Editorial

ROBERT G. BABB 11
Oregon Graduate Institute, USA

RON H. PERROTT
The Queen’s University of Belfast, UK

Welcome to the first issue of Scientific Program-
ming. In the coming decade, as the world comes to
rely more and more on programming to solve real-
world engineering, scientific, and social problems,
the importance of new languages, tools, environ-
ments, and compiler technology to support scien-
tific programmers will increase rapidly. By focus-
ing attention on practical aspects of this emerging
technology, we hope that Scientific Programming
will become mandatory reading not only for all
researchers in this area, but for practicing scien-
tific programmers as well.

The emergence of vector/parallel supercompu-
ters has created a wealth of new challenges and
opportunities for scientific programmers. Cur-
rently, however, reports on new developments in
scientific programming are scattered across a wide
variety of journals devoted primarily to broader
subjects, or in difficult to obtain conference and
workshop proceedings.

The main objectives of this Scientific Program-
ming are to provide an international forum for

1) the dissemination of state-of-the-art infor-
mation in the field of scientific program-
ming,

2) the promotion of software technology trans-
fer to the wider programming community.

International in scope, this journal brings to-
gether for the first time areas that until now have
been thought of as distinct, and more closely re-
lated to their parent discipline (parallel process-

Received June 1992

© 1992 by John Wiley & Sons. Inc.
Scientific Programming, Vol. 1, pp. 1-10 (1992)
CCC 1058-9244/92/010001-10504.00

ing, software engineering, compiler technology,
specific application areas, etc.) than to scientific
programming. Papers within these related disci-
plines will be chosen for publication only if they
deal primarily with practical issues of program-
ming of general interest to scientific programmers
and scientific programming researchers.

We view Scientific Programming mainly as a
“‘bridge’” journal between modern computer sci-
ence and software engineering technology and the
world of scientific computing. Articles giving ac-
tual experience and results of use of new ideas,
tools, and languages are particularly welcome.
Scientific Programming provides a meeting
ground for research in and practical experience
with software engineering environments, tools,
languages, and paradigms aimed specifically at
supporting scientific and engineering computing.
Coverage also includes vectorizing/parallelizing/
optimizing compiler techniques to support emerg-
ing supercomputer architectures, as well as imple-
mentation techniques applicable across several
areas of scientific programming. We do not intend
to focus only on scientific programming issues on
supercomputers or parallel processors. Several of
today’s high-speed RISC-based scientific work-
stations are faster than the ‘‘supercomputers’ of
just a few years ago, and ways to program scien-
tific applications on workstations and networks of
these workstations are also areas of special inter-
est.

RATIONALE

For many vears now, it has been apparent that
substantial and innovative research and develop-
ment into software technology has been, and is
being performed, in computer science depart-

1

2 EDITORIAL

ments and institutes throughout the world; while
scientists and engineers have accumulated direct
and relevant experience in applying a wide range
of computers to large scale and computationally
demanding applications.

Gradually amongst computer scientists a con-
sensus has been established as to what is required
in a tool to implement particular software applica-
tions and when are the best circumstances in
which to use a particular tool. A simple historical
analogy is with the development of sequential pro-
gramming languages; it took a decade to identify
what constructs are the most suitable to promote
the concept of abstract programming and what
are the best ways of structuring the data to facili-
tate that concept. It took perhaps even longer for
that technology to percolate into the wider com-
munity of professional programmers.

Since the conquest of sequential computing,
the computer science community has turned its
attention to other demanding and increasingly dif-
ficult aspects of computing, for example: how to
build a software environment to help the user with
the complete programming process. from specifi-
cation through design etc. to debugging: how to
handle the various types of parallelism that were
emerging in commercial and experimental sys-
tems, etc. In the latter case each type of parallel-
ism has given rise to different techniques and dif-
ferent primitives with which to master and control
the potential power of parallel computing for the
benefit of ever demanding applications.

At the same time as these computer science de-
velopments were taking place, application scien-
tists were enlisting the help of the latest hardware
machines and devices. However, the software
tools that were being used, in most cases, left
much to be desired. This resulted from a lack of
cross fertilization and understanding between
computer scientists and application scientists.
Scientists appreciate the necessity of using the
best tools in the advancement of their discipline—
this has been a basic underlying principle in all
branches of science. In addition, scientists and
engineers have built up a substantial armory in
techniques for the construction of applications.

