
69

Introduction

An industry standard for shared memory parallel pro-
gramming has long been anticipated. From the mo-
ment it was announced late 1997, OpenMP was it. This
set of directives and library routines, agreed upon by
a powerful consortium of hardware vendors, provides
application developers with a vendor-neutral API for
parallelizing their Fortran, C and C++ codes to exe-
cute on the popular SMPs. As such, it has been quickly
accepted by the community.

OpenMP has its roots in the efforts of the PCF Forum
and the ANSI X3H5 committee, both of which met in
the late eighties in an effort to provide just such a stan-
dard. Although much hard work went into the develop-
ment of language features – for use with Fortran back
then – the timing was wrong: vendor attention became
firmly focussed on distributed memory computers and
their APIs. The OpenMP developers did not just res-
urrect this effort. They selected the best of its features,
producing a structured language with constructs that
not only support the most popular elements of tradi-
tional shared memory programming models, such as
parallel loops: they also enable incremental application
development, conditional compilation, and the paral-
lelization of large program regions. Their attention to
such details has enabled the use of this API for rapid
application development, with major programs some-
times being converted in a matter of hours.

OpenMP is based upon the traditional fork-join
model of shared memory parallel programming, in
which a single master thread begins execution and
spawns worker threads to perform computations in re-
gions that are marked by the user as being parallel. Di-
rectives are provided with which the programmer may
indicate how the work in such regions is to be dis-
tributed among the executing threads and how threads
are to be synchronized. Innovative features include or-
phan directives that are dynamically, but not lexically,
within the scope of a parallel region. OpenMP does
not demand a radical change in programming style. A
serial program can be successively annotated with its
directives, leaving the sequential code largely undis-
turbed. The compiler performs a relatively straightfor-
ward translation of these, usually to calls to a thread
library.

The vendor community has established a non-profit
organization called the OpenMP Architecture Review
Board, or ARB, to deal with the further development of
OpenMP. They have addressed problems with the initial
specification, as well as defining features that help to
keep it up-to-date. Few modifications have been found
necessary so far, although a major revision to the For-
tran API has greatly facilitated its use with Fortran 90.
The user community is beginning to organize itself in
the form of a User Group to address their concerns and
liaise with the ARB.

This special issue of Scientific Programming presents
a cross-section of papers that reflect current OpenMP
activities. Several papers report on experiences using
this paradigm to solve their computational problems,
each of them from a somewhat different point of view.
Further papers discuss tools to support the creation and
optimization of OpenMP programs. The compilation
of OpenMP, both in its traditional setting and for use
with software distributed shared memory is described,
as are on-going research efforts that aim to provide ad-
ditional power within the language. The contributions
were chosen from a variety of papers that were pre-
sented at two distinct workshops on OpenMP, its ap-
plication and its tools, that wereorganized by the edi-
tors. One of these was held in San Diego in July 2000
and attracted a variety of participants from government
labs, universities and industry. The other workshop
took place in Edinburgh, Scotland, in September of the
same year and attracted a similar range of attendees. It
was interesting to witness the diversification that had
taken place since the initial workshop the previous year,
when few implementations were available. A surpris-
ing number of compilers and tools on a variety of plat-
forms were already in use by the summer of 2000.

Application developers and parallelization experts
are still learning how to use OpenMP. Experiences have
been reported on a variety of codes and target systems,
and general strategies proposed. In this issue, Kaiser
and Baden discuss how to get performance out of the
hybrid programming model obtained when MPI and
OpenMP are combined in a code. This is particularly
popular as a model for clusters of SMPs and tightly
coupled machines that exhibit this hierarchical paral-

Scientific Programming 9 (2001) 69–71
ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

70 Introduction

lelism. They consider the use of OpenMP at a coarse
granularity, and show how it is possible to overlap MPI
communication with OpenMP computation. The paper
focusses on the needs of regular (structured) stencil-
based applications. Their results compare strategies in
which a thread is reserved to perform communication
with those that attempt to share both communication
and computation among all threads. The usefulness of
blocking for cache is demonstrated and the claim made
that moving OpenMP parallelism to outer levels of the
code will enable cache blocking without interference
from these directives.

Smith and Bull also consider this hybrid model for
SMP clusters, evaluating its overall usefulness. They
show that this is not necessarily the most effective pro-
gramming model but that it may provide significant
benefits in some situations. This is particularly likely
to be the case if the MPI code suffers from poor scaling,
perhaps due to load imbalance or too fine grain prob-
lem size, or if the MPI program suffers from memory
limitations due to large amounts of replicated data. The
MPI implementation used may exacerbate such prob-
lems. The authors have created a QMC code that may
execute with an arbitrary mix of OpenMP and MPI
even on a pure SMP system. It scales well up to 32
processes under each of the programming models, yet
the OpenMP version was easier to create.

Paolo Malfetti discusses the application of OpenMP
to weather, wave and ocean models in his contribution
to this volume. The target machine in this case is Sil-
icon Graphic’s Origin 2000, a ccNUMA architecture.
The programs he works with were written for vector
machines, so there are a variety of porting problems
that need to be overcome. Malfetti addresses the suit-
ability of this architecture for environmental simula-
tions. He also discusses the benefits of OpenMP as
a programming model, the need for single processor
tuning in order to obtain performance under it, and the
relationship between scalability and input size, cache
sizes and the target processor.

