to be pure if it is used in any of the
following contexts:

e The mask or body of a FORALL statement or construct;
e Within the body of a pure procedure; or

e As an actual argument in a pure procedure reference.

Rationale.

The freedom from side effects of a pure function allows the function to be invoked
concurrently in a FORALL without such undesirable consequences as nondeterminism,
and additionally assists the efficient implementation of concurrent execution. Syn-
tactic constraints (rather than semantic constraints on behavior) are used to enable
compiler checking.

The HPF Journal of Development also proposes allowing elemental invocation of pure
procedures with scalar arguments.

(End of rationale.)

4.3.1 Pure Procedure Declaration and Interface

If a user-defined procedure is used in a context that requires it to be pure, then its interface
must be explicit in the scope of that use, and that interface must specify the PURE attribute.
This attribute is specified in the function-stmt or subroutine-stmt by an extension of rules
R1217 (for prefiz) and R1220 (for subroutine-stmt) in the Fortran 90 standard. Rule R1216
(for function-stmt) is not changed, but is rewritten here as Rule H409 for clarity.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

H407 prefiz is prefiz-spec | prefiz-spec | ... s
H408 prefiz-spec is type-spec 39
or RECURSIVE 40

or PURE a1

or ertrinsic-prefix 42

H409 function-stmt is [prefiz | FUNCTION function-name function-stuff ®
44

H410 function-stuff is ([dummy-arg-name-list |) [RESULT (result-name) ks
H411 subroutine-stmt is [prefir | SUBROUTINE subroutine-name subroutine-stuff 46

H412 subroutine-stuff is [([dummy-arg-list |) |

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.3. PURE PROCEDURES 73

Constraint: A prefiz must contain at most one of each variety of prefiz-spec.

Constraint: The prefiz of a subroutine-stmt must not contain a type-spec.

(For a discussion of the extrinsic-prefiz (Rule H601), see Section 6.2.)

Intrinsic functions, including the HPF intrinsic functions, are always pure and require
no explicit declaration of this fact. Intrinsic subroutines are pure if they are elemental
(i.e., MVBITS) but not otherwise. Functions in the HPF library are declared to be pure. A
statement function is pure if and only if all functions that it references are pure.

A procedure with the PURE attribute is referred to as a “pure procedure” in the following
constraints.

4.3.1.1 Pure function definition

The following constraints are added to Rule R1215 in Section 12.5.2.2 of the Fortran 90
standard (defining function-subprogram):

Constraint: The specification-part of a pure function must specify that all dummy argu-
ments have INTENT(IN) except procedure arguments and arguments with the
POINTER attribute.

Constraint: A local variable declared in the specification-part or internal-subprogram-part
of a pure function must not have the SAVE attribute.

Advice to users. Note local variable initialization in a type-declaration-
stmt or a data-stmt implies the SAVE attribute; therefore, such initializa-
tion is also disallowed. (End of advice to users.)

Constraint: The execution-part and internal-subprogram-part of a pure function may not
use a dummy argument, a global variable, or an object that is storage associ-
ated with a global variable, or a subobject thereof, in the following contexts:

e As the assignment variable of an assignment-stmt,

e As a DO variable or implied DO variable, or as an indez-name in a forall-
triplet-spec;

e As an input-item in a read-stmt;

e As an internal-file-unit in a write-stmt;

e As an IOSTAT= or SIZE= specifier in an I/O statement.

e In an assign-stmt;

o As the pointer-object or target of a pointer-assignment-stmt;

e As the ezpr of an assignment-stmt whose assignment variable is of a de-
rived type, or is a pointer to a derived type, that has a pointer component
at any level of component selection;

e As an allocate-object or stat-variable in an allocate-stmt or deallocate-
stmt, or as a pointer-object in a nullify-stmt; or

e As an actual argument associated with a dummy argument with INTENT
(OUT) or INTENT(INOUT) or with the POINTER attribute.

SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

Constraint: Any procedure referenced in a pure function, including one referenced via a

defined operation or assignment, must be pure.

