10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Section 3

Data Alignment and Distribution
Directives

HPF data alignment and distributions directives allow the programmer to advise the com-
piler how to assign array elements to processor memories.

3.1 Model

HPF adds directives to Fortran 90 to allow the user to advise the compiler on the allocation
of data objects to processor memories. The model is that there is a two-level mapping
of data objects to memory regions, referred to as “abstract processors.” Data objects
(typically array elements) are first aligned relative to one another; this group of arrays is then
distributed onto a rectilinear arrangement of abstract processors. (The implementation then
uses the same number, or perhaps some smaller number, of physical processors to implement
these abstract processors. This mapping of abstract processors to physical processors is
language-processor dependent.)
The following diagram illustrates the model:

Abstract
Processors as a
Arrays or Group of user-declared Physical
other objects aligned objects Cartesian mesh processors

ALIGN DISTRIBUTE Optional
(static) or (static) or implementation-
REALIGN REDISTRIBUTE dependent
(dynamic) (dynamic) directive

The underlying assumptions are that an operation on two or more data objects is
likely to be carried out much faster if they all reside in the same processor, and that it may
be possible to carry out many such operations concurrently if they can be performed on
different processors.

22 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

Fortran 90 provides a number of features, notably array syntax, that make it easy
for a compiler to determine that many operations may be carried out concurrently. The
HPF directives provide a way to inform the compiler of the recommendation that certain
data objects should reside in the same processor: if two data objects are mapped (via
the two-level mapping of alignment and distribution) to the same abstract processor, it
is a strong recommendation to the implementation that they ought to reside in the same
physical processor. There is also a provision for recommending that a data object be stored
in multiple locations, which may complicate any updating of the object but makes it faster
for multiple processors to read the object.

There is a clear separation between directives that serve as specification statements and
directives that serve as executable statements (in the sense of the Fortran standards). Spec-
ification statements are carried out on entry to a program unit, as if all at once; only then
are executable statements carried out. (While it is often convenient to think of specification
statements as being handled at compile time, some of them contain specification expres-
sions, which are permitted to depend on run-time quantities such as dummy arguments,
and so the values of these expressions may not be available until run time, specifically the
very moment that program control enters the scoping unit.)

The basic concept is that every array (indeed, every object) is created with some
alignment to an entity, which in turn has some distribution onto some arrangement of
abstract processors. If the specification statements contain explicit specification directives
specifying the alignment of an array A with respect to another array B, then the distribution
of A will be dictated by the distribution of B; otherwise, the distribution of A itself may be
specified explicitly. In either case, any such explicit declarative information is used when
the array is created.

Advice to implementors. This model gives a better picture of the actual amount
of work that needs to be done than a model that says “the array is created in some
default location, and then realigned and/or redistributed if there is an explicit direc-
tive.” Using ALIGN and DISTRIBUTE specification directives doesn’t have to cause any
more work at run time than using the implementation defaults. (End of advice to
implementors.)

In the case of an allocatable object, we say that the object is created whenever it is
allocated. Specification directives for allocatable objects (and allocated pointer targets)
may appear in the specification-part of a program unit, but take effect each time the array
is created, rather than on entry to the scoping unit.

Alignment is considered an attribute (in the Fortran 90 sense) of a data object. If an
object A is aligned (statically or dynamically) with an object B, which in turn is already
aligned to an object C, this is regarded as an alignment of A with C directly, with B serving
only as an intermediary at the time of specification. (This matters only in the case where
B is subsequently realigned; the result is that A remains aligned with C.) We say that A
is immediately aligned with B but ultimately aligned with C. If an object is not explicitly
aligned with another object, we say that it is ultimately aligned with itself. The alignment
relationships form a tree with everything ultimately aligned to the object at the root of the
tree; however, the tree is always immediately “collapsed” so that every object is related
directly to the root. Any object that is not a root can be explicitly realigned but not
explicitly redistributed. Any object that is a root can be explicitly redistributed but must
not be explicitly realigned if anything else is aligned to it.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. SYNTAX OF DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES 23

Every object which is the root of an alignment tree has an associated template or index
space. Typically, this template has the same rank and size in each dimension as the object
associated with it. (The most important exception to this rule is dummy arguments with
the INHERIT attribute, described in Section 3.9.) We often refer to “the template for an
array,” which means the template of the object to which the array is ultimately aligned.
(When an explicit TEMPLATE (see Section 3.8) is used, this may be simply the template to
which the array is explicitly aligned.)

The distribution step of the HPF model technically applies to the template of an
array, although because of the close relationship noted above we often speak loosely of
the distribution of an array. Distribution partitions the template among a set of abstract
processors according to a given pattern. The combination of alignment (from arrays to
templates) and distribution (from templates to processors) thus determines the relationship
of an array to the processors; we refer to this relationship as the mapping of the array.
(These remarks also apply to a scalar, which may be regarded as having an index space
whose sole position is indicated by an empty list of subscripts.)

Every object is created as if according to some complete set of specification directives;
if the program does not include complete specifications for the mapping of some object, the
compiler provides defaults. By default an object is not aligned with any other object; it
is ultimately aligned with itself. The default distribution is language-processor dependent,
but must be expressible as explicit directives for that implementation. (The distribution of
a sequential object must be expressible as explicit directives only if it is an aggregate cover
(see Section 7).) Identically declared objects need not be provided with identical default
distribution specifications; the compiler may, for example, take into account the contexts in
which objects are used in executable code. The programmer may force identically declared
objects to have identical distributions by specifying such distributions explicitly. (On the
other hand, identically declared processor arrangements are guaranteed to represent “the
same processors arranged the same way.” This is discussed in more detail in Section 3.7.)

Once an object has been created, it can be remapped by realigning it or redistributing
an object to which it is ultimately aligned; but communication may be required in moving
the data around. Redistributing an object causes all objects then ultimately aligned with
it also to be redistributed so as to maintain the alignment relationships.

Sometimes it is desirable to consider a large index space with which several smaller
arrays are to be aligned, but not to declare any array that spans the entire index space.
HPF allows one to declare a TEMPLATE, which is like an array whose elements have no
content and therefore occupy no storage; it is merely an abstract index space that can be
distributed and with which arrays may be aligned.

By analogy with the Fortran 90 ALLOCATABLE attribute, HPF includes the attribute
DYNAMIC. It is not permitted to REALIGN an array that has not been declared DYNAMIC.
Similarly, it is not permitted to REDISTRIBUTE an array or template that has not been
declared DYNAMIC.

3.2 Syntax of Data Alignment and Distribution Directives

Specification directives in HPF have two forms: specification statements, analogous to the
DIMENSION and ALLOCATABLE statements of Fortran 90; and an attribute form analogous to
type declaration statements in Fortran 90 using the “::” punctuation.

The attribute form allows more than one attribute to be described in a single directive.
HPF goes beyond Fortran 90 in not requiring that the first attribute, or indeed any of them,

24 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

be a type specifier.

For syntactic convenience, the executable directives REALIGN and REDISTRIBUTE also
come in two forms (statement form and attribute form) but may not be combined with
other attributes in a single directive.

H301 combined-directive is combined-attribute-list :: entity-decl-list

H302 combined-attribute is ALIGN align-attribute-stuff
or DISTRIBUTE dist-attribute-stuff
or DYNAMIC
or INHERIT
or TEMPLATE
or PROCESSORS
or DIMENSION (ezplicit-shape-spec-list)

Constraint: The same combined-attribute must not appear more than once in a given
combined-directive.

Constraint: If the DIMENSION attribute appears in a combined-directive, any entity to which
it applies must be declared with the HPF TEMPLATE or PROCESSORS type spec-
ifier.

The following rules constrain the declaration of various attributes, whether in separate
directives or in a combined-directive.

The HPF keywords PROCESSORS and TEMPLATE play the role of type specifiers in
declaring processor arrangements and templates. The HPF keywords ALIGN, DISTRIBUTE,
DYNAMIC, and INHERIT play the role of attributes. Attributes referring to processor arrange-
ments, to templates, or to entities with other types (such as REAL) may be combined in an
HPF directive without having the type specifier appear.

Dimension information may be specified after an object-name or in a DIMENSION at-
tribute. If both are present, the one after the object-name overrides the DIMENSTON attribute
(this is consistent with the Fortran 90 standard). For example, in:

IHPF$ TEMPLATE,DIMENSION(64,64) :: A,B,C(32,32),D

A, B, and D are 64 x 64 templates; C is 32 x 32.
A comment on asterisks: The asterisk character “*” appears in the syntax rules for
HPF alignment and distribution directives in three distinct roles:

e When a lone asterisk appears as a member of a parenthesized list, it indicates either
a collapsed mapping, wherein many elements of an array may be mapped to the same
abstract processor, or a replicated mapping, wherein each element of an array may
be mapped to many abstract processors. See the syntax rules for align-source and
align-subscript (see Section 3.4) and for dist-format (see Section 3.3).

e When an asterisk appears before a left parenthesis “(” or after the keyword WITH
or ONTO, it indicates that the directive constitutes an assertion about the current
mapping of a dummy argument on entry to a subprogram, rather than a request for a
desired mapping of that dummy argument. This use of the asterisk may appear only
in directives that apply to dummy arguments (see Section 3.10).

e When an asterisk appears in an align-subscript-use expression, it represents the usual
integer multiplication operator.

10

11

12

13

14

15

16

17

i8

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.3. DISTRIBUTE AND REDISTRIBUTE DIRECTIVES 25

3.3 DISTRIBUTE and REDISTRIBUTE Directives

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors in a
processor arrangement. For example,

REAL SALAMI (10000)
IHPF$ DISTRIBUTE SALAMI (BLOCK)

specifies that the array SALAMI should be distributed across some set of abstract proces-
sors by slicing it uniformly into blocks of contiguous elements. If there are 50 processors,
the directive implies that the array should be divided into groups of 200 elements, with
SALAMI (1:200) mapped to the first processor, SALAMI(201:400) mapped to the second
processor, and so on. If there is only one processor, the entire array is mapped to that
processor as a single block of 10000 elements.