Di Martino and colleagues discuss OpenMP work-
load decomposition strategies, based upon a case study
involving a particle-in-cell code. Both domain and par-
ticle decomposition strategies are applied to the Hybrid
MHD-Gyrokinetic Code and evaluated with regard to
their time efficiency,memory usage and the program re-
structuring effort required to achieve them. The results
in this case are sensitive to the relationship between the
domain size and the number ofparticles. A major find-
ing of their work is the trade-off implied between effi-
ciency and recoding effort. A particle decomposition

requires little code rewriting, but has drawbacks: one
such approach leads to large memory use, and another
results in comparatively low efficiency. The domain
decomposition approach is superior in each of these re-
spects but required considerable program modification.
The authors conclude that ad hoc parallelization strate-
gies, taking application characteristics into account, are
required to achieve high efficiency in general.

Compiler strategies for dealing with explicitly par-
allel shared memory programs are comparatively new.
Indeed, most OpenMP compilers refrain from opti-
mizations that are not essentially sequential (i.e. within
a single thread). Yet broader optimizations could poten-
tially have a big impact on the performance of OpenMP
codes, especially if they are translated to a ccNUMA
system or target software distributed shared memory.

Sato and colleagues describe the compiler transla-
tion from OpenMP to SCASH, a software distributed
shared memory system that works on clusters of PCs.
They explain that data mapping is key to achieving
good performance under this system and add a set of
directives to specify data mapping and loop scheduling
at page granularity.

In their paper on compiler optimization techniques
for OpenMP programs, Satoh and colleagues extend
standard dataflow analysis methods to cover OpenMP
parallelism. They describe a flowgraph containing
nodes to represent OpenMP constructs, and develop al-
gorithms to handle problems such as reaching defini-
tions, but also to analyze memory synchronizations and
cross-loop data dependences. Although their goal is
to target software distributed shared memory systems,
much of their work on reducing synchronization over-
heads and improving data locality is equally applicable
to generic OpenMP implementations.

Although it is easy to create an OpenMP program, it
is not necessarily easy to create one that executes on a
given parallel platform with high efficiency. A variety
of optimizations may need to be manually applied to
improve single processor performance as well as to
reduce false sharing and a variety of overheads.

Park and co-authors propose a general methodology
for developingparallelprograms that includes the use of
a parallelizing compiler to perform some of the trans-
lations. They describe a pair of independent yet com-
plementary tools that were designed to support a set of
tasks that are part of the development process. URSA
MINOR is a performance evaluation tool and INTER-
POL is an interactive tool for program transformation
that can be used with OpenMP codes. Their work ex-
tends to consider the use of a database, storing infor-

Introduction 71

mation to support the diagnosis and possible solutions
for various performance symptoms.

Ierotheou and colleagues at Greenwich as well as
NASA Ames have extended a tool that supports de-
velopment of MPI programs so that it can also gener-
ate OpenMP code. They break the process down into
three stages: identification of parallel regions and par-
allel loops, optimization of these, and the actual code
transformation, including the insertion of OpenMP di-
rectives into the input source program. An important
aspect of this system is its extensive data dependence
analysis, the results of which are used to classify loops.
The user may inspect this classification and the depen-
dences themselves, and is given the opportunity to im-
prove upon the system’s knowledge. The authors in-
clude several case studies to illustrate the workings of
CAPTools.

One measure of the success of OpenMP as an API for
technical computing on SMPs is the fact that there are
many attempts to broaden its range of applicability.This
includes proposals for features that address other kinds
of computations, software to support its execution on
distributed memory systems and clusters of worksta-
tions, as well as its implementation on cache-coherent
NUMA systems. Work addressing each of these issues
is to be found both in academia as well as in industry.

Labarta et al. consider extensions to OpenMP that
support irregular data access loops. One of the advan-
tages of OpenMP is that it can be used without diffi-
culty to express the parallelism in unstructured compu-
tations. However, if there are dependences between the
updates performed by different threads, these updates
must be protected. This is unnecessarily inefficient

in many cases. The paper proposes supporting an in-
spector/executor implementation so that those accesses
requiring protection are identified and all others may
be updated in parallel. They borrow from work previ-
ously performed to support HPF by adding an indirect
clause and a named schedule. The authors point out the
potential usefulness of the inspector/executor approach
to enable runtime data dependence and corresponding
construction of execution schedules, e.g. for wavefront
execution.

Nested parallelism is the feature in the current
OpenMP specification that has proved to be most re-
sistent to implementation. Blikberg and Sorevik per-
form numerical experiments to support their claim that,
if a problem has more than one level of parallelism, ap-
plying parallelism to all levels will enhance scalability.
They take the inevitable load balancing issues in such
situations into consideration and argue for the full im-
plementation of this feature. The paper discusses two
example codes in detail, one synthetic and one a real
world use of nested parallelism. The overarching goal
is to use OpenMP for adaptive mesh refinement codes,
where multiple levels of parallelism will be present,
albeit with difficult load balancing problems. The au-
thors claim that many problems are typically broken
down into smaller subproblems, leading to a code that
can profit from multilevel parallelism; an outer layer
generally has a few large tasks, and successive layers
have more, but smaller, subtasks.

Happy reading!

Mark Bull and Barbara Chapman