Constraint: A dummy argument or the dummy result of a pure function may be explicitly

aligned only with another dummy argument or the dummy result, and may
not be explicitly distributed or given the INHERIT attribute.

Constraint: In a pure function, a local variable may be explicitly aligned only with another

local variable, a dummy argument, or the result variable. A local variable may
not be explicitly distributed.

Constraint: In a pure function, a dummy argument, local variable, or the result variable

must not have the DYNAMIC attribute.

Constraint: In a pure function, a global variable must not appear in a realign-directive or

redistribute-directive.

Constraint: A pure function must not contain a print-stmt, open-stmt, close-stmt, backspace-

stmt, endfile-stmt, rewind-stmt, inquire-stmt, or a read-stmt or write-stmt
whose i0-unit is an external-file-unit or *.

Constraint: A pure function must not contain a pause-stmt or stop-stmdt.

The above constraints are designed to guarantee that a pure function is free from side

effects (i.e., modifications of data visible outside the function), which means that it is safe
to reference concurrently, as explained earlier.

Rationale.
It is worth mentioning why the above constraints are sufficient to eliminate side effects.

The first constraint (requiring explicit INTENT (IN)) declares behavior that is ensured
by the following rules. It is not technically necessary, but is included for consistency
with the explicit declaration rules for defined operators. Note that POINTER argu-
ments may not have the INTENT attribute; the restrictions below ensure that POINTER
arguments also behave as if they had INTENT(IN), for both the argument itself and
the object pointed to.

The second constraint (disallowing SAVE variables) ensures that a pure function does
not retain an internal state between calls, which would allow side-effects between calls
to the same procedure.

The third constraint (the restrictions on use of global variables and dummy arguments)
ensures that dummy arguments and global variables are not modified by the function.
In the case of a dummy or global pointer, this applies to both its pointer association
and its target value, so it cannot be subject to a pointer assignment or to an ALLOCATE,
DEALLOCATE, or NULLIFY statement. Incidentally, these constraints imply that only
local variables and the dummy result variable can be subject to assignment or pointer
assignment.

In addition, a dummy or global data object cannot be the target of a pointer assign-
ment (i.e., it cannot be used as the right hand side of a pointer assignment to a local
pointer or to the result variable), for then its value could be modified via the pointer.
(An alternative approach would be to allow such objects to be pointer targets, but

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.3. PURE PROCEDURES 75

disallow assignments to those pointers; syntactic constraints to allow this would be
even more draconian than these.)

In connection with the last point, it should be noted that an ordinary (as opposed
to pointer) assignment to a variable of derived type that has a pointer component at
any level of component selection may result in a pointer assignment to the pointer
component of the variable. That is certainly the case for an intrinsic assignment.
In that case, the expression on the right hand side of the assignment has the same
type as the assignment variable, and the assignment results in a pointer assignment
of the pointer components of the expression result to the corresponding components
of the variable (see section 7.5.1.5 of the Fortran 90 standard). However, it may also
be the case for a defined assignment to such a variable, even if the data type of the
expression has no pointer components; the defined assignment may still involve pointer
assignment of part or all of the expression result to the pointer components of the
assignment variable. Therefore, a dummy or global object cannot be used as the right
hand side of any assignment to a variable of derived type with pointer components,
for then it, or part of it, might be the target of a pointer assignment, in violation of
the restriction mentioned above.

(Incidentally, the last two paragraphs only prevent the reference of a dummy or global
object as the only object on the right hand side of a pointer assignment or an assign-
ment to a variable with pointer components. There are no constraints on its reference
as an operand, actual argument, subscript expression, etc. in these circumstances.)

Finally, a dummy or global data object cannot be used in a procedure reference
as an actual argument associated with a dummy argument of INTENT(OUT) or
INTENT (INOUT) or with a dummy pointer, for then it may be modified by the proce-
dure reference. This constraint, like the others, can be statically checked, since any
procedure referenced within a pure function must be either a pure function, which
does not modify its arguments, or a pure subroutine, whose interface must specify
the INTENT or POINTER attributes of its arguments (see below). Incidentally, notice
that in this context it is assumed that an actual argument associated with a dummy
pointer is modified, since Fortran 90 does not allow its intent to be specified.

