
Scientific Programming 15 (2007) 189–190 189
IOS Press

Book Review

Writing Scientific Software – A Guide to Good Style,
by Suely Oliveira & David Stewart, Cambridge Uni-
versity Press, 2006, ISBN 0-521-67595-2

As a computer scientist working in the world of “re-
al” (physical) scientists, I often feel stuck in some sort
of purgatory between million-line FORTRAN codes
and the (currently in vogue) elegance of Python, Java
or Ruby. It is refreshing to discover a book on cod-
ing style written by authors who obviously understand
the application side of scientific software. Throughout
the book, I must admit, I kept checking references and
wanting to add footnotes to the content.

Suely Oliveira (CS department) and David Stewart
(Department of Mathematics) from the University of
Iowa have a deep understanding of many of the com-
plexities underlying software in the scientific domain.
This topic is incredibly deep, including the obvious sci-
entific simulation, image manipulation and even video
games. The authors in this text take a broad approach,
yet delve in deep in several (mostly mathematical) ar-
eas.

The book is divided into five parts:

I) Numerical Software,
II) Developing Software,

III) Efficiency in Time, Efficiency in Memory,
IV) Tools and
V) Design Examples.

Each topic is a text in itself (typically in computer
science), which can make the field rather daunting for
people without a CS background. The book approach-
es the topic from the perspective of a scientist taking
the next step into software. To take them down this
path, the authors cover a broad range of topics yet with
sufficient examples and references to do them justice.

Part I: Numerical Software, starts by describing is-
sues around precision and limits introduced through
computational methods. This short section reveals the
bitter reality of numerical calculations and ways to min-
imize negative effects. The section ends with a few

short examples of just how much damage these little
gremlins of precision can be (famously disastrous, of
course).

Part II: Developing Software, covers some of the ba-
sic computer science motherhood and apple pie. Top-
ics include system architecture, design principles, data
structure and designing for test. This is the largest sec-
tion of the book, but appropriately so for an audience
more likely to be familiar with test tubes or laser optics
than MMU’s, ALU’s and the like. The level of cover-
age is just enough to whet the appetite of those inter-
ested in what the buzzwords are about. The computer
scientist in me finds this broad topic to be of critical
importance and I feel the need to add a pointer here to a
wonderful educational resource available online called
Software Carpentry (http://www.scipy.org disclaimer:
I was associated with this work when it started in the
mid-1990’s).

The next section (Part III: Efficiency in Time, Effi-
ciency in Memory) discusses issues relating to perfor-
mance. I read this with mixed feelings as part of me
wanted to scream out that optimization should be done
as a latter step and/or when the application is under
performing. Of course this isn’t an absolute and it is
important to be aware of algorithmic design issues and
the “Big O” nomenclature (which, unfortunately just
showed up in the text and was not appropriately intro-
duced). The section ends with a touch on the ever-evil
memory bug and things to be done to avoid facing it.

Part IV: Tools, is the topic I expect to be of most
leverage for the reader. There is a wealth of scientific
software available thanks to the research community
within the US, and elsewhere in the world. The im-
portance of these resources cannot be over emphasized
as the reader is very likely to find either an existing
solution to use or a close solution that can be modified
(thanks to the amazing power of Open Source Soft-
ware). Unfortunately this section is also the smallest
of the book. I would have liked to have seen refer-
ences to where to go to find existing software resources

ISSN 1058-9244/07/$17.00  2007 – IOS Press and the authors. All rights reserved

190 Book Review

(http://www.sourceforge.net is a good place to start,
and of course http://www.Google.com).

The last section (Part V: Design Examples) is where
the authors put some meat on the bone for the reader.
Here they provide short examples, or tutorials on a few
key design patterns. It is likely that the intended reader
will be most familiar with the application space, and
this section of the book would be most appealing. I
read it with interest, as the techniques are in common
use by those I work with.

The book itself is not without bugs. There are the
occasional typo’s and use of terminology without in-
troducing it. My biggest complaint is that the authors
did not address the issues of parallelism. As multi-core
systems have completely overtaken, it seems an over-
sight to not address this topic. I strongly feel the au-
thors should have spoken up and provided their opin-
ions, advice and references to where interested readers
could go to learn more.

Despite these minor complaints I do think the au-
thors did a great job and should be commended for
their efforts. Writing scientific software is an exciting
and rewarding activity and also a great career for those
trained (or training) in the sciences and interested in
the topic. As is widely publicized, computational sim-
ulation is rapidly becoming accepted as a peer to the-
ory and experiment in the quest for knowledge. Writ-
ing scientific software is key to enhancing our under-
standing of things. Guides to good style are a valuable
resource to help us along that path.

Brent Gorda
Lawrence Livermore National Laboratory

Livermore, CA, USA

