'S

w =N o o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

36

37

38

39

40

41

42

43

44

45

46

47

48

Section 2

High Performance Fortran
Terms and Concepts

This Section presents some rationale for the selection of Fortran 90 as HPF’s base language,
HPF’s model of computation, and the high level syntax and lexical rules for HPF directives.

2.1 Fortran 90

The facilities for array computation in Fortran 90 make it particularly suitable for program-
ming scientific and engineering numerical calculations on high performance computers. In-
deed, some of these facilities are already supported in compilers from a number of vendors.
The introductory overview in the Fortran 90 standard states:

Operations for processing whole arrays and subarrays (array sections) are
included in the language for two principal reasons: (1) these features provide a
more concise and higher level language that will allow programmers more quickly
and reliably to develop and maintain scientific/engineering applications, and
(2) these features can significantly facilitate optimization of array operations on
many computer architectures.

— Fortran Standard (page xiii)

Other features of Fortran 90 that improve upon the features provided in FORTRAN 77
include:

e Additional storage classes of objects. The new storage classes such as allocatable,
automatic, and assumed-shape objects as well as the pointer facility of Fortran 90 add
significantly to those of FORTRAN 77 and should reduce the use of FORTRAN 77
constructs that can lead to less than full computational speed on high performance
computers, such as EQUIVALENCE between array objects, COMMON definitions with non-
identical array definitions across subprograms, and array reshaping transformations
between actual and dummy arguments.

e Support for a modular programming style. The module facilities of Fortran 90 enable
the use of data abstractions in software design. These facilities support the specifica-
tion of modules, including user-defined data types and structures, defined operators
on those types, and generic procedures for implementing common algorithms to be

10 SECTION 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

used on a variety of data structures. In addition to modules, the definition of in-
terface blocks enables the application programmer to specify subprogram interfaces
explicitly, allowing a high quality compiler to use the information specified to provide
better checking and optimization at the interface to other subprograms.

e Additional intrinsic procedures. Fortran 90 includes the definition of a large number of
new intrinsic procedures. Many of these support mathematical operations on arrays,
including the construction and transformation of arrays. Also, there are numerical
accuracy intrinsic procedures designed to support numerical programming, and bit
manipulation intrinsic procedures derived from MIL-STD-1753.

HPF conforms to Fortran 90 except for additional restrictions placed on the use of
storage and sequence association. Because of the effort involved in producing a full Fortran
90 compiler, HPF is defined at two levels: Subset HPF and full HPF. Subset HPF is a
subset of Fortran 90 with a subset of the HPF extensions. HPF is Fortran 90 (with the
restrictions noted in Section 7) with all of the HPF language features.

2.2 The HPF Model

An important goal of HPF is to achieve code portability across a variety of parallel ma-
chines. This requires not only that HPF programs compile on all target machines, but also
that a highly-efficient HPF program on one parallel machine be able to achieve reason-
ably high efficiency on another parallel machine with a comparable number of processors.
Otherwise, the effort spent by a programmer to achieve high performance on one machine
would be wasted when the HPF code is ported to another machine. Although SIMD proces-
sor arrays, MIMD shared-memory machines, and MIMD distributed-memory machines use
very different low-level primitives, there is broad similarity with respect to the fundamental
factors that affect the performance of parallel programs on these machines. Thus, achieving
high efficiency across different parallel machines with the same high level HPF program is a
feasible goal. While describing a full execution model is beyond the scope of this language
specification, we focus here on two fundamental factors and show how HPF relates to them:

e The parallelism inherent in a computation; and
e The communication inherent in a computation.

The quantitative cost associated with each of these factors is machine dependent; vendors
are strongly encouraged to publish estimates of these costs in their system documentation.
Note that, like any execution model, these may not reflect all of the factors relevant to
performance on a particular architecture.

The parallelism in a computation can be expressed in HPF by the following constructs:

e Fortran 90 array expressions and assignment (including masked assignment in the
WHERE statement);

e Array intrinsics, including both the Fortran 90 intrinsics and the new intrinsic func-
tions;

e The FORALL statement; and

e The INDEPENDENT assertion on DO loops.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

W N

(5]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

2.2. THE HPF MODEL 11

These features allow a user to specify explicitly potential data parallelism in a machine-
independent fashion. The purpose of this section is to clarify some of the performance
implications of these features, particularly when they are combined with the HPF data
distribution features. In addition, EXTRINSIC procedures provide an escape mechanism in
HPF to allow the use of efficient machine-specific primitives by using another programming
paradigm. Because the resulting model of computation is inherently outside the realm of
data-parallel programming, we will not discuss this feature further in this section.