Years of experience and experimentation have
been accumulated in the design and implementa-
tion of software tools and techniques which can
benefit the wider programming community. Only
if this knowledge is transferred into the working
environment of scientists and engineers and uti-
lized in the promotion of their disciplines will suc-
cess and progress in many application areas be

possible. At the same time scientists and engineers
have accumulated substantial and relevant expe-
rience which can benefit the work of the computer
science community. An interaction and exchange
of experiences between these two groups would be
to their mutual advantage. Scientific Program-
ming will provide a forum for this to take place.

TYPES OF CONTRIBUTIONS SOLICITED

Full-length Research Papers

We are looking for readable. high-quality papers
that address the key issues underlying current re-
search and development related to programming
support for science and engineering. For example,
a paper on theoretical advances in scientific com-
piler technology would probably be more suitable
for a journal in computer science or engineering.
while a paper on embodying that technology in a
compiler, or practical experience reports on use of
that technology would be quite appropriate for
Scientific Programming.

Full-length Practical Experience Papers

We are interested in publishing papers based on
““real’” experiences in all areas of scientific pro-
gramming technology, especially papers that at-
tempt to draw wider conclusions from those expe-
riences. If specific performance results are
presented, guidelines such as those shown in Fig-
ure 1 should be taken into consideration.

Full-length Tutorial Papers

Scientific Programming has already developed ar-
eas of considerable technical complexity within it.
Even the developers and implementers of the rele-
vant technology can no longer be expected to
maintain expertise and awareness of the state-of-
the-art in all of these areas. Hence, we would like
to encourage submission of in-depth, accessible
tutorials within the scope of Scientific Program-
ming.

Short Communications

» Letters to the Editor

These will not be peer-reviewed, but we will at-
tempt to allow relevant authors a chance to re-
spond so that their ideas can appear in the same
issue as the original letter.
* Publication, Software Tool, and Programming
Environment Reviews

EDITORIAL

3

1. If results are presented for a well-known benchmark, comparative figures should be truly compa-
rable, and the rules for the particular benchmark should be followed.

2. Only actual performance rates should be presented, not projections or extrapolations.
3. Comparative performance figures should be based on comparable levels of tuning.
4. Direct comparisons of run times are preferred to comparisons of megaflops rates or the like.

5. Megaflops figures should not be presented for any comparative purpose unless they are computed
from consistent flop counts, preferably flop counts based on the best serial algorithm.

6. If speedup figures are presented, the single processor rate should be based on a reasonably well-
tuned program without multiprocessing constructs (and overhead).

7. Any ancillary information that would significantly affect the interpretation of performance results

should be fully disclosed.

8. Due to the natural prominence of abstracts, figures and tables, special care should be taken to
insure that these items are not misleading, even if presented alone.

9. Enough details on the hardware, software, system environment, language. algorithms, datatypes.
programming techniques, tuning, and timing techniques should be presented that others could
reproduce the performance results presented.

FIGURE 1. Bailey’s guidelines for reporting performance results.

These reviews will be done primarily to give
early, wide visibility into interesting new ideas and
software systems, rather than rigorous competitive
product analyses. More details on these are given
below in the contribution by Eugene Miya, associ-
ate editor for software and publication reviews.

+ Short Tutorial Papers

Many topics within scientific programming are
narrow enough to be covered in concise tutorial
form.

Retrospective Papers

Due partly to the previous lack of a suitable forum
for publication, a number of research reports have
come to our attention that have been written in the
past five to ten years but were never submitted for
journal publication. Although the specific com-
puter systems and language technology involved
may have become somewhat ‘‘dated”, we intend
to publish these “‘historic’” papers occasionally,
partly because they still contain valuable practical
lessons, and also they can provide some perspec-
tive on areas where significant advances have
been made in scientific programming technology.