The block size may be specified explicitly:

REAL WEISSWURST(10000)
'HPF$ DISTRIBUTE WEISSWURST (BLOCK(256))

This specifies that groups of exactly 256 elements should be mapped to successive abstract
processors. (There must be at least [10000/256] = 40 abstract processors if the directive
is to be satisfied. The fortieth processor will contain a partial block of only 16 elements,
namely WEISSWURST (9985:10000).)

HPF also provides a cyclic distribution format:

REAL DECK_OF_CARDS(52)
IHPF$ DISTRIBUTE DECK_OF_CARDS(CYCLIC)

If there are 4 abstract processors, the first processor will contain DECK_OF_CARDS (1:49:4),
the second processor will contain DECK_OF_CARDS(2:50:4), the third processor will contain
DECK_OF _CARDS(3:51:4), and the fourth processor will contain DECK_OF_CARDS(4:52:4).
Successive array elements are dealt out to successive abstract processors in round-robin
fashion.

Distributions may be specified independently for each dimension of a multidimensional
array:

INTEGER CHESS_BOARD(8,8), GO_BOARD(19,19)
'HPF$ DISTRIBUTE CHESS_BOARD(BLOCK, BLOCK)
'HPF$ DISTRIBUTE GO_BOARD(CYCLIC,x*)

The CHESS_BOARD array will be carved up into contiguous rectangular patches, which will
be distributed onto a two-dimensional arrangement of abstract processors. The GO_BOARD
array will have its rows distributed cyclically over a one-dimensional arrangement of abstract
processors. (The “*” specifies that GO_BOARD is not to be distributed along its second axis;
thus an entire row is to be distributed as one object. This is sometimes called “on-processor”
distribution.)

The REDISTRIBUTE directive is similar to the DISTRIBUTE directive but is considered
executable. An array (or template) may be redistributed at any time, provided it has
been declared DYNAMIC (see Section 3.5). Any other arrays currently ultimately aligned
with an array (or template) when it is redistributed are also remapped to reflect the new
distribution, in such a way as to preserve alignment relationships (see Section 3.4). (This

26 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

can require a lot of computational and communication effort at run time; the programmer
must take care when using this feature.)

The DISTRIBUTE directive may appear only in the specification-part of a scoping unit.
The REDISTRIBUTE directive may appear only in the ezecution-part of a scoping unit. The
principal difference between DISTRIBUTE and REDISTRIBUTE is that DISTRIBUTE must con-
tain only a specification-ezpr as the argument to a BLOCK or CYCLIC option, whereas in
REDISTRIBUTE such an argument may be any integer expression. Another difference is that
DISTRIBUTE is an attribute, and so can be combined with other attributes as part of a
combined-directive, whereas REDISTRIBUTE is not an attribute (although a REDISTRIBUTE
statement may be written in the style of attributed syntax, using “::” punctuation).

Formally, the syntax of the DISTRIBUTE and REDISTRIBUTE directives is:

H303 distribute-directive is DISTRIBUTE distributee dist-directive-stuff

H304 redistribute-directive is REDISTRIBUTE distributee dist-directive-stuff
or REDISTRIBUTE dist-attribute-stuff :: distributee-list

H305 dist-directive-stuff is dist-format-clause | dist-onto-clause |
H306 dist-attribute-stuff is dist-directive-stuff
or dist-onto-clause
H307 distributee is object-name
or template-name
H308 dist-format-clause is (dist-format-list)
or * (dist-format-list)
or *
H309 dist-format is BLOCK [(int-ezpr) |
or CYCLIC [(int-expr)]
or *
H310 dist-onto-clause is ONTO dist-target
H311 dist-target is processors-name
Oor * pProcessors-name
or *

Constraint: An object-name mentioned as a distributee must be a simple name and not a
subobject designator.

Constraint: An object-name mentioned as a distributee may not appear as an alignee in an
ALIGN or REALIGN directive.

Constraint: A distributee that appears in a REDISTRIBUTE directive must have the DYNAMIC
attribute (see Section 3.5).

Constraint: If a dist-format-list is specified, its length must equal the rank of each distribu-
tee.

Constraint: If both a dist-format-list and a processors-name appear, the number of elements
of the dist-format-list that are not “¥” must equal the rank of the named
processor arrangement.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

3.3. DISTRIBUTE AND REDISTRIBUTE DIRECTIVES 27

Constraint: If a processors-name appears but not a dist-format-list, the rank of each dis-
tributee must equal the rank of the named processor arrangement.

Constraint: If either the dist-format-clause or the dist-target in a DISTRIBUTE directive
begins with “*” then every distributee must be a dummy argument.

Constraint: Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE may begin
with “*”.

Constraint: Any int-ezpr appearing in a dist-format of a DISTRIBUTE directive must be a
specification-ezpr.

Note that the possibility of a DISTRIBUTE directive of the form
'HPF$ DISTRIBUTE dist-attribute-stuff :: distributee-list

is covered by syntax rule H301 for a combined-directive.
Examples:

IHPF$ DISTRIBUTE D1 (BLOCK)
IHPF$ DISTRIBUTE (BLOCK,*,BLOCK) ONTO SQUARE:: D2,D3,D4

The meanings of the alternatives for dist-format are given below.

Define the ceiling division function CD(J,K) = (J+K-1)/K (using Fortran integer arith-
metic with truncation toward zero.)

Define the ceiling remainder function CR(J,K) = J-K*CD(J,K).

The dimensions of a processor arrangement appearing as a dist-target are said to corre-
spond in left-to-right order with those dimensions of a distributee for which the corresponding
dist-format is not *. In the example above, processor arrangement SQUARE must be two-
dimensional; its first dimension corresponds to the first dimensions of D2, D3, and D4 and
its second dimension corresponds to the third dimensions of D2, D3, and D4.

Let d be the size of a distributee in a certain dimension and let p be the size of the pro-
cessor arrangement in the corresponding dimension. For simplicity, assume all dimensions
have a lower bound of 1. Then BLOCK(m) means that a distributee position whose index
along that dimension is j is mapped to an abstract processor whose index along the corre-
sponding dimension of the processor arrangement is CD(j,m) (note that m x p > d must
be true), and is position number m+CR(j,m) among positions mapped to that abstract
processor. The first distributee position in abstract processor k along that axis is position
number 1+m* (k-1).

BLOCK by definition means the same as BLOCK(CD(d,p)).

CYCLIC(m) means that a distributee position whose index along that dimension is
j is mapped to an abstract processor whose index along the corresponding dimension of
the processor arrangement is 1+MODULO(CD(j,m)-1,p). The first distributee position in
abstract processor k along that axis is position number 1+m#*(k-1).

CYCLIC by definition means the same as CYCLIC(1).

CYCLIC(m) and BLOCK (m) imply the same distribution when mxp > d, but BLOCK(m)
additionally asserts that the distribution will not wrap around in a cyclic manner, which
a compiler cannot determine at compile time if m is not constant. Note that CYCLIC and
BLOCK (without argument expressions) do not imply the same distribution unless p > d, a
degenerate case in which the block size is 1 and the distribution does not wrap around.

Suppose that we have 16 abstract processors and an array of length 100:

28 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

'HPF$ PROCESSORS SEDECIM(16)
REAL CENTURY(100)

Distributing the array BLOCK (which in this case would mean the same as BLOCK(7)):

'HPF$ DISTRIBUTE CENTURY(BLOCK) ONTO SEDECIM

results in this mapping of array elements onto abstract processors:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 8 |16 | 22|29 |36 (43|50 |57 |64 |71|78]85]|92]99

2|19 |16|23|30(37|44|51|58|65|72]|79 (86| 93]100

3 |10]|17 |24 |31 |38 |45 |52159 |66 |73 }|80]|87 |94

4 {11118 | 2532|3946 53|60 |67 |74 |81]88) 95

5 11219126133 |40 |47 [54|61 |68 | 75| 82189 | 96

6 |13] 20|27 | 34|41 |48 | 55|62 (69|76 |83]| 90|97

7 |14 (21 (28| 35]|42|49 |56 |63 |70 |77 |84]91 |98
Distributing the array BLOCK(8):

IHPF$ DISTRIBUTE CENTURY(BLOCK(8)) ONTO SEDECIM

results in this mapping of array elements onto abstract processors:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9 17 1256133141149 | 657 | 65|73 |81 |89 |97

2 10|18 | 26| 34|42 (50| 68|66 | 74|82 90 | 98

31119 | 27| 35|43 (51 |69|67|75)83]|91)99

4 (12| 20|28 |1 36|44 | 52|60 |68 (76|84 (92100

5 1321129 (37|45 |53]|61 (69|77 (85| 93

6 14 (22130 (38|46 | 54 | 62 | 70 | 78 | 86 | 94

7 115123 |31[{39|47 (55|63 (7179|8795

8 16 |24 | 32| 40| 48 | 56 |64 | 72 | 80 | 88 | 96

Distributing the array BLOCK(6) is not HPF-conforming because 6 x 16 < 100.