A compiler may choose not to exploit information about parallelism, for example be-
cause of lack of resources or excessive overhead. In addition, some compilers may detect
parallelism in sequential code by use of dependence analysis. This document does not
discuss such techniques.

The interprocessor or inter-memory data communication that occurs during the execu-
tion of an HPF program is partially determined by the HPF data distribution directives in
Section 3. The compiler will determine the actual mapping of data objects to the physical
machine and will be guided in this by the directives. The actual mapping and the com-
putation specified by the program determine the needed actual communication, and the
compiler will generate the code required to perform it. In general, if two data references
in an expression or assignment are mapped to different processors or memory regions then
communication is required to bring them together. The following examples illustrate how
this may occur.

Clearly, there is a tradeoff between parallelism and communication. If all the data are
mapped to one processor’s local memory, then a sequential computation with no commu-
nication is possible, although the memory of one processor may not suffice to store all the
program’s data. Alternatively, mapping data to multiple processors’ local memories may
permit computational parallelism but also may introduce communications overhead. The
optimal resolution of such conflicts is very dependent on the architecture and underlying
system software.

The following examples illustrate simple cases of communication, parallelism, and their
interaction. Note that the examples are chosen for illustration and do not necessarily reflect
efficient data layouts or computational methods for the program fragments shown. Rather,
the intent is to derive lower bounds on the amount of communication that are needed to
implement the given computations as they are written. This gives some indication of the
maximum possible efficiency of the computations on any parallel machine. A particular
system may not achieve this efficiency due to analysis limitations, or may disregard these
bounds if other factors determine the performance of the code.

2.2.1 Simple Communication Examples

The following examples illustrate the communication requirements of scalar assignment
statements. The purpose is to illustrate the implications of data distribution specifica-
tions on communication requirements for parallel execution. The explanations given do not
necessarily reflect the actual compilation process.

Consider the following statements:

REAL a(1000), b(1000), <c(1000), x(500), y(0:501)
INTEGER inx(1000)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b, inx
'HPF$ DISTRIBUTE (CYCLIC) ONTO procs :: c

12 SECTION 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

'HPF$ ALIGN x(i) WITH y(i+1)

a(i) = b(i)

! Assignment 1
x(i) = y(@i+1) ! Assignment 2
a(i) = c(i) ! Assignment 3
a(i) = a(i-1) + a(i) + a(i+1) ! Assignment 4
c(i) = ¢(i-1) + c(i) + c(i+1) ! Assignment 5
x(i) = y(@i) ! Assignment 6
a(i) = a(inx(i)) + b(inx(i)) ! Assignment 7

In this example, the PROCESSORS directive specifies a linear arrangement of 10 pro-
cessors. The DISTRIBUTE directives recommend to the compiler that the arrays a, b, and
inx should be distributed among the 10 processors with blocks of 100 contiguous elements
per processor. The array c is to be cyclically distributed among the processors with c(1),
c(11), ..., c(991) mapped onto processor procs(1); c(2), c(12), ..., c(992) mapped
onto processor procs(2); and so on. The complete mapping of arrays x and y onto the
processors is not specified, but their relative alignment is indicated by the ALIGN directive.
The ALIGN statement causes x(i) and y(i+1) to be stored on the same processor for all
values of i, regardless of the actual distribution chosen by the compiler for x and y (y(0)
and y(1) are not aligned with any element of x). The PROCESSORS, DISTRIBUTE, and ALIGN
directives are discussed in detail in Section 3.

In Assignment 1 (a(i) = b(i)), the identical distribution of a and b ensures that for
all i, a(i) and b(i) are mapped to the same processor. Therefore, the statement requires
no communication.

In Assignment 2 (x(i) = y(i+1)), there is no inherent communication. In this case,
the relative alignment of the two arrays matches the assignment statement for any actual
distribution of the arrays.

Although Assignment 3 (a(i) = c(i)) looks very similar to the first assignment, the
communication requirements are very different due to the different distributions of a and
c. Array elements a(i) and c(i) are mapped to the same processor for only 10% of the
possible values of i. (This can be seen by inspecting the definitions of BLOCK and CYCLIC
in Section 3.) The elements are located on the same processor if and only if [(i —1)/100] =
(¢ — 1) mod 10. For example, the assignment involves no inherent communication (i.e.,
both a(i) and c(i) are on the same processor) if ¢ = 1 or ¢ = 102, but does require
communication if ¢ = 2.