ORGANIZATION

Reviewers and Authors

Any scientific journal relies for its success on the
good will and hard work of authors willing to take
the time to write up their results in a readable
fashion, and on reviewers that will help not only
with leads for good potential paper submissions,
but also with the in-depth review and revision cy-
cle that can lead to the publication of very high
quality papers. Our general policy for reviews is
that the relevant associate editor will contact only
potential reviewers likely to have more than a
passing interest in the topic of the paper (or publi-
cation or software package), and then come to a
mutual agreement on a schedule for returning the
review results.

The ultimate success of any enterprise such as
this journal will depend on the efforts and contri-
butions of a great many people. If the help we
have gotten so far is any indication, then Scientific
Programming has a good chance to be successful
in promoting research, development, and dissem-
ination of scientific programming technology.

4 EDITORIAL

Editorial Advisory Board

In addition to the help of the associate editors, a
number of people active in the area of scientific
programming around the world have accepted our
invitation to serve in an editorial advisory capacity
for the journal.

Duties expected of members of the editorial ad-
visory board of Scientific Programming include:

1) Keep a lookout for groups/individuals who
have done or are doing interesting work in
scientific programming in their geographical
area (country, etc.) as well as in their special
fields of interest/expertise anywhere in the
world.

2) Where appropriate, encourage them to write
up the aspects of their work of most interest
to the readers of Scientific Programming. In
general, this means that the practical as-
pects and lessons learned should be more
prominent in the paper than purely theoret-
ical concerns.

3) We aim to have very broad, worldwide cov-
erage of the work in this field. In cases where
the technical message of a particular paper
would be obscured primarily by problems
with English, they will assist the author(s)
with this aspect prior to getting the paper
into the standard review process.

The list of editorial advisory board mem-
bers is given on Cover 2 of this journal. We
appreciate very much their willingness to
help with the journal.

Associate Editors

In order to help with identifying, reviewing, and
revising appropriate papers for Scientific Pro-

gramming, we have been very fortunate to be able
to enlist the assistance of the following associate
editors:

* Jim McGraw (Languages and Paradigms)
Lawrence Livermore National Laboratory, USA

* David Callahan (Environments and Tools)
Tera Computer Company, USA

* Bo Kégstrom (Techniques and Experiences)
University of Umed, Sweden

* Hans Zima (Compiler Technology)

University of Vienna, Austria

* Eugene Miya (Software and Publication Re-
views)
NASA Ames Research Center, USA

The associate editors are primarily responsible for
managing the review and revision process. They
will rely on members of the editorial advisory
board for help with identifying and encouraging
high-quality paper submissions, as well as for
help with finding qualified reviewers with exper-
tise in pariicular areas. The associate editors will
recommend acceptance/rejection of papers
whose review cycle they manage. Papers can be
submitted initially to one of the co-editors, or to
an appropriate associate editor.

Each of the associate editors has contributed a
brief position paper to this inaugural issue de-
scribing their subject area, and giving their
thoughts on the kinds of papers they would like to
see published within their respective areas in fu-
ture issues.

Languages and Paradigms for

Scientific Programming

JIM MCGRAW

Lawrence Livermore National Laboratory, USA

This new journal provides a common publication
forum to be shared by computational scientists
and computer scientists for the interchange of in-

formation of mutual benefit. Within the subarea
of languages and paradigms, I believe that both
groups have much to offer in terms of valuable

lessons learned, intermediate results on new re-
search directions, and new ideas for making sci-
entific programming a more effective computa-
tional strategy for advancing science in general.
Computational scientists bring to the table a deep
understanding of the problem domain and the
most effective algorithms for correctly solving
those problems in an efficient manner. Computer
scientists bring an understanding of linguistic
techniques for expressing algorithms in ways that
permit the most effective use of particular ma-
chine features. My goal as associate editor for lan-
guages and paradigms is to publish practical pa-
pers that contribute to enhancing understanding
of how to best express scientific algorithms. This
goal statement contains several key phrases that
deserve elaboration.

