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Since their formulation by Andrei Markov in
1906 [7], Markov chains (MC) and hidden Markov
models (HMM) have found a place in diverse fields
of science and engineering, from speech recognition
to weather prediction to protein sequence alignment.
Wherever a data set can be expressed as a string of dis-
crete symbols, and when the data has a common source
or common underlying principle, then for those cases a
hidden Markov model may be designed to extract that
underlying principle.

A Markov chain is a directed graph where the nodes
are Markov states and the edges are directed state-state
transitions. A Markov state is said to ‘emit’ a symbol,
which is unique to that state. A “hidden” Markov
model (also sometimes called a “state space” or “latent
Markov” model) differs from a MC in that each state
emits one of a set of symbols drawn from a distribution;
different hidden states may emit the same symbol, and
non-emitting states are possible. The term ‘hidden’ is
used because the symbol sequence alone does not tell us
the state sequence directly. Instead, the latter must be
inferred. In a HMM the states have a meaning all their
own, separate from the meaning of the symbols they
emit. For example, in a HMM composed of states that

emit temperature readings, the states themselves may
represent precipitation readings, or wind direction, or
seasons, or all of the above. HMM states are classifiers
of the symbols in the data string(s), their types and their
contexts.

Algorithms for computing the probabilistic fit be-
tween a data string, or a set of strings, and a HMM
have long-since been worked out. The groundbreak-
ing work of L.E. Baum in the 1960’s led to the
expectation-maximization (EM) method for locally op-
timizing HMM parameters. In 1967, Andrew Viterbi
wrote a general algorithm for finding the optimal state
pathway given a sequence [8]. Lawrence Rabiner’s
highly-cited 1989 tutorial [6] outlined the “Three Ba-
sic Problems” for HMMs (see box), and brought these
techniques within reach of scientists not traditionally
trained in probability theory, including even biologists
(who then became known as “bioinformaticists”). Sev-
eral good books on the subject are now available [1–5].

But the algorithmology of HMMs still has many un-
solved problems, some of which are addressed in the
current special issue. For example, the space of all
possible directed graphs of size Q may be very, very
large, far too large to be searched exhaustively. How
do we find the optimal graph connectivity in a data-
driven manner? How do we, simultaneously, define
the number of states and initialize their emission prob-
abilities, also in a data driven manner? One theoretical
approach is presented in this issue (see the article by
Li and Biswas). A related problem is to determine the
Markov chain order, given only the data. In a first-
order chain, the transition probability depends only on
the current state; in a second order model it depends
also on the previous two states, and so on. An an-
swer is given in this issue (see the article by Boys and
Henderson). Also, how do we impose constraints from
domain-specific knowledge on the HMM topology? In
this issue we present the special cases of psychological
data and speech recognition (see articles by Visser et
al., and by Abdulla, respectively).

The Three Basic Problems for HMMs [6]

Problem 1: Given the observation sequence O =
O1O2 . . . OT , and a model λ, how do we effi-
ciently compute P (O|λ)?
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Problem 2: Given the observation sequence O, and
the model λ, how do we choose a corresponding
state sequence Q = q1q2 . . . qT , which is optimal
in some meaningful sense?

Problem 3: How do we adjust the model parameters
λ to maximize P (O|λ)?

Outstanding problems remain. Given a HMM, how
do we sum all of the self-avoiding pathways in a com-
putationally efficient manner? How do we incorporate
non-local covariance? How do we selectively prune
the graph or grow new edges without overfitting? Once
a topology is defined, the optimal parameters may be
found using EM, but only if they don’t differ too much
from their initial values. How do we overcome this
local optimum problem?

Once a problem is solved for one domain, it is solved
for many, and in some cases (Baum-Welsh and Viterbi
algorithms for example) it is completely general. By
sharing our thoughts and standardizing our language
across fields we can avoid “re-inventing the wheel” and
thereby make faster progress in building useful proba-
bilistic models. Presented here is one small contribu-
tion toward that overall goal.
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