Lo

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Section 1

Overview

This document specifies the form and establishes the interpretation of programs expressed
in the High Performance Fortran (HPF) language. It is designed as a set of extensions and
modifications to the established International Standard for Fortran (ISO/IEC 1539:1991(E)
and ANSI X3.198-1992), informally referred to as “Fortran 90” ([12]). Many sections of this
document reference related sections of the Fortran 90 standard to facilitate its incorporation
into new standards, should ISO and national standards committees deem that desirable.

1.1 Goals and Scope of High Performance Fortran

The goals of HPF, as defined at an early HPFF meeting, were to define language extensions
and feature selection for Fortran supporting:

o Data parallel programming (defined as single threaded, global name space, and loosely
synchronous parallel computation);

e Top performance on MIMD and SIMD computers with non-uniform memory access
costs (while not impeding performance on other machines); and

e Code tuning for various architectures.

The FORALL construct and several new intrinsic functions were designed primarily to meet
the first goal, while the data distribution features and some other directives are targeted
toward the second goal. Extrinsic procedures allow access to low-level programming in
support of the third goal, although performance tuning using the other features is also
possible.

A number of subsidiary goals were also established:

e Deviate minimally from other standards, particularly those for FORTRAN 77 and
Fortran 90;

Keep the resulting language simple;

Define open interfaces to other languages and programming styles;

Provide input to future standards activities for Fortran and C;

¢ Encourage input from the high performance computing community through widely
distributed language drafts;



2 SECTION 1. OVERVIEW

e Produce validation criteria;

e Present the final proposals in November 1992 and accept the final draft in January
1993;

e Make compiler availability feasible in the near term with demonstrated performance
on an HPF test suite; and

e Leave an evolutionary path for research.

These goals were quite aggressive when they were adopted in March 1992, and led to a
number of compromises in the final language. In particular, support for explicit MIMD
computation, message-passing, and synchronization was limited due to the difficulty in
forming a consensus among the participants. We hope that future efforts will address these
important issues.

1.2 Fortran 90 Binding

HPF is an extension of Fortran 90. The array calculation and dynamic storage allocation
features of Fortran 90 make it a natural base for HPF. The new HPF language features fall
into four categories with respect to Fortran 90:

New directives;

New language syntax;

Library routines; and

Language restrictions.

The new directives are structured comments that suggest implementation strategies
or assert facts about a program to the compiler. They may affect the efficiency of the
computation performed, but do not change the value computed by the program. The form
of the HPF directives has been chosen so that a future Fortran standard may choose to
include these features as full statements in the language by deleting the initial comment
header.

A few new language features, including the FORALL statement and a few intrinsic func-
tions, are also defined. They were made first-class language constructs rather than com-
ments because they can affect the interpretation of a program, for example by returning
a value used in an expression. These are proposed as direct extensions to the Fortran 90
syntax and interpretation.

The HPF library of computational functions defines a standard interface to routines
that have proven valuable for high performance computing including additional reduction
functions, combining scatter functions, prefix and suffix functions, and sorting functions.

Full support of Fortran sequence and storage association is not compatible with the
data distribution features of HPF. Some restrictions on the use of sequence and storage
association are defined. These restrictions may in turn require insertion of HPF directives
into standard Fortran 90 programs in order to preserve correct semantics.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

1.3. NEW FEATURES IN HIGH PERFORMANCE FORTRAN 3

]

1.3 New Features in High Performance Fortran

HPF extends Fortran 90 in several areas, including:

e Data distribution features;

Data parallel execution features;

Extended intrinsic functions and standard library;

EXTRINSIC procedures;
e Changes in sequence and storage association.

In addition, a subset of HPF suitable for earlier implementation is defined. The following
subsections give short overviews of these areas.

In addition to the features that became part of HPF, the HPFF committee consid-
ered and rejected many proposals. Suggestions that the committee considered particularly
promising for future language efforts to pursue have been collected in a companion docu-
ment, the HPF Journal of Development [14]. Section 1.7 below gives an overview of this
document.

1.3.1 Data Distribution Features

Modern parallel and sequential architectures attain their highest speed when the data ac-
cessed exhibits locality of reference. The sequential storage order implied by FORTRAN 77
and Fortran 90 often conflicts with the locality demanded by the architecture. To avoid this,
HPF includes features which describe the collocation of data (ALIGN) and the partitioning
of data among memory regions or abstract processors (DISTRIBUTE). Compilers may inter-
pret these annotations to improve storage allocation for data, subject to the constraint that
semantically every data object has a single value at any point in the program. In all cases,
users should expect the compiler to arrange the computation to minimize communication
while retaining parallelism. Section 3 describes the distribution features.

1.3.2 Data Parallel Execution Features

To express parallel computation explicitly, HPF offers a new statement and a new directive.
The FORALL construct expresses assignments to sections of arrays; it is similar in many ways
to the array assignment of Fortran 90, but allows more general sections and computations to
be specified. The INDEPENDENT directive asserts that the statements in a particular section
of code do not exhibit any sequentializing dependences; when properly used, it does not
change the semantics of the construct, but may provide more information to the language
processor to allow optimizations. Section 4 describes these features.