The phrase ‘‘practical papers’” emphasizes my
interest in seeing the results of real studies, results
that can be put into practice by readers. If I have
one criticism of the research community from
which I have come (computer science), it would be
that we tend to generate far too many “‘new’’ lan-
guage ideas (which are more often minor varia-
tions on an existing theme) and fail to make a
substantial test of those ideas to demonstrate
clearly that the new ideas will have a substantial
impact on the development of new applications or
the long-term maintenance of existing ones. In
this sense, [would give the most weight to papers
that have analyzed new or existing language ideas
(and/or paradigms) against a substantial set of
real test problems (i.e., at least one). This is a
place where computational scientists can be of
enormous help. What are the key algorithmic
techniques for future applications? Where are the
areas of code development and maintenance in
scientific computing that cause the greatest num-
ber of programmer errors and computer ineffi-
ciencies? I believe that our journal should encour-
age submission of papers that authoritatively and
analytically set out the current and future needs
for scientific programming. A key component of
such papers could be defining objective measures
of success.

The second key phrase I identified in my goal
statement stresses ‘‘enhancing understanding.”
In this context, I want to emphasize a charge that [
plan to give to all referees who get papers from me
to review. If a referee recommends that a paper be
accepted, I want to understand clearly what that
referee believes readers will gain by reading the
article. In this sense, a paper discussing how the
author implemented algorithm ABC on XYZ com-

EDITORIAL 5

puter using MNO language or paradigm and pro-
duced 95% speedup on 1024 processors will not
be (in general) enough to get a paper accepted.
Within the area of languages and paradigms, we
need to focus on the process by which the results
were achieved. How long did it take to develop the
code? What were the biggest stumbling blocks to
expressing the algorithms? If converting from a
previous code version, how much of the original
code remained untouched? In what ways did the
language either enhance or inhibit the efficient
translation of the algorithm into high performance
execution on the machine? These questions are
often unanswered in papers I see published to-
day—mainly because they are hard questions to
answer. However, these are also the kinds of ques-
tions that can substantially enhance understand-
ing on the part of readers.

The last key phrase in my goal statement points
to one of the most difficult aspects of this area of
study—demonstrating ways to ‘‘best express sci-
entific algorithms.” Criteria for ““best”” can be a
challenging and complex issue in itself. Options
include: easiest to program, fastest execution
time, highest degree of portability without code
modification, conciseness in expressing algo-
rithms, and fastest total development time (just to
name a few). Depending on the work context, any
and/or all of these criteria can be important.
What I would most like to see in accepted papers
is that a specific set of criteria have been selected
and carefully measured as a part of the analysis.
In doing the analysis, the authors should be able
to explain the results (including performance
anomalies) without resorting to guesswork or
opinions. In looking at identifying options for
claiming “‘the best”” performance, researchers are
often drawn to the use of making comparisons. In
this context, reviewers will be looking to determine
if a true and fair comparison is being made, or if a
weak strawman opponent has been selected.
Needless to say, I favor comparisons of the former
type.

The preceding discussion has focused primarily
on a description of the characteristics I would like
to see in the papers published. Following are some
specific topic areas that I would definitely like to
see published in our journal.

High on my list of interesting topics for this sub-
ject area would be experiences reported by com-
putational scientists using new styles of program-
ming languages and paradigms. I would tend to
keep a broad definition of “‘new’’ in this context—
basically anything that is not generic Fortran or C.

6 EDITORIAL

Of particular interest would be experiences with
paradigms such as: object-oriented, data parallel,
functional, message passing, and shared-memory
parallel programming. In my mind, the important
aspect would be to get some concrete data on the
successes and failures in using new techniques.
Papers that are very subjective in their likes and/
or dislikes of features are NOT what I have in
mind.

Another important topic within this subject
area evaluates the ability of various languages and
paradigms to exploit effectively a variety of differ-
ent computer architectures with ““minimal’” (or
ideally “‘no’’) changes to the source code. Based
on my experience, it seems that to get peak perfor-
mance out of a particular architecture, program-
mers need to fine-tune the underlying algorithm.
The important question for most application peo-
ple is how close can you get to peak without all of
those careful changes? What amount of develop-
ment energy is needed to get those “*best”” algo-
rithms? These questions are of particular impor-
tance when moving among different styles of
machines, like the Cray 2, CM 5, Paragon, BBN
Butterfly, NCube 2, and Kendall Square.