The fourth constraint (only pure procedures may be called) ensures that all proce-
dures called from a pure function are themselves side-effect free, except, in the case
of subroutines, for modifying actual arguments associated with dummy pointers or
dummy arguments with INTENT(OUT) or INTENT(INOUT). As we have just explained,
it can be checked that global or dummy objects are not used in such arguments, which
would violate the required side-effect freedom.

Constraints 5 and 6 restrict the explicit declaration of the mapping of local variables
and the dummy arguments and dummy results. This is because the function may be
invoked concurrently, with each invocation active on a subset of processors specific to
that invocation, and operating on data that are mapped to that processor subset. In-
deed, in an optimising implementation, the caller may well automatically arrange the
mapping of the actual arguments and result according to the context, e.g. to maximise
concurrency in a FORALL, and/or to reduce communication, taking into account the
mappings of other arguments, other terms in the expression, the assignment variable,
etc. Thus, a dummy argument or result may not appear in a mapping directive that
fixes its location with respect to the processor array (e.g. it may not be aligned with a

76

SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

global variable or template, or be explicitly distributed, or given the inherit attribute,
all of which would remove the caller’s freedom to determine the actual’s mapping as
described above). The only type of mapping information that may be specified for
the dummy arguments and result is their alignment with each other; this will provide
useful information to the caller about their required relative mappings. For similar
reasons, local variables may be aligned with the dummy arguments or result (either
directly or through other local variables), but may not have arbitrary mappings.

Constraints 7 and 8 prevent any realignment and redistribution of data within a pure
function (another type of side effect).

The penultimate constraint prevents external I/O and file operations, whose order
would be non-deterministic in the context of concurrent execution. Note that internal
I/0 is allowed, provided that it does not modify global variables or dummy arguments.

Finally, the last constraint disallows PAUSE and STOP statements. A PAUSE statement
requires input and so is disallowed for the same reason as I/0O. A STOP brings execution
to a halt, which is a rather drastic side effect.

(End of rationale.)

4.3.1.2 Pure subroutine definition

The following constraints are added to Rule R1219 in Section 12.5.2.3 of the Fortran 90
standard (defining subroutine-subprogram):

Constraint: The specification-part of a pure subroutine must specify the intents of all

dummy arguments except procedure arguments and arguments that have the
POINTER attribute.

Constraint: A local variable declared in the specification-part or internal-function-part of a

pure subroutine must not have the SAVE attribute.

Constraint: The execution-part or internal-subprogram-part of a pure subroutine must not

use a dummy parameter with INTENT(IN), a global variable, or an object that
is storage associated with a global variable, or a subobject thereof, in the
following contexts:

e As the assignment variable of an assignment-stmit;

e As a DO variable or implied DO variable, or as a indez-name in a forall-
triplet-spec;

e As an input-item in a read-stmt,

e As an internal-file-unit in a write-stmt;

e As an IOSTAT= or SIZE= specifier in an I/O statement.

e In an assign-stmt;

e As the pointer-object or target of a pointer-assignment-stmt;

e As the ezpr of an assignment-stmt whose assignment variable is of a de-
rived type, or is a pointer to a derived type, that has a pointer component
at any level of component selection;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.3. PURE PROCEDURES 7

e As an allocate-object or stat-variable in an allocate-stmt or deallocate-
stmt, or as a pointer-object in a nullify-stmt;

e As an actual argument associated with a dummy argument with INTENT
(OUT) or INTENT(INOUT) or with the POINTER attribute.

Constraint: Any procedure referenced in a pure subroutine, including one referenced via a
defined operation or assignment, must be pure.

Constraint: A dummy argument of a pure subroutine may be explicitly aligned only with
another dummy argument, and may not be explicitly distributed or given the
INHERIT attribute.

Constraint: In a pure subroutine, a local variable may be explicitly aligned only with
another local variable or a dummy argument. A local variable may not be
explicitly distributed.