Distributing the array CYCLIC (which means exactly the same as CYCLIC(1)):

'HPF$ DISTRIBUTE CENTURY(CYCLIC) ONTO SEDECIM

results in this mapping of array elements onto abstract processors:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

45
46
47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

3.3. DISTRIBUTE AND REDISTRIBUTE DIRECTIVES 29

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

1 2 3 4 5 6 7 8 9 |1011)12)13)14 | 15| 16
17 118 | 19 | 20 (21 | 22)23 | 24 | 25| 26 | 27 | 28 1 29| 30 | 31 | 32
33| 34}35 (363738394041)42 (43 |44 | 45| 46 | 47 | 48
49 | 50 | 61 | 52 | 563 [54 | b5 | 56 | 57 | 68 | B9 | 60 | 61 | 62 | 63 | 64
65 (66 |67 |68 |69 |70 |71 |72 |73 |74 |75 {76 |77 (78179 | 80
81 182|83|84 85|86 (|87188]]89]90]91]92)]93|94]95]|96
97 | 98 | 99 | 100

Distributing the array CYCLIC(3):
'HPF$ DISTRIBUTE CENTURY(CYCLIC(3)) ONTO SEDECIM
results in this mapping of array elements onto abstract processors:

4 5 6 7 8 9 10 11 12 13 14 15 16
10|13 |16 | 19 {22 [25 (28 [31 [34 | 37 | 40 | 43 | 46
11 114 | 17 | 20 | 23 [26 [29 [32 [35 | 38 | 41 | 44 | 47
12 115|118 | 21 | 24| 27 |30 | 33 | 36 | 39 | 42 | 45 | 48
49 | 52 | 65 | 58 |61 [64|67 |70 | 7317679]|82|85]|88] 91194
b0 [b3 | 56 | 59 | 62 | 65 | 68 | 71 [74 | 77 [80 [83 |86 | 89 |92 | 95
51 | 54 [57 |60 | 63|66 |69 | 72|75 |78 |81'|84|87|90]|93]96
97 1100

WIN|[+=] =
(o> 30 I &2 I " - I -]
W || N|w

99

A DISTRIBUTE or REDISTRIBUTE directive must not cause any data object associated
with the distributee via storage association (COMMON or EQUIVALENCE) to be mapped such
that storage units of a scalar data object are split across more than one abstract processor.
See Section 7 for further discussion of storage association.

The statement form of a DISTRIBUTE or REDISTRIBUTE directive may be considered an
abbreviation for an attributed form that happens to mention only one alignee; for example,

'HPF$ DISTRIBUTE distributee (dist-format-list) ONTO dist-target
is equivalent to
IHPF$ DISTRIBUTE (dist-format-list) ONTO dist-target :: distributee

Note that, to prevent syntactic ambiguity, the dist-format-clause must be present in the
statement form, so in general the statement form of the directive may not be used to
specify the mapping of scalars.

If the dist-format-clause is omitted from the attributed form, then the language pro-
cessor may make an arbitrary choice of distribution formats for each template or array. So
the directive

30 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

1HPF$ DISTRIBUTE ONTO P :: D1,D2,D3
means the same as

'HPF$ DISTRIBUTE ONTO P :: D1
'HPF$ DISTRIBUTE ONTO P :: D2
'HPF$ DISTRIBUTE ONTO P :: D3

to which a compiler, perhaps taking into account patterns of use of D1, D2, and D3 within
the code, might choose to supply three distinct distributions such as, for example,

IHPF$ DISTRIBUTE D1i(BLOCK, BLOCK) ONTO P
'HPF$ DISTRIBUTE D2(CYCLIC, BLOCK) ONTO P
'HPF$ DISTRIBUTE D3(BLOCK(43),CYCLIC) ONTO P

Then again, the compiler might happen to choose the same distribution for all three arrays.

In either the statement form or the attributed form, if the ONTO clause is present, it
specifies the processor arrangement that is the target of the distribution. If the ONTO clause
is omitted, then a language-processor-dependent processor arrangement is chosen arbitrarily
for each distributee. So, for example,

REAL, DIMENSION(1000) :: ARTHUR, ARNOLD, LINUS, LUCY
'HPF$ PROCESSORS EXCALIBUR(32)
'HPF$ DISTRIBUTE (BLOCK) ONTO EXCALIBUR :: ARTHUR, ARNOLD
IHPF$ DISTRIBUTE (BLOCK) :: LINUS, LUCY

causes the arrays ARTHUR and ARNOLD to have the same mapping, so that corresponding ele-
ments reside in the same abstract processor, because they are the same size and distributed
in the same way (BLOCK) onto the same processor arrangement (EXCALIBUR). However, LUCY
and LINUS do not necessarily have the same mapping:because they might, depending on
the implementation, be distributed onto differently chosen processor arrangements; so cor-
responding elements of LUCY and LINUS might not reside on the same abstract processor.
(The ALIGN directive provides a way to ensure that two arrays have the same mapping
without having to specify an explicit processor arrangement.)

3.4 ALIGN and REALIGN Directives

The ALIGN directive is used to specify that certain data objects are to be mapped in the
same way as certain other data objects. Operations between aligned data objects are likely
to be more efficient than operations between data objects that are not known to be aligned
(because two objects that are aligned are intended to be mapped to the same abstract
processor). The ALIGN directive is designed to make it particularly easy to specify explicit
mappings for all the elements of an array at once. While objects can be aligned in some
cases through careful use of matching DISTRIBUTE directives, ALIGN is more general and
frequently more convenient.

The REALIGN directive is similar to the ALIGN directive but is considered executable.
An array (or template) may be realigned at any time, provided it has been declared DYNAMIC
(see Section 3.5) Unlike redistribution (see Section 3.3), realigning a data object does not
cause any other object to be remapped. (However, realignment of even a single object, if
it is large, could require a lot of computational and communication effort at run time; the
programmer must take care when using this feature.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

3.4. ALIGN AND REALIGN DIRECTIVES 31

The ALIGN directive may appear only in the specification-part of a scoping unit. The
REALIGN directive is similar but may appear only in the erecution-part of a scoping unit.
The principal difference between ALIGN and REALIGN is that ALIGN must contain only a
specification-expr as a subscript or in a subscript-triplet, whereas in REALIGN such subscripts
may be any integer expressions. Another difference is that ALIGN is an attribute, and so
can be combined with other attributes as part of a combined-directive, whereas REALIGN is
not an attribute (although a REALIGN statement may be written in the style of attributed
syntax, using “::” punctuation).

Formally, the syntax of ALIGN and REALIGN is as follows:

H312 align-directive is ALIGN alignee align-directive-stuff
H313 realign-directive is REALIGN alignee align-directive-stuff

or REALIGN align-attribute-stuff :: alignee-list
H314 align-directive-stuff is (align-source-list) align-with-clause
H315 align-attribute-stuff is [(align-source-list) | align-with-clause
H316 alignee is object-name
H317 align-source is

or *

or align-dummy

H318 align-dummy is scalar-int-variable

Constraint: An object-name mentioned as an alignee may not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive.

Constraint: Any alignee that appears in a REALIGN directive must have the DYNAMIC at-
tribute (see Section 3.5).

Constraint: The align-source-list (and its surrounding parentheses) must be omitted if the
alignee is scalar. (In some cases this will preclude the use of the statement
form of the directive.)

Constraint: If the align-source-list is present, its length must equal the rank of the alignee.
Constraint: An align-dummy must be a named variable.

Constraint: An object may not have both the INHERIT attribute and the ALIGN attribute.
(However, an object with the INHERIT attribute may appear as an alignee in
a REALIGN directive, provided that it does not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive.)

Note that the possibility of an ALIGN directive of the form
IHPF$ ALIGN align-attribute-stuff :: alignee-list

is covered by syntax rule H301 for a combined-directive.
The statement form of an ALIGN or REALIGN directive may be considered an abbrevia-
tion of an attributed form that happens to mention only one alignee:

'HPF$ ALIGN alignee (align-source-list) WITH align-spec

32 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

is equivalent to
IHPF$ ALIGN (align-source-list) WITH align-spec :: alignee

If the align-source-list is omitted from the attributed form and the alignees are not
scalar, the align-source-list is assumed to consist of a parenthesized list of “:” entries, equal
in number to the rank of the alignees. Similarly, if the align-subscript-list is omitted from
the align-spec in either form, it is assumed to consist of a parenthesized list of “:” entries,
equal in number to the rank of the align-target. So the directive

IHPF$ ALIGN WITH B :: A1, A2, A3

means
IHPF$ ALIGN (:,:) WITH B(:,:) :: Al, A2, A3
which in turn means the same as

IHPF$ ALIGN A1(:,:) WITH B(:,:)
IHPF$ ALIGN A2(:,:) WITH B(:,:)
'HPF$ ALIGN A3(:,:) WITH B(:,:)

because an attributed-form directive that mentions more than one alignee is equivalent to
a series of identical directives, one for each alignee; all alignees must have the same rank.
With this understanding, we will assume below, for the sake of simplifying the description,
that an ALIGN or REALIGN directive has a single alignee.

Each align-source corresponds to one axis of the alignee, and is specified as either
or “¢¥” or a dummy variable:

@,

e Ifit is “:”, then positions along that axis will be spread out across the matching axis
of the align-spec (see below).

o If it is “*”, then that axis is collapsed: positions along that axis make no difference
in determining the corresponding position within the align-target. (Replacing the “+”
with a dummy variable name not used anywhere else in the directive would have the
same effect; “*” is merely a convenience that saves the trouble of inventing a variable
name and makes it clear that no dependence on that dimension is intended.)

e A dummy variable is considered to range over all valid index values for that dimension
of the alignee.

The WITH clause of an ALIGN has the following syntax:
H319 align-with-clause is WITH align-spec

H320 align-spec is align-target [(align-subscript-list) |
or * align-target | (align-subscript-list)]

H321 align-target is object-name
or template-name

H322 align-subscript is int-expr
or align-subscript-use
or subscript-triplet
or *

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4. ALIGN AND REALIGN DIRECTIVES 33

H323 align-subscript-use is [[int-level-two-expr | add-op | align-add-operand
or align-subscript-use add-op int-add-operand

H324 align-add-operand is [int-add-operand * | align-primary
or align-add-operand * int-mult-operand

H325 align-primary is align-dummy
or (align-subscript-use)

H326 int-add-operand is add-operand

H327 int-mult-operand is mult-operand

H328 int-level-two-expr is level-2-expr

Constraint: If the align-spec in an ALIGN directive begins with “x” then every alignee must
be a dummy argument.

Constraint: The align-spec in a REALIGN may not begin with “x”.
Constraint: Each align-dummy may appear at most once in an align-subscript-list.

Constraint: An align-subscript-use expression may contain at most one occurrence of an
align-dummy.

Constraint: An align-dummy may not appear anywhere in the align-spec except where
explicitly permitted to appear by virtue of the grammar shown above. Para-
phrased, one may construct an align-subscript-use by starting with an align-
dummy and then doing additive and multiplicative things to it with any integer
expressions that contain no align-dummy.