In Assignment 4 (a(i) = a(i-1) + a(i) + a(i+1)), the references to array a are all
on the same processor for about 98% of the possible values of i. The exceptions to this are
i = 100k for any k = 1,2,...,9, (when a(i) and a(i-1) are on procs(k) and a(i+1) is
on procs(k+1)) and i = 100k + 1 for any k = 1,2,...,9 (when a(i) and a(i+1) are on
procs(k+1) and a(i-1) is on procs(k)). Thus, except for “boundary” elements on each
processor, this statement requires no inherent communication.

Assignment 5, c(i) = c(i-1) + c(i) + c(i+1), while superficially similar to Assign-
ment 4, has very different communication behavior. Because the distribution of ¢ is CYCLIC
rather than BLOCK, the three references c(i), c(i-1), and c(i+1) are mapped to three
distinct processors for any value of i. Therefore, this statement requires communication for
at least two of the right-hand side references, regardless of the implementation strategy.

The final two assignments have very limited information regarding the communication
requirements. In Assignment 6 (x(i) = y(i)) the only information available is that x(i)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

2.2. THE HPF MODEL 13

and y(i+1) are on the same processor; this has no logical consequences for the relationship
between x(i) and y(i). Thus, nothing can be said regarding communication in the state-
ment without further information. In Assignment 7 (a(i) = a(inx(i)) + b(inx(i))),
it can be proved that a(inx(i)) and b(inx(i)) are always mapped to the same proces-
sor. Similarly, it is easy to deduce that a(i) and inx(i) are mapped together. Without
knowledge of the values stored in inx, however, the relation between a(i) and a(inx(i))
is unknown, as is the relationship between a(i) and b(inx(i)).

The inherent communication for a sequence of assignment statements is the union of
the communication requirements for the individual statements. An array element used in
several statements contributes to the total inherent (i.e. minimal) communication only once
(assuming an optimizing compiler that eliminates common subexpressions), unless the array
element may have been changed since its last use. For example, consider the code below:

REAL a(1000), b(1000), c(1000)
IHPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (CYCLIC) ONTO procs :: a, b, ¢

a(i)

= b(i+2) ! Statement 1
b(i) = c(i+3) | Statement 2
b(i+2) = 2 * a(i+2) ! Statement 3
c(i) = a(i+1) + b(i+2) + c(i+3) ! Statement 4

Statements 1 and 2 each require one array element to be communicated for any value of i.
Statement 3 has no inherent communication. To simplify the discussion, assume that all
four statements are executed on the processor storing the array element being assigned. !
Then, for Statement 4:

e Element a(i+1) induces communication, since it is not local and was not communi-
cated earlier;

e Element b(i+2) induces communication, since it is nonlocal and has changed since
its last use; and

¢ Element ¢ (i+3) does not induce new communication, since it was used in statement 2
and not changed since.

Thus, the minimum total inherent communication in this program fragment is four
array elements. It is important to note that this is a minimum. Some compilation strategies
may produce communication for element ¢(i+3) in the last statement.

2.2.2 Aggregate Communication Examples

The following examples illustrate the communication implications of some more complex
constructs. The purpose is to show how communication can be quantified, but again the
explanations do not necessarily reflect the actual compilation process. It is important to
note that the communication requirement for each statement in this section is estimated
without considering the surrounding context.

Consider the following statements:

!This is an optimal strategy for this example, although not for all programs.

14 SECTION 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

REAL a(1000), b(1000), c(1000)
IHPF$ PROCESSORS procs(10)
{HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b
'HPF$ DISTRIBUTE (CYCLIC) ONTO procs :: c

FORALL (

i =1:1000) a(i) = b(i) ! Forall 1
FORALL (i = 1:1000) a(i) = c(i) ! Forall 2
I Forall 3
FORALL (i = 2:999) a(i) = a(i-1) + a(i) + a(i+l)
! Forall 4
FORALL (i = 2:999) c(i) = c(i-1) + c(i) + c(i+1)

The FORALL statement conceptually evaluates its right-hand side for all values of its in-
dexes, then assigns to the left-hand side for all index values. These semantics allow parallel
execution. Section 4 describes the FORALL statement in detail. The aggregate communica-
tion requirements of these statements follow directly from the inherent communication of
the corresponding examples in Section 2.2.1.