Constraint: In a pure subroutine, a dummy argument or local variable must not have the
DYNAMIC attribute.

Constraint: In a pure subroutine, a global variable must not appear in a realign-directive
or redistribute-directive.

Constraint: A pure subroutine must not contain a print-stmt, open-stmt, close-stmi,
backspace-stmt, endfile-stmt, rewind-stmt, inquire-stmt, or a read-stmt or
write-stmt whose 7o-unit is an external-file-unit or *.

Constraint: A pure subroutine must not contain a pause-stmt or stop-stmdt.

Rationale.

The constraints for pure subroutines are based on the same principles as for pure func-
tions, except that side effects to INTENT (OUT) and INTENT (INOUT) dummy arguments
are permitted. Pointer dummy arguments are always treated as INTENT (INOUT).

Pure subroutines are included to allow subroutine calls from pure procedures in a safe
way, and to allow forall-assignments to be defined assignments.

(End of rationale.)

4.3.1.3 Pure procedure interfaces

To define interface specifications for pure procedures, the following constraints are added
to Rule R1204 in Section 12.3.2.1 of the Fortran 90 standard (defining interface-body):

Constraint: An interface-body of a pure procedure must specify the intents of all dummy
arguments except POINTER and procedure arguments.

The procedure characteristics defined by an interface body must be consistent with the
procedure’s definition. Regarding pure procedures, this is interpreted as follows:

o A procedure that is declared pure at its definition may be declared pure in an interface
body, but this is not required.

78 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

e A procedure that is not declared pure at its definition must not be declared pure in
an interface body.

That is, if an interface body contains a PURE attribute, then the corresponding pro-
cedure definition must also contain it, though the reverse is not true. When a procedure
definition with a PURE attribute is compiled, the compiler may check that it satisfies the
necessary constraints.

4.3.2 Pure Procedure Reference

To define pure procedure references, the following extra constraint is added to Rules R1209
and R1210 in Section 12.4.1 of the Fortran 90 standard (defining function-reference and
call-stmt):

Constraint: In a reference to a pure procedure, a procedure-name actual-arg must be the
name of a pure procedure.

Rationale. This constraint ensures that the purity of a procedure cannot be under-
mined by allowing it to call a non-pure procedure. (End of rationale.)

4.3.3 Examples of Pure Procedure Usage

Pure functions may be used in expressions in FORALL statements and constructs, unlike
general functions. Several examples of this are given below.

! This statement function is pure since it does not reference
! any other functions

REAL myexp

myexp(x) = 1 + x + x*x/2.0 + x*x*x/6.0

FORALL (i = 1:n) a(i) = myexp(a(i+1))

! Intrinsic functions are always pure
FORALL (i = 1:n) a(i,i) = log(abs(a(i,i)))

Because a forall-assignment may be an array assignment, the pure function can have
an array result. Such functions may be particularly helpful for performing row-wise or
column-wise operations on an array. The next example illustrates this.

INTERFACE
PURE FUNCTION f(x)
REAL, DIMENSION(3) :: f,
REAL, DIMENSION(3), INTENT(IN) :: x
END FUNCTION £
END INTERFACE
REAL v (3,10,10)

FORALL (i=1:10, j=1:10) v(:,i,j) = £(v(:,1,3))

e o N O

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14

15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.3. PURE PROCEDURES 79

A limited form of MIMD parallelism can be obtained by means of branches within the
pure procedure that depend on arguments associated with array elements or their subscripts
when the function is called from a FORALL. This may sometimes provide an alternative to
using sequences of masked FORALL or WHERE statements with their potential synchronization
overhead. The next example suggests how this may be done.