Constraint: A subscript in an align-subscript may not contain occurrences of any align-
dummy.

Constraint: An int-add-operand, int-mult-operand, or int-level-two-expr must be of type
integer.

The syntax rules for an align-subscript-use take account of operator precedence issues,
but the basic idea is simple: an align-subscript-use is intended to be a linear function of a
single occurrence of an align-dummy.

For example, the following align-subscript-use expressions are valid, assuming that J,
K, and M are align-dummys and N is not an align-dummy:

J J+1 3-K 2*M N*M 100-3*xM
-J 4] -K+3 M+2**x3 M+N -(4x7+I0R(6,9))*K-(13-5/3)
M*x2 N*(M-N) 2%(J+1) 5-K+3 10000-M*3 2*(3*(K-1)+13)-100

The following expressions are not valid align-subscript-use expressions:

J+J J-J 3xK-2%xK Mx(N-M) 2*J-3*J+J 2*%(3*(K-1)+13)-K
J*J J+K 3/K 2% %M MxK K-3*xM
K-J IOR({J,1) -K/3 M*(24M) M*(M-N) 2%% (2% J-3%J+]J)

34 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

The align-spec must contain exactly as many subscript-triplets as the number of colons
(“:”) appearing in the align-source-list. These are matched up in corresponding left-to-right
order, ignoring, for this purpose, any align-source that is not a colon and any align-subscript
that is not a subscript-triplet. Consider a dimension of the alignee for which a colon appears
as an align-source and let the lower and upper bounds of that array be LA and UA. Let
the corresponding subscript triplet be LT:UT:ST or its equivalent. Then the colon could
be replaced by a new, as-yet-unused dummy variable, say J, and the subscript triplet by
the expression (J-LA)*ST+LT without affecting the meaning of the directive. Moreover,
the axes must conform, which means that

max(0,UA — LA+ 1) = max(0,[(UT — LT +1)/ST))

must be true. (This is entirely analogous to the treatment of array assignment.)

To simplify the remainder of the discussion, we assume that every colon in the align-
source-list has been replaced by new dummy variables in exactly the fashion just described,
and that every “*” in the align-source-list has likewise been replaced by an otherwise unused
dummy variable. For example,

{HPF$ ALIGN A(:,*,K,:,:,*) WITH B(31:,:,K+3,20:100:3)
may be transformed into its equivalent

'HPF$ ALIGN A(I,J,K,L,M,N) WITH B(I-LBOUND(A,1)+31, &
'HPF$ L-LBOUND(A,4)+LBOUND(B,2) ,K+3, (M-LBOUND(A,5)) *3+20)

with the attached requirements

SIZE(A,1) .EQ. UBOUND(B,1)-30
SIZE(A,4) .EQ. SIZE(B,2)
SIZE(A,5) .EQ. (100-20+3)/3

Thus we need consider further only the case where every align-source is a dummy variable
and no align-subscript is a subscript-triplet.

Each dummy variable is considered to range over all valid index values for the cor-
responding dimension of the alignee. Every combination of possible values for the index
variables selects an element of the alignee. The align-spec indicates a corresponding element
(or section) of the align-target with which that element of the alignee should be aligned; this
indication may be a function of the index values, but the nature of this function is syntac-
tically restricted (as discussed above) to linear functions in order to limit the complexity of
the implementation. Each align-dummy variable may appear at most once in the align-spec
and only in certain rigidly prescribed contexts. The result is that each align-subscript ex-
pression may contain at most one align-dummy variable and the expression is constrained
to be a linear function of that variable. (Therefore skew alignments are not possible.)

An asterisk “*” as an align-subscript indicates a replicated representation. Each ele-
ment of the alignee is aligned with every position along that axis of the align-target.

Rationale. It may seem strange to use “x*” to mean both collapsing and replication;
the rationale is that “*” always stands conceptually for a dummy variable that appears
nowhere else in the statement and ranges over the set of indices for the indicated
dimension. Thus, for example,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48

3.4. ALIGN AND REALIGN DIRECTIVES 35

'HPF$ ALIGN A(:) WITH D(:,*)

means that a copy of A is aligned with every column of D, because it is conceptually
equivalent to

for every legitimate index j, align A(:) with D(:,7)
just as
IHPF$ ALIGN A(:,*) WITH D(:)
is conceptually equivalent to
for every legitimate index j, align A(:,5) with D(:)
Note, however, that while HPF syntax allows
'HPF$ ALIGN A(:,*) WITH D(:)
to be written in the alternate form
IHPF$ ALIGN A(:,J) WITH D(:)
it does not allow
'HPF$ ALIGN A(:) WITH D(:,*)
to be written in the alternate form
'HPF$ ALIGN A(:) WITH D(:,J)

because that has another meaning (only a variable appearing in the align-source-list
following the alignee is understood to be an align-dummy, so the current value of the
variable J is used, thus aligning A with a single column of D).

Replication allows an optimizing compiler to arrange to read whichever copy is closest.
(Of course, when a replicated data object is written, all copies must be updated, not
just one copy. Replicated representations are very useful for use as small lookup
tables, where it is much faster to have a copy in each physical processor but without
giving it an extra dimension that is logically unnecessary to the algorithm.) (End of
rationale.)

By applying the transformations given above, all cases of an align-subscript may be
conceptually reduced to either an int-expr (not involving an align-dummy) or an align-
subscript-use and the align-source-list may be reduced to a list of index variables with no “*”
or “:”. An align-subscript-list may then be evaluated for any specific combination of values
for the align-dummy variables simply by evaluating each align-subscript as an expression.
The resulting subscript values must be legitimate subscripts for the align-target. (This
implies that the alignee is not allowed to “wrap around” or “extend past the edges” of an
align-target.) The selected element of the alignee is then considered to be aligned with the

36 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

indicated element of the align-target; more precisely, the selected element of the alignee is
considered to be ultimately aligned with the same object with which the indicated element
of the align-target is currently ultimately aligned (possibly itself).

Once a relationship of ultimate alignment is established, it persists, even if the ultimate
align-target is redistributed, unless and until the alignee is realigned by a REALIGN directive,
which is permissible only if the alignee has the DYNAMIC attribute.

More examples of ALIGN directives:

INTEGER D1(N)

LOGICAL D2(N,N)

REAL, DIMENSION(N,N):: X,A,B,C,AR1,AR2A,P,Q,R,S
'HPF$ ALIGN X(:,*) WITH D1(:)
'HPF$ ALIGN (:,*) WITH Di:: A,B,C,AR1,AR2A
'HPF$ ALIGN WITH D2, DYNAMIC:: P,Q,R,S

Note that, in a alignee-list, the alignees must all have the same rank but need not all have
the same shape; the extents need match only for dimensions that correspond to colons in the
align-source-list. This turns out to be an extremely important convenience; one of the most
common cases in current practice is aligning arrays that match in distributed (“parallel”)
dimensions but may differ in collapsed (“on-processor”) dimensions:

REAL A(3,N), B(4,N), C(43,N), QM
IHPF$ DISTRIBUTE Q(BLOCK)
'HPF$ ALIGN (*,:) WITH Q:: A,B,C

Here there are processors (perhaps N of them) and arrays of different sizes (3, 4, 43) within
each processor are required. As far as HPF is concerned, the numbers 3, 4, and 43 may be
different, because those axes will be collapsed. Thus array elements with indices differing
only along that axis will all be aligned with the same element of Q (and thus be specified
as residing in the same processor).

In the following examples, each directive in the group means the same thing, assuming
that corresponding axis upper and lower bounds match:

ISecond axis of X is collapsed
IHPF$ ALIGN X(:,*) WITH Di(:)
IHPF$ ALIGN X(J,*) WITH D1(J)
'HPF$ ALIGN X(J,K) WITH D1(J)

IReplicated representation along second axis of D3
IHPF$ ALIGN X(:,:) WITH D3(:,*,:)
IHPF$ ALIGN X(J,K) WITH D3(J,*,K)

!Transposing two axes

'HPF$ ALIGN X(J,K) WITH D2(K,J)

'HPF$ ALIGN X(J,:) WITH D2(:,J)

IHPF$ ALIGN X(:,K) WITH D2(K,:)

IBut there isn’t any way to get rid of *both* index variables;

! the subscript-triplet syntax alone cannot express transposition.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

3.5. DYNAMIC DIRECTIVE 37

'Reversing both axes
'HPF$ ALIGN X(J,K) WITH D2(M-J+1,N-K+1)
'HPF$ ALIGN X(:,:) WITH D2(M:1:-1,N:1:-1)

'Simple case

'HPF$ ALIGN X(J,K) WITH D2(J,K)
IHPF$ ALIGN X(:,:) WITH D2(:,:)
'HPF$ ALIGN (J,K) WITH D2(J,K):: X
'HPF$ ALIGN (:,:) WITH D2(:,:):: X
IHPF$ ALIGN WITH D2:: X

3.5 DYNAMIC Directive

The DYNAMIC attribute specifies that an object may be dynamically realigned or redis-
tributed.

H329 dynamic-directive is DYNAMIC alignee-or-distributee-list

H330 alignee-or-distributee is alignee
or distributee

Constraint: An object in COMMON may not be declared DYNAMIC and may not be aligned to
an object (or template) that is DYNAMIC. (To get this kind of effect, Fortran 90
modules must be used instead of COMMON blocks.)

Constraint: An object with the SAVE attribute may not be declared DYNAMIC and may not
be aligned to an object (or template) that is DYNAMIC.

A REALIGN directive may not be applied to an alignee that does not have the DYNAMIC
attribute. A REDISTRIBUTE directive may not be applied to a distributee that does not have
the DYNAMIC attribute.

A DYNAMIC directive may be combined with other directives, with the attributes stated
in any order, consistent with the Fortran 90 attribute syntax.