In Forall 1, there is no inherent communication for any value of i; therefore, there is
no communication for the aggregate construct.

In Forall 2, 90% of the references to ¢ (i) are mapped to a processor different from that
containing the corresponding a(i). The aggregate communication must therefore transfer
900 array elements. Furthermore, analysis based on the definitions of BLOCK and CYCLIC
shows that to update the values of a owned locally, each processor requires data from every
other processor. For example, procs(1) must somehow receive:

e Elements {2,12,22,...,92} from procs(2);
e Elements {3,13,23,...,93} from procs(3); and
e So on for the other processors.

This produces an all-to-all communication pattern similar to the pattern for transposing a
2-dimensional array with certain distributions. The details of implementing such a pattern
are very machine dependent and beyond the scope of this standard.

In Forall 3, the array references are all mapped to the same processor except for the
first and last values of i on each processor. The aggregate communication requirement
is therefore two array elements per processor (except procs(1) and procs(10)), or 18
elements total. Each processor must receive values from its left and right neighbors (again,
except for procs(1) and procs(10)). This leads to a simple shift communication pattern
(without wraparound).

In Forall 4, the update of each array element requires two off-processor values, each
from a different processor. The total communication volume is therefore 1996 array ele-
ments. Further analysis reveals that all elements on processor procs (k) require elements
from procs(k © 1) and procs(k & 1) (MODULO(k - 2, 10) + 1 and MODULO(k, 10) +
1 respectively, so called “clock arithmetic”). This leads to a massive shift communication
pattern (with wraparound).

The aggregate communication for other constructs can be computed similarly. Iterative
constructs generate the sum of the inherent communication for nested statements, while

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.2. THE HPF MODEL 15

conditionals require at least the communication needed by the conditional branch that is
taken. Repeated communication of the same array elements in any construct is not necessary
unless the values of those elements may change.

Array expressions require an analysis similar to that for FORALL statements. In these
cases, the inherent communication for each element of the result can be analyzed and the
aggregate formed on that basis. The following statements have the same communication
requirements as the above FORALL statements:

REAL a(1000), b(1000), <(1000)
IHPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b
'HPF$ DISTRIBUTE (CYCLIC) ONTO procs :: c

| Assignment 1 (equivalent to Forall 1)
a(:) = b(:)

! Assignment 2 (equivalent to Forall 2)
a(1:1000) = c(1:1000)

! Assignment 3 (equivalent to Forall 3)
a(2:999) = a(1:998) + a(2:999) + a(3:1000)

! Assignment 4 (equivalent to Forall 4)
c(2:999) = c(1:998) + c(2:999) + c(3:1000)

Some array intrinsics have inherent communication costs as well. For example, consider:

REAL a(1000), b(1000), scalar
IHPF$ PROCESSORS procs(10)
IHPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b

! Intrinsic 1
scalar = SUM(a)

! Intrinsic 2
a = SPREAD(b(1), DIM=1, NCOPIES=1000)

! Intrinsic 3
a = CSHIFT(a,-1) + a + CSHIFT(a,1)

In general, the inherent communication derives from the mathematical definition of the
function. For example, the inherent communication for computing SUM is one element for
each processor storing part of the operand, minus one. (Further communication may be
needed to store the result.) The optimal communication pattern is very machine-specific.
Similar remarks apply to any accumulation operation; prefix and suffix intrinsics may require
a larger volume based on the distribution. The SPREAD operation above requires a broadcast
from procs(1) to all processors, which may take advantage of available hardware. The
CSHIFT operations produce a shift communication pattern (with wraparound). This list of
examples illustrating array intrinsics is not meant to be exhaustive.

16 SECTION 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

There are other examples of situations in which nonaligned data must be communi-
cated:

REAL a(1000), c(100,100), d(100,100)
'HPF$ PROCESSORS procs(10)
|HPF$ ALIGN c(i,j) WITH d(j,i)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a
'HPF$ DISTRIBUTE (BLOCK,*) ONTO procs :: d

a(1:200) = a(1:200) + a(2:400:2)
c=c¢c+d

In the first assignment, the use of different strides in the two references to a on the right-
hand side will cause communication. The second assignment statement requires either a
transpose of ¢ or d or some complex communication pattern overlapping computation and
communication.