I realize in all of my examples so far, I have
stressed parallel computing. Clearly this is an as-
pect of scientific computing that is of current im-
portance and growing interest. However, we want
to encourage submissions beyond this specific do-
main. Other types of languages and paradigms
may have a dramatic impact on the ability of ap-
plication developers to build and maintain high-
quality scientific software in the future. Data ab-
straction, object-oriented programming, and
high-level application area-specific languages
only begin the list of possibilities. New language
ideas and their use on scientific applications
would be welcome submissions. I would also look
favorably on efforts to evolve existing languages
like Fortran and C toward newer programming
paradigms. For example, what kind of perfor-
mance could someone get by writing in Fortran,
but using a “‘nearly’” functional subset of the lan-
guage?

Another topic area for which I would like to see
greater coverage is that of negative results. I be-
lieve we learn more from our mistakes than our
successes. Yet, as researchers, we are often dis-

couraged from drawing attention to failures. We
can provide a valuable service to practitioners by
warning them away from paths that produce poor
results. The key point in considering such papers
will be the simple rule—is the negative result
clearly explained and sufficiently documented to
correctly warn off others from encountering the
same problem. I will not make it a requirement
that the paper include the “‘right”” answer, or even
a “‘better’” solution, for the paper to be accepted
for publication.

The one last point I wish to include relates to
reporting performance results. David Bailey has
published a humorous, but pointed article entitled
“Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers™ [1].
The thrust of this article is that without meticulous
care and thorough and fair analysis, the numbers
reported in journals can be worse than useless.
They can be seriously misleading. Based on my
readings in the literature, we have too many ex-
amples of sloppy performance experiments that
lead to erroneous and/or misleading conclusions.
I believe David’s comments apply equally to the
analysis of programming languages and para-
digms. Our goal in this journal is to provide mate-
rial that the common practitioners of scientific
programming will find useful and beneficial. We
can only meet this criterion if authors and review-
ers carefully examine the results reported to make
sure that claims of success are warranted. I en-
courage everyone to read David Bailey’s article to
raise their awareness of this subtle and often very
tricky issue. A summary of the guidelines is shown
in Figure 1.

I see this journal as an excellent opportunity for
an exchange of ideas among computational sci-
ence and computer science practitioners for their
mutual benefit. Results that have value and appli-
cability to a broad section of readership will have
the highest priority. Within the area of languages
and paradigms, the field of scientific program-
ming field is exploding with new and innovative
approaches to expressing critical applications in
an effective and efficient manner. I encourage all
of you who have results consistent with the goals
set out in this article to consider writing them
up as a paper submission to Scientific Program-
ming.

EDITORIAL 7

Scientific Programming Environments

and Tools

DAVID CALLAHAN
Tera Computer, USA

In the area of programming environments and
tools, Scientific Programming offers a unique op-
portunity for software researchers to describe re-
cent advances in programming support to an au-
dience that can both build on the research and
benefit from the software products directly. My
goal as the associate editor for this area is to pub-
lish practical papers that describe software tools
that automate or simplify some aspect of scientific
program development.

A practical paper should include either ena-
bling algorithm development, interesting imple-
mentation experience, or experience based on
field use by computational scientists. Hybrid pa-
pers are of course encouraged.

An algorithm or theory paper must provide new
results on the computational properties of some
programming task. This can include bounds on
asymptotic complexity or new algorithms for some
standard problem. Such work must be cast as en-
abling research for tool development. These pa-
pers will be of interest to other developers who
may incorporate the work into their own products.
These papers will also be of interest to computa-
tion scientists so that they can develop an under-
standing of what is possible and what is plausible
to expect in the near future from scientific soft-
ware tools. Theory papers might also address
meta-problems, such as how to evaluate tools or
characterize their effectiveness.

An implementation experience paper should
address design goals and their ramifications in the
implementation of the tool. Particular attention
should be paid to tradeoffs in the implementation
and their impact on performance and functional-
ity. These papers should emphasize those aspects
of the design that were the most troubling, thus
providing direction for future research and sug-
gesting changes in programming practice that
might alleviate conflicting requirements.

A tool use experience paper should objectively
measure the effectiveness of a tool. In general, pa-
pers which provide only simple anecdotal evi-
dence that a tool or environment was used are not
acceptable. Papers must go on to analyze the
strengths and weaknesses of a tool in some setting
and attempt to objectively gauge its utility. Objec-
tive data on how a tool is used in the field is vital to
advancing the state-of-the-art. Which features
are used and which are not; why were features not
used; what were the productivity gains: what was
the measured performance change in applications
and job mixes—this information is crucial input to
the next generation of tools. In this context, scien-
tific programmers can provide invaluable feed-
back to tool developers to help explain these data.
Computer scientists are often removed from their
client users and can lose touch with the daily
problems that consume the bulk of scientific pro-
gram development time.