REAL PURE FUNCTION f (x, i)
REAL, INTENT(IN) :: x | associated with array element
INTEGER, INTENT(IN) :: i | associated with array subscript
IF (x > 0.0) THEN ! content-based conditional
f = x*x
ELSE IF (i==1 .0R. i==n) THEN ! subscript-based conditional
f=0.0
ELSE
f=x
ENDIF
END FUNCTION

REAL a(n)
INTEGER i

FORALL (i=1:n) a(i) = f(a(i), i)

Because pure procedures have no constraints on their internal control flow (except
that they may not use the STOP statement), they also provide a means for encapsulating
more complex operations than could otherwise be nested within a FORALL. For example, the
fragment below performs an iterative algorithm on every element of an array. Note that
different amounts of computation may be required for different inputs. Some machines may
not be able to take advantage of this flexibility.

PURE INTEGER FUNCTION iter(x)
COMPLEX, INTENT(IN) :: x
COMPLEX xtmp

INTEGER i
i=0
xtmp = -Xx

DO WHILE (ABS(xtmp).LT.2.0 .AND. i.LT.1000)
xtmp = Xtmp * xtmp - X
i=i+1
END DO
iter = i
END FUNCTION

FORALL (i=1:n, j=1:m) ix(i,j) = iter(CMPLX(a+i*da,b+j*db))

80 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

4.3.4 Comments on Pure Procedures

Rationale.

The constraints for a pure procedure guarantee freedom from side-effects, thus en-
suring that it can be invoked concurrently at each “element” of an array (where an
“element” may itself be a data structure, including an array).

The constraints on pure procedures may appear complicated, but it is not necessary
for a programmer to be intimately familiar with them. From the programmer’s point
of view, these constraints can be summarized as follows: a pure procedure must
not contain any operation that could conceivably result in an assignment or pointer
assignment to a global variable or INTENT (IN) dummy argument, or perform any
I/O or STOP operation. Note the use of the word conceivably; it is not sufficient for a
pure procedure merely to be side-effect free in practice. For example, a function that
contains an assignment to a global variable but in a branch that is not executed in
any invocation of the function is nevertheless not a pure function. The exclusion of
functions of this nature is unavoidable if strict compile-time checking is to be used. In
the choice between compile-time checking and flexibility, the HPF committee decided
in favor of enhanced checking.

It is expected that most library procedures will conform to the constraints required
of pure procedures (by the very nature of library procedures), and so can be declared
pure and referenced in FORALL statements and constructs and within user-defined
pure procedures. It is also anticipated that most library procedures will not reference
global data, whose use may sometimes inhibit concurrent execution.

The constraints on pure procedures are limited to those necessary to check statically
for freedom from side effects, processor independence, and for lack of saved internal
state. Subject to these restrictions, maximum functionality has been preserved in the
definition of pure procedures. This has been done to make function calls in FORALL
as widely available as possible, and so that quite general library procedures can be
classified as pure.

A drawback of this flexibility is that pure procedures permit certain features whose use
may hinder, and in the worst case prevent, concurrent execution in FORALL (that is,
such references may have to be implemented by sequentialization). Foremost among
these features are the access of global data, particularly distributed global data, and
the fact that the arguments and, for a pure function, the result may be pointers or data
structures with pointer components, including recursive data structures such as lists
and trees. The programmer should be aware of the potential performance penalties
of using such features.

(End of rationale.)

4.4 The INDEPENDENT Directive

The INDEPENDENT directive can precede a DO loop or FORALL statement or construct. It
asserts to the compiler that the operations in the following FORALL statement or construct
or iterations in the following DO loop may be executed independently—that is, in any order,
or interleaved, or concurrently—without changing the semantics of the program.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

s W N

=)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

4.4. THE INDEPENDENT DIRECTIVE 81

The INDEPENDENT directive precedes the DO loop or FORALL for which it is asserting
behavior, and is said to apply to that loop or FORALL. The syntax of the INDEPENDENT
directive is

H413 independent-directive is INDEPENDENT [, new-clause |
H414 new-clause is NEW (variable-list)

Constraint: The first non-comment line following an independent-directive must be a do-
stmt, forall-stmt, or a forall-construct.

Constraint: If the NEW option is present, then the directive must apply to a DO loop.

Constraint: A variable named in the NEW option or any component or element thereof must
not:

e Be a pointer or dummy argument; nor
e Have the SAVE or TARGET attribute.