Examples:

'HPF$ DYNAMIC A,B,C,D,E

IHPF$ DYNAMIC:: A,B,C,D,E

'HPF$ DYNAMIC, ALIGN WITH SNEEZY:: X,Y,Z

IHPF$ ALIGN WITH SNEEZY, DYNAMIC:: X,Y,Z

IHPF$ DYNAMIC, DISTRIBUTE(BLOCK, BLOCK) :: X,Y
IHPF$ DISTRIBUTE(BLOCK, BLOCK), DYNAMIC :: X,Y

The first two examples mean exactly the same thing. The next two examples mean exactly
the same second thing. The last two examples mean exactly the same third thing.
The three directives

'HPF$ TEMPLATE A(64,64),B(64,64),C(64,64),D(64,64)
'HPF$ DISTRIBUTE(BLOCK, BLOCK) ONTO P:: A,B,C,D
'HPF$ DYNAMIC A,B,C,D

may be combined into a single directive as follows:

'HPF$ TEMPLATE, DISTRIBUTE(BLOCK, BLOCK) ONTO P, &
'HPF$ DIMENSION(64,64) ,DYNAMIC :: A,B,C,D

38 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

3.6 Allocatable Arrays and Pointers

A variable with the POINTER or ALLOCATABLE attribute may appear as an alignee in an
ALIGN directive or as a distributee in a DISTRIBUTE directive. Such directives do not take
effect immediately, however; they take effect each time the array is allocated by an ALLOCATE
statement, rather than on entry to the scoping unit. The values of all specification expres-
sions in such a directive are determined once on entry to the scoping unit and may be used
multiple times (or not at all). For example:

SUBROUTINE MILLARD_FILLMORE(N,M)

REAL, ALLOCATABLE, DIMENSION(:) :: A, B
'HPF$ ALIGN B(I) WITH A(I+N)
'HPF$ DISTRIBUTE A(BLOCK(M*2))

N = 43

M=91

ALLOCATE(A(27))

ALLOCATE(B(13))

The values of the expressions N and M*2 on entry to the subprogram are conceptually
retained by the ALIGN and DISTRIBUTE directives for later use at allocation time. When
the array A is allocated, it is distributed with a block size equal to the retained value of
M#*2, not the value 182. When the array B is allocated, it is aligned relative to A according
to the retained value of N, not its new value 43.

Note that it would have been incorrect in the MILLARD FILLMORE example to perform
the two ALLOCATE statements in the opposite order. In general, when an object X is created
it may be aligned to another object Y only if Y has already been created or allocated. The
following example illustrates several related cases.

SUBROUTINE WARREN_HARDING(P,Q)
REAL P(:)

REAL Q(:)

REAL R(SIZE(Q))

REAL, ALLOCATABLE :: S(:),T(:)

IHPF$ ALIGN P(I) WITH T(I) !Nonconforming
'HPF$ ALIGN Q(I) WITH *T(I) !Nonconforming
'HPF$ ALIGN R(I) WITH T(I) !Nonconforming
IHPF$ ALIGN S(I) WITH T(I)
ALLOCATE(S(SIZE(Q))) !Nonconforming
ALLOCATE(T(SIZE(Q)))

The ALIGN directives are not HPF-conforming because the array T has not yet been allocated
at the time that the various alignments must take place. The four cases differ slightly in their
details. The arrays P and Q already exist on entry to the subroutine, but because T is not
yet allocated, one cannot correctly prescribe the alignment of P or describe the alignment of
Q relative to T. (See Section 3.10 for a discussion of prescriptive and descriptive directives.)
The array R is created on subroutine entry and its size can correctly depend on the SIZE
of Q, but the alignment of R cannot be specified in terms of the alignment of T any more
than its size can be specified in terms of the size of T. It is permitted to have an alignment
directive for S in terms of T, because the alignment action does not take place until S is

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

3.6. ALLOCATABLE ARRAYS AND POINTERS 39

allocated; however, the first ALLOCATE statement is nonconforming because S needs to be
aligned but at that point in time T is still unallocated.

If an ALLOCATE statement is immediately followed by REDISTRIBUTE and/or REALIGN
directives, the meaning in principle is that the array is first created with the statically
declared alignment, then immediately remapped. In practice there is an obvious optimiza-
tion: create the array in the processors to which it is about to be remapped, in a single
step. HPF implementors are strongly encouraged to implement this optimization and HPF
programmers are encouraged to rely upon it. Here is an example:

REAL,ALLOCATABLE(:,:) :: TINKER, EVERS
IHPF$ DYNAMIC :: TINKER, EVERS

REAL, POINTER :: CHANCE(:)
'HPF$ DISTRIBUTE(BLOCK) ,DYNAMIC :: CHANCE

READ 6,M,N
ALLOCATE (TINKER (N*M,N*M))

'HPF$ REDISTRIBUTE TINKER(CYCLIC, BLOCK)
ALLOCATE (EVERS(N,N))

'HPF$ REALIGN EVERS(:,:) WITH TINKER(M::M,1::M)
ALLOCATE (CHANCE (10000))

IHPF$ REDISTRIBUTE CHANCE(CYCLIC)

While CHANCE is by default always allocated with a BLOCK distribution, it should be possible
for a compiler to notice that it will immediately be remapped to a CYCLIC distribution.
Similar remarks apply to TINKER and EVERS. (Note that EVERS is mapped in a thinly-
spread-out manner onto TINKER; adjacent elements of EVERS are mapped to elements of
TINKER separated by a stride M. This thinly-spread-out mapping is put in the lower left
corner of TINKER, because EVERS(1,1) is mapped to TINKER(M,1).)

An array pointer may be used in REALIGN and REDISTRIBUTE as an alignee, align-target,
or distributee if and only if it is currently associated with a whole array, not an array section.
One may remap an object by using a pointer as an alignee or distributee only if the object
was created by ALLOCATE but is not an ALLOCATABLE array.

Any directive that remaps an object constitutes an assertion on the part of the program-
mer that the remainder of program execution would be unaffected if all pointers associated
with any portion of the object were instantly to acquire undefined pointer association status,
except for the one pointer, if any, used to indicate the object in the remapping directive.

Advice to implementors. If HPF directives were ever to be absorbed as actual
Fortran statements, the previous paragraph could be written as “Remapping an object
causes all pointers associated with any portion of the object to have undefined pointer
association status, except for the one pointer, if any, used to indicate the object in
the remapping directive.” The more complicated wording here is intended to avoid
any implication that the remapping directives, in the form of structured comment
annotations, have any effect on the execution semantics, as opposed to the execution
speed, of the annotated program.) (End of advice to implementors.)

When an array is allocated, it will be aligned to an existing template if there is an
explicit ALIGN directive for the allocatable variable. If there is no explicit ALIGN directive,
then the array will be ultimately aligned with itself. It is forbidden for any other object

40 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

to be ultimately aligned to an array at the time the array becomes undefined by reason
of deallocation. All this applies regardless of whether the name originally used in the
ALLOCATE statement when the array was created had the ALLOCATABLE attribute or the
POINTER attribute.

3.7 PROCESSORS Directive

The PROCESSORS directive declares one or more rectilinear processor arrangements, specify-
ing for each one its name, its rank (number of dimensions), and the extent in each dimension.
It may appear only in the specification-part of a scoping unit. Every dimension of a proces-
sor arrangement must have nonzero extent; therefore a processor arrangement cannot be
empty.

In the language of section 14.1.2 of the Fortran 90 standard, processor arrangements
are local entities of class (1); therefore a processor arrangement may not have the same
name as a variable, named constant, internal procedure, etc., in the same scoping unit.
Names of processor arrangements obey the same rules for host and use association as other
names in the long list in section 12.1.2.2.1 of the Fortran 90 standard.

If two processor arrangements have the same shape, then corresponding elements of the
two arrangements are understood to refer to the same abstract processor. (It is anticipated
that language-processor-dependent directives provided by some HPF implementations could
overrule the default correspondence of processor arrangements that have the same shape.)

If directives collectively specify that two objects be mapped to the same abstract pro-
cessor at a given instant during the program execution, the intent is that the two objects
be mapped to the same physical processor at that instant.

The intrinsic functions NUMBER_OF _PROCESSORS and PROCESSORS_SHAPE may be used to
inquire about the total number of actual physical processors used to execute the program.
This information may then be used to calculate appropriate sizes for the declared abstract
processor arrangements.

H331 processors-directive is PROCESSORS processors-decl-list

H332 processors-decl is processors-name | (ezplicit-shape-spec-list) |
H333 processors-name is object-name
Examples:

'HPF$ PROCESSORS P(N)

'HPF$ PROCESSORS Q(NUMBER_OF_PROCESSORS()), &
IHPF$ R(8,NUMBER_OF_PROCESSORS()/8)

IHPF$ PROCESSORS BIZARR0(1972:1997,-20:17)

'HPF$ PROCESSORS SCALARPROC

If no shape is specified, then the declared processor arrangement is conceptually scalar.

Rationale. A scalar processor arrangement may be useful as a way of indicating
that certain scalar data should be kept together but need not interact strongly with
distributed data. Depending on the implementation architecture, data distributed
onto such a processor arrangement may reside in a single “control” or “host” processor
(if the machine has one), or may reside in an arbitrarily chosen processor, or may be

® = o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. PROCESSORS DIRECTIVE 41

replicated over all processors. For target architectures that have a set of computational
processors and a separate scalar host computer, a natural implementation is to map
every scalar processor arrangement onto the host processor. For target architectures
that have a set of computational processors but no separate scalar “host” computer,
data mapped to a scalar processor arrangement might be mapped to some arbitrarily
chosen computational processor or replicated onto all computational processors. (End
of rationale.)

An HPF compiler is required to accept any PROCESSORS declaration in which the prod-
uct of the extents of each declared processor arrangement is equal to the number of physical
processors that would be returned by the call NUMBER_OF _PROCESSORS (). It must also accept
all declarations of scalar PROCESSOR arrangements. Other cases may be handled as well,
depending on the implementation.