The focus on scientific programming must be
maintained. Papers that would be more appropri-
ate to ‘‘mainstream’’ journals on programming
practice should be submitted there. Papers which
are particularly motivated by the needs of scien-
tific programmers should be submitted here.
What are these needs? I have no specific answer
and so each paper which may be borderline
should motivate why the tools are of particular
interest to scientific programmers.

I am excited about the opportunity presented
by the journal to advance the state-of-the-art of
scientific programming and to enhance the pro-
ductivity of scientific programmers. Recent ad-
vances in architecture, particularly massively par-
allel systems, have made critical the role of
software tools and programming environments.
Through vehicles like this journal we can combine
diverse talents to help overcome this crisis.

8 EDITORIAL

Scientific Programming Techniques

and Experiences

BO KAGSTROM

University of Umed, Sweden

This subarea focuses on different techniques em-
ployed in, and experiences obtained from, ad-
vanced software implementations on the large
spectrum of today’s advanced and high-perfor-
mance (parallel) computer architectures. Tech-
niques that in some sense are scientific, i.e., gen-
eral and will influence the future design of
software, are of most interest. For example, tech-
niques that apply to different problem classes
(non-numerical as well as numerical) and/or fo-
cus on architectural considerations, e.g., high-
lighting the efficient use of hierarchical memory
systems of advanced computer architectures. The
aim is to develop general and good techniques
that can transfer to a design and implementation
paradigm. The scope of this subarea is also on
experiences of implementing different techniques
on advanced computer architectures. Here, the
focus should be on the use of techniques on com-
puters rather than on the exposition of results pe-

culiar to a specific research problem. Performance
measuring, evaluation, simulation and modeling
relating to implemented techniques and experi-
ences to their use are also interesting topics.

We strive for original papers of high scientific
quality, e.g., techniques and experiences should
be put into a general context and compared with
other techniques and experiences published in
scientific journals. However, we are also interested
in publishing short communications on tech-
niques and experiences that are of general and
immediate interest. It is also clear that many top-
ics, etc. will not clearly and easily split into the
four subareas of the journal (a paper may cover
several subareas). | think it is important that we
maintain a ‘“‘scientific focus’’ {(as stressed in the
title of the journal). However, I believe that an
opening also exists for short communications
which could have a less ““scientific focus’ if they
are of sufficient immediate interest.

Scientific Programming Compiler Technology

HANS ZIMA

University of Vienna, Austria

Given below is a list of the main topic areas that 1
believe are of the current greatest interest within
this subfield of Scientific Programming:

1) Compiler Technology for New Languages/
New Language Features
* Procedural Languages

* Parallel Language Extensions
Examples: C*, Data Parallel C, Vi-
enna Fortran, Fortran D, High Per-
formance Fortran (HPF)

* Functional Languages

* Very High-Level Languages

— Domain-Specific Languages and Sys-

tems (DEQSOL,SUSPENSE,ALPAL,
ete.)
— Object-Oriented Languages
— Logic Programming Languages
2) Compiler Technology for Current and Novel
Computer Architectures
* Superscalar architectures
« Parallel architectures
— SIMD
— MIMD Shared Memory
— MIMD Distributed Memory
— MIMD Virtual Shared Memory
* Distributed Systems
* Systolic Systems
* Vector Architectures
3) Compiler Technology for Support Environ-
ments and Tools
* Restructuring Systems
+ Performance Analysis and Design Tools
* Measurement
* Debugging and Tracing
+ Interactive System Support
4) Intelligent Compiler Support
* Heuristics
* Pattern Matching Applications
» Knowledge-based Systems
« Expert Systems Techniques
* Interactive Systems

EDITORIAL 9

5) Other Topics
» Compiler Generators
» Intermediate Languages
* Rule-based Compiling
* Analysis and Optimization Techniques

Where is the area heading? In my opinion, the
major directions in which compiler technology
(this assumes a rather broad concept of ‘“‘com-
piler”” in the sense in which this term has been
used in recent years—clearly, there is an overlap
with the languages and tools areas) is heading will
be mainly determined by the objective to make
architectures transparent and move programming
to a higher level. As a consequence, major devel-
opments will be in the fields of

1) Algorithm Development—in particular for
machine-independent and machine-spe-
cific optimizations.