When applied to a DO loop, an INDEPENDENT directive is an assertion by the programmer
that no iteration can affect any other iteration, either directly or indirectly. The following
operations define such interference:

e Any two operations that assign to the same atomic object (defined in Section 4.1.2)
interfere with each other. (Note the NEW clause below, however.)

e An operation that assigns to an atomic object interferes with any operation that uses
the value of that object. (Note the NEW clause below, however.)

Rationale. These are the classic Bernstein [5] conditions to enable parallel
execution. Note that two assignments of the same value to a variable interfere
with each other and thus an INDEPENDENT loop with such assignments is not
HPF-conforming. This is not allowed because such overlapping assignments are
difficult to support on some hardware, and because the given definition was
felt to be conceptually clearer. Similarly, it is not HPF-conforming to assert
that assignment of multiple values to the same location is INDEPENDENT, even if
the program logically can accept any of the possible values. In this case, both
the “conceptually clearer” argument and the desire to avoid nondeterministic
behavior favored the given solution. (End of rationale.)

e Any transfer of control to a branch target statement outside the body of the loop
interferes with all other operations in the loop.

e Any execution of an EXIT, STOP, or PAUSE statement interferes with all other opera-
tions in the loop.

Rationale. Branching (by GOTO or ERR= branches in I/O statements) implies
that some iterations of the loop are not executed, which is drastic interference
with those computations. The same is true for EXIT and the other statements.
Note that these conditions do not restrict procedure calls in INDEPENDENT loops,
except to disallow taking alternate returns to statements outside the loop. (End
of rationale.)

82 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

e A READ operation assigns to the objects in its input-item-list; a WRITE or PRINT opera-
tion uses the values of the objects on its output-item-list. 1/O operations may interfere
with other operations (including other I/O operations) as per the conditions above.

e An internal READ operation uses its internal file; an internal WRITE operation assigns
to its internal file. These uses and assignments may interfere with other operations
as outlined above.

e Any two file I/O operations except INQUIRE associated with the same file or unit
interfere with each other. Two INQUIRE operations do not interfere with each other;
however, an INQUIRE operation interferes with any other I/O operation associated
with the same file.

Rationale. Because Fortran carefully defines the file position after a data
transfer or file positioning statement, these operations affect the global state of a
program. (Note that file position is defined even for direct access files.) Multiple
non-advancing data transfer statements affect the file position in ways similar to
multiple assignments of the same value to a variable, and is disallowed for the
same reason. Multiple OPEN and CLOSE operations affect the status of files and
units, which is another global side effect. INQUIRE does not affect the file status,
and therefore does not affect other inquiries. However, other file operations may
affect the properties reported by INQUIRE. (End of rationale.)

e Any data realignment or redistribution performed in the loop interferes with any
access to or any other realignment of the same data.

Rationale. REALIGN and REDISTRIBUTE may change the processor storing a
particular array element, which interferes with any assignment or use of that
element. Similarly, multiple remapping operations may cause the same element
to be stored in multiple locations. (End of rationale.)

Note that all of these describe interfering behavior; they do not disallow specific syn-
tax. Statements that appear to violate one or more of these restrictions are allowed in an
INDEPENDENT loop, if they are not executed due to control flow. These restrictions allow an
INDEPENDENT loop to be executed safely in parallel if computational resources are available.
The directive is purely advisory and a compiler is free to ignore it if it cannot make use of
the information.

The NEW option modifies the INDEPENDENT directive and all surrounding INDEPENDENT
directives by asserting that those assertions would be true if new objects were created for
the named variables for each iteration of the DO loop. Thus, variables named in the new-
clause behave as if they were private to the body of the DO loop. More formally, it asserts
that the remainder of program execution is unaffected if all variables in the variable-list and
any variables associated with them were to become undefined immediately before execution
of every iteration of the loop, and also become undefined immediately after the completion
of each iteration of the loop.

Advice to implementors.

