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Guest-editorial

Parallel Software Design for Weather
Simulation Codes

In 1922, British physicist Lewis Richardson pub-
lished the book “Weather Prediction by Numerical Pro-
cess” which described how to construct numerical mod-
els to predict the weather. Unfortunately, the lack
of electronic computers made Richardson’s techniques
impractical, because they required many calculations
at discrete grid points mapped over the earth’s surface.
In 1922, Richardson’s approach required 3 weeks of
pen-and-pencil calculating for a 24-hour forecast. To
overcome this obstacle, he proposed to assign one per-
son to each grid point in his global numerical model,
and to have them calculate the weather at each grid
point in parallel with all the others. A spherical room
would be employed with a platform directly in the cen-
ter of the room: from this platform a single “conductor”
would insure the calculations proceeding in parallel
were synchronized by communicating with the persons
distributed throughout the room.

Following WWII, the introduction of electronic com-
puters made Richardson’s techniques practical, and nu-
merical weather prediction (NWP) was born. Today,
NWP is crucial to forecasting both global weather pat-
terns as well as local weather events such as thunder-
storms. These techniques have also been extended to
forecast climate patterns extending over decades or cen-
turies. One thing that hasn’t changed since Richard-
son’s pioneering efforts has been the need for speed:
a forecast made after the weather actually happens is
usually not very useful.

In addition, faster computers with larger memories
allow weather modelers to use finer grids, a technique
which improves forecast accuracy. Fine grids are par-
ticularly important in resolving and simulating severe
weather events, such as hurricanes and the terrible
storm of November 4, 1991 over the Grand Banks, re-
ferred to as the “Perfect Storm”. Without fine grids,
these intense, localized phenomena get lost in the large-
scale global simulation.

Faster machines also allow modelers to run an en-
semble of simulations, each with slightly perturbed ini-

tial conditions, to determine the predictability of the
weather: if small variations in the input conditions
yield large variations in the predicted weather, then
the forecaster knows that the weather is inherently less
predictable.

This need for speed has led weather modelers to
embrace the fastest, most advanced computers, even
if they are hard to program. Starting with vector ma-
chines in the mid-1970s and extending to the parallel
vector processors built by Cray Research in the 1980s,
weather modelers have embraced parallelism. They
learned how to write vector codes in the 1970s, then in
the 1980s extended their vector codes to allow multi-
processing (usually on an auto-tasked outer loop com-
bined with a vector inner loop), and in the 1990s ex-
tended or revised their models to run on massively par-
allel cache-based machines. Through this process they
have learned many valuable lessons in how to structure
codes to allow large groups of programmersdeveloping
the model to work together independently, and about
how to structure codes to run efficiently both vector and
microprocessor-based parallel machines.

This special issue of the Scientific Programming in-
cludes six papers by leaders in the field of parallel nu-
merical weather prediction. The first paper by Micha-
lakes is on the parallel MM5 model used for mesoscale
(localized, not global) weather forecasting. MM5 has
been constructed to use the same source code for se-
rial, vector, and parallel execution. Instead, Micha-
lakes has developed a source translation tool that rec-
ognizes the MM5 code idiom, and makes appropriate
translations to exploit domain decomposition for each
type of parallel execution, without the use of directives.
He also shows MM5 performance achieved across a
variety of parallel machines, including vector machines
such as the Fujitsu VPP5000 and Cray T90, as well as
microprocessor-based MPPs like the SGI O2000 and
the IBM SP.

The second paper by Schattler, Doms, and Steppeler
describes the recently developed LM (nonhydrostatic,
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Fig. 1. IFS RAPS 4: T213L31. Courtesy of ECMWF and David Dent.

mesoscale) and GME (global spectral) weather models
used by the German Weather Service. These codes em-
phasize modularity, parallelism, and portability. They
are parallelized using domain decomposition, and good
speedups were observed for up to a few hundred pro-
cessors for reasonable grid sizes on the Cray T3E.

The third paper by Desgagne, Thomas, and Valin de-
scribes the performance of MC2 (a mesoscale model us-
ing semi-implicit techniques) and ECMWF’s IFS (one
of the oldest and best-known global spectral weather
models) on the Fujitsu VPP700 and NEC SX-4M. Good
scalability is observed for both models on both ma-
chines, though memory contention within a single SX-
4 multiprocessor machine limits the good scalability
within an SX-4 box to about 4 processors. The au-
thors developed a mathematical model based upon the
premise that lack of memory bandwidth limited scal-
ability, and show that their performance contention
model correlates well with observed performance.

The remaining three papers describe parallel global
spectral models: the NASA parallel AGCM (Schaffer
and Suarez), the GFDL SKYHI model (Hemler), and
the Navy Global Atmospheric Prediction System (Ros-
mond). The latter two codes exploit parallelism in one-
dimension, while the NASA model (and the IFS model
mentioned in the Desgagne paper) exploit parallelism
in both the latitude and longitude dimensions. Reason-

ably good scalability is achieved up to about 64 pro-
cessors for both the Navy and SKYHI models, while
the NASA AGCM showed reasonable scalability up to
256 processors. The single-processor performance on
the T3E was considered low relative to the performance
that could be achieved on vector machines.

In Fig. 1, the most recent performance results are
given for the IFS code (a global spectral weather model
described in the paper by Degagne et al.) on a variety
of parallel machines. This figure makes manifest the
complete dominance of the Japanese parallel vector su-
percomputers for weather prediction: only 12 Fujitsu
VPP5000 processors are needed to exceed the perfor-
mance of the IFS code on 1024 processors of a Cray
T3E.

This implies a per processor difference in perfor-
mance of nearly 100-to-1; Desgagne et al. report per-
formance discrepancies of nearly 40-to-1 between on
the MC2 code between the SGI Origin2000 and the
NEC SX-5. And yet these Japanese machines (the Fu-
jitsu VPP 5000 and the NEC SX-5) are full-fledged
parallel processing machines that can scale to as many
as 512 processors. What this means in practice is that
in the field of weather prediction, the lucky owners of a
Japanese supercomputer can easily out-compute most
microprocessor-based massively parallel processors by
a factor of 50 or more. Those who argue the Amer-
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ican ban on the purchase of parallel Japanese vector
supercomputers should consider these facts.

As a group, these papers provide a good survey of
the current state-of-the-art not only in parallel numeri-
cal weather prediction, but on the state-of-the-art in the
entire field of large (>100,000 lines of source code)
parallel applications. I am not aware of any other sim-
ulation application in which parallelism is so widely
used, or used to such good effect. What is also inter-
esting is that none of the codes described in this issue
used a new parallel programming language or smart
compiler technology to achieve parallel execution. In

each case, good old-fashioned programmer ingenuity
developed through hard lessons learned, from multi-
ple implementations of the same code across multiple
parallel platforms, carried the day.
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