A REALIGN directive may change the location of every element of the array. This will
cause communication of all elements that change their home processor; in some compilation
schemes, data will also be moved to new locations on the same processor. The communica-
tion volume is the same as an array assignment from an array with the original alignment
to another array with the new alignment. The REDISTRIBUTE statement changes the dis-
tribution for every array aligned to the operand of the REDISTRIBUTE. Therefore, its cost
is similar to the cost of a REALIGN on many arrays simultaneously. Compiler analysis may
sometimes detect that data movement is not needed because an array has no values that
could be accessed; such analysis and the resulting optimizations are beyond the scope of
this document.

2.2.3 Interaction of Communication and Parallelism

The examples in Sections 2.2.1 and 2.2.2 were chosen so that parallelism and communication
were not in conflict. The purpose of this section is to show cases where there is a tradeoff.
The best implementation of all these examples will be machine dependent. As in the other
sections, these examples do not necessarily reflect good programming practice.

Analyzing communication as in Sections 2.2.1 and 2.2.2 does not completely determine
a program’s performance. Consider the code:

REAL x(100), y(100)
'HPF$ PROCESSORS procs(10)
IHPF$ DISTRIBUTE (BLOCK) ONTO procs:: x, ¥

DO k = 3, 98

x(k) = y&) * (x(k-1) + x(k) + x(k+1)) / 3.0

y&) = x(k) + (y(k-1) + y(&-2) + y(k+1) + y(k+2)) / 4.0
ENDDO

Only a few values need be communicated at the boundary of each processor. However,
every iteration of the DO loop uses data computed on previous iterations for the references
x(k-1), y(k-1), and y(k-2). Therefore, although there is little inherent communication,
the computation will run sequentially.

In contrast, consider the following code:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

43

44

45

46

47

2.2. THE HPF MODEL 17

REAL x(100), y(100), z(100)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs:: x, y, 2

'HPF$ INDEPENDENT
DO k = 3, 98
x(k) = y(k) * (z(k-1) + z(k) + z(k+1)) / 3.0
y&k) = x(k) + (z(k-1) + z(k-2) + z(k+1) + z(k+2)) / 4.0
ENDDO

The INDEPENDENT directive asserts to the compiler that the iterations of the DO loop are
completely independent of each other and none of the data accessed in the loop by an
iteration is written by any other iteration.? Therefore, the loop has substantial potential
parallelism and is likely to execute much faster than the last example. Section 4 describes
the INDEPENDENT directive in more detail.

Assignment of work to processors may itself require communication. Consider the
following code:

INTEGER indx(1000), inv(1000)
IHPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: indx, inv

FORALL (j = 1:1000) inv(indx(j)) = j**2

(Here, indx must be a permutation of the integers from 1 to 1000 in order for the FORALL
to be well-defined.) Since the processor owning element inv(indx(j)) depends on the
values stored in indx, some data must be communicated simply to determine where the
results will be stored. Two possible implementations of this are:

e Each processor calculates the squares for elements of indx that it owns and performs
a scatter operation to communicate those values to the elements of inv where the
final results are stored.

e Each processor determines the owner of inv(indx(j)) for all elements of indx that
it owns and notifies those processors. Each processor then computes the right-hand
side for all elements for which it received notification.

In either case, nontrivial communication must be performed to distribute the work among
processors. The optimal sharing scheme, its implementation, and its cost will be highly
architecture dependent.

The parallelism in a section of code may conflict with the distribution of data, thus
limiting the overall performance. Consider the following code:

REAL a(1000,1000), b(1000,1000)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK,*) ONTO procs :: a, b

DO i = 2, 1000
a(i,:) = a(di,:) - (b(i,:)**2)/a(i-1,:)
ENDDO

2Many compilers would detect this without the assertion. What cases of implicit parallelism are detected
is highly compiler dependent and beyond the scope of this document.

18 SECTION 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

Here, each iteration of the DO loop has a potential parallelism of 1000. However, all elements
of a(i,:) and b(i,:) are located on the same processor. Therefore, exploitation of any
of the potential parallelism will require scattering the data to other processors. (This is
independent of the inherent communication required for the reference to a(i-1,:).) There
are several implementation strategies available for the overall computation.

e Redistribute a and b before the DO loop to achieve the effect of
'HPF$ DISTRIBUTE (*,BLOCK) ONTO procs :: a, b

Redistribute back to the original distributions after the DO loop. This allows parallel
updates of columns of a, at the cost of two all-to-all communication operations.

e Group the columns of a into blocks, then operate on the blocks separately. This
strategy can produce a pipelined effect, allowing substantial parallelism. It sends
many small messages to the neighboring processor rather than one large message.

o Execute the vector operations sequentially. This results in totally sequential operation,
but avoids overhead from process start-up and small messages.