The wording here is similar to the treatment of realignment through pointers in Sec-
tion 3.6. As with that section, it may be reworded if HPF directives are absorbed as
actual Fortran statements.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4.4. THE INDEPENDENT DIRECTIVE 83

(End of advice to implementors.)

Rationale. NEW variables provide the means to declare temporaries in INDEPENDENT
loops. Without this feature, many conceptually independent loops would need sub-
stantial rewriting (including expansion of scalars into arrays) to meet the rather strict
requirements described above. Note that a temporary need only be declared NEW at
the innermost lexical level at which it is assigned, since all enclosing INDEPENDENT
assertions must take that NEW into account. Note also that index variables for nested
DO loops must be declared NEW; the alternative was to limit the scope of an index
variable to the loop itself, which changes Fortran semantics. FORALL indices, however,
are restricted by the semantics of the FORALL; they require no NEW declarations. (End
of rationale.)

Advice to users. Section 4.4.1 contains several examples of the syntax and semantics
of INDEPENDENT applied to DO loops. (End of advice to users.)

The interpretation of INDEPENDENT for FORALL is similar to that for DO: it asserts that
no combination of the indexes that INDEPENDENT applies assigns to an atomic storage unit
that is read by another combination. (Note that an HPF FORALL statement or construct
does not allow exits from the construct, etc.) A DO and a FORALL with the same body are
equivalent if they both have the INDEPENDENT directive. This is illustrated in Section 4.4.2.

441 Examples of INDEPENDENT

'HPF$ INDEPENDENT
DO i =2, 99

a(i) = b(i-1) + b(i) + b(i+l)
END DO

This is one of the simplest examples of an INDEPENDENT loop. (For simplicity, all
examples in this section assume there is no storage or sequence association between any
variables used in the code.) Every iteration assigns to a different location in the a array,
thus satisfying the first condition above. Since no elements of a are used on the right-
hand side, no location that is assigned in the loop is also read, thus satisfying the second
condition. Note, however, that many elements of b are used repeatedly; this is allowed by
the definition of INDEPENDENT. The other conditions relate to constructs not used in the
loop. In this example, the assertion is true regardless of the values of the variables involved.

'HPF$ INDEPENDENT
FORALL (i=2:n) a(i) = b(i-1) + b(i) + b(i+1)

This example is equivalent in all respects to the first example.

'HPF$ INDEPENDENT
DO i=1, 100

a(p(i)) = b(i)
END DO

This INDEPENDENT directive asserts that the array p does not have any repeated entries
(else they would cause interference when a was assigned). The DO loop is therefore equivalent
to the Fortran 90 statement

84 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

a(p(1:100)) = b(1:100)

'HPF$ INDEPENDENT, NEW (i2)
DO i1 = 1,n1
'HPF$ INDEPENDENT, NEW (i3)
DO i2 = 1,n2
'HPF$ INDEPENDENT, NEW (i4)
DO i3 = 1,n3
DO i4 = 1,n4 ! The inner loop is NOT independent!
a(i1,i2,i3) = a(i1,i2,i3) + b(i1,i2,i4)*c(i2,i3,i4)
END DO
END DO
END DO
END DO

The inner loop is not independent because each element of a is assigned repeatedly.
However, the three outer loops are independent because they access different elements of a.
The NEW clauses are required, since the inner loop indices are assigned and used in different
iterations of the outermost loops.

'\HPF$ INDEPENDENT, NEW (j)

DO i = 2, 100, 2
'HPF$ INDEPENDENT, NEW(vl, vr, ul, ur)
DO j =2, 100, 2

vl = p(i,j) - p(i-1,3)
vr = p(i+1,j) - p(i,j)
ul = p(i,j) - p(i,j-1)
ur = p(i,j+1) - p(i,j)
p(i,j) = £(i,j) + p(i,j) + 0.256 * (vr - vl + ur - ul)
END DO
END DO

Without the NEW option on the j loop, neither loop would be independent, because an
interleaved execution of loop iterations might cause other values of vl, vr, ul, and ur to be
used in the assignment of p(%, j) than those computed in the same iteration of the loop. The
NEW option, however, specifies that this is not true if distinct storage units are used in each
iteration of the loop. Using this implementation makes iterations of the loops independent
of each other. Note that there is no interference due to accesses of the array p because of
the stride of the DO loop (i.e. ¢ and j are always even, therefore ¢ — 1, etc. are always odd.)