1.3.3 Extended Intrinsic Functions and Standard Library

Experience with massively parallel machines has identified several basic operations that
are very valuable in parallel algorithm design. The Fortran 90 array intrinsics anticipated
some of these, but not all. HPF adds several classes of parallel operations to the language
definition as intrinsic functions and as standard library functions. In addition, several
system inquiry functions useful for controlling parallel execution are provided in HPF.
Section 5 describes these functions and subroutines.



4 SECTION 1. OVERVIEW

1.3.4 Extrinsic Procedures

Because HPF is designed as a high-level, machine-independent language, there are certain
operations that are difficult or impossible to express directly. For example, many applica-
tions benefit from finely-tuned systolic communications on certain machines; HPF’s global
address space does not express this well. Extrinsic procedures define an explicit interface to
procedures written in other paradigms, such as explicit message-passing subroutine libraries.
Section 6 describes this interface. Annex A gives a specific interface for HPF_LOCAL rou-
tines and for Fortran 90.

1.3.5 Sequence and Storage Association

A goal of HPF was to maintain compatibility with Fortran 90. Full support of Fortran
sequence and storage association, however, is not compatible with the goal of high perfor-
mance through distribution of data in HPF. Some forms of associating subprogram dummy
arguments with actual values make assumptions about the sequence of values in physical
memory which may be incompatible with data distribution. Certain forms of EQUIVALENCE
statements are recognized as requiring a modified storage association paradigm. In both
cases, HPF provides a directive to assert that full sequence and storage association for af-
fected variables must be maintained. In the absence of such explicit directives, reliance on
the properties of association is not allowed. An optimizing compiler may then choose to
distribute any variables across processor memories in order to improve performance. To
protect program correctness, a given implementation should provide a mechanism to ensure
that all such default optimization decisions are consistent across an entire program. Sec-
tion 7 describes the restrictions and directives related to storage and sequence association.

1.4 Fortran 90 and Subset HPF

An important goal for HPF is early compiler availability. Because full Fortran 90 compilers
may not be available in a timely fashion on all platforms and implementation of some HPF
features is more complex than others, we have defined Subset HPF. Users who are most
concerned about multi-machine portability may choose to stay within this subset initially.
This subset language includes the Fortran 90 array language, dynamic storage allocation,
and long names as well as the MIL-STD-1753 features ([27]), which are already commonly
used with FORTRAN 77 programs. The subset does not include features of Fortran 90, such
as generic functions and free source form, that are not closely related to high performance
on parallel machines. Section 8 describes Subset HPF.

1.5 Notation

This document uses the same notation as the Fortran 90 standard. In particular, the same
conventions are used for syntax rules. BNF descriptions of language features are given in
the style used in the Fortran 90 standard. To distinguish HPF syntax rules from Fortran 90
rules, each HPF rule has an identifying number of the form Hsnn, where s is a one-digit
major section number and nn is a one- or two-digit sequence number. The syntax rules
are also collected in Annex ??. Nonterminals not defined in this document are defined in
the Fortran 90 standard. Also note that certain technical terms such as “storage unit” are
defined by the Fortran 90 standard; Annex ?? identifies the Fortran 90 rules defining these
nonterminals. References in parentheses in the text refer to the Fortran 90 standard.

© o N o

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

1.6. HPF-CONFORMING AND SUBSET-CONFORMING 5

Rationale. Throughout this document, material explaining the rationale for including
features, choosing particular feature definitions, and other decisions is set off in this
format. Readers interested in the language definition only may wish to skip these
sections, while readers interested in language design may want to read them more
carefully. (End of rationale.)

Advice to users. Throughout this document, material that is primarily commentary
for users (including most examples of syntax and interpretation) is set off in this
format. Readers interested in technical material only may wish to skip these sections,
while readers wanting a more basic approach may want to read them more carefully.
(End of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary for implementors is set off in this format. Readers interested in the
language definition only may wish to skip these sections, while readers interested in
compiler implementation may want to read them more carefully. (End of advice to
implementors.)

1.6 HPF-Conforming and Subset-Conforming

An executable program is HPF-conforming if it uses only those forms and relationships
described in this document and if the program has an interpretation according to this
document. A program unit is HPF-conforming if it can be included in an executable program
in a manner that allows the executable program to be HPF-conforming.

An executable program is Subset-conforming if it uses only the forms and relationships
described in this document for Subset HPF (Section 8) and if it has an interpretation
under the constraints of Subset HPF. A program unit is Subset-conforming if it can be
included in an executable program in a manner that allows the executable program to be
Subset-conforming.

(The above definitions were adapted from the Fortran 90 standard.)

1.7 Journal of Development

The HPFF committee considered many proposals, and rejected some that had merit due
to external factors (such as lack of agreement in committee). The most promising of these
features were collected in the HPF Journal of Development [14]. This section summarizes
some of the more detailed proposals.