For compatibility with the Fortran 90 attribute syntax, an optional “::”
inserted. The shape may also be specified with the DIMENSION attribute:

may be

IHPF$ PROCESSORS :: RUBIK(3,3,3)
'HPF$ PROCESSORS, DIMENSION(3,3,3) :: RUBIK

As in Fortran 90, an explicit-shape-spec-list in a processors-decl will override an explicit
DIMENSION attribute:

'HPF$ PROCESSORS, DIMENSION(3,3,3) :: &
'HPF$ RUBIK, RUBIKS_REVENGE(4,4,4), SOMA

Here RUBIKS_REVENGE is 4 X 4 x 4 while RUBIK and SOMA are each 3 x 3 x 3. (By the rules
enunciated above, however, such a statement may not be completely portable because no
HPF language processor is required to handle shapes of total sizes 27 and 64 simultaneously.)

Returning from a subprogram causes all processor arrangements declared local to that
subprogram to become undefined. It is not HPF-conforming for any array or template to be
distributed onto a processor arrangement at the time the processor arrangement becomes
undefined unless at least one of two conditions holds:

e The array or template itself becomes undefined at the same time by virtue of returning
from the subprogram.

e Whenever the subprogram is called, the processor arrangement is always locally de-
fined in the same way, with identical lower bounds, and identical upper bounds.

Rationale. Note that second condition is slightly less stringent than requiring
all expressions to be constant. This allows calls to NUMBER_OF_PROCESSORS or
PROCESSORS_SHAPE to appear without violating the condition. (End of rationale.)

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
processor arrangement, but because the first condition cannot hold for such variables (they
don’t become undefined), the second condition must be observed. This allows COMMON
variables to work properly through the customary strategy of putting identical declarations
in each scoping unit that needs to use them, while allowing the processor arrangements to
which they may be mapped to depend on the value returned by NUMBER_OF _PROCESSORS.

42

SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

Advice to implementors. It may be desirable to have a way for the user to spec-
ify at compile time the number of physical processors on which the program is to
be executed. This might be specified either by a language-processor-dependent di-
rective, for example, or through the programming environment (for example, as a
UNIX command-line argument). Such facilities are beyond the scope of the HPF
specification, but as food for thought we offer the following illustrative hypothetical
examples:

!Declaration for multiprocessor by ABC Corporation

'ABC$ PHYSICAL PROCESSORS(8)

'Declaration for mpp by XYZ Incorporated

1XYZ$ PHYSICAL PROCESSORS(65536)

!Declaration for hypercube machine by PDQ Limited

'PDQ$ PHYSICAL PROCESSORS(2,2,2,2,2,2,2,2,2,2)
!Declaration for two-dimensional grid machine by TLA GmbH
ITLA$ PHYSICAL PROCESSORS(128,64)

10ne of the preceding might affect the following

IHPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())

It may furthermore be desirable to have a way for the user to specify the precise
mapping of the processor arrangement declared in a PROCESSORS statement to the
physical processors of the executing hardware. Again, this might be specified either
by a language-processor-dependent directive or through the programming environment
(for example, as a UNIX command-line argument); such facilities are beyond the scope
of the HPF specification, but as food for thought we offer the following illustrative
hypothetical example:

1PDQ$ PHYSICAL PROCESSORS(2,2,2,2,2,2,2,2,2,2,2,2,2)
'HPF$ PROCESSORS G(8,64,16)
1PDQR$ MACHINE LAYOUT G(:GRAY(0:2),:GRAY(6:11),:BINARY(3:5,12))

This might specify that the first dimension of G should use hypercube axes 0, 1, 2 with
a Gray-code ordering; the second dimension should use hypercube axes 6 through 11
with a Gray-code ordering; and the third dimension should use hypercube axes 3, 4,
5, and 12 with a binary ordering. (End of advice to implementors.)

3.8 TEMPLATE Directive

The TEMPLATE directive declares one or more templates, specifying for each the name, the
rank (number of dimensions), and the extent in each dimension. It must appear in the
specification-part of a scoping unit.

In the language of section 14.1.2 of the Fortran 90 standard, templates are local entities

of class (1); therefore a template may not have the same name as a variable, named constant,
internal procedure, etc., in the same scoping unit. Template names obey the rules for host
and use association as other names in the list in section 12.1.2.2.1 of the Fortran 90 standard.

A template is simply an abstract space of indexed positions; it can be considered as an

“array of nothings” (as compared to an “array of integers,” say). A template may be used
as an abstract align-target that may then be distributed.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. TEMPLATE DIRECTIVE 43

H334 template-directive is TEMPLATE template-decl-list

H335 template-decl is template-name | (explicit-shape-spec-list)]
H336 template-name is object-name

Examples:

'HPF$ TEMPLATE A(N)
'HPF$ TEMPLATE B(N,N), C(N,2%N)
'HPF$ TEMPLATE DOPEY(100,100),SNEEZY(24),GRUMPY(17,3,5)

If the “::” syntax is used, then the declared templates may optionally be distributed
in the same combined-directive. In this case all templates declared by the directive must
have the same rank so that the DISTRIBUTE attribute will be meaningful. The DIMENSION
attribute may also be used.

'HPF$ TEMPLATE, DISTRIBUTE(BLOCK,*) :: &
IHPF$ WHINEY (64,64) ,MOPEY(128,128)
'HPF$ TEMPLATE, DIMENSION(91,91) :: BORED,WHEEZY,PERKY

Templates are useful in the particular situation where one must align several arrays
relative to one another but there is no need to declare a single array that spans the entire
index space of interest. For example, one might want four N x N arrays aligned to the four
corners of a template of size (N + 1) x (N + 1):

'HPF$ TEMPLATE, DISTRIBUTE(BLOCK, BLOCK) :: EARTH(N+1,N+1)
REAL, DIMENSION(N,N) :: NW, NE, SW, SE

'HPF$ ALIGN NW(I,J) WITH EARTH(I , J)

'HPF$ ALIGN NE(I,J) WITH EARTH(I ,J+1)

'HPF$ ALIGN SW(I,J) WITH EARTH(I+1, J)

'HPF$ ALIGN SE(I,J) WITH EARTH(I+1,J+1)

Templates may also be useful in making assertions about the mapping of dummy arguments
(see Section 3.10).

Unlike arrays, templates cannot be in COMMON. So two templates declared in different
scoping units will always be distinct, even if they are given the same name. The only way
for two program units to refer to the same template is to declare the template in a module
that is then used by the two program units.

Templates are not passed through the subprogram argument interface. The template
to which a dummy argument is aligned is always distinct from the template to which the
actual argument is aligned, though it may be a copy (see Section 3.9). On exit from a
subprogram, an HPF implementation arranges that the actual argument is aligned with the
same template with which it was aligned before the call.

Returning from a subprogram causes all templates declared local to that subprogram
to become undefined. It is not HPF-conforming for any variable to be aligned to a template
at the time the template becomes undefined unless at least one of two conditions holds:

e The variable itself becomes undefined at the same time by virtue of returning from
the subprogram.

44 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

e Whenever the subprogram is called, the template is always locally defined in the same
way, with identical lower bounds, identical upper bounds, and identical distribution
information (if any) onto identically defined processor arrangements (see Section 3.7).

Rationale. (Note that this second condition is slightly less stringent than requir-
ing all expressions to be constant. This allows calls to NUMBER_OF _PROCESSORS
or PROCESSORS_SHAPE to appear without violating the condition.) (End of ratio-
nale.)

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
template, but because the first condition cannot hold for such variable (they don’t become
undefined), the second condition must be observed.

3.9 INHERIT Directive

The INHERIT directive specifies that a dummy argument should be aligned to a copy of the
template of the corresponding actual argument in the same way that the actual argument
is aligned.

H337 inherit-directive is INHERIT dummy-argument-name-list

The INHERIT directive causes the named subprogram dummy arguments to have the
INHERIT attribute. Only dummy arguments may have the INHERIT attribute. An object
may not have both the INHERIT attribute and the ALIGN attribute. The INHERIT directive
may only appear in a specification-part of a scoping unit.

The INHERIT attribute specifies that the template for a dummy argument should be
inherited, by making a copy of the template of the actual argument. Moreover, the INHERIT
attribute implies a default distribution of DISTRIBUTE * ONTO *. Note that this default
distribution is not part of Subset HPF; if a program uses INHERIT, it must override the
default distribution with an explicit mapping directive in order to conform to Subset HPF.
See Section 3.10 for further exposition. If an explicit mapping directive appears for the
dummy argument, thereby overriding the default distribution, then the actual argument
must be a whole array or a regular array section; it may not be an expression of any other
form

If none of the attributes INHERIT, ALIGN, and DISTRIBUTE is specified explicitly
for a dummy argument, then the template of the dummy argument has the same shape
as the dummy itself and the dummy argument is aligned to its template by the identity
mapping.

An INHERIT directive may be combined with other directives, with the attributes stated
in any order, more or less consistent with Fortran 90 attribute syntax.

Consider the following example:

REAL DOUGH(100)
'HPF$ DISTRIBUTE DOUGH(BLOCK(10))
CALL PROBATE(DOUGH(7:23:2))

SUBROUTINE PROBATE (BREAD)
REAL BREAD(9)

'S

o =N & o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

37

38

39

40

41

42

43

44

45

46

47

48

3.10. ALIGNMENT, DISTRIBUTION, AND SUBPROGRAM INTERFACES 45

{HPF$ INHERIT BREAD

The inherited template of BREAD has shape [100]; element BREAD(I) is aligned with
element 5 + 2*I of the inherited template and, since BREAD does not appear in a prescriptive
DISTRIBUTE directive, it has a BLOCK(10) distribution.

3.10 Alignment, Distribution, and Subprogram Interfaces

Mapping directives may be applied to dummy arguments in the same manner as for other
variables; such directives may also appear in interface blocks. However, there are addi-
tional options that may be used only with dummy arguments: asterisks, indicating that a
specification is descriptive rather than prescriptive, and the INHERIT attribute.

First, consider the rules for the caller. If there is an explicit interface for the called
subprogram and that interface contains mapping directives (whether prescriptive or de-
scriptive) for the dummy argument in question, the actual argument will be remapped if
necessary to conform to the directives in the explicit interface. The template of the dummy
will then be as declared in the interface. If there is no explicit interface, then actual argu-
ments that are whole arrays or regular array sections may be remapped at the discretion of
the language processor; the values of other expressions may be mapped in any manner at
the discretion of the language processor.