This list is not exhaustive. The optimal strategy will be highly machine dependent.

There is often a choice regarding where the result of an intermediate array expression
will be stored, and different choices may lead to different communication performance.
A straightforward implementation of the following code, for example, would require two
transposition (communication) operations:

REAL, DIMENSION(100,100) :: x, y, z
'HPF$ ALIGN WITH x :: y, z

x = TRANSPOSE(y) + TRANSPOSE(z) + x

Despite two occurrences of the TRANSPOSE intrinsic, an optimizing compiler might implement
this as:

REAL, DIMENSION(100,100) :: x, y, z, t1
'HPF$ ALIGN WITH x :: y, z, ti

tl =y + z
x = TRANSPOSE(t1) + x

with only one use of transposition.
Choosing an intermediate storage location is sometimes more complex, however. Con-
sider the following code:

REAL a(1000), b(1000), c(1000), d(1000)
INTEGER ix(1000)

IHPF$ PROCESSORS procs(10)

'HPF$ DISTRIBUTE (CYCLIC) ONTO procs:: a, b, ¢, d, ix

a = b(ix) + c(ix) + d(ix)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

48

2.3. SYNTAX OF DIRECTIVES 19

and the following implementation strategies:

e Evaluate each element of the right-hand side on the processor where it will be stored.
This strategy potentially requires fetching three values (the elements of b, ¢, and d)
for each element computed. It always uses the maximum parallelism of the machine.

e Evaluate each element of the right-hand side on the processor where the corresponding
elements of b(ix), c(ix), and d(ix) are stored. Ignoring set-up costs, this potentially
communicates one result for each element computed. If the values of ix are evenly
distributed, then it also uses the maximum machine parallelism.

On the basis of communication, the second strategy is better by a factor of 3; adding
additional terms can make this factor arbitrarily large. However, that analysis does not
consider parallel execution costs. If there are repeated values in ix, the second strategy
may produce poor load balance. (For example, consider the case of ix(i) = 10 for all i.)
Minimizing this cost is a compiler optimization and is outside the scope of this language
specification.

2.3 Syntax of Directives

HPF directives are consistent with Fortran 90 syntax in the following sense: if any HPF
directive were to be adopted as part of a future Fortran standard, the only change necessary
to convert an HPF program would be to remove the comment character and directive prefix
from each directive.

H201 hpf-directive-line is directive-origin hpf-directive
H202 directive-origin is 'HPF$

or CHPF$

or *HPF$
H203 hpf-directive is specification-directive

or erecutable-directive

H204 specification-directive is processors-directive
or align-directive
or distribute-directive
or dynamic-directive
or inherit-directive
or template-directive
or combined-directive
or sequence-directive

H205 ezecutable-directive is realign-directive
or redistribute-directive
or independent-directive

Constraint: An hpf-directive-line cannot be commentary following another statement on
the same line.

Constraint: A specification-directive may appear only where a declaration-construct may
appear.

20 SECTION 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

Constraint: An ezecutable-directive may appear only where an executable-construct may
appear.

Constraint: An hpf-directive-line follows the rules of either Fortran 90 free form (3.3.1.1)
or fixed form (3.3.2.1) comment lines, depending on the source form of the
surrounding Fortran 90 source form in that program unit. (3.3)

An hpf-directive conforms to the rules for blanks in free source form (3.3.1), even in
an HPF program otherwise in fixed source form. However an HPF-conforming processor
is not required to diagnose extra or missing blanks in an HPF directive. Note that, due
to Fortran 90 rules, the directive-origin may only be the characters 'HPF$ in free source
form. HPF directives may be continued, in which case each continued line also begins with
a directive-origin. No statements may be interspersed within a continued HPF-directive.
HPF directive lines must not appear within a continued statement. HPF directive lines
may include trailing commentary.

An example of an HPF directive continuation in free source form is:

IHPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) &
IHPF$ WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

An example of an HPF directive continuation in fixed source form follows. Observe
that column 6 must be blank, except when signifying continuation.

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K)
'HPF$*WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

This example shows an HPF directive continuation which is “universal” in that it can
be treated as either fixed source form or free source form. Note that the “&” in the first
line is in column 73.

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) &
'HPF$&WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