2) Tool Development—in particular for per-
formance analysis, graphics support, and
high-level debugging.

3) Intelligent Support Systems—in particular
providing automatic decision making capa-
bilities and intelligent assistance.

4) Very High-Level Languages.

Scientific Programming Software and

Publication Reviews

EUGENE MIYA
NASA Ames Research Center, USA

I believe:

The average scientific programmer does not
have a lot of time.

“Who has time to read journals?”’—

Forrest Baskett, ASPL.OS, IV

The average scientific programmer may:

1) not know a great deal about computer sci-
ence oriented things:

e.g., dead lock, Petri nets, Byzantine Agree-
ments, assumptions of consistency and ato-
micity, numerical stability, critical sections,
etc.

10 EDITORIAL

2) have a slightly distorted view of computers:

that all computers have the same instruc-
tion set, that commands found on one sys-
tem can be found on other systems (ha!)

The average scientific programmer has expo-
sure to many different kinds of terminology: con-
current, parallel, multiprocess. They wish 1o keep
their learning of another discipline to a minimum
to get the job done.

Our audience for Scientific Programming, we
hope, will consist of people from widely varying
backgrounds: acousticians, biologists, chemists,
engineers, mathematicians, physicists, program-
mers, zoologists, as well as computer scientists.
They may or may not know acronyms like ADI,
DAGs, NUMI, DMMP, NURB’s, etc. We will find
programmers who have spent their lives doing sci-
entific programming only on Crays or only on PCs.
They may know only old languages, or only very
new languages: Fortran, assembly, and BASIC or

ML, Linda, and SISAL.

Hands on Imperative

I believe in an emphasis on the “*hands on imper-
ative’” be it books or software reviews or refer-
ences. The reader needs an “‘experience’ with a
book or package. They want the “‘experienced’” to
steer them around things which should be
avoided.

We need to help that programmer find his or
her way through the morass of confusing informa-
tion about scientific programming. I would almost
suggest a ‘‘Dear Abby’'—type of column. Almost.

What does a scientific programmer want to
know?

Software Reviews
The information and format I want is:

Title

Detailed Summary

Body of the review

The detailed summary will be the most important

part (I want “‘one liners”, or 3—4 liners for ad-
dresses):

1) Cost?

2) Availability? Address? Demo available?

3) Platforms: hardware? operating system?
languages? Does it work on shared AND
distributed memory?

3a) Is it real (physical) or simulated (va-

porware) ['TBA dates ?

4) Restrictions: licensing: site or individual,
copying. etc.

5) Usability? Other “*-abilities™?

6) ““Gotchas’™ and other surprises?

7} Environmental considerations: lots of disk
required? Memory? Files? Special permis-
sions required? Protections?

8) Performance, timing. documentation, help,
crashes?

The qualitative descriptive text (review) follows.

Book and Other Publication Reviews

1) Contents: either a table of contents by
chapters or parts or sections
2) Publisher information: who, cost, etc.
3) Is it useful?
a) What are the issues?
b) Does it get to the point?
c¢) Does it have lots of theory?
) Lots of math?
e) What kind of book: survey, practical, the-
oretical?
4) Interesting special features? (Does it come
with software for instance?)
5) Problems with the text (Errors, Controver-
sial statements).
6) Additional comments and conclusion.

REFERENCES

(1] D. H. Bailey, ““Twelve ways to fool the masses when
giving performance results on parallel computers,”
Supercomput. Rev., August 1991, pp. 54-55. Also
published in Supercomputer, Sept. 1991, pp. 4-7.

	Fig.1.
	Languages and Paradigms for Scientific Programming
	Scientific Programming Environments and Tools
	Scientific Programming Techniques and Experiences
	Scientific Programming Compiler Technology
	Scientific Programming Software and Publication Reviews