Rationale. The caller is required to treat descriptive directives in an explicit interface
as if they were prescriptive so that the directives in the interface may be an exact
textual copy of the directives appearing in the subprogram. If the caller enforces
descriptive directives as if they were prescriptive, then the descriptive directives in
the called routine will in fact be correct descriptions. (End of rationale.)

In order to describe explicitly the distribution of a dummy argument, the template
that is subject to distribution must be determined. A dummy argument always has a fresh
template to which it is ultimately aligned; this template is constructed in one of three ways:

e If the dummy argument appears explicitly as an alignee in an ALIGN directive, its
template is specified by the align-target.

e If the dummy argument is not explicitly aligned and does not have the INHERIT
attribute, then the template has the same shape and bounds as the dummy argument;
this is called the natural template for the dummy.

¢ If the dummy argument is not explicitly aligned and does have the INHERIT attribute,
then the template is “inherited” from the actual argument according to the following
rules:

— If the actual argument is a whole array, the template of the dummy is a copy of
the template with which the actual argument is ultimately aligned.

— If the actual argument is a regular array section of array A, then the template
of the dummy is a copy of the template with which A is ultimately aligned.

— If the actual argument is any other expression, the shape and distribution of the
template may be chosen arbitrarily by the language processor (and therefore the
programmer cannot know anything a priori about its distribution).

46 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

In all of these cases, we say that the dummy has an inherited template rather than a
natural template.

Consider the following example:

LOGICAL FRUG(128),TWIST(128)

IHPF$ PROCESSORS DANCE_FLOOR(16)

'HPF$ DISTRIBUTE (BLOCK) ONTO DANCE_FLOOR: :FRUG,TWIST
CALL TERPSICHORE(FRUG(1:40:3),TWIST(1:40:3))

The two array sections FRUG(1:40:3) and TWIST(1:40:3) are mapped onto abstract pro-
cessors in the same manner:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 25
10 34
19
4 28
13 37
22
7 31
16 40

However, the subroutine TERPSICHORE will view them in different ways because it
inherits the template for the second dummy but not the first:

SUBROUTINE TERPSICHORE(FOXTROT,TANGO)
LOGICAL FOXTROT(:),TANGO(:)
'HPF$ INHERIT TANGO

Therefore the template of TANGO is a copy of the 128 element template of the whole array
TWIST. The template is mapped like this:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 17 | 256 1 33 (41|49 |57 | 65|73 |81 |89 |97 |105]113(121
10 {18 | 26 | 34 | 42 (50 [58 | 66 | 74 | 82 | 90 | 98 |106|114| 122
1111912713543 (51 (59|67 75|83 {91 |99 107115123
12 20 |1 28136 |44 |62 (60| 68| 76 | 84 | 92 [100]108]|116 (124
13121 |29 | 3745|5361 |69 |77 (85|93 |101|109(117|125
14 |1 22|30 |38 |46 | 54|62 | 70|78 |86 | 94 |102]110(118|126
1512313113947 |55 63|71 |79 |87 (95 [103|111|119|127
16 124 132140 | 48 | 56 [64 | 72 | 80 | 88 | 96 [104 112|120 128

O N ||| Ww | N[=

TANGO(I) is aligned with element 3*I-2 of the template. But the template of FOXTROT has
the same size 14 as FOXTROT itself. The actual argument, FRUG(1:40:3) is mapped to the
16 processors in this manner:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

3.10. ALIGNMENT, DISTRIBUTION, AND SUBPROGRAM INTERFACES 47

Abstract Elements
processor of FRUG

1 1,2,3

2 4,5, 6

3 7,8

4 9,10, 11

5 12,13, 14
6-16 none

It would be reasonable to understand the mapping of the template of FOXTROT to
coincide with the layout of the array section:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9
4 12
7
2 10
5 13
8
3 11
6 14

but we shall see that this is not permitted in HPF. Within subroutine TERPSICHORE it would
be correct to make the descriptive assertion

'HPF$ DISTRIBUTE TANGO *(BLOCK)
but it would not be correct to declare
'HPF$ DISTRIBUTE FOXTROT *(BLOCK) !Nonconforming

Each of these asserts that the template of the specified dummy argument is already dis-
tributed BLOCK on entry to the subroutine. The shape of the template for TANGO is [128],
inherited (copied) from the array TWIST, whose section was passed as the corresponding
actual argument, and that template does indeed have a BLOCK distribution. But the shape
of the template for FOXTROT is [14]; the layout of the elements of the actual argument
FRUG(1:40:3) (3 on the first processor, 3 on the second processor, 2 on the third processor,
3 on the fourth processor, ...) cannot properly be described as a BLOCK distribution of a
length-14 template, so the DISTRIBUTE declaration for FOXTROT shown above would indeed
be erroneous.

On the other hand, the layout of FRUG(1:40:3) can be described in terms of an align-
ment to a length-128 template which can be described by an explicit TEMPLATE declaration
(see Section 3.8), so the directives

'HPF$ PROCESSORS DANCE_FLOOR(16)
'HPF$ TEMPLATE, DISTRIBUTE(BLOCK) ONTO DANCE_FLOOR: :GURF(128)
'HPF$ ALIGN FOXTROT(J) WITH *GURF(3*J-2)

48 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

could be correctly included in TERPSICHORE to describe the layout of FOXTROT on entry to
the subroutine without using an inherited template.

The simplest case is the use of the INHERIT attribute alone. If a dummy argument
has the INHERIT attribute and no explicit ALIGN or DISTRIBUTE attribute, the net effect is
to tell the compiler to leave the data exactly where it is—and not attempt to remap the
actual argument. The dummy argument will be mapped in exactly the same manner as the
actual argument; the subprogram must be compiled in such a way as to work correctly no
matter how the actual argument may be mapped onto abstract processors. (It has this effect
because an INHERIT attribute on a dummy D implicitly specifies the default distribution

'HPF$ DISTRIBUTE D * ONTO *

rather than allowing the compiler to choose any distribution it pleases for the dummy
argument. The meaning of this implied DISTRIBUTE directive is discussed below.)

In the general case of a DISTRIBUTE directive, where every distributee is a dummy
argument, either the dist-format-clause or the dist-target, or both, may begin with, or
consist of, an asterisk.

e Without an asterisk, a dist-format-clause or dist-target is prescriptive; the clause de-
scribes a distribution and constitutes a request of the language processor to make it
so. This might entail remapping or copying the actual argument at run time in order
to satisfy the requested distribution for the dummy.

e Starting with an asterisk, a dist-format-clause or dist-target is descriptive; the clause
describes a distribution and constitutes an assertion to the language processor that
it will already be so. The programmer claims that, for every call to the subprogram,
the actual argument will be such that the stated distribution already describes the
mapping of that data. (The intent is that if the argument is passed by reference, no
movement of the data will be necessary at run time. All this is under the assumption
that the language processor has observed all other directives. While a conforming
HPF language processor is not required to obey mapping directives, it should handle
descriptive directives with the understanding that their implied assertions are relative
to this assumption.)

e Consisting of only an asterisk, a dist-format-clause or dist-target is transcriptive; the
clause says nothing about the distribution but constitutes a request of the language
processor to copy that aspect of the distribution from that of the actual argument.
(The intent is that if the argument is passed by reference, no movement of the data
will be necessary at run time.) Note that the transcriptive case, whether explicit or
implicit, is not included in Subset HPF.

It is possible that, in a single DISTRIBUTE directive, the dist-format-clause might have an
asterisk but not the dist-target, or vice versa.

These examples of DISTRIBUTE directives for dummy arguments illustrate the various
combinations:

'HPF$ DISTRIBUTE URANIA (CYCLIC) ONTO GALILEO

The language processor should do whatever it takes to cause URANIA to have a CYCLIC
distribution on the processor arrangement GALILED.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.10. ALIGNMENT, DISTRIBUTION, AND SUBPROGRAM INTERFACES 49

'HPF$ DISTRIBUTE POLYHYMNIA * ONTO ELVIS

The language processor should do whatever it takes to cause POLYHYMNIA to be distributed
onto the processor arrangement ELVIS, using whatever distribution format it currently has
(which might be on some other processor arrangement). (You can’t say this in Subset HPF.)

'HPF$ DISTRIBUTE THALIA *(CYCLIC) ONTO FLIP

The language processor should do whatever it takes to cause THALIA to have a CYCLIC
distribution on the processor arrangement FLIP; THALIA already has a cyclic distribution,
though it might be on some other processor arrangement.

'HPF$ DISTRIBUTE CALLIOPE (CYCLIC) ONTO *HOMER

The language processor should do whatever it takes to cause CALLIOPE to have a CYCLIC
distribution on the processor arrangement HOMER; CALLIOPE is already distributed onto
HOMER, though it might be with some other distribution format.

IHPF$ DISTRIBUTE MELPOMENE * ONTO *EURIPIDES

MELPOMENE is asserted to already be distributed onto EURIPIDES; use whatever distribution
format the actual argument had so, if possible, no data movement should occur. (You can’t
say this in Subset HPF.)

'HPF$ DISTRIBUTE CLIO *(CYCLIC) ONTO *HERODOTUS

CLIO is asserted to already be distributed CYCLIC onto HERODOTUS so, if possible, no data
movement should occur.

'HPF$ DISTRIBUTE EUTERPE (CYCLIC) ONTO *

The language processor should do whatever it takes to cause EUTERPE to have a CYCLIC
distribution onto whatever processor arrangement the actual was distributed onto. (You
can’t say this in Subset HPF.)

'HPF$ DISTRIBUTE ERATO * ONTO *

The mapping of ERATO should not be changed from that of the actual argument. (You can’t
say this in Subset HPF.)