IHPF$ INDEPENDENT
DO i =1, 10
WRITE (iounit(i),100) a(i)
END DO
100 FORMAT (F10.4)

If iounit(i) evaluates to a different value for every i € {1,...,10}, then the loop writes
to a different I/O unit (and thus a different file) on every iteration. The loop is then properly
described as independent. On the other hand, if iounit(:i) = 5 for all ¢, then the assertion
is in error and the loop is not HPF-conforming.

w0 =N &

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

4.4. THE INDEPENDENT DIRECTIVE 85

4.4.2 \Visualization of INDEPENDENT Directives

DDi=1, 3 FORALL (i = 1:3)
lhsa(i) = rhsa(i) lhsa(i) = rhsa(i)
lhsb(i) = rhsb(i) lhsb(i) = rhsb(i)

END DO END FORALL

[CheaZD

(Thsa(1)) | (Mhsa(2)) | (Thsa(3))

rhsb(1)) (rhsb(2)) | (rhsb(3))

(Thsb(3))

(Thsb(2))
s

END

Figure 4.1: Dependences in DO and FORALL without INDEPENDENT assertions

Graphically, the INDEPENDENT directive can be visualized as eliminating edges from a
precedence graph representing the program. Figure 4.1 shows some of the dependences that
may normally be present in a DO and a FORALL. (Most of the transitive dependences are not
shown.) An arrow from a left-hand side node (for example, “lhsa(1)”) to a right-hand side
node (“rhsb(1)”) means that the right-hand side computation might use values assigned
in the left-hand side node; thus the right-hand side must be computed after the left-hand
side completes its store. Similarly, an arrow from a right-hand side node to a left-hand
side node means that the left-hand side may overwrite a value needed by the right-hand
side computation, again forcing an ordering. Edges from the “BEGIN” and to the “END”
nodes represent control dependences. The INDEPENDENT directive asserts that the only
dependences that a compiler need enforce are those in Figure 4.2. That is, the programmer
who uses INDEPENDENT is certifying that if the compiler enforces only these edges, then the
resulting program will be equivalent to the one in which all the edges are present. Note that
the set of asserted dependences is identical for INDEPENDENT DO and FORALL constructs.

The compiler is justified in producing a warning if it can prove that one of these
assertions is incorrect. It is not required to do so, however. A program containing any false
assertion of this type is not HPF-conforming, thus is not defined by HPF, and the compiler
may take any action it deems appropriate.

86 SECTION 4. DATA PARALLEL STATEMENTS AND DIRECTIVES

'HPF$ INDEPENDENT

p0i=1, 3
lhsa(i) = rhsa(i)
lhsb(i) = rhsb(i)

END DO

'HPF$ INDEPENDENT
FORALL (i = 1:3)
lhsa(i) = rhsa(i)
lhsb(i) = rhsb(i)
END FORALL

(Crhsa(2)) (rhsa(1)) (rhsa(2))
(thsa(l)) (Ohsa(2)) (UIhsa(3)) (thsa(@)) (Uhsa(2)) (hsa(3))
(rhsb(@)) (rhsb(2)) (rhsb(3)) (rhsb(1)) (Chsb(2)) (Urhsb(3))
hsb(1)) (Thsb(2)) (thsb(2)) (thsb(3))

Figure 4.2: Dependences in DO and FORALL with INDEPENDENT assertions

© o =] o - W N -

- (3 [- » [w-oWw W W w w W w w w oW NN N [S~ N [N N ~ [- - [- - - [- - =
<4 O [w 1S - S © @ ~ [=} o - [%3 - O © o 2 [~ I [y w N - o © ™ N o o;m _-ow [V [(=]

'S
@