1.7.1 VIEW Directive

One proposal suggested a directive for relating processor arrangements to each other. This
ability is extremely useful in certain applications which use interacting one- and two-
dimensional arrays, and has applications for problems consisting of several disjoint data-
parallel parts. This feature was carefully discussed, and the committee felt that it was
important; however, questions of its implementation complexity eventually caused its rejec-
tion.



6 SECTION 1. OVERVIEW

i.7.2 Nested WHERE Statements

One proposal suggested allowing WHERE statements and constructs to be nested within each
other. The committee felt that the feature was useful, but declined to include it in HPF
because they felt it was too large a change to make to the base language.

1.7.3 EXECUTE-ON-HOME and LOCAL-ACCESS Directives

One proposal suggested a method for specifying the processor(s) to execute a given state-
ment. The same proposal suggested a method for identifying data references which would
be mapped to the same processor. In essence, both methods added new directives similar
to INDEPENDENT (see Section 4.4). Like INDEPENDENT, these directives provided information
that a compiler might find useful in optimizing the program. Although the committee felt
this was an important area to investigate, the proposals were rejected due to technical flaws.

1.7.4 Elemental Reference of Pure Procedures

One proposal suggested allowing elemental invocation of pure procedures (see Section 4.3)
under certain conditions. The essential idea was that functions with scalar arguments which
could be guaranteed to have no side effects could be invoked elementally, as are intrinsic
functions such as SIN. The proposal was rejected in a narrow vote, in part because it was seen
as too large a change to Fortran 90. After its rejection, the committee voted unanimously
to recommend that the ANSI X3J3 committee consider user-defined elemental functions for
a future version of Fortran.

1.7.5 Parallel I/O

HPF is primarily designed to obtain high performance on massively parallel computers.
Such massively parallel machines also need massively parallel input and output. Accord-
ingly, there were three major proposals to include explicitly parallel I/O features in HPF,
as well as several minor variations on the same theme. After much debate, HPFF voted not
to include I/O extensions in the first version of HPF. Arguments for this position included:

e The diversity of current parallel 1/O systems does not suggest any portable abstraction
of I/O useful in a language model.

e Fortran I/0 is already highly expressive.

e The HPF compiler can optimize the I/O when writing distributed arrays without any
extensions to the source language.

e The management of distributed files (and their implementation) is a matter for the
operating system, not the language.

Moreover the current lack of extensions does not limit features that may be added by system
vendors. In particular:

e Vendors are allowed to implement any I/O extensions to the language they may wish.
Indeed this would be impossible to prevent. There are simply no special I/O mecha-
nisms mandated by HPF.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

1.8. ORGANIZATION OF THIS DOCUMENT 7

e The HPF run-time system may use whatever facilities the operating system provides
for accessing “high performance” files, though the HPF language contains no 1/0O
extensions that specifically describe such access.

1.8 Organization of this Document
Section 1, this section, presents an overview of HPF.

Section 2 sets out some basics of HPF, including:

e The reasons for using Fortran 90 as a base language;
e A partial cost model for HPF programs; and

e Lexical rules for HPF directives.
Section 3 describes the facilities for data partitioning in HPF. These include:

o The distribution model;
e Features for distributing array elements among processors;
e Features for aligning array elements which are accessed together; and

e Features for mapping ALLOCATABLE arrays, pointers, and dummy procedure argu-
ments.

Section 4 describes the explicitly parallel statement types in HPF. These include:

e The single- and multi-statement forms of the FORALL parallel construct;
e Pure functions callable from within FORALL; and

e The INDEPENDENT assertion for loops.
Section 5 describes new standard functions available in HPF. These include:

e Inquiry intrinsic functions to check system and data partitioning status;

e New computational intrinsic functions and extensions to existing intrinsic functions;
and

e A standard library of computational and inquiry functions.

Section 6 describes extrinsic procedures in HPF, particularly the EXTRINSIC procedure
interface. The material in Annex A builds on this interface.

Section 7 describes the treatment of sequence and storage association in HPF. This includes:

e Limitations on storage association of explicitly distributed variables; and

e Limitations on sequence association of explicitly distributed variables.



8 SECTION 1. OVERVIEW

Section 8 describes Subset HPF, which may be implemented more quickly than full HPF.
This includes:

e A list of Fortran 90 features that are in Subset HPF'
e A list of HPF features that are not in Subset HPF; and

o Discussions of why these decisions were made.

Annex A describes a binding for a local execution model for use as an EXTRINSIC option.
The model implements the Single Program Multiple Data programming paradigm, which
has wide (but not universal) applicability.

Annex ?? collects the grammar and syntactic constraints for HPF defined in the main text
of this document.

Annex ?? cross-references the BNF terminals and nonterminals defined and used in this
document.

The Bibliography provides references to various HPF sources:
e Fortran standards;
e Fortran implementations;
e Books about Fortran 90; and

e Technical papers.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48