'HPF$ DISTRIBUTE ARTHUR_MURRAY *(CYCLIC) ONTO *

ARTHUR_MURRAY is asserted to already be distributed CYCLIC onto whatever processor ar-
rangement the actual argument was distributed onto, and no data movement should occur.
(You can’t say this in Subset HPF.)

Please note that DISTRIBUTE ERATO * ONTO * does not mean the same thing as

'HPF$ DISTRIBUTE ERATO *(*) ONTO *

This latter means: ERATO is asserted to already be distributed * (that is, on-processor) onto
whatever processor arrangement the actual was distributed onto. Note that the processor
arrangement is necessarily scalar in this case.

One may omit either the dist-format-clause or the dist-target-clause for a dummy ar-
gument. If such a clause is omitted and the dummy argument has the INHERIT attribute,
then the compiler must handle the directive as if * or ONTO * had been specified explicitly.
If such a clause is omitted and the dummy does not have the INHERIT attribute, then the
compiler may choose the distribution format or a target processor arrangement arbitrarily.
Examples:

50 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

IHPF$ DISTRIBUTE WHEEL_OF_FORTUNE *(CYCLIC)

WHEEL_OF_FORTUNE is asserted to already be CYCLIC. As long as it is kept CYCLIC, it may
be remapped it onto some other processor arrangement, but there is no reason to.

'HPF$ DISTRIBUTE ONTO *TV :: DAVID_LETTERMAN

DAVID_LETTERMAN is asserted to already be distributed on TV in some fashion. The distri-
bution format may be changed as long as DAVID_LETTERMAN is kept on TV. (Note that this
declaration must be made in attributed form; the statement form

'HPF$ DISTRIBUTE DAVID_LETTERMAN ONTO *TV INonconforming

does not conform to the syntax for a DISTRIBUTE directive.)

The asterisk convention allows the programmer to make claims about the pre-existing
distribution of a dummy based on knowledge of the mapping of the actual argument. But
what claims may the programmer correctly make?

If the dummy argument has an inherited template, then the subprogram may contain
directives corresponding to the directives describing the actual argument. Sometimes it is
necessary, as an alternative, to introduce an explicit named template (using a TEMPLATE
directive) rather than inheriting a template; an example of this (GURF) appears above, near
the beginning of this section.

If the dummy argument has a natural template (no INHERIT attribute) then things
are more complicated. In certain situations the programmer is justified in inferring a pre-
existing distribution for the natural template from the distribution of the actual’s template,
that is, the template that would have been inherited if the INHERIT attribute had been
specified. In all these situations, the actual argument must be a whole array or array
section, and the template of the actual must be coextensive with the array along any axes
having a distribution format other than “x.”

If the actual argument is a whole array, then the pre-existing distribution of the natural
template of the dummy is identical to that of the actual argument.

If the actual argument is an array section, then, from each section-subscript and the
distribution format for the corresponding axis of the array being subscripted, one constructs
an axis distribution format for the corresponding axis of the natural template:

o If the section-subscript is scalar and the array axis is collapsed (as by an ALIGN direc-
tive) then no entry should appear in the distribution for the natural template.

e If the section-subscript is a subscript-triplet and the array axis is collapsed (as by an
ALIGN directive), then * should appear in the distribution for the natural template.

e If the section-subscript is scalar and the array axis corresponds to an actual template
axis distributed *, then no entry should appear in the distribution for the natural
template.

o If the section-subscriptis a subscript-triplet and the array axis corresponds to an actual
template axis distributed *, then * should appear in the distribution for the natural
template.

o If the section-subscript is a subscript-triplet l:u:s and the array axis corresponds to
an actual template axis distributed BLOCK(n) (which might have been specified as

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

3.10. ALIGNMENT, DISTRIBUTION, AND SUBPROGRAM INTERFACES 51

simply BLOCK, but there will be some n that describes the resulting distribution) and
LB is the lower bound for that axis of the array, then BLOCK(n/s) should appear in
the distribution for the natural template, provided that s divides n evenly and that
l—LB<s.

o If the section-subscript is a subscript-triplet l:u:s and the array axis corresponds to
an actual template axis distributed CYCLIC(n) (which might have been specified as
simply CYCLIC, in which case n = 1) and LB is the lower bound for that axis of the
array, then CYCLIC(n/s) should appear in the distribution for the natural template,
provided that s divides n evenly and that | — LB < s.

If the situation of interest is not described by the cases listed above, no assertion about the
distribution of the natural template of a dummy is HPF-conforming.

Here is a typical example of the use of this feature. The main program has a two-
dimensional array TROGGS, which is to be processed by a subroutine one column at a time.
(Perhaps processing the entire array at once would require prohibitive amounts of temporary
space.) Each column is to be distributed across many processors.

REAL TROGGS(1024,473)
'HPF$ DISTRIBUTE TROGGS (BLOCK, *)
DO J=1,473
CALL WILD_THING(TROGGS(:,J))
END DO

Each column of TROGGS has a BLOCK distribution. The rules listed above justify the pro-
grammer in saying so:

SUBROUTINE WILD_THING(GROOVY)
REAL GROOVY(:)
IHPF$ DISTRIBUTE GROOVY *(BLOCK) ONTQO *

Consider now the ALIGN directive. The presence or absence of an asterisk at the start
of an align-spec has the same meaning as in a dist-format-clause: it specifies whether the
ALIGN directive is descriptive or prescriptive, respectively.

If an align-spec that does not begin with * is applied to a dummy argument, the
meaning is that the dummy argument will be forced to have the specified alignment on
entry to the subprogram (which may require temporarily remapping the data of the actual
argument or a copy thereof).

Note that a dummy argument may also be used as an align-target.

SUBROUTINE NICHOLAS(TSAR,CZAR)
REAL, DIMENSION(1918) :: TSAR,CZAR
'HPF$ INHERIT :: TSAR
'HPF$ ALIGN WITH TSAR :: CZAR

In this example the first dummy argument, TSAR, is allowed to remain aligned with the
corresponding actual argument, while the second dummy argument, CZAR, is forced to be
aligned with the first dummy argument. If the two actual arguments are already aligned,
no remapping of the data will be required at run time; but the subprogram will operate
correctly even if the actual arguments are not already aligned, at the cost of remapping the
data for the second dummy argument at run time.

52 SECTION 3. DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

If the align-spec begins with “*#”, then the alignee must be a dummy argument and
the directive must be ALIGN and not REALIGN. The “*” indicates that the ALIGN directive
constitutes a guarantee on the part of the programmer that, on entry to the subprogram,
the indicated alignment will already be satisfied by the dummy argument, without any
action to remap it required at run time. For example:

SUBROUTINE GRUNGE (PLUNGE,SPONGE)
REAL PLUNGE(1000) ,SPONGE(1000)
'HPF$ ALIGN PLUNGE WITH *SPONGE

This asserts that, for every J in the range 1:1000, on entry to subroutine GRUNGE, the
directives in the program have specified that PLUNGE(J) is currently mapped to the same
abstract processor as SPONGE(J). (The intent is that if the language processor has in fact
honored the directives, then no interprocessor communication will be required to achieve
the specified alignment.)

The alignment of a general expression is up to the language processor and therefore
unpredictable by the programmer; but the alignment of whole arrays and array sections is
predictable. In the code fragment

REAL FIJI(5000),SQUEEGEE(2000)
IHPF$ ALIGN SQUEEGEE(K) WITH FIJI(2*K)
CALL GRUNGE(FIJI(2002:4000:2),SQUEEGEE(1001:))

it is true that every element of the array section SQUEEGEE(1001:) is aligned with the corre-
sponding element of the array section FIJI(2002:4000:2), so the claim made in subroutine
GRUNGE is satisfied by this particular call.

It is not permitted to say simply “ALIGN WITH *”; an align-target must follow the
asterisk. (The proper way to say “accept any alignment” is INHERIT.)

If a dummy argument has no explicit ALIGN or DISTRIBUTE attribute, then the compiler
provides an implicit alignment and distribution specification, one that could have been
described explicitly without any “assertion asterisks”.

The rules on the interaction of the REALIGN and REDISTRIBUTE directives with a sub-
program argument interface are:

1. A dummy argument may be declared DYNAMIC. However, it is subject to the general
restrictions concerning the use of the name of an array to stand for its associated
template.

2. If an array or any section thereof is accessible by two or more paths, it is not HPF-
conforming to remap it through any of those paths. For example, if an array is passed
as an actual argument, it is forbidden to realign that array, or to redistribute an array
or template to which it was aligned at the time of the call, until the subprogram has
returned from the call. This prevents nasty aliasing problems. An example:

MODULE FOO
REAL A(10,10)

'HPF$ DYNAMIC :: A
END

PROGRAM MAIN

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

a3

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

'S

®» N o o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

3.10. ALIGNMENT, DISTRIBUTION, AND SUBPROGRAM INTERFACES 53

USE FO0OO0
CALL SUB(A(1:5,3:9))
END

SUBROUTINE SUB(B)
USE FO0O
REAL B(:,:)

'HPF$ REDISTRIBUTE A !nonconforming
END

Situations such as this are forbidden, for the same reasons that an assignment to A
at the statement marked “nonconforming” would also be forbidden. In general, in
any situation where assignment to a variable would be nonconforming by reason of
aliasing, remapping of that variable by an explicit REALIGN or REDISTRIBUTE directive
is also forbidden.

An overriding principle is that any mapping or remapping of arguments is not visible
to the caller. This is true whether such remapping is implicit (in order to conform to
prescriptive directives, which may themselves be explicit or implicit) or explicit (specified
by REALIGN or REDISTRIBUTE directives). When the subprogram returns and the caller
resumes execution, all objects accessible to the caller after the call are mapped exactly as
they were before the call. It is not possible for a subprogram to change the mapping of any
object in a manner visible to its caller, not even by means of REALIGN and REDISTRIBUTE.

Advice to implementors. There are several implementation strategies for achieving
this behavior. For example, one may be able to use a copy-in/copy-out strategy for
arguments that require remapping on subprogram entry. Alternatively, one may be
able to remap the actual argument on entry and remap again on exit to restore the
original mapping. (End of advice to implementors.)